Merge tag 'nfs-for-5.3-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[platform/kernel/linux-rpi.git] / fs / namespace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/namespace.c
4  *
5  * (C) Copyright Al Viro 2000, 2001
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h>         /* init_rootfs */
21 #include <linux/fs_struct.h>    /* get_fs_root et.al. */
22 #include <linux/fsnotify.h>     /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/task_work.h>
29 #include <linux/sched/task.h>
30 #include <uapi/linux/mount.h>
31 #include <linux/fs_context.h>
32
33 #include "pnode.h"
34 #include "internal.h"
35
36 /* Maximum number of mounts in a mount namespace */
37 unsigned int sysctl_mount_max __read_mostly = 100000;
38
39 static unsigned int m_hash_mask __read_mostly;
40 static unsigned int m_hash_shift __read_mostly;
41 static unsigned int mp_hash_mask __read_mostly;
42 static unsigned int mp_hash_shift __read_mostly;
43
44 static __initdata unsigned long mhash_entries;
45 static int __init set_mhash_entries(char *str)
46 {
47         if (!str)
48                 return 0;
49         mhash_entries = simple_strtoul(str, &str, 0);
50         return 1;
51 }
52 __setup("mhash_entries=", set_mhash_entries);
53
54 static __initdata unsigned long mphash_entries;
55 static int __init set_mphash_entries(char *str)
56 {
57         if (!str)
58                 return 0;
59         mphash_entries = simple_strtoul(str, &str, 0);
60         return 1;
61 }
62 __setup("mphash_entries=", set_mphash_entries);
63
64 static u64 event;
65 static DEFINE_IDA(mnt_id_ida);
66 static DEFINE_IDA(mnt_group_ida);
67
68 static struct hlist_head *mount_hashtable __read_mostly;
69 static struct hlist_head *mountpoint_hashtable __read_mostly;
70 static struct kmem_cache *mnt_cache __read_mostly;
71 static DECLARE_RWSEM(namespace_sem);
72
73 /* /sys/fs */
74 struct kobject *fs_kobj;
75 EXPORT_SYMBOL_GPL(fs_kobj);
76
77 /*
78  * vfsmount lock may be taken for read to prevent changes to the
79  * vfsmount hash, ie. during mountpoint lookups or walking back
80  * up the tree.
81  *
82  * It should be taken for write in all cases where the vfsmount
83  * tree or hash is modified or when a vfsmount structure is modified.
84  */
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
86
87 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
88 {
89         unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90         tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
91         tmp = tmp + (tmp >> m_hash_shift);
92         return &mount_hashtable[tmp & m_hash_mask];
93 }
94
95 static inline struct hlist_head *mp_hash(struct dentry *dentry)
96 {
97         unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98         tmp = tmp + (tmp >> mp_hash_shift);
99         return &mountpoint_hashtable[tmp & mp_hash_mask];
100 }
101
102 static int mnt_alloc_id(struct mount *mnt)
103 {
104         int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
105
106         if (res < 0)
107                 return res;
108         mnt->mnt_id = res;
109         return 0;
110 }
111
112 static void mnt_free_id(struct mount *mnt)
113 {
114         ida_free(&mnt_id_ida, mnt->mnt_id);
115 }
116
117 /*
118  * Allocate a new peer group ID
119  */
120 static int mnt_alloc_group_id(struct mount *mnt)
121 {
122         int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
123
124         if (res < 0)
125                 return res;
126         mnt->mnt_group_id = res;
127         return 0;
128 }
129
130 /*
131  * Release a peer group ID
132  */
133 void mnt_release_group_id(struct mount *mnt)
134 {
135         ida_free(&mnt_group_ida, mnt->mnt_group_id);
136         mnt->mnt_group_id = 0;
137 }
138
139 /*
140  * vfsmount lock must be held for read
141  */
142 static inline void mnt_add_count(struct mount *mnt, int n)
143 {
144 #ifdef CONFIG_SMP
145         this_cpu_add(mnt->mnt_pcp->mnt_count, n);
146 #else
147         preempt_disable();
148         mnt->mnt_count += n;
149         preempt_enable();
150 #endif
151 }
152
153 /*
154  * vfsmount lock must be held for write
155  */
156 unsigned int mnt_get_count(struct mount *mnt)
157 {
158 #ifdef CONFIG_SMP
159         unsigned int count = 0;
160         int cpu;
161
162         for_each_possible_cpu(cpu) {
163                 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
164         }
165
166         return count;
167 #else
168         return mnt->mnt_count;
169 #endif
170 }
171
172 static void drop_mountpoint(struct fs_pin *p)
173 {
174         struct mount *m = container_of(p, struct mount, mnt_umount);
175         dput(m->mnt_ex_mountpoint);
176         pin_remove(p);
177         mntput(&m->mnt);
178 }
179
180 static struct mount *alloc_vfsmnt(const char *name)
181 {
182         struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
183         if (mnt) {
184                 int err;
185
186                 err = mnt_alloc_id(mnt);
187                 if (err)
188                         goto out_free_cache;
189
190                 if (name) {
191                         mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
192                         if (!mnt->mnt_devname)
193                                 goto out_free_id;
194                 }
195
196 #ifdef CONFIG_SMP
197                 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
198                 if (!mnt->mnt_pcp)
199                         goto out_free_devname;
200
201                 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
202 #else
203                 mnt->mnt_count = 1;
204                 mnt->mnt_writers = 0;
205 #endif
206
207                 INIT_HLIST_NODE(&mnt->mnt_hash);
208                 INIT_LIST_HEAD(&mnt->mnt_child);
209                 INIT_LIST_HEAD(&mnt->mnt_mounts);
210                 INIT_LIST_HEAD(&mnt->mnt_list);
211                 INIT_LIST_HEAD(&mnt->mnt_expire);
212                 INIT_LIST_HEAD(&mnt->mnt_share);
213                 INIT_LIST_HEAD(&mnt->mnt_slave_list);
214                 INIT_LIST_HEAD(&mnt->mnt_slave);
215                 INIT_HLIST_NODE(&mnt->mnt_mp_list);
216                 INIT_LIST_HEAD(&mnt->mnt_umounting);
217                 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
218         }
219         return mnt;
220
221 #ifdef CONFIG_SMP
222 out_free_devname:
223         kfree_const(mnt->mnt_devname);
224 #endif
225 out_free_id:
226         mnt_free_id(mnt);
227 out_free_cache:
228         kmem_cache_free(mnt_cache, mnt);
229         return NULL;
230 }
231
232 /*
233  * Most r/o checks on a fs are for operations that take
234  * discrete amounts of time, like a write() or unlink().
235  * We must keep track of when those operations start
236  * (for permission checks) and when they end, so that
237  * we can determine when writes are able to occur to
238  * a filesystem.
239  */
240 /*
241  * __mnt_is_readonly: check whether a mount is read-only
242  * @mnt: the mount to check for its write status
243  *
244  * This shouldn't be used directly ouside of the VFS.
245  * It does not guarantee that the filesystem will stay
246  * r/w, just that it is right *now*.  This can not and
247  * should not be used in place of IS_RDONLY(inode).
248  * mnt_want/drop_write() will _keep_ the filesystem
249  * r/w.
250  */
251 bool __mnt_is_readonly(struct vfsmount *mnt)
252 {
253         return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
254 }
255 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
256
257 static inline void mnt_inc_writers(struct mount *mnt)
258 {
259 #ifdef CONFIG_SMP
260         this_cpu_inc(mnt->mnt_pcp->mnt_writers);
261 #else
262         mnt->mnt_writers++;
263 #endif
264 }
265
266 static inline void mnt_dec_writers(struct mount *mnt)
267 {
268 #ifdef CONFIG_SMP
269         this_cpu_dec(mnt->mnt_pcp->mnt_writers);
270 #else
271         mnt->mnt_writers--;
272 #endif
273 }
274
275 static unsigned int mnt_get_writers(struct mount *mnt)
276 {
277 #ifdef CONFIG_SMP
278         unsigned int count = 0;
279         int cpu;
280
281         for_each_possible_cpu(cpu) {
282                 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
283         }
284
285         return count;
286 #else
287         return mnt->mnt_writers;
288 #endif
289 }
290
291 static int mnt_is_readonly(struct vfsmount *mnt)
292 {
293         if (mnt->mnt_sb->s_readonly_remount)
294                 return 1;
295         /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
296         smp_rmb();
297         return __mnt_is_readonly(mnt);
298 }
299
300 /*
301  * Most r/o & frozen checks on a fs are for operations that take discrete
302  * amounts of time, like a write() or unlink().  We must keep track of when
303  * those operations start (for permission checks) and when they end, so that we
304  * can determine when writes are able to occur to a filesystem.
305  */
306 /**
307  * __mnt_want_write - get write access to a mount without freeze protection
308  * @m: the mount on which to take a write
309  *
310  * This tells the low-level filesystem that a write is about to be performed to
311  * it, and makes sure that writes are allowed (mnt it read-write) before
312  * returning success. This operation does not protect against filesystem being
313  * frozen. When the write operation is finished, __mnt_drop_write() must be
314  * called. This is effectively a refcount.
315  */
316 int __mnt_want_write(struct vfsmount *m)
317 {
318         struct mount *mnt = real_mount(m);
319         int ret = 0;
320
321         preempt_disable();
322         mnt_inc_writers(mnt);
323         /*
324          * The store to mnt_inc_writers must be visible before we pass
325          * MNT_WRITE_HOLD loop below, so that the slowpath can see our
326          * incremented count after it has set MNT_WRITE_HOLD.
327          */
328         smp_mb();
329         while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
330                 cpu_relax();
331         /*
332          * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
333          * be set to match its requirements. So we must not load that until
334          * MNT_WRITE_HOLD is cleared.
335          */
336         smp_rmb();
337         if (mnt_is_readonly(m)) {
338                 mnt_dec_writers(mnt);
339                 ret = -EROFS;
340         }
341         preempt_enable();
342
343         return ret;
344 }
345
346 /**
347  * mnt_want_write - get write access to a mount
348  * @m: the mount on which to take a write
349  *
350  * This tells the low-level filesystem that a write is about to be performed to
351  * it, and makes sure that writes are allowed (mount is read-write, filesystem
352  * is not frozen) before returning success.  When the write operation is
353  * finished, mnt_drop_write() must be called.  This is effectively a refcount.
354  */
355 int mnt_want_write(struct vfsmount *m)
356 {
357         int ret;
358
359         sb_start_write(m->mnt_sb);
360         ret = __mnt_want_write(m);
361         if (ret)
362                 sb_end_write(m->mnt_sb);
363         return ret;
364 }
365 EXPORT_SYMBOL_GPL(mnt_want_write);
366
367 /**
368  * mnt_clone_write - get write access to a mount
369  * @mnt: the mount on which to take a write
370  *
371  * This is effectively like mnt_want_write, except
372  * it must only be used to take an extra write reference
373  * on a mountpoint that we already know has a write reference
374  * on it. This allows some optimisation.
375  *
376  * After finished, mnt_drop_write must be called as usual to
377  * drop the reference.
378  */
379 int mnt_clone_write(struct vfsmount *mnt)
380 {
381         /* superblock may be r/o */
382         if (__mnt_is_readonly(mnt))
383                 return -EROFS;
384         preempt_disable();
385         mnt_inc_writers(real_mount(mnt));
386         preempt_enable();
387         return 0;
388 }
389 EXPORT_SYMBOL_GPL(mnt_clone_write);
390
391 /**
392  * __mnt_want_write_file - get write access to a file's mount
393  * @file: the file who's mount on which to take a write
394  *
395  * This is like __mnt_want_write, but it takes a file and can
396  * do some optimisations if the file is open for write already
397  */
398 int __mnt_want_write_file(struct file *file)
399 {
400         if (!(file->f_mode & FMODE_WRITER))
401                 return __mnt_want_write(file->f_path.mnt);
402         else
403                 return mnt_clone_write(file->f_path.mnt);
404 }
405
406 /**
407  * mnt_want_write_file - get write access to a file's mount
408  * @file: the file who's mount on which to take a write
409  *
410  * This is like mnt_want_write, but it takes a file and can
411  * do some optimisations if the file is open for write already
412  */
413 int mnt_want_write_file(struct file *file)
414 {
415         int ret;
416
417         sb_start_write(file_inode(file)->i_sb);
418         ret = __mnt_want_write_file(file);
419         if (ret)
420                 sb_end_write(file_inode(file)->i_sb);
421         return ret;
422 }
423 EXPORT_SYMBOL_GPL(mnt_want_write_file);
424
425 /**
426  * __mnt_drop_write - give up write access to a mount
427  * @mnt: the mount on which to give up write access
428  *
429  * Tells the low-level filesystem that we are done
430  * performing writes to it.  Must be matched with
431  * __mnt_want_write() call above.
432  */
433 void __mnt_drop_write(struct vfsmount *mnt)
434 {
435         preempt_disable();
436         mnt_dec_writers(real_mount(mnt));
437         preempt_enable();
438 }
439
440 /**
441  * mnt_drop_write - give up write access to a mount
442  * @mnt: the mount on which to give up write access
443  *
444  * Tells the low-level filesystem that we are done performing writes to it and
445  * also allows filesystem to be frozen again.  Must be matched with
446  * mnt_want_write() call above.
447  */
448 void mnt_drop_write(struct vfsmount *mnt)
449 {
450         __mnt_drop_write(mnt);
451         sb_end_write(mnt->mnt_sb);
452 }
453 EXPORT_SYMBOL_GPL(mnt_drop_write);
454
455 void __mnt_drop_write_file(struct file *file)
456 {
457         __mnt_drop_write(file->f_path.mnt);
458 }
459
460 void mnt_drop_write_file(struct file *file)
461 {
462         __mnt_drop_write_file(file);
463         sb_end_write(file_inode(file)->i_sb);
464 }
465 EXPORT_SYMBOL(mnt_drop_write_file);
466
467 static int mnt_make_readonly(struct mount *mnt)
468 {
469         int ret = 0;
470
471         lock_mount_hash();
472         mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
473         /*
474          * After storing MNT_WRITE_HOLD, we'll read the counters. This store
475          * should be visible before we do.
476          */
477         smp_mb();
478
479         /*
480          * With writers on hold, if this value is zero, then there are
481          * definitely no active writers (although held writers may subsequently
482          * increment the count, they'll have to wait, and decrement it after
483          * seeing MNT_READONLY).
484          *
485          * It is OK to have counter incremented on one CPU and decremented on
486          * another: the sum will add up correctly. The danger would be when we
487          * sum up each counter, if we read a counter before it is incremented,
488          * but then read another CPU's count which it has been subsequently
489          * decremented from -- we would see more decrements than we should.
490          * MNT_WRITE_HOLD protects against this scenario, because
491          * mnt_want_write first increments count, then smp_mb, then spins on
492          * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
493          * we're counting up here.
494          */
495         if (mnt_get_writers(mnt) > 0)
496                 ret = -EBUSY;
497         else
498                 mnt->mnt.mnt_flags |= MNT_READONLY;
499         /*
500          * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
501          * that become unheld will see MNT_READONLY.
502          */
503         smp_wmb();
504         mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
505         unlock_mount_hash();
506         return ret;
507 }
508
509 static int __mnt_unmake_readonly(struct mount *mnt)
510 {
511         lock_mount_hash();
512         mnt->mnt.mnt_flags &= ~MNT_READONLY;
513         unlock_mount_hash();
514         return 0;
515 }
516
517 int sb_prepare_remount_readonly(struct super_block *sb)
518 {
519         struct mount *mnt;
520         int err = 0;
521
522         /* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
523         if (atomic_long_read(&sb->s_remove_count))
524                 return -EBUSY;
525
526         lock_mount_hash();
527         list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
528                 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
529                         mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
530                         smp_mb();
531                         if (mnt_get_writers(mnt) > 0) {
532                                 err = -EBUSY;
533                                 break;
534                         }
535                 }
536         }
537         if (!err && atomic_long_read(&sb->s_remove_count))
538                 err = -EBUSY;
539
540         if (!err) {
541                 sb->s_readonly_remount = 1;
542                 smp_wmb();
543         }
544         list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
545                 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
546                         mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
547         }
548         unlock_mount_hash();
549
550         return err;
551 }
552
553 static void free_vfsmnt(struct mount *mnt)
554 {
555         kfree_const(mnt->mnt_devname);
556 #ifdef CONFIG_SMP
557         free_percpu(mnt->mnt_pcp);
558 #endif
559         kmem_cache_free(mnt_cache, mnt);
560 }
561
562 static void delayed_free_vfsmnt(struct rcu_head *head)
563 {
564         free_vfsmnt(container_of(head, struct mount, mnt_rcu));
565 }
566
567 /* call under rcu_read_lock */
568 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
569 {
570         struct mount *mnt;
571         if (read_seqretry(&mount_lock, seq))
572                 return 1;
573         if (bastard == NULL)
574                 return 0;
575         mnt = real_mount(bastard);
576         mnt_add_count(mnt, 1);
577         smp_mb();                       // see mntput_no_expire()
578         if (likely(!read_seqretry(&mount_lock, seq)))
579                 return 0;
580         if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
581                 mnt_add_count(mnt, -1);
582                 return 1;
583         }
584         lock_mount_hash();
585         if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
586                 mnt_add_count(mnt, -1);
587                 unlock_mount_hash();
588                 return 1;
589         }
590         unlock_mount_hash();
591         /* caller will mntput() */
592         return -1;
593 }
594
595 /* call under rcu_read_lock */
596 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
597 {
598         int res = __legitimize_mnt(bastard, seq);
599         if (likely(!res))
600                 return true;
601         if (unlikely(res < 0)) {
602                 rcu_read_unlock();
603                 mntput(bastard);
604                 rcu_read_lock();
605         }
606         return false;
607 }
608
609 /*
610  * find the first mount at @dentry on vfsmount @mnt.
611  * call under rcu_read_lock()
612  */
613 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
614 {
615         struct hlist_head *head = m_hash(mnt, dentry);
616         struct mount *p;
617
618         hlist_for_each_entry_rcu(p, head, mnt_hash)
619                 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
620                         return p;
621         return NULL;
622 }
623
624 /*
625  * lookup_mnt - Return the first child mount mounted at path
626  *
627  * "First" means first mounted chronologically.  If you create the
628  * following mounts:
629  *
630  * mount /dev/sda1 /mnt
631  * mount /dev/sda2 /mnt
632  * mount /dev/sda3 /mnt
633  *
634  * Then lookup_mnt() on the base /mnt dentry in the root mount will
635  * return successively the root dentry and vfsmount of /dev/sda1, then
636  * /dev/sda2, then /dev/sda3, then NULL.
637  *
638  * lookup_mnt takes a reference to the found vfsmount.
639  */
640 struct vfsmount *lookup_mnt(const struct path *path)
641 {
642         struct mount *child_mnt;
643         struct vfsmount *m;
644         unsigned seq;
645
646         rcu_read_lock();
647         do {
648                 seq = read_seqbegin(&mount_lock);
649                 child_mnt = __lookup_mnt(path->mnt, path->dentry);
650                 m = child_mnt ? &child_mnt->mnt : NULL;
651         } while (!legitimize_mnt(m, seq));
652         rcu_read_unlock();
653         return m;
654 }
655
656 /*
657  * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
658  *                         current mount namespace.
659  *
660  * The common case is dentries are not mountpoints at all and that
661  * test is handled inline.  For the slow case when we are actually
662  * dealing with a mountpoint of some kind, walk through all of the
663  * mounts in the current mount namespace and test to see if the dentry
664  * is a mountpoint.
665  *
666  * The mount_hashtable is not usable in the context because we
667  * need to identify all mounts that may be in the current mount
668  * namespace not just a mount that happens to have some specified
669  * parent mount.
670  */
671 bool __is_local_mountpoint(struct dentry *dentry)
672 {
673         struct mnt_namespace *ns = current->nsproxy->mnt_ns;
674         struct mount *mnt;
675         bool is_covered = false;
676
677         if (!d_mountpoint(dentry))
678                 goto out;
679
680         down_read(&namespace_sem);
681         list_for_each_entry(mnt, &ns->list, mnt_list) {
682                 is_covered = (mnt->mnt_mountpoint == dentry);
683                 if (is_covered)
684                         break;
685         }
686         up_read(&namespace_sem);
687 out:
688         return is_covered;
689 }
690
691 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
692 {
693         struct hlist_head *chain = mp_hash(dentry);
694         struct mountpoint *mp;
695
696         hlist_for_each_entry(mp, chain, m_hash) {
697                 if (mp->m_dentry == dentry) {
698                         mp->m_count++;
699                         return mp;
700                 }
701         }
702         return NULL;
703 }
704
705 static struct mountpoint *get_mountpoint(struct dentry *dentry)
706 {
707         struct mountpoint *mp, *new = NULL;
708         int ret;
709
710         if (d_mountpoint(dentry)) {
711                 /* might be worth a WARN_ON() */
712                 if (d_unlinked(dentry))
713                         return ERR_PTR(-ENOENT);
714 mountpoint:
715                 read_seqlock_excl(&mount_lock);
716                 mp = lookup_mountpoint(dentry);
717                 read_sequnlock_excl(&mount_lock);
718                 if (mp)
719                         goto done;
720         }
721
722         if (!new)
723                 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
724         if (!new)
725                 return ERR_PTR(-ENOMEM);
726
727
728         /* Exactly one processes may set d_mounted */
729         ret = d_set_mounted(dentry);
730
731         /* Someone else set d_mounted? */
732         if (ret == -EBUSY)
733                 goto mountpoint;
734
735         /* The dentry is not available as a mountpoint? */
736         mp = ERR_PTR(ret);
737         if (ret)
738                 goto done;
739
740         /* Add the new mountpoint to the hash table */
741         read_seqlock_excl(&mount_lock);
742         new->m_dentry = dentry;
743         new->m_count = 1;
744         hlist_add_head(&new->m_hash, mp_hash(dentry));
745         INIT_HLIST_HEAD(&new->m_list);
746         read_sequnlock_excl(&mount_lock);
747
748         mp = new;
749         new = NULL;
750 done:
751         kfree(new);
752         return mp;
753 }
754
755 static void put_mountpoint(struct mountpoint *mp)
756 {
757         if (!--mp->m_count) {
758                 struct dentry *dentry = mp->m_dentry;
759                 BUG_ON(!hlist_empty(&mp->m_list));
760                 spin_lock(&dentry->d_lock);
761                 dentry->d_flags &= ~DCACHE_MOUNTED;
762                 spin_unlock(&dentry->d_lock);
763                 hlist_del(&mp->m_hash);
764                 kfree(mp);
765         }
766 }
767
768 static inline int check_mnt(struct mount *mnt)
769 {
770         return mnt->mnt_ns == current->nsproxy->mnt_ns;
771 }
772
773 /*
774  * vfsmount lock must be held for write
775  */
776 static void touch_mnt_namespace(struct mnt_namespace *ns)
777 {
778         if (ns) {
779                 ns->event = ++event;
780                 wake_up_interruptible(&ns->poll);
781         }
782 }
783
784 /*
785  * vfsmount lock must be held for write
786  */
787 static void __touch_mnt_namespace(struct mnt_namespace *ns)
788 {
789         if (ns && ns->event != event) {
790                 ns->event = event;
791                 wake_up_interruptible(&ns->poll);
792         }
793 }
794
795 /*
796  * vfsmount lock must be held for write
797  */
798 static void unhash_mnt(struct mount *mnt)
799 {
800         mnt->mnt_parent = mnt;
801         mnt->mnt_mountpoint = mnt->mnt.mnt_root;
802         list_del_init(&mnt->mnt_child);
803         hlist_del_init_rcu(&mnt->mnt_hash);
804         hlist_del_init(&mnt->mnt_mp_list);
805         put_mountpoint(mnt->mnt_mp);
806         mnt->mnt_mp = NULL;
807 }
808
809 /*
810  * vfsmount lock must be held for write
811  */
812 static void detach_mnt(struct mount *mnt, struct path *old_path)
813 {
814         old_path->dentry = mnt->mnt_mountpoint;
815         old_path->mnt = &mnt->mnt_parent->mnt;
816         unhash_mnt(mnt);
817 }
818
819 /*
820  * vfsmount lock must be held for write
821  */
822 static void umount_mnt(struct mount *mnt)
823 {
824         /* old mountpoint will be dropped when we can do that */
825         mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
826         unhash_mnt(mnt);
827 }
828
829 /*
830  * vfsmount lock must be held for write
831  */
832 void mnt_set_mountpoint(struct mount *mnt,
833                         struct mountpoint *mp,
834                         struct mount *child_mnt)
835 {
836         mp->m_count++;
837         mnt_add_count(mnt, 1);  /* essentially, that's mntget */
838         child_mnt->mnt_mountpoint = dget(mp->m_dentry);
839         child_mnt->mnt_parent = mnt;
840         child_mnt->mnt_mp = mp;
841         hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
842 }
843
844 static void __attach_mnt(struct mount *mnt, struct mount *parent)
845 {
846         hlist_add_head_rcu(&mnt->mnt_hash,
847                            m_hash(&parent->mnt, mnt->mnt_mountpoint));
848         list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
849 }
850
851 /*
852  * vfsmount lock must be held for write
853  */
854 static void attach_mnt(struct mount *mnt,
855                         struct mount *parent,
856                         struct mountpoint *mp)
857 {
858         mnt_set_mountpoint(parent, mp, mnt);
859         __attach_mnt(mnt, parent);
860 }
861
862 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
863 {
864         struct mountpoint *old_mp = mnt->mnt_mp;
865         struct dentry *old_mountpoint = mnt->mnt_mountpoint;
866         struct mount *old_parent = mnt->mnt_parent;
867
868         list_del_init(&mnt->mnt_child);
869         hlist_del_init(&mnt->mnt_mp_list);
870         hlist_del_init_rcu(&mnt->mnt_hash);
871
872         attach_mnt(mnt, parent, mp);
873
874         put_mountpoint(old_mp);
875
876         /*
877          * Safely avoid even the suggestion this code might sleep or
878          * lock the mount hash by taking advantage of the knowledge that
879          * mnt_change_mountpoint will not release the final reference
880          * to a mountpoint.
881          *
882          * During mounting, the mount passed in as the parent mount will
883          * continue to use the old mountpoint and during unmounting, the
884          * old mountpoint will continue to exist until namespace_unlock,
885          * which happens well after mnt_change_mountpoint.
886          */
887         spin_lock(&old_mountpoint->d_lock);
888         old_mountpoint->d_lockref.count--;
889         spin_unlock(&old_mountpoint->d_lock);
890
891         mnt_add_count(old_parent, -1);
892 }
893
894 /*
895  * vfsmount lock must be held for write
896  */
897 static void commit_tree(struct mount *mnt)
898 {
899         struct mount *parent = mnt->mnt_parent;
900         struct mount *m;
901         LIST_HEAD(head);
902         struct mnt_namespace *n = parent->mnt_ns;
903
904         BUG_ON(parent == mnt);
905
906         list_add_tail(&head, &mnt->mnt_list);
907         list_for_each_entry(m, &head, mnt_list)
908                 m->mnt_ns = n;
909
910         list_splice(&head, n->list.prev);
911
912         n->mounts += n->pending_mounts;
913         n->pending_mounts = 0;
914
915         __attach_mnt(mnt, parent);
916         touch_mnt_namespace(n);
917 }
918
919 static struct mount *next_mnt(struct mount *p, struct mount *root)
920 {
921         struct list_head *next = p->mnt_mounts.next;
922         if (next == &p->mnt_mounts) {
923                 while (1) {
924                         if (p == root)
925                                 return NULL;
926                         next = p->mnt_child.next;
927                         if (next != &p->mnt_parent->mnt_mounts)
928                                 break;
929                         p = p->mnt_parent;
930                 }
931         }
932         return list_entry(next, struct mount, mnt_child);
933 }
934
935 static struct mount *skip_mnt_tree(struct mount *p)
936 {
937         struct list_head *prev = p->mnt_mounts.prev;
938         while (prev != &p->mnt_mounts) {
939                 p = list_entry(prev, struct mount, mnt_child);
940                 prev = p->mnt_mounts.prev;
941         }
942         return p;
943 }
944
945 /**
946  * vfs_create_mount - Create a mount for a configured superblock
947  * @fc: The configuration context with the superblock attached
948  *
949  * Create a mount to an already configured superblock.  If necessary, the
950  * caller should invoke vfs_get_tree() before calling this.
951  *
952  * Note that this does not attach the mount to anything.
953  */
954 struct vfsmount *vfs_create_mount(struct fs_context *fc)
955 {
956         struct mount *mnt;
957
958         if (!fc->root)
959                 return ERR_PTR(-EINVAL);
960
961         mnt = alloc_vfsmnt(fc->source ?: "none");
962         if (!mnt)
963                 return ERR_PTR(-ENOMEM);
964
965         if (fc->sb_flags & SB_KERNMOUNT)
966                 mnt->mnt.mnt_flags = MNT_INTERNAL;
967
968         atomic_inc(&fc->root->d_sb->s_active);
969         mnt->mnt.mnt_sb         = fc->root->d_sb;
970         mnt->mnt.mnt_root       = dget(fc->root);
971         mnt->mnt_mountpoint     = mnt->mnt.mnt_root;
972         mnt->mnt_parent         = mnt;
973
974         lock_mount_hash();
975         list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
976         unlock_mount_hash();
977         return &mnt->mnt;
978 }
979 EXPORT_SYMBOL(vfs_create_mount);
980
981 struct vfsmount *fc_mount(struct fs_context *fc)
982 {
983         int err = vfs_get_tree(fc);
984         if (!err) {
985                 up_write(&fc->root->d_sb->s_umount);
986                 return vfs_create_mount(fc);
987         }
988         return ERR_PTR(err);
989 }
990 EXPORT_SYMBOL(fc_mount);
991
992 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
993                                 int flags, const char *name,
994                                 void *data)
995 {
996         struct fs_context *fc;
997         struct vfsmount *mnt;
998         int ret = 0;
999
1000         if (!type)
1001                 return ERR_PTR(-EINVAL);
1002
1003         fc = fs_context_for_mount(type, flags);
1004         if (IS_ERR(fc))
1005                 return ERR_CAST(fc);
1006
1007         if (name)
1008                 ret = vfs_parse_fs_string(fc, "source",
1009                                           name, strlen(name));
1010         if (!ret)
1011                 ret = parse_monolithic_mount_data(fc, data);
1012         if (!ret)
1013                 mnt = fc_mount(fc);
1014         else
1015                 mnt = ERR_PTR(ret);
1016
1017         put_fs_context(fc);
1018         return mnt;
1019 }
1020 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1021
1022 struct vfsmount *
1023 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1024              const char *name, void *data)
1025 {
1026         /* Until it is worked out how to pass the user namespace
1027          * through from the parent mount to the submount don't support
1028          * unprivileged mounts with submounts.
1029          */
1030         if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1031                 return ERR_PTR(-EPERM);
1032
1033         return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1034 }
1035 EXPORT_SYMBOL_GPL(vfs_submount);
1036
1037 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1038                                         int flag)
1039 {
1040         struct super_block *sb = old->mnt.mnt_sb;
1041         struct mount *mnt;
1042         int err;
1043
1044         mnt = alloc_vfsmnt(old->mnt_devname);
1045         if (!mnt)
1046                 return ERR_PTR(-ENOMEM);
1047
1048         if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1049                 mnt->mnt_group_id = 0; /* not a peer of original */
1050         else
1051                 mnt->mnt_group_id = old->mnt_group_id;
1052
1053         if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1054                 err = mnt_alloc_group_id(mnt);
1055                 if (err)
1056                         goto out_free;
1057         }
1058
1059         mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1060         mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1061
1062         atomic_inc(&sb->s_active);
1063         mnt->mnt.mnt_sb = sb;
1064         mnt->mnt.mnt_root = dget(root);
1065         mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1066         mnt->mnt_parent = mnt;
1067         lock_mount_hash();
1068         list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1069         unlock_mount_hash();
1070
1071         if ((flag & CL_SLAVE) ||
1072             ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1073                 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1074                 mnt->mnt_master = old;
1075                 CLEAR_MNT_SHARED(mnt);
1076         } else if (!(flag & CL_PRIVATE)) {
1077                 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1078                         list_add(&mnt->mnt_share, &old->mnt_share);
1079                 if (IS_MNT_SLAVE(old))
1080                         list_add(&mnt->mnt_slave, &old->mnt_slave);
1081                 mnt->mnt_master = old->mnt_master;
1082         } else {
1083                 CLEAR_MNT_SHARED(mnt);
1084         }
1085         if (flag & CL_MAKE_SHARED)
1086                 set_mnt_shared(mnt);
1087
1088         /* stick the duplicate mount on the same expiry list
1089          * as the original if that was on one */
1090         if (flag & CL_EXPIRE) {
1091                 if (!list_empty(&old->mnt_expire))
1092                         list_add(&mnt->mnt_expire, &old->mnt_expire);
1093         }
1094
1095         return mnt;
1096
1097  out_free:
1098         mnt_free_id(mnt);
1099         free_vfsmnt(mnt);
1100         return ERR_PTR(err);
1101 }
1102
1103 static void cleanup_mnt(struct mount *mnt)
1104 {
1105         /*
1106          * This probably indicates that somebody messed
1107          * up a mnt_want/drop_write() pair.  If this
1108          * happens, the filesystem was probably unable
1109          * to make r/w->r/o transitions.
1110          */
1111         /*
1112          * The locking used to deal with mnt_count decrement provides barriers,
1113          * so mnt_get_writers() below is safe.
1114          */
1115         WARN_ON(mnt_get_writers(mnt));
1116         if (unlikely(mnt->mnt_pins.first))
1117                 mnt_pin_kill(mnt);
1118         fsnotify_vfsmount_delete(&mnt->mnt);
1119         dput(mnt->mnt.mnt_root);
1120         deactivate_super(mnt->mnt.mnt_sb);
1121         mnt_free_id(mnt);
1122         call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1123 }
1124
1125 static void __cleanup_mnt(struct rcu_head *head)
1126 {
1127         cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1128 }
1129
1130 static LLIST_HEAD(delayed_mntput_list);
1131 static void delayed_mntput(struct work_struct *unused)
1132 {
1133         struct llist_node *node = llist_del_all(&delayed_mntput_list);
1134         struct mount *m, *t;
1135
1136         llist_for_each_entry_safe(m, t, node, mnt_llist)
1137                 cleanup_mnt(m);
1138 }
1139 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1140
1141 static void mntput_no_expire(struct mount *mnt)
1142 {
1143         rcu_read_lock();
1144         if (likely(READ_ONCE(mnt->mnt_ns))) {
1145                 /*
1146                  * Since we don't do lock_mount_hash() here,
1147                  * ->mnt_ns can change under us.  However, if it's
1148                  * non-NULL, then there's a reference that won't
1149                  * be dropped until after an RCU delay done after
1150                  * turning ->mnt_ns NULL.  So if we observe it
1151                  * non-NULL under rcu_read_lock(), the reference
1152                  * we are dropping is not the final one.
1153                  */
1154                 mnt_add_count(mnt, -1);
1155                 rcu_read_unlock();
1156                 return;
1157         }
1158         lock_mount_hash();
1159         /*
1160          * make sure that if __legitimize_mnt() has not seen us grab
1161          * mount_lock, we'll see their refcount increment here.
1162          */
1163         smp_mb();
1164         mnt_add_count(mnt, -1);
1165         if (mnt_get_count(mnt)) {
1166                 rcu_read_unlock();
1167                 unlock_mount_hash();
1168                 return;
1169         }
1170         if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1171                 rcu_read_unlock();
1172                 unlock_mount_hash();
1173                 return;
1174         }
1175         mnt->mnt.mnt_flags |= MNT_DOOMED;
1176         rcu_read_unlock();
1177
1178         list_del(&mnt->mnt_instance);
1179
1180         if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1181                 struct mount *p, *tmp;
1182                 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1183                         umount_mnt(p);
1184                 }
1185         }
1186         unlock_mount_hash();
1187
1188         if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1189                 struct task_struct *task = current;
1190                 if (likely(!(task->flags & PF_KTHREAD))) {
1191                         init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1192                         if (!task_work_add(task, &mnt->mnt_rcu, true))
1193                                 return;
1194                 }
1195                 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1196                         schedule_delayed_work(&delayed_mntput_work, 1);
1197                 return;
1198         }
1199         cleanup_mnt(mnt);
1200 }
1201
1202 void mntput(struct vfsmount *mnt)
1203 {
1204         if (mnt) {
1205                 struct mount *m = real_mount(mnt);
1206                 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1207                 if (unlikely(m->mnt_expiry_mark))
1208                         m->mnt_expiry_mark = 0;
1209                 mntput_no_expire(m);
1210         }
1211 }
1212 EXPORT_SYMBOL(mntput);
1213
1214 struct vfsmount *mntget(struct vfsmount *mnt)
1215 {
1216         if (mnt)
1217                 mnt_add_count(real_mount(mnt), 1);
1218         return mnt;
1219 }
1220 EXPORT_SYMBOL(mntget);
1221
1222 /* path_is_mountpoint() - Check if path is a mount in the current
1223  *                          namespace.
1224  *
1225  *  d_mountpoint() can only be used reliably to establish if a dentry is
1226  *  not mounted in any namespace and that common case is handled inline.
1227  *  d_mountpoint() isn't aware of the possibility there may be multiple
1228  *  mounts using a given dentry in a different namespace. This function
1229  *  checks if the passed in path is a mountpoint rather than the dentry
1230  *  alone.
1231  */
1232 bool path_is_mountpoint(const struct path *path)
1233 {
1234         unsigned seq;
1235         bool res;
1236
1237         if (!d_mountpoint(path->dentry))
1238                 return false;
1239
1240         rcu_read_lock();
1241         do {
1242                 seq = read_seqbegin(&mount_lock);
1243                 res = __path_is_mountpoint(path);
1244         } while (read_seqretry(&mount_lock, seq));
1245         rcu_read_unlock();
1246
1247         return res;
1248 }
1249 EXPORT_SYMBOL(path_is_mountpoint);
1250
1251 struct vfsmount *mnt_clone_internal(const struct path *path)
1252 {
1253         struct mount *p;
1254         p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1255         if (IS_ERR(p))
1256                 return ERR_CAST(p);
1257         p->mnt.mnt_flags |= MNT_INTERNAL;
1258         return &p->mnt;
1259 }
1260
1261 #ifdef CONFIG_PROC_FS
1262 /* iterator; we want it to have access to namespace_sem, thus here... */
1263 static void *m_start(struct seq_file *m, loff_t *pos)
1264 {
1265         struct proc_mounts *p = m->private;
1266
1267         down_read(&namespace_sem);
1268         if (p->cached_event == p->ns->event) {
1269                 void *v = p->cached_mount;
1270                 if (*pos == p->cached_index)
1271                         return v;
1272                 if (*pos == p->cached_index + 1) {
1273                         v = seq_list_next(v, &p->ns->list, &p->cached_index);
1274                         return p->cached_mount = v;
1275                 }
1276         }
1277
1278         p->cached_event = p->ns->event;
1279         p->cached_mount = seq_list_start(&p->ns->list, *pos);
1280         p->cached_index = *pos;
1281         return p->cached_mount;
1282 }
1283
1284 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1285 {
1286         struct proc_mounts *p = m->private;
1287
1288         p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1289         p->cached_index = *pos;
1290         return p->cached_mount;
1291 }
1292
1293 static void m_stop(struct seq_file *m, void *v)
1294 {
1295         up_read(&namespace_sem);
1296 }
1297
1298 static int m_show(struct seq_file *m, void *v)
1299 {
1300         struct proc_mounts *p = m->private;
1301         struct mount *r = list_entry(v, struct mount, mnt_list);
1302         return p->show(m, &r->mnt);
1303 }
1304
1305 const struct seq_operations mounts_op = {
1306         .start  = m_start,
1307         .next   = m_next,
1308         .stop   = m_stop,
1309         .show   = m_show,
1310 };
1311 #endif  /* CONFIG_PROC_FS */
1312
1313 /**
1314  * may_umount_tree - check if a mount tree is busy
1315  * @mnt: root of mount tree
1316  *
1317  * This is called to check if a tree of mounts has any
1318  * open files, pwds, chroots or sub mounts that are
1319  * busy.
1320  */
1321 int may_umount_tree(struct vfsmount *m)
1322 {
1323         struct mount *mnt = real_mount(m);
1324         int actual_refs = 0;
1325         int minimum_refs = 0;
1326         struct mount *p;
1327         BUG_ON(!m);
1328
1329         /* write lock needed for mnt_get_count */
1330         lock_mount_hash();
1331         for (p = mnt; p; p = next_mnt(p, mnt)) {
1332                 actual_refs += mnt_get_count(p);
1333                 minimum_refs += 2;
1334         }
1335         unlock_mount_hash();
1336
1337         if (actual_refs > minimum_refs)
1338                 return 0;
1339
1340         return 1;
1341 }
1342
1343 EXPORT_SYMBOL(may_umount_tree);
1344
1345 /**
1346  * may_umount - check if a mount point is busy
1347  * @mnt: root of mount
1348  *
1349  * This is called to check if a mount point has any
1350  * open files, pwds, chroots or sub mounts. If the
1351  * mount has sub mounts this will return busy
1352  * regardless of whether the sub mounts are busy.
1353  *
1354  * Doesn't take quota and stuff into account. IOW, in some cases it will
1355  * give false negatives. The main reason why it's here is that we need
1356  * a non-destructive way to look for easily umountable filesystems.
1357  */
1358 int may_umount(struct vfsmount *mnt)
1359 {
1360         int ret = 1;
1361         down_read(&namespace_sem);
1362         lock_mount_hash();
1363         if (propagate_mount_busy(real_mount(mnt), 2))
1364                 ret = 0;
1365         unlock_mount_hash();
1366         up_read(&namespace_sem);
1367         return ret;
1368 }
1369
1370 EXPORT_SYMBOL(may_umount);
1371
1372 static HLIST_HEAD(unmounted);   /* protected by namespace_sem */
1373
1374 static void namespace_unlock(void)
1375 {
1376         struct hlist_head head;
1377
1378         hlist_move_list(&unmounted, &head);
1379
1380         up_write(&namespace_sem);
1381
1382         if (likely(hlist_empty(&head)))
1383                 return;
1384
1385         synchronize_rcu_expedited();
1386
1387         group_pin_kill(&head);
1388 }
1389
1390 static inline void namespace_lock(void)
1391 {
1392         down_write(&namespace_sem);
1393 }
1394
1395 enum umount_tree_flags {
1396         UMOUNT_SYNC = 1,
1397         UMOUNT_PROPAGATE = 2,
1398         UMOUNT_CONNECTED = 4,
1399 };
1400
1401 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1402 {
1403         /* Leaving mounts connected is only valid for lazy umounts */
1404         if (how & UMOUNT_SYNC)
1405                 return true;
1406
1407         /* A mount without a parent has nothing to be connected to */
1408         if (!mnt_has_parent(mnt))
1409                 return true;
1410
1411         /* Because the reference counting rules change when mounts are
1412          * unmounted and connected, umounted mounts may not be
1413          * connected to mounted mounts.
1414          */
1415         if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1416                 return true;
1417
1418         /* Has it been requested that the mount remain connected? */
1419         if (how & UMOUNT_CONNECTED)
1420                 return false;
1421
1422         /* Is the mount locked such that it needs to remain connected? */
1423         if (IS_MNT_LOCKED(mnt))
1424                 return false;
1425
1426         /* By default disconnect the mount */
1427         return true;
1428 }
1429
1430 /*
1431  * mount_lock must be held
1432  * namespace_sem must be held for write
1433  */
1434 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1435 {
1436         LIST_HEAD(tmp_list);
1437         struct mount *p;
1438
1439         if (how & UMOUNT_PROPAGATE)
1440                 propagate_mount_unlock(mnt);
1441
1442         /* Gather the mounts to umount */
1443         for (p = mnt; p; p = next_mnt(p, mnt)) {
1444                 p->mnt.mnt_flags |= MNT_UMOUNT;
1445                 list_move(&p->mnt_list, &tmp_list);
1446         }
1447
1448         /* Hide the mounts from mnt_mounts */
1449         list_for_each_entry(p, &tmp_list, mnt_list) {
1450                 list_del_init(&p->mnt_child);
1451         }
1452
1453         /* Add propogated mounts to the tmp_list */
1454         if (how & UMOUNT_PROPAGATE)
1455                 propagate_umount(&tmp_list);
1456
1457         while (!list_empty(&tmp_list)) {
1458                 struct mnt_namespace *ns;
1459                 bool disconnect;
1460                 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1461                 list_del_init(&p->mnt_expire);
1462                 list_del_init(&p->mnt_list);
1463                 ns = p->mnt_ns;
1464                 if (ns) {
1465                         ns->mounts--;
1466                         __touch_mnt_namespace(ns);
1467                 }
1468                 p->mnt_ns = NULL;
1469                 if (how & UMOUNT_SYNC)
1470                         p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1471
1472                 disconnect = disconnect_mount(p, how);
1473
1474                 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1475                                  disconnect ? &unmounted : NULL);
1476                 if (mnt_has_parent(p)) {
1477                         mnt_add_count(p->mnt_parent, -1);
1478                         if (!disconnect) {
1479                                 /* Don't forget about p */
1480                                 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1481                         } else {
1482                                 umount_mnt(p);
1483                         }
1484                 }
1485                 change_mnt_propagation(p, MS_PRIVATE);
1486         }
1487 }
1488
1489 static void shrink_submounts(struct mount *mnt);
1490
1491 static int do_umount_root(struct super_block *sb)
1492 {
1493         int ret = 0;
1494
1495         down_write(&sb->s_umount);
1496         if (!sb_rdonly(sb)) {
1497                 struct fs_context *fc;
1498
1499                 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1500                                                 SB_RDONLY);
1501                 if (IS_ERR(fc)) {
1502                         ret = PTR_ERR(fc);
1503                 } else {
1504                         ret = parse_monolithic_mount_data(fc, NULL);
1505                         if (!ret)
1506                                 ret = reconfigure_super(fc);
1507                         put_fs_context(fc);
1508                 }
1509         }
1510         up_write(&sb->s_umount);
1511         return ret;
1512 }
1513
1514 static int do_umount(struct mount *mnt, int flags)
1515 {
1516         struct super_block *sb = mnt->mnt.mnt_sb;
1517         int retval;
1518
1519         retval = security_sb_umount(&mnt->mnt, flags);
1520         if (retval)
1521                 return retval;
1522
1523         /*
1524          * Allow userspace to request a mountpoint be expired rather than
1525          * unmounting unconditionally. Unmount only happens if:
1526          *  (1) the mark is already set (the mark is cleared by mntput())
1527          *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1528          */
1529         if (flags & MNT_EXPIRE) {
1530                 if (&mnt->mnt == current->fs->root.mnt ||
1531                     flags & (MNT_FORCE | MNT_DETACH))
1532                         return -EINVAL;
1533
1534                 /*
1535                  * probably don't strictly need the lock here if we examined
1536                  * all race cases, but it's a slowpath.
1537                  */
1538                 lock_mount_hash();
1539                 if (mnt_get_count(mnt) != 2) {
1540                         unlock_mount_hash();
1541                         return -EBUSY;
1542                 }
1543                 unlock_mount_hash();
1544
1545                 if (!xchg(&mnt->mnt_expiry_mark, 1))
1546                         return -EAGAIN;
1547         }
1548
1549         /*
1550          * If we may have to abort operations to get out of this
1551          * mount, and they will themselves hold resources we must
1552          * allow the fs to do things. In the Unix tradition of
1553          * 'Gee thats tricky lets do it in userspace' the umount_begin
1554          * might fail to complete on the first run through as other tasks
1555          * must return, and the like. Thats for the mount program to worry
1556          * about for the moment.
1557          */
1558
1559         if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1560                 sb->s_op->umount_begin(sb);
1561         }
1562
1563         /*
1564          * No sense to grab the lock for this test, but test itself looks
1565          * somewhat bogus. Suggestions for better replacement?
1566          * Ho-hum... In principle, we might treat that as umount + switch
1567          * to rootfs. GC would eventually take care of the old vfsmount.
1568          * Actually it makes sense, especially if rootfs would contain a
1569          * /reboot - static binary that would close all descriptors and
1570          * call reboot(9). Then init(8) could umount root and exec /reboot.
1571          */
1572         if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1573                 /*
1574                  * Special case for "unmounting" root ...
1575                  * we just try to remount it readonly.
1576                  */
1577                 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1578                         return -EPERM;
1579                 return do_umount_root(sb);
1580         }
1581
1582         namespace_lock();
1583         lock_mount_hash();
1584
1585         /* Recheck MNT_LOCKED with the locks held */
1586         retval = -EINVAL;
1587         if (mnt->mnt.mnt_flags & MNT_LOCKED)
1588                 goto out;
1589
1590         event++;
1591         if (flags & MNT_DETACH) {
1592                 if (!list_empty(&mnt->mnt_list))
1593                         umount_tree(mnt, UMOUNT_PROPAGATE);
1594                 retval = 0;
1595         } else {
1596                 shrink_submounts(mnt);
1597                 retval = -EBUSY;
1598                 if (!propagate_mount_busy(mnt, 2)) {
1599                         if (!list_empty(&mnt->mnt_list))
1600                                 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1601                         retval = 0;
1602                 }
1603         }
1604 out:
1605         unlock_mount_hash();
1606         namespace_unlock();
1607         return retval;
1608 }
1609
1610 /*
1611  * __detach_mounts - lazily unmount all mounts on the specified dentry
1612  *
1613  * During unlink, rmdir, and d_drop it is possible to loose the path
1614  * to an existing mountpoint, and wind up leaking the mount.
1615  * detach_mounts allows lazily unmounting those mounts instead of
1616  * leaking them.
1617  *
1618  * The caller may hold dentry->d_inode->i_mutex.
1619  */
1620 void __detach_mounts(struct dentry *dentry)
1621 {
1622         struct mountpoint *mp;
1623         struct mount *mnt;
1624
1625         namespace_lock();
1626         lock_mount_hash();
1627         mp = lookup_mountpoint(dentry);
1628         if (IS_ERR_OR_NULL(mp))
1629                 goto out_unlock;
1630
1631         event++;
1632         while (!hlist_empty(&mp->m_list)) {
1633                 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1634                 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1635                         hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1636                         umount_mnt(mnt);
1637                 }
1638                 else umount_tree(mnt, UMOUNT_CONNECTED);
1639         }
1640         put_mountpoint(mp);
1641 out_unlock:
1642         unlock_mount_hash();
1643         namespace_unlock();
1644 }
1645
1646 /*
1647  * Is the caller allowed to modify his namespace?
1648  */
1649 static inline bool may_mount(void)
1650 {
1651         return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1652 }
1653
1654 static inline bool may_mandlock(void)
1655 {
1656 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1657         return false;
1658 #endif
1659         return capable(CAP_SYS_ADMIN);
1660 }
1661
1662 /*
1663  * Now umount can handle mount points as well as block devices.
1664  * This is important for filesystems which use unnamed block devices.
1665  *
1666  * We now support a flag for forced unmount like the other 'big iron'
1667  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1668  */
1669
1670 int ksys_umount(char __user *name, int flags)
1671 {
1672         struct path path;
1673         struct mount *mnt;
1674         int retval;
1675         int lookup_flags = 0;
1676
1677         if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1678                 return -EINVAL;
1679
1680         if (!may_mount())
1681                 return -EPERM;
1682
1683         if (!(flags & UMOUNT_NOFOLLOW))
1684                 lookup_flags |= LOOKUP_FOLLOW;
1685
1686         lookup_flags |= LOOKUP_NO_EVAL;
1687
1688         retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1689         if (retval)
1690                 goto out;
1691         mnt = real_mount(path.mnt);
1692         retval = -EINVAL;
1693         if (path.dentry != path.mnt->mnt_root)
1694                 goto dput_and_out;
1695         if (!check_mnt(mnt))
1696                 goto dput_and_out;
1697         if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1698                 goto dput_and_out;
1699         retval = -EPERM;
1700         if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1701                 goto dput_and_out;
1702
1703         retval = do_umount(mnt, flags);
1704 dput_and_out:
1705         /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1706         dput(path.dentry);
1707         mntput_no_expire(mnt);
1708 out:
1709         return retval;
1710 }
1711
1712 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1713 {
1714         return ksys_umount(name, flags);
1715 }
1716
1717 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1718
1719 /*
1720  *      The 2.0 compatible umount. No flags.
1721  */
1722 SYSCALL_DEFINE1(oldumount, char __user *, name)
1723 {
1724         return ksys_umount(name, 0);
1725 }
1726
1727 #endif
1728
1729 static bool is_mnt_ns_file(struct dentry *dentry)
1730 {
1731         /* Is this a proxy for a mount namespace? */
1732         return dentry->d_op == &ns_dentry_operations &&
1733                dentry->d_fsdata == &mntns_operations;
1734 }
1735
1736 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1737 {
1738         return container_of(ns, struct mnt_namespace, ns);
1739 }
1740
1741 static bool mnt_ns_loop(struct dentry *dentry)
1742 {
1743         /* Could bind mounting the mount namespace inode cause a
1744          * mount namespace loop?
1745          */
1746         struct mnt_namespace *mnt_ns;
1747         if (!is_mnt_ns_file(dentry))
1748                 return false;
1749
1750         mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1751         return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1752 }
1753
1754 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1755                                         int flag)
1756 {
1757         struct mount *res, *p, *q, *r, *parent;
1758
1759         if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1760                 return ERR_PTR(-EINVAL);
1761
1762         if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1763                 return ERR_PTR(-EINVAL);
1764
1765         res = q = clone_mnt(mnt, dentry, flag);
1766         if (IS_ERR(q))
1767                 return q;
1768
1769         q->mnt_mountpoint = mnt->mnt_mountpoint;
1770
1771         p = mnt;
1772         list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1773                 struct mount *s;
1774                 if (!is_subdir(r->mnt_mountpoint, dentry))
1775                         continue;
1776
1777                 for (s = r; s; s = next_mnt(s, r)) {
1778                         if (!(flag & CL_COPY_UNBINDABLE) &&
1779                             IS_MNT_UNBINDABLE(s)) {
1780                                 if (s->mnt.mnt_flags & MNT_LOCKED) {
1781                                         /* Both unbindable and locked. */
1782                                         q = ERR_PTR(-EPERM);
1783                                         goto out;
1784                                 } else {
1785                                         s = skip_mnt_tree(s);
1786                                         continue;
1787                                 }
1788                         }
1789                         if (!(flag & CL_COPY_MNT_NS_FILE) &&
1790                             is_mnt_ns_file(s->mnt.mnt_root)) {
1791                                 s = skip_mnt_tree(s);
1792                                 continue;
1793                         }
1794                         while (p != s->mnt_parent) {
1795                                 p = p->mnt_parent;
1796                                 q = q->mnt_parent;
1797                         }
1798                         p = s;
1799                         parent = q;
1800                         q = clone_mnt(p, p->mnt.mnt_root, flag);
1801                         if (IS_ERR(q))
1802                                 goto out;
1803                         lock_mount_hash();
1804                         list_add_tail(&q->mnt_list, &res->mnt_list);
1805                         attach_mnt(q, parent, p->mnt_mp);
1806                         unlock_mount_hash();
1807                 }
1808         }
1809         return res;
1810 out:
1811         if (res) {
1812                 lock_mount_hash();
1813                 umount_tree(res, UMOUNT_SYNC);
1814                 unlock_mount_hash();
1815         }
1816         return q;
1817 }
1818
1819 /* Caller should check returned pointer for errors */
1820
1821 struct vfsmount *collect_mounts(const struct path *path)
1822 {
1823         struct mount *tree;
1824         namespace_lock();
1825         if (!check_mnt(real_mount(path->mnt)))
1826                 tree = ERR_PTR(-EINVAL);
1827         else
1828                 tree = copy_tree(real_mount(path->mnt), path->dentry,
1829                                  CL_COPY_ALL | CL_PRIVATE);
1830         namespace_unlock();
1831         if (IS_ERR(tree))
1832                 return ERR_CAST(tree);
1833         return &tree->mnt;
1834 }
1835
1836 static void free_mnt_ns(struct mnt_namespace *);
1837 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1838
1839 void dissolve_on_fput(struct vfsmount *mnt)
1840 {
1841         struct mnt_namespace *ns;
1842         namespace_lock();
1843         lock_mount_hash();
1844         ns = real_mount(mnt)->mnt_ns;
1845         if (ns) {
1846                 if (is_anon_ns(ns))
1847                         umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1848                 else
1849                         ns = NULL;
1850         }
1851         unlock_mount_hash();
1852         namespace_unlock();
1853         if (ns)
1854                 free_mnt_ns(ns);
1855 }
1856
1857 void drop_collected_mounts(struct vfsmount *mnt)
1858 {
1859         namespace_lock();
1860         lock_mount_hash();
1861         umount_tree(real_mount(mnt), 0);
1862         unlock_mount_hash();
1863         namespace_unlock();
1864 }
1865
1866 /**
1867  * clone_private_mount - create a private clone of a path
1868  *
1869  * This creates a new vfsmount, which will be the clone of @path.  The new will
1870  * not be attached anywhere in the namespace and will be private (i.e. changes
1871  * to the originating mount won't be propagated into this).
1872  *
1873  * Release with mntput().
1874  */
1875 struct vfsmount *clone_private_mount(const struct path *path)
1876 {
1877         struct mount *old_mnt = real_mount(path->mnt);
1878         struct mount *new_mnt;
1879
1880         if (IS_MNT_UNBINDABLE(old_mnt))
1881                 return ERR_PTR(-EINVAL);
1882
1883         new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1884         if (IS_ERR(new_mnt))
1885                 return ERR_CAST(new_mnt);
1886
1887         return &new_mnt->mnt;
1888 }
1889 EXPORT_SYMBOL_GPL(clone_private_mount);
1890
1891 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1892                    struct vfsmount *root)
1893 {
1894         struct mount *mnt;
1895         int res = f(root, arg);
1896         if (res)
1897                 return res;
1898         list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1899                 res = f(&mnt->mnt, arg);
1900                 if (res)
1901                         return res;
1902         }
1903         return 0;
1904 }
1905
1906 static void lock_mnt_tree(struct mount *mnt)
1907 {
1908         struct mount *p;
1909
1910         for (p = mnt; p; p = next_mnt(p, mnt)) {
1911                 int flags = p->mnt.mnt_flags;
1912                 /* Don't allow unprivileged users to change mount flags */
1913                 flags |= MNT_LOCK_ATIME;
1914
1915                 if (flags & MNT_READONLY)
1916                         flags |= MNT_LOCK_READONLY;
1917
1918                 if (flags & MNT_NODEV)
1919                         flags |= MNT_LOCK_NODEV;
1920
1921                 if (flags & MNT_NOSUID)
1922                         flags |= MNT_LOCK_NOSUID;
1923
1924                 if (flags & MNT_NOEXEC)
1925                         flags |= MNT_LOCK_NOEXEC;
1926                 /* Don't allow unprivileged users to reveal what is under a mount */
1927                 if (list_empty(&p->mnt_expire))
1928                         flags |= MNT_LOCKED;
1929                 p->mnt.mnt_flags = flags;
1930         }
1931 }
1932
1933 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1934 {
1935         struct mount *p;
1936
1937         for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1938                 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1939                         mnt_release_group_id(p);
1940         }
1941 }
1942
1943 static int invent_group_ids(struct mount *mnt, bool recurse)
1944 {
1945         struct mount *p;
1946
1947         for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1948                 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1949                         int err = mnt_alloc_group_id(p);
1950                         if (err) {
1951                                 cleanup_group_ids(mnt, p);
1952                                 return err;
1953                         }
1954                 }
1955         }
1956
1957         return 0;
1958 }
1959
1960 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1961 {
1962         unsigned int max = READ_ONCE(sysctl_mount_max);
1963         unsigned int mounts = 0, old, pending, sum;
1964         struct mount *p;
1965
1966         for (p = mnt; p; p = next_mnt(p, mnt))
1967                 mounts++;
1968
1969         old = ns->mounts;
1970         pending = ns->pending_mounts;
1971         sum = old + pending;
1972         if ((old > sum) ||
1973             (pending > sum) ||
1974             (max < sum) ||
1975             (mounts > (max - sum)))
1976                 return -ENOSPC;
1977
1978         ns->pending_mounts = pending + mounts;
1979         return 0;
1980 }
1981
1982 /*
1983  *  @source_mnt : mount tree to be attached
1984  *  @nd         : place the mount tree @source_mnt is attached
1985  *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1986  *                 store the parent mount and mountpoint dentry.
1987  *                 (done when source_mnt is moved)
1988  *
1989  *  NOTE: in the table below explains the semantics when a source mount
1990  *  of a given type is attached to a destination mount of a given type.
1991  * ---------------------------------------------------------------------------
1992  * |         BIND MOUNT OPERATION                                            |
1993  * |**************************************************************************
1994  * | source-->| shared        |       private  |       slave    | unbindable |
1995  * | dest     |               |                |                |            |
1996  * |   |      |               |                |                |            |
1997  * |   v      |               |                |                |            |
1998  * |**************************************************************************
1999  * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
2000  * |          |               |                |                |            |
2001  * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
2002  * ***************************************************************************
2003  * A bind operation clones the source mount and mounts the clone on the
2004  * destination mount.
2005  *
2006  * (++)  the cloned mount is propagated to all the mounts in the propagation
2007  *       tree of the destination mount and the cloned mount is added to
2008  *       the peer group of the source mount.
2009  * (+)   the cloned mount is created under the destination mount and is marked
2010  *       as shared. The cloned mount is added to the peer group of the source
2011  *       mount.
2012  * (+++) the mount is propagated to all the mounts in the propagation tree
2013  *       of the destination mount and the cloned mount is made slave
2014  *       of the same master as that of the source mount. The cloned mount
2015  *       is marked as 'shared and slave'.
2016  * (*)   the cloned mount is made a slave of the same master as that of the
2017  *       source mount.
2018  *
2019  * ---------------------------------------------------------------------------
2020  * |                    MOVE MOUNT OPERATION                                 |
2021  * |**************************************************************************
2022  * | source-->| shared        |       private  |       slave    | unbindable |
2023  * | dest     |               |                |                |            |
2024  * |   |      |               |                |                |            |
2025  * |   v      |               |                |                |            |
2026  * |**************************************************************************
2027  * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
2028  * |          |               |                |                |            |
2029  * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
2030  * ***************************************************************************
2031  *
2032  * (+)  the mount is moved to the destination. And is then propagated to
2033  *      all the mounts in the propagation tree of the destination mount.
2034  * (+*)  the mount is moved to the destination.
2035  * (+++)  the mount is moved to the destination and is then propagated to
2036  *      all the mounts belonging to the destination mount's propagation tree.
2037  *      the mount is marked as 'shared and slave'.
2038  * (*)  the mount continues to be a slave at the new location.
2039  *
2040  * if the source mount is a tree, the operations explained above is
2041  * applied to each mount in the tree.
2042  * Must be called without spinlocks held, since this function can sleep
2043  * in allocations.
2044  */
2045 static int attach_recursive_mnt(struct mount *source_mnt,
2046                         struct mount *dest_mnt,
2047                         struct mountpoint *dest_mp,
2048                         struct path *parent_path)
2049 {
2050         struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2051         HLIST_HEAD(tree_list);
2052         struct mnt_namespace *ns = dest_mnt->mnt_ns;
2053         struct mountpoint *smp;
2054         struct mount *child, *p;
2055         struct hlist_node *n;
2056         int err;
2057
2058         /* Preallocate a mountpoint in case the new mounts need
2059          * to be tucked under other mounts.
2060          */
2061         smp = get_mountpoint(source_mnt->mnt.mnt_root);
2062         if (IS_ERR(smp))
2063                 return PTR_ERR(smp);
2064
2065         /* Is there space to add these mounts to the mount namespace? */
2066         if (!parent_path) {
2067                 err = count_mounts(ns, source_mnt);
2068                 if (err)
2069                         goto out;
2070         }
2071
2072         if (IS_MNT_SHARED(dest_mnt)) {
2073                 err = invent_group_ids(source_mnt, true);
2074                 if (err)
2075                         goto out;
2076                 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2077                 lock_mount_hash();
2078                 if (err)
2079                         goto out_cleanup_ids;
2080                 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2081                         set_mnt_shared(p);
2082         } else {
2083                 lock_mount_hash();
2084         }
2085         if (parent_path) {
2086                 detach_mnt(source_mnt, parent_path);
2087                 attach_mnt(source_mnt, dest_mnt, dest_mp);
2088                 touch_mnt_namespace(source_mnt->mnt_ns);
2089         } else {
2090                 if (source_mnt->mnt_ns) {
2091                         /* move from anon - the caller will destroy */
2092                         list_del_init(&source_mnt->mnt_ns->list);
2093                 }
2094                 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2095                 commit_tree(source_mnt);
2096         }
2097
2098         hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2099                 struct mount *q;
2100                 hlist_del_init(&child->mnt_hash);
2101                 q = __lookup_mnt(&child->mnt_parent->mnt,
2102                                  child->mnt_mountpoint);
2103                 if (q)
2104                         mnt_change_mountpoint(child, smp, q);
2105                 /* Notice when we are propagating across user namespaces */
2106                 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2107                         lock_mnt_tree(child);
2108                 child->mnt.mnt_flags &= ~MNT_LOCKED;
2109                 commit_tree(child);
2110         }
2111         put_mountpoint(smp);
2112         unlock_mount_hash();
2113
2114         return 0;
2115
2116  out_cleanup_ids:
2117         while (!hlist_empty(&tree_list)) {
2118                 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2119                 child->mnt_parent->mnt_ns->pending_mounts = 0;
2120                 umount_tree(child, UMOUNT_SYNC);
2121         }
2122         unlock_mount_hash();
2123         cleanup_group_ids(source_mnt, NULL);
2124  out:
2125         ns->pending_mounts = 0;
2126
2127         read_seqlock_excl(&mount_lock);
2128         put_mountpoint(smp);
2129         read_sequnlock_excl(&mount_lock);
2130
2131         return err;
2132 }
2133
2134 static struct mountpoint *lock_mount(struct path *path)
2135 {
2136         struct vfsmount *mnt;
2137         struct dentry *dentry = path->dentry;
2138 retry:
2139         inode_lock(dentry->d_inode);
2140         if (unlikely(cant_mount(dentry))) {
2141                 inode_unlock(dentry->d_inode);
2142                 return ERR_PTR(-ENOENT);
2143         }
2144         namespace_lock();
2145         mnt = lookup_mnt(path);
2146         if (likely(!mnt)) {
2147                 struct mountpoint *mp = get_mountpoint(dentry);
2148                 if (IS_ERR(mp)) {
2149                         namespace_unlock();
2150                         inode_unlock(dentry->d_inode);
2151                         return mp;
2152                 }
2153                 return mp;
2154         }
2155         namespace_unlock();
2156         inode_unlock(path->dentry->d_inode);
2157         path_put(path);
2158         path->mnt = mnt;
2159         dentry = path->dentry = dget(mnt->mnt_root);
2160         goto retry;
2161 }
2162
2163 static void unlock_mount(struct mountpoint *where)
2164 {
2165         struct dentry *dentry = where->m_dentry;
2166
2167         read_seqlock_excl(&mount_lock);
2168         put_mountpoint(where);
2169         read_sequnlock_excl(&mount_lock);
2170
2171         namespace_unlock();
2172         inode_unlock(dentry->d_inode);
2173 }
2174
2175 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2176 {
2177         if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2178                 return -EINVAL;
2179
2180         if (d_is_dir(mp->m_dentry) !=
2181               d_is_dir(mnt->mnt.mnt_root))
2182                 return -ENOTDIR;
2183
2184         return attach_recursive_mnt(mnt, p, mp, NULL);
2185 }
2186
2187 /*
2188  * Sanity check the flags to change_mnt_propagation.
2189  */
2190
2191 static int flags_to_propagation_type(int ms_flags)
2192 {
2193         int type = ms_flags & ~(MS_REC | MS_SILENT);
2194
2195         /* Fail if any non-propagation flags are set */
2196         if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2197                 return 0;
2198         /* Only one propagation flag should be set */
2199         if (!is_power_of_2(type))
2200                 return 0;
2201         return type;
2202 }
2203
2204 /*
2205  * recursively change the type of the mountpoint.
2206  */
2207 static int do_change_type(struct path *path, int ms_flags)
2208 {
2209         struct mount *m;
2210         struct mount *mnt = real_mount(path->mnt);
2211         int recurse = ms_flags & MS_REC;
2212         int type;
2213         int err = 0;
2214
2215         if (path->dentry != path->mnt->mnt_root)
2216                 return -EINVAL;
2217
2218         type = flags_to_propagation_type(ms_flags);
2219         if (!type)
2220                 return -EINVAL;
2221
2222         namespace_lock();
2223         if (type == MS_SHARED) {
2224                 err = invent_group_ids(mnt, recurse);
2225                 if (err)
2226                         goto out_unlock;
2227         }
2228
2229         lock_mount_hash();
2230         for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2231                 change_mnt_propagation(m, type);
2232         unlock_mount_hash();
2233
2234  out_unlock:
2235         namespace_unlock();
2236         return err;
2237 }
2238
2239 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2240 {
2241         struct mount *child;
2242         list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2243                 if (!is_subdir(child->mnt_mountpoint, dentry))
2244                         continue;
2245
2246                 if (child->mnt.mnt_flags & MNT_LOCKED)
2247                         return true;
2248         }
2249         return false;
2250 }
2251
2252 static struct mount *__do_loopback(struct path *old_path, int recurse)
2253 {
2254         struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2255
2256         if (IS_MNT_UNBINDABLE(old))
2257                 return mnt;
2258
2259         if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2260                 return mnt;
2261
2262         if (!recurse && has_locked_children(old, old_path->dentry))
2263                 return mnt;
2264
2265         if (recurse)
2266                 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2267         else
2268                 mnt = clone_mnt(old, old_path->dentry, 0);
2269
2270         if (!IS_ERR(mnt))
2271                 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2272
2273         return mnt;
2274 }
2275
2276 /*
2277  * do loopback mount.
2278  */
2279 static int do_loopback(struct path *path, const char *old_name,
2280                                 int recurse)
2281 {
2282         struct path old_path;
2283         struct mount *mnt = NULL, *parent;
2284         struct mountpoint *mp;
2285         int err;
2286         if (!old_name || !*old_name)
2287                 return -EINVAL;
2288         err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2289         if (err)
2290                 return err;
2291
2292         err = -EINVAL;
2293         if (mnt_ns_loop(old_path.dentry))
2294                 goto out;
2295
2296         mp = lock_mount(path);
2297         if (IS_ERR(mp)) {
2298                 err = PTR_ERR(mp);
2299                 goto out;
2300         }
2301
2302         parent = real_mount(path->mnt);
2303         if (!check_mnt(parent))
2304                 goto out2;
2305
2306         mnt = __do_loopback(&old_path, recurse);
2307         if (IS_ERR(mnt)) {
2308                 err = PTR_ERR(mnt);
2309                 goto out2;
2310         }
2311
2312         err = graft_tree(mnt, parent, mp);
2313         if (err) {
2314                 lock_mount_hash();
2315                 umount_tree(mnt, UMOUNT_SYNC);
2316                 unlock_mount_hash();
2317         }
2318 out2:
2319         unlock_mount(mp);
2320 out:
2321         path_put(&old_path);
2322         return err;
2323 }
2324
2325 static struct file *open_detached_copy(struct path *path, bool recursive)
2326 {
2327         struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2328         struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2329         struct mount *mnt, *p;
2330         struct file *file;
2331
2332         if (IS_ERR(ns))
2333                 return ERR_CAST(ns);
2334
2335         namespace_lock();
2336         mnt = __do_loopback(path, recursive);
2337         if (IS_ERR(mnt)) {
2338                 namespace_unlock();
2339                 free_mnt_ns(ns);
2340                 return ERR_CAST(mnt);
2341         }
2342
2343         lock_mount_hash();
2344         for (p = mnt; p; p = next_mnt(p, mnt)) {
2345                 p->mnt_ns = ns;
2346                 ns->mounts++;
2347         }
2348         ns->root = mnt;
2349         list_add_tail(&ns->list, &mnt->mnt_list);
2350         mntget(&mnt->mnt);
2351         unlock_mount_hash();
2352         namespace_unlock();
2353
2354         mntput(path->mnt);
2355         path->mnt = &mnt->mnt;
2356         file = dentry_open(path, O_PATH, current_cred());
2357         if (IS_ERR(file))
2358                 dissolve_on_fput(path->mnt);
2359         else
2360                 file->f_mode |= FMODE_NEED_UNMOUNT;
2361         return file;
2362 }
2363
2364 SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2365 {
2366         struct file *file;
2367         struct path path;
2368         int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2369         bool detached = flags & OPEN_TREE_CLONE;
2370         int error;
2371         int fd;
2372
2373         BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2374
2375         if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2376                       AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2377                       OPEN_TREE_CLOEXEC))
2378                 return -EINVAL;
2379
2380         if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2381                 return -EINVAL;
2382
2383         if (flags & AT_NO_AUTOMOUNT)
2384                 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2385         if (flags & AT_SYMLINK_NOFOLLOW)
2386                 lookup_flags &= ~LOOKUP_FOLLOW;
2387         if (flags & AT_EMPTY_PATH)
2388                 lookup_flags |= LOOKUP_EMPTY;
2389
2390         if (detached && !may_mount())
2391                 return -EPERM;
2392
2393         fd = get_unused_fd_flags(flags & O_CLOEXEC);
2394         if (fd < 0)
2395                 return fd;
2396
2397         error = user_path_at(dfd, filename, lookup_flags, &path);
2398         if (unlikely(error)) {
2399                 file = ERR_PTR(error);
2400         } else {
2401                 if (detached)
2402                         file = open_detached_copy(&path, flags & AT_RECURSIVE);
2403                 else
2404                         file = dentry_open(&path, O_PATH, current_cred());
2405                 path_put(&path);
2406         }
2407         if (IS_ERR(file)) {
2408                 put_unused_fd(fd);
2409                 return PTR_ERR(file);
2410         }
2411         fd_install(fd, file);
2412         return fd;
2413 }
2414
2415 /*
2416  * Don't allow locked mount flags to be cleared.
2417  *
2418  * No locks need to be held here while testing the various MNT_LOCK
2419  * flags because those flags can never be cleared once they are set.
2420  */
2421 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2422 {
2423         unsigned int fl = mnt->mnt.mnt_flags;
2424
2425         if ((fl & MNT_LOCK_READONLY) &&
2426             !(mnt_flags & MNT_READONLY))
2427                 return false;
2428
2429         if ((fl & MNT_LOCK_NODEV) &&
2430             !(mnt_flags & MNT_NODEV))
2431                 return false;
2432
2433         if ((fl & MNT_LOCK_NOSUID) &&
2434             !(mnt_flags & MNT_NOSUID))
2435                 return false;
2436
2437         if ((fl & MNT_LOCK_NOEXEC) &&
2438             !(mnt_flags & MNT_NOEXEC))
2439                 return false;
2440
2441         if ((fl & MNT_LOCK_ATIME) &&
2442             ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2443                 return false;
2444
2445         return true;
2446 }
2447
2448 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2449 {
2450         bool readonly_request = (mnt_flags & MNT_READONLY);
2451
2452         if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2453                 return 0;
2454
2455         if (readonly_request)
2456                 return mnt_make_readonly(mnt);
2457
2458         return __mnt_unmake_readonly(mnt);
2459 }
2460
2461 /*
2462  * Update the user-settable attributes on a mount.  The caller must hold
2463  * sb->s_umount for writing.
2464  */
2465 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2466 {
2467         lock_mount_hash();
2468         mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2469         mnt->mnt.mnt_flags = mnt_flags;
2470         touch_mnt_namespace(mnt->mnt_ns);
2471         unlock_mount_hash();
2472 }
2473
2474 /*
2475  * Handle reconfiguration of the mountpoint only without alteration of the
2476  * superblock it refers to.  This is triggered by specifying MS_REMOUNT|MS_BIND
2477  * to mount(2).
2478  */
2479 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2480 {
2481         struct super_block *sb = path->mnt->mnt_sb;
2482         struct mount *mnt = real_mount(path->mnt);
2483         int ret;
2484
2485         if (!check_mnt(mnt))
2486                 return -EINVAL;
2487
2488         if (path->dentry != mnt->mnt.mnt_root)
2489                 return -EINVAL;
2490
2491         if (!can_change_locked_flags(mnt, mnt_flags))
2492                 return -EPERM;
2493
2494         down_write(&sb->s_umount);
2495         ret = change_mount_ro_state(mnt, mnt_flags);
2496         if (ret == 0)
2497                 set_mount_attributes(mnt, mnt_flags);
2498         up_write(&sb->s_umount);
2499         return ret;
2500 }
2501
2502 /*
2503  * change filesystem flags. dir should be a physical root of filesystem.
2504  * If you've mounted a non-root directory somewhere and want to do remount
2505  * on it - tough luck.
2506  */
2507 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2508                       int mnt_flags, void *data)
2509 {
2510         int err;
2511         struct super_block *sb = path->mnt->mnt_sb;
2512         struct mount *mnt = real_mount(path->mnt);
2513         struct fs_context *fc;
2514
2515         if (!check_mnt(mnt))
2516                 return -EINVAL;
2517
2518         if (path->dentry != path->mnt->mnt_root)
2519                 return -EINVAL;
2520
2521         if (!can_change_locked_flags(mnt, mnt_flags))
2522                 return -EPERM;
2523
2524         fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2525         if (IS_ERR(fc))
2526                 return PTR_ERR(fc);
2527
2528         err = parse_monolithic_mount_data(fc, data);
2529         if (!err) {
2530                 down_write(&sb->s_umount);
2531                 err = -EPERM;
2532                 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2533                         err = reconfigure_super(fc);
2534                         if (!err)
2535                                 set_mount_attributes(mnt, mnt_flags);
2536                 }
2537                 up_write(&sb->s_umount);
2538         }
2539         put_fs_context(fc);
2540         return err;
2541 }
2542
2543 static inline int tree_contains_unbindable(struct mount *mnt)
2544 {
2545         struct mount *p;
2546         for (p = mnt; p; p = next_mnt(p, mnt)) {
2547                 if (IS_MNT_UNBINDABLE(p))
2548                         return 1;
2549         }
2550         return 0;
2551 }
2552
2553 /*
2554  * Check that there aren't references to earlier/same mount namespaces in the
2555  * specified subtree.  Such references can act as pins for mount namespaces
2556  * that aren't checked by the mount-cycle checking code, thereby allowing
2557  * cycles to be made.
2558  */
2559 static bool check_for_nsfs_mounts(struct mount *subtree)
2560 {
2561         struct mount *p;
2562         bool ret = false;
2563
2564         lock_mount_hash();
2565         for (p = subtree; p; p = next_mnt(p, subtree))
2566                 if (mnt_ns_loop(p->mnt.mnt_root))
2567                         goto out;
2568
2569         ret = true;
2570 out:
2571         unlock_mount_hash();
2572         return ret;
2573 }
2574
2575 static int do_move_mount(struct path *old_path, struct path *new_path)
2576 {
2577         struct path parent_path = {.mnt = NULL, .dentry = NULL};
2578         struct mnt_namespace *ns;
2579         struct mount *p;
2580         struct mount *old;
2581         struct mountpoint *mp;
2582         int err;
2583         bool attached;
2584
2585         mp = lock_mount(new_path);
2586         if (IS_ERR(mp))
2587                 return PTR_ERR(mp);
2588
2589         old = real_mount(old_path->mnt);
2590         p = real_mount(new_path->mnt);
2591         attached = mnt_has_parent(old);
2592         ns = old->mnt_ns;
2593
2594         err = -EINVAL;
2595         /* The mountpoint must be in our namespace. */
2596         if (!check_mnt(p))
2597                 goto out;
2598
2599         /* The thing moved must be mounted... */
2600         if (!is_mounted(&old->mnt))
2601                 goto out;
2602
2603         /* ... and either ours or the root of anon namespace */
2604         if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2605                 goto out;
2606
2607         if (old->mnt.mnt_flags & MNT_LOCKED)
2608                 goto out;
2609
2610         if (old_path->dentry != old_path->mnt->mnt_root)
2611                 goto out;
2612
2613         if (d_is_dir(new_path->dentry) !=
2614             d_is_dir(old_path->dentry))
2615                 goto out;
2616         /*
2617          * Don't move a mount residing in a shared parent.
2618          */
2619         if (attached && IS_MNT_SHARED(old->mnt_parent))
2620                 goto out;
2621         /*
2622          * Don't move a mount tree containing unbindable mounts to a destination
2623          * mount which is shared.
2624          */
2625         if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2626                 goto out;
2627         err = -ELOOP;
2628         if (!check_for_nsfs_mounts(old))
2629                 goto out;
2630         for (; mnt_has_parent(p); p = p->mnt_parent)
2631                 if (p == old)
2632                         goto out;
2633
2634         err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2635                                    attached ? &parent_path : NULL);
2636         if (err)
2637                 goto out;
2638
2639         /* if the mount is moved, it should no longer be expire
2640          * automatically */
2641         list_del_init(&old->mnt_expire);
2642 out:
2643         unlock_mount(mp);
2644         if (!err) {
2645                 path_put(&parent_path);
2646                 if (!attached)
2647                         free_mnt_ns(ns);
2648         }
2649         return err;
2650 }
2651
2652 static int do_move_mount_old(struct path *path, const char *old_name)
2653 {
2654         struct path old_path;
2655         int err;
2656
2657         if (!old_name || !*old_name)
2658                 return -EINVAL;
2659
2660         err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2661         if (err)
2662                 return err;
2663
2664         err = do_move_mount(&old_path, path);
2665         path_put(&old_path);
2666         return err;
2667 }
2668
2669 /*
2670  * add a mount into a namespace's mount tree
2671  */
2672 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2673 {
2674         struct mountpoint *mp;
2675         struct mount *parent;
2676         int err;
2677
2678         mnt_flags &= ~MNT_INTERNAL_FLAGS;
2679
2680         mp = lock_mount(path);
2681         if (IS_ERR(mp))
2682                 return PTR_ERR(mp);
2683
2684         parent = real_mount(path->mnt);
2685         err = -EINVAL;
2686         if (unlikely(!check_mnt(parent))) {
2687                 /* that's acceptable only for automounts done in private ns */
2688                 if (!(mnt_flags & MNT_SHRINKABLE))
2689                         goto unlock;
2690                 /* ... and for those we'd better have mountpoint still alive */
2691                 if (!parent->mnt_ns)
2692                         goto unlock;
2693         }
2694
2695         /* Refuse the same filesystem on the same mount point */
2696         err = -EBUSY;
2697         if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2698             path->mnt->mnt_root == path->dentry)
2699                 goto unlock;
2700
2701         err = -EINVAL;
2702         if (d_is_symlink(newmnt->mnt.mnt_root))
2703                 goto unlock;
2704
2705         newmnt->mnt.mnt_flags = mnt_flags;
2706         err = graft_tree(newmnt, parent, mp);
2707
2708 unlock:
2709         unlock_mount(mp);
2710         return err;
2711 }
2712
2713 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2714
2715 /*
2716  * Create a new mount using a superblock configuration and request it
2717  * be added to the namespace tree.
2718  */
2719 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2720                            unsigned int mnt_flags)
2721 {
2722         struct vfsmount *mnt;
2723         struct super_block *sb = fc->root->d_sb;
2724         int error;
2725
2726         error = security_sb_kern_mount(sb);
2727         if (!error && mount_too_revealing(sb, &mnt_flags))
2728                 error = -EPERM;
2729
2730         if (unlikely(error)) {
2731                 fc_drop_locked(fc);
2732                 return error;
2733         }
2734
2735         up_write(&sb->s_umount);
2736
2737         mnt = vfs_create_mount(fc);
2738         if (IS_ERR(mnt))
2739                 return PTR_ERR(mnt);
2740
2741         error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2742         if (error < 0)
2743                 mntput(mnt);
2744         return error;
2745 }
2746
2747 /*
2748  * create a new mount for userspace and request it to be added into the
2749  * namespace's tree
2750  */
2751 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2752                         int mnt_flags, const char *name, void *data)
2753 {
2754         struct file_system_type *type;
2755         struct fs_context *fc;
2756         const char *subtype = NULL;
2757         int err = 0;
2758
2759         if (!fstype)
2760                 return -EINVAL;
2761
2762         type = get_fs_type(fstype);
2763         if (!type)
2764                 return -ENODEV;
2765
2766         if (type->fs_flags & FS_HAS_SUBTYPE) {
2767                 subtype = strchr(fstype, '.');
2768                 if (subtype) {
2769                         subtype++;
2770                         if (!*subtype) {
2771                                 put_filesystem(type);
2772                                 return -EINVAL;
2773                         }
2774                 } else {
2775                         subtype = "";
2776                 }
2777         }
2778
2779         fc = fs_context_for_mount(type, sb_flags);
2780         put_filesystem(type);
2781         if (IS_ERR(fc))
2782                 return PTR_ERR(fc);
2783
2784         if (subtype)
2785                 err = vfs_parse_fs_string(fc, "subtype",
2786                                           subtype, strlen(subtype));
2787         if (!err && name)
2788                 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
2789         if (!err)
2790                 err = parse_monolithic_mount_data(fc, data);
2791         if (!err)
2792                 err = vfs_get_tree(fc);
2793         if (!err)
2794                 err = do_new_mount_fc(fc, path, mnt_flags);
2795
2796         put_fs_context(fc);
2797         return err;
2798 }
2799
2800 int finish_automount(struct vfsmount *m, struct path *path)
2801 {
2802         struct mount *mnt = real_mount(m);
2803         int err;
2804         /* The new mount record should have at least 2 refs to prevent it being
2805          * expired before we get a chance to add it
2806          */
2807         BUG_ON(mnt_get_count(mnt) < 2);
2808
2809         if (m->mnt_sb == path->mnt->mnt_sb &&
2810             m->mnt_root == path->dentry) {
2811                 err = -ELOOP;
2812                 goto fail;
2813         }
2814
2815         err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2816         if (!err)
2817                 return 0;
2818 fail:
2819         /* remove m from any expiration list it may be on */
2820         if (!list_empty(&mnt->mnt_expire)) {
2821                 namespace_lock();
2822                 list_del_init(&mnt->mnt_expire);
2823                 namespace_unlock();
2824         }
2825         mntput(m);
2826         mntput(m);
2827         return err;
2828 }
2829
2830 /**
2831  * mnt_set_expiry - Put a mount on an expiration list
2832  * @mnt: The mount to list.
2833  * @expiry_list: The list to add the mount to.
2834  */
2835 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2836 {
2837         namespace_lock();
2838
2839         list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2840
2841         namespace_unlock();
2842 }
2843 EXPORT_SYMBOL(mnt_set_expiry);
2844
2845 /*
2846  * process a list of expirable mountpoints with the intent of discarding any
2847  * mountpoints that aren't in use and haven't been touched since last we came
2848  * here
2849  */
2850 void mark_mounts_for_expiry(struct list_head *mounts)
2851 {
2852         struct mount *mnt, *next;
2853         LIST_HEAD(graveyard);
2854
2855         if (list_empty(mounts))
2856                 return;
2857
2858         namespace_lock();
2859         lock_mount_hash();
2860
2861         /* extract from the expiration list every vfsmount that matches the
2862          * following criteria:
2863          * - only referenced by its parent vfsmount
2864          * - still marked for expiry (marked on the last call here; marks are
2865          *   cleared by mntput())
2866          */
2867         list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2868                 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2869                         propagate_mount_busy(mnt, 1))
2870                         continue;
2871                 list_move(&mnt->mnt_expire, &graveyard);
2872         }
2873         while (!list_empty(&graveyard)) {
2874                 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2875                 touch_mnt_namespace(mnt->mnt_ns);
2876                 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2877         }
2878         unlock_mount_hash();
2879         namespace_unlock();
2880 }
2881
2882 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2883
2884 /*
2885  * Ripoff of 'select_parent()'
2886  *
2887  * search the list of submounts for a given mountpoint, and move any
2888  * shrinkable submounts to the 'graveyard' list.
2889  */
2890 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2891 {
2892         struct mount *this_parent = parent;
2893         struct list_head *next;
2894         int found = 0;
2895
2896 repeat:
2897         next = this_parent->mnt_mounts.next;
2898 resume:
2899         while (next != &this_parent->mnt_mounts) {
2900                 struct list_head *tmp = next;
2901                 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2902
2903                 next = tmp->next;
2904                 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2905                         continue;
2906                 /*
2907                  * Descend a level if the d_mounts list is non-empty.
2908                  */
2909                 if (!list_empty(&mnt->mnt_mounts)) {
2910                         this_parent = mnt;
2911                         goto repeat;
2912                 }
2913
2914                 if (!propagate_mount_busy(mnt, 1)) {
2915                         list_move_tail(&mnt->mnt_expire, graveyard);
2916                         found++;
2917                 }
2918         }
2919         /*
2920          * All done at this level ... ascend and resume the search
2921          */
2922         if (this_parent != parent) {
2923                 next = this_parent->mnt_child.next;
2924                 this_parent = this_parent->mnt_parent;
2925                 goto resume;
2926         }
2927         return found;
2928 }
2929
2930 /*
2931  * process a list of expirable mountpoints with the intent of discarding any
2932  * submounts of a specific parent mountpoint
2933  *
2934  * mount_lock must be held for write
2935  */
2936 static void shrink_submounts(struct mount *mnt)
2937 {
2938         LIST_HEAD(graveyard);
2939         struct mount *m;
2940
2941         /* extract submounts of 'mountpoint' from the expiration list */
2942         while (select_submounts(mnt, &graveyard)) {
2943                 while (!list_empty(&graveyard)) {
2944                         m = list_first_entry(&graveyard, struct mount,
2945                                                 mnt_expire);
2946                         touch_mnt_namespace(m->mnt_ns);
2947                         umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2948                 }
2949         }
2950 }
2951
2952 /*
2953  * Some copy_from_user() implementations do not return the exact number of
2954  * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2955  * Note that this function differs from copy_from_user() in that it will oops
2956  * on bad values of `to', rather than returning a short copy.
2957  */
2958 static long exact_copy_from_user(void *to, const void __user * from,
2959                                  unsigned long n)
2960 {
2961         char *t = to;
2962         const char __user *f = from;
2963         char c;
2964
2965         if (!access_ok(from, n))
2966                 return n;
2967
2968         while (n) {
2969                 if (__get_user(c, f)) {
2970                         memset(t, 0, n);
2971                         break;
2972                 }
2973                 *t++ = c;
2974                 f++;
2975                 n--;
2976         }
2977         return n;
2978 }
2979
2980 void *copy_mount_options(const void __user * data)
2981 {
2982         int i;
2983         unsigned long size;
2984         char *copy;
2985
2986         if (!data)
2987                 return NULL;
2988
2989         copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2990         if (!copy)
2991                 return ERR_PTR(-ENOMEM);
2992
2993         /* We only care that *some* data at the address the user
2994          * gave us is valid.  Just in case, we'll zero
2995          * the remainder of the page.
2996          */
2997         /* copy_from_user cannot cross TASK_SIZE ! */
2998         size = TASK_SIZE - (unsigned long)data;
2999         if (size > PAGE_SIZE)
3000                 size = PAGE_SIZE;
3001
3002         i = size - exact_copy_from_user(copy, data, size);
3003         if (!i) {
3004                 kfree(copy);
3005                 return ERR_PTR(-EFAULT);
3006         }
3007         if (i != PAGE_SIZE)
3008                 memset(copy + i, 0, PAGE_SIZE - i);
3009         return copy;
3010 }
3011
3012 char *copy_mount_string(const void __user *data)
3013 {
3014         return data ? strndup_user(data, PATH_MAX) : NULL;
3015 }
3016
3017 /*
3018  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3019  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3020  *
3021  * data is a (void *) that can point to any structure up to
3022  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3023  * information (or be NULL).
3024  *
3025  * Pre-0.97 versions of mount() didn't have a flags word.
3026  * When the flags word was introduced its top half was required
3027  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3028  * Therefore, if this magic number is present, it carries no information
3029  * and must be discarded.
3030  */
3031 long do_mount(const char *dev_name, const char __user *dir_name,
3032                 const char *type_page, unsigned long flags, void *data_page)
3033 {
3034         struct path path;
3035         unsigned int mnt_flags = 0, sb_flags;
3036         int retval = 0;
3037
3038         /* Discard magic */
3039         if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3040                 flags &= ~MS_MGC_MSK;
3041
3042         /* Basic sanity checks */
3043         if (data_page)
3044                 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3045
3046         if (flags & MS_NOUSER)
3047                 return -EINVAL;
3048
3049         /* ... and get the mountpoint */
3050         retval = user_path(dir_name, &path);
3051         if (retval)
3052                 return retval;
3053
3054         retval = security_sb_mount(dev_name, &path,
3055                                    type_page, flags, data_page);
3056         if (!retval && !may_mount())
3057                 retval = -EPERM;
3058         if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
3059                 retval = -EPERM;
3060         if (retval)
3061                 goto dput_out;
3062
3063         /* Default to relatime unless overriden */
3064         if (!(flags & MS_NOATIME))
3065                 mnt_flags |= MNT_RELATIME;
3066
3067         /* Separate the per-mountpoint flags */
3068         if (flags & MS_NOSUID)
3069                 mnt_flags |= MNT_NOSUID;
3070         if (flags & MS_NODEV)
3071                 mnt_flags |= MNT_NODEV;
3072         if (flags & MS_NOEXEC)
3073                 mnt_flags |= MNT_NOEXEC;
3074         if (flags & MS_NOATIME)
3075                 mnt_flags |= MNT_NOATIME;
3076         if (flags & MS_NODIRATIME)
3077                 mnt_flags |= MNT_NODIRATIME;
3078         if (flags & MS_STRICTATIME)
3079                 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3080         if (flags & MS_RDONLY)
3081                 mnt_flags |= MNT_READONLY;
3082
3083         /* The default atime for remount is preservation */
3084         if ((flags & MS_REMOUNT) &&
3085             ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3086                        MS_STRICTATIME)) == 0)) {
3087                 mnt_flags &= ~MNT_ATIME_MASK;
3088                 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3089         }
3090
3091         sb_flags = flags & (SB_RDONLY |
3092                             SB_SYNCHRONOUS |
3093                             SB_MANDLOCK |
3094                             SB_DIRSYNC |
3095                             SB_SILENT |
3096                             SB_POSIXACL |
3097                             SB_LAZYTIME |
3098                             SB_I_VERSION);
3099
3100         if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3101                 retval = do_reconfigure_mnt(&path, mnt_flags);
3102         else if (flags & MS_REMOUNT)
3103                 retval = do_remount(&path, flags, sb_flags, mnt_flags,
3104                                     data_page);
3105         else if (flags & MS_BIND)
3106                 retval = do_loopback(&path, dev_name, flags & MS_REC);
3107         else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3108                 retval = do_change_type(&path, flags);
3109         else if (flags & MS_MOVE)
3110                 retval = do_move_mount_old(&path, dev_name);
3111         else
3112                 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
3113                                       dev_name, data_page);
3114 dput_out:
3115         path_put(&path);
3116         return retval;
3117 }
3118
3119 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3120 {
3121         return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3122 }
3123
3124 static void dec_mnt_namespaces(struct ucounts *ucounts)
3125 {
3126         dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3127 }
3128
3129 static void free_mnt_ns(struct mnt_namespace *ns)
3130 {
3131         if (!is_anon_ns(ns))
3132                 ns_free_inum(&ns->ns);
3133         dec_mnt_namespaces(ns->ucounts);
3134         put_user_ns(ns->user_ns);
3135         kfree(ns);
3136 }
3137
3138 /*
3139  * Assign a sequence number so we can detect when we attempt to bind
3140  * mount a reference to an older mount namespace into the current
3141  * mount namespace, preventing reference counting loops.  A 64bit
3142  * number incrementing at 10Ghz will take 12,427 years to wrap which
3143  * is effectively never, so we can ignore the possibility.
3144  */
3145 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3146
3147 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3148 {
3149         struct mnt_namespace *new_ns;
3150         struct ucounts *ucounts;
3151         int ret;
3152
3153         ucounts = inc_mnt_namespaces(user_ns);
3154         if (!ucounts)
3155                 return ERR_PTR(-ENOSPC);
3156
3157         new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
3158         if (!new_ns) {
3159                 dec_mnt_namespaces(ucounts);
3160                 return ERR_PTR(-ENOMEM);
3161         }
3162         if (!anon) {
3163                 ret = ns_alloc_inum(&new_ns->ns);
3164                 if (ret) {
3165                         kfree(new_ns);
3166                         dec_mnt_namespaces(ucounts);
3167                         return ERR_PTR(ret);
3168                 }
3169         }
3170         new_ns->ns.ops = &mntns_operations;
3171         if (!anon)
3172                 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3173         atomic_set(&new_ns->count, 1);
3174         INIT_LIST_HEAD(&new_ns->list);
3175         init_waitqueue_head(&new_ns->poll);
3176         new_ns->user_ns = get_user_ns(user_ns);
3177         new_ns->ucounts = ucounts;
3178         return new_ns;
3179 }
3180
3181 __latent_entropy
3182 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3183                 struct user_namespace *user_ns, struct fs_struct *new_fs)
3184 {
3185         struct mnt_namespace *new_ns;
3186         struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3187         struct mount *p, *q;
3188         struct mount *old;
3189         struct mount *new;
3190         int copy_flags;
3191
3192         BUG_ON(!ns);
3193
3194         if (likely(!(flags & CLONE_NEWNS))) {
3195                 get_mnt_ns(ns);
3196                 return ns;
3197         }
3198
3199         old = ns->root;
3200
3201         new_ns = alloc_mnt_ns(user_ns, false);
3202         if (IS_ERR(new_ns))
3203                 return new_ns;
3204
3205         namespace_lock();
3206         /* First pass: copy the tree topology */
3207         copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3208         if (user_ns != ns->user_ns)
3209                 copy_flags |= CL_SHARED_TO_SLAVE;
3210         new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3211         if (IS_ERR(new)) {
3212                 namespace_unlock();
3213                 free_mnt_ns(new_ns);
3214                 return ERR_CAST(new);
3215         }
3216         if (user_ns != ns->user_ns) {
3217                 lock_mount_hash();
3218                 lock_mnt_tree(new);
3219                 unlock_mount_hash();
3220         }
3221         new_ns->root = new;
3222         list_add_tail(&new_ns->list, &new->mnt_list);
3223
3224         /*
3225          * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3226          * as belonging to new namespace.  We have already acquired a private
3227          * fs_struct, so tsk->fs->lock is not needed.
3228          */
3229         p = old;
3230         q = new;
3231         while (p) {
3232                 q->mnt_ns = new_ns;
3233                 new_ns->mounts++;
3234                 if (new_fs) {
3235                         if (&p->mnt == new_fs->root.mnt) {
3236                                 new_fs->root.mnt = mntget(&q->mnt);
3237                                 rootmnt = &p->mnt;
3238                         }
3239                         if (&p->mnt == new_fs->pwd.mnt) {
3240                                 new_fs->pwd.mnt = mntget(&q->mnt);
3241                                 pwdmnt = &p->mnt;
3242                         }
3243                 }
3244                 p = next_mnt(p, old);
3245                 q = next_mnt(q, new);
3246                 if (!q)
3247                         break;
3248                 while (p->mnt.mnt_root != q->mnt.mnt_root)
3249                         p = next_mnt(p, old);
3250         }
3251         namespace_unlock();
3252
3253         if (rootmnt)
3254                 mntput(rootmnt);
3255         if (pwdmnt)
3256                 mntput(pwdmnt);
3257
3258         return new_ns;
3259 }
3260
3261 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3262 {
3263         struct mount *mnt = real_mount(m);
3264         struct mnt_namespace *ns;
3265         struct super_block *s;
3266         struct path path;
3267         int err;
3268
3269         ns = alloc_mnt_ns(&init_user_ns, true);
3270         if (IS_ERR(ns)) {
3271                 mntput(m);
3272                 return ERR_CAST(ns);
3273         }
3274         mnt->mnt_ns = ns;
3275         ns->root = mnt;
3276         ns->mounts++;
3277         list_add(&mnt->mnt_list, &ns->list);
3278
3279         err = vfs_path_lookup(m->mnt_root, m,
3280                         name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3281
3282         put_mnt_ns(ns);
3283
3284         if (err)
3285                 return ERR_PTR(err);
3286
3287         /* trade a vfsmount reference for active sb one */
3288         s = path.mnt->mnt_sb;
3289         atomic_inc(&s->s_active);
3290         mntput(path.mnt);
3291         /* lock the sucker */
3292         down_write(&s->s_umount);
3293         /* ... and return the root of (sub)tree on it */
3294         return path.dentry;
3295 }
3296 EXPORT_SYMBOL(mount_subtree);
3297
3298 int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3299                unsigned long flags, void __user *data)
3300 {
3301         int ret;
3302         char *kernel_type;
3303         char *kernel_dev;
3304         void *options;
3305
3306         kernel_type = copy_mount_string(type);
3307         ret = PTR_ERR(kernel_type);
3308         if (IS_ERR(kernel_type))
3309                 goto out_type;
3310
3311         kernel_dev = copy_mount_string(dev_name);
3312         ret = PTR_ERR(kernel_dev);
3313         if (IS_ERR(kernel_dev))
3314                 goto out_dev;
3315
3316         options = copy_mount_options(data);
3317         ret = PTR_ERR(options);
3318         if (IS_ERR(options))
3319                 goto out_data;
3320
3321         ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3322
3323         kfree(options);
3324 out_data:
3325         kfree(kernel_dev);
3326 out_dev:
3327         kfree(kernel_type);
3328 out_type:
3329         return ret;
3330 }
3331
3332 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3333                 char __user *, type, unsigned long, flags, void __user *, data)
3334 {
3335         return ksys_mount(dev_name, dir_name, type, flags, data);
3336 }
3337
3338 /*
3339  * Create a kernel mount representation for a new, prepared superblock
3340  * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3341  */
3342 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3343                 unsigned int, attr_flags)
3344 {
3345         struct mnt_namespace *ns;
3346         struct fs_context *fc;
3347         struct file *file;
3348         struct path newmount;
3349         struct mount *mnt;
3350         struct fd f;
3351         unsigned int mnt_flags = 0;
3352         long ret;
3353
3354         if (!may_mount())
3355                 return -EPERM;
3356
3357         if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3358                 return -EINVAL;
3359
3360         if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3361                            MOUNT_ATTR_NOSUID |
3362                            MOUNT_ATTR_NODEV |
3363                            MOUNT_ATTR_NOEXEC |
3364                            MOUNT_ATTR__ATIME |
3365                            MOUNT_ATTR_NODIRATIME))
3366                 return -EINVAL;
3367
3368         if (attr_flags & MOUNT_ATTR_RDONLY)
3369                 mnt_flags |= MNT_READONLY;
3370         if (attr_flags & MOUNT_ATTR_NOSUID)
3371                 mnt_flags |= MNT_NOSUID;
3372         if (attr_flags & MOUNT_ATTR_NODEV)
3373                 mnt_flags |= MNT_NODEV;
3374         if (attr_flags & MOUNT_ATTR_NOEXEC)
3375                 mnt_flags |= MNT_NOEXEC;
3376         if (attr_flags & MOUNT_ATTR_NODIRATIME)
3377                 mnt_flags |= MNT_NODIRATIME;
3378
3379         switch (attr_flags & MOUNT_ATTR__ATIME) {
3380         case MOUNT_ATTR_STRICTATIME:
3381                 break;
3382         case MOUNT_ATTR_NOATIME:
3383                 mnt_flags |= MNT_NOATIME;
3384                 break;
3385         case MOUNT_ATTR_RELATIME:
3386                 mnt_flags |= MNT_RELATIME;
3387                 break;
3388         default:
3389                 return -EINVAL;
3390         }
3391
3392         f = fdget(fs_fd);
3393         if (!f.file)
3394                 return -EBADF;
3395
3396         ret = -EINVAL;
3397         if (f.file->f_op != &fscontext_fops)
3398                 goto err_fsfd;
3399
3400         fc = f.file->private_data;
3401
3402         ret = mutex_lock_interruptible(&fc->uapi_mutex);
3403         if (ret < 0)
3404                 goto err_fsfd;
3405
3406         /* There must be a valid superblock or we can't mount it */
3407         ret = -EINVAL;
3408         if (!fc->root)
3409                 goto err_unlock;
3410
3411         ret = -EPERM;
3412         if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3413                 pr_warn("VFS: Mount too revealing\n");
3414                 goto err_unlock;
3415         }
3416
3417         ret = -EBUSY;
3418         if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3419                 goto err_unlock;
3420
3421         ret = -EPERM;
3422         if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3423                 goto err_unlock;
3424
3425         newmount.mnt = vfs_create_mount(fc);
3426         if (IS_ERR(newmount.mnt)) {
3427                 ret = PTR_ERR(newmount.mnt);
3428                 goto err_unlock;
3429         }
3430         newmount.dentry = dget(fc->root);
3431         newmount.mnt->mnt_flags = mnt_flags;
3432
3433         /* We've done the mount bit - now move the file context into more or
3434          * less the same state as if we'd done an fspick().  We don't want to
3435          * do any memory allocation or anything like that at this point as we
3436          * don't want to have to handle any errors incurred.
3437          */
3438         vfs_clean_context(fc);
3439
3440         ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3441         if (IS_ERR(ns)) {
3442                 ret = PTR_ERR(ns);
3443                 goto err_path;
3444         }
3445         mnt = real_mount(newmount.mnt);
3446         mnt->mnt_ns = ns;
3447         ns->root = mnt;
3448         ns->mounts = 1;
3449         list_add(&mnt->mnt_list, &ns->list);
3450         mntget(newmount.mnt);
3451
3452         /* Attach to an apparent O_PATH fd with a note that we need to unmount
3453          * it, not just simply put it.
3454          */
3455         file = dentry_open(&newmount, O_PATH, fc->cred);
3456         if (IS_ERR(file)) {
3457                 dissolve_on_fput(newmount.mnt);
3458                 ret = PTR_ERR(file);
3459                 goto err_path;
3460         }
3461         file->f_mode |= FMODE_NEED_UNMOUNT;
3462
3463         ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3464         if (ret >= 0)
3465                 fd_install(ret, file);
3466         else
3467                 fput(file);
3468
3469 err_path:
3470         path_put(&newmount);
3471 err_unlock:
3472         mutex_unlock(&fc->uapi_mutex);
3473 err_fsfd:
3474         fdput(f);
3475         return ret;
3476 }
3477
3478 /*
3479  * Move a mount from one place to another.  In combination with
3480  * fsopen()/fsmount() this is used to install a new mount and in combination
3481  * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3482  * a mount subtree.
3483  *
3484  * Note the flags value is a combination of MOVE_MOUNT_* flags.
3485  */
3486 SYSCALL_DEFINE5(move_mount,
3487                 int, from_dfd, const char *, from_pathname,
3488                 int, to_dfd, const char *, to_pathname,
3489                 unsigned int, flags)
3490 {
3491         struct path from_path, to_path;
3492         unsigned int lflags;
3493         int ret = 0;
3494
3495         if (!may_mount())
3496                 return -EPERM;
3497
3498         if (flags & ~MOVE_MOUNT__MASK)
3499                 return -EINVAL;
3500
3501         /* If someone gives a pathname, they aren't permitted to move
3502          * from an fd that requires unmount as we can't get at the flag
3503          * to clear it afterwards.
3504          */
3505         lflags = 0;
3506         if (flags & MOVE_MOUNT_F_SYMLINKS)      lflags |= LOOKUP_FOLLOW;
3507         if (flags & MOVE_MOUNT_F_AUTOMOUNTS)    lflags |= LOOKUP_AUTOMOUNT;
3508         if (flags & MOVE_MOUNT_F_EMPTY_PATH)    lflags |= LOOKUP_EMPTY;
3509
3510         ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3511         if (ret < 0)
3512                 return ret;
3513
3514         lflags = 0;
3515         if (flags & MOVE_MOUNT_T_SYMLINKS)      lflags |= LOOKUP_FOLLOW;
3516         if (flags & MOVE_MOUNT_T_AUTOMOUNTS)    lflags |= LOOKUP_AUTOMOUNT;
3517         if (flags & MOVE_MOUNT_T_EMPTY_PATH)    lflags |= LOOKUP_EMPTY;
3518
3519         ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3520         if (ret < 0)
3521                 goto out_from;
3522
3523         ret = security_move_mount(&from_path, &to_path);
3524         if (ret < 0)
3525                 goto out_to;
3526
3527         ret = do_move_mount(&from_path, &to_path);
3528
3529 out_to:
3530         path_put(&to_path);
3531 out_from:
3532         path_put(&from_path);
3533         return ret;
3534 }
3535
3536 /*
3537  * Return true if path is reachable from root
3538  *
3539  * namespace_sem or mount_lock is held
3540  */
3541 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3542                          const struct path *root)
3543 {
3544         while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3545                 dentry = mnt->mnt_mountpoint;
3546                 mnt = mnt->mnt_parent;
3547         }
3548         return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3549 }
3550
3551 bool path_is_under(const struct path *path1, const struct path *path2)
3552 {
3553         bool res;
3554         read_seqlock_excl(&mount_lock);
3555         res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3556         read_sequnlock_excl(&mount_lock);
3557         return res;
3558 }
3559 EXPORT_SYMBOL(path_is_under);
3560
3561 /*
3562  * pivot_root Semantics:
3563  * Moves the root file system of the current process to the directory put_old,
3564  * makes new_root as the new root file system of the current process, and sets
3565  * root/cwd of all processes which had them on the current root to new_root.
3566  *
3567  * Restrictions:
3568  * The new_root and put_old must be directories, and  must not be on the
3569  * same file  system as the current process root. The put_old  must  be
3570  * underneath new_root,  i.e. adding a non-zero number of /.. to the string
3571  * pointed to by put_old must yield the same directory as new_root. No other
3572  * file system may be mounted on put_old. After all, new_root is a mountpoint.
3573  *
3574  * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3575  * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3576  * in this situation.
3577  *
3578  * Notes:
3579  *  - we don't move root/cwd if they are not at the root (reason: if something
3580  *    cared enough to change them, it's probably wrong to force them elsewhere)
3581  *  - it's okay to pick a root that isn't the root of a file system, e.g.
3582  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3583  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3584  *    first.
3585  */
3586 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3587                 const char __user *, put_old)
3588 {
3589         struct path new, old, parent_path, root_parent, root;
3590         struct mount *new_mnt, *root_mnt, *old_mnt;
3591         struct mountpoint *old_mp, *root_mp;
3592         int error;
3593
3594         if (!may_mount())
3595                 return -EPERM;
3596
3597         error = user_path_dir(new_root, &new);
3598         if (error)
3599                 goto out0;
3600
3601         error = user_path_dir(put_old, &old);
3602         if (error)
3603                 goto out1;
3604
3605         error = security_sb_pivotroot(&old, &new);
3606         if (error)
3607                 goto out2;
3608
3609         get_fs_root(current->fs, &root);
3610         old_mp = lock_mount(&old);
3611         error = PTR_ERR(old_mp);
3612         if (IS_ERR(old_mp))
3613                 goto out3;
3614
3615         error = -EINVAL;
3616         new_mnt = real_mount(new.mnt);
3617         root_mnt = real_mount(root.mnt);
3618         old_mnt = real_mount(old.mnt);
3619         if (IS_MNT_SHARED(old_mnt) ||
3620                 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3621                 IS_MNT_SHARED(root_mnt->mnt_parent))
3622                 goto out4;
3623         if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3624                 goto out4;
3625         if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3626                 goto out4;
3627         error = -ENOENT;
3628         if (d_unlinked(new.dentry))
3629                 goto out4;
3630         error = -EBUSY;
3631         if (new_mnt == root_mnt || old_mnt == root_mnt)
3632                 goto out4; /* loop, on the same file system  */
3633         error = -EINVAL;
3634         if (root.mnt->mnt_root != root.dentry)
3635                 goto out4; /* not a mountpoint */
3636         if (!mnt_has_parent(root_mnt))
3637                 goto out4; /* not attached */
3638         root_mp = root_mnt->mnt_mp;
3639         if (new.mnt->mnt_root != new.dentry)
3640                 goto out4; /* not a mountpoint */
3641         if (!mnt_has_parent(new_mnt))
3642                 goto out4; /* not attached */
3643         /* make sure we can reach put_old from new_root */
3644         if (!is_path_reachable(old_mnt, old.dentry, &new))
3645                 goto out4;
3646         /* make certain new is below the root */
3647         if (!is_path_reachable(new_mnt, new.dentry, &root))
3648                 goto out4;
3649         root_mp->m_count++; /* pin it so it won't go away */
3650         lock_mount_hash();
3651         detach_mnt(new_mnt, &parent_path);
3652         detach_mnt(root_mnt, &root_parent);
3653         if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3654                 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3655                 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3656         }
3657         /* mount old root on put_old */
3658         attach_mnt(root_mnt, old_mnt, old_mp);
3659         /* mount new_root on / */
3660         attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3661         touch_mnt_namespace(current->nsproxy->mnt_ns);
3662         /* A moved mount should not expire automatically */
3663         list_del_init(&new_mnt->mnt_expire);
3664         put_mountpoint(root_mp);
3665         unlock_mount_hash();
3666         chroot_fs_refs(&root, &new);
3667         error = 0;
3668 out4:
3669         unlock_mount(old_mp);
3670         if (!error) {
3671                 path_put(&root_parent);
3672                 path_put(&parent_path);
3673         }
3674 out3:
3675         path_put(&root);
3676 out2:
3677         path_put(&old);
3678 out1:
3679         path_put(&new);
3680 out0:
3681         return error;
3682 }
3683
3684 static void __init init_mount_tree(void)
3685 {
3686         struct vfsmount *mnt;
3687         struct mount *m;
3688         struct mnt_namespace *ns;
3689         struct path root;
3690         struct file_system_type *type;
3691
3692         type = get_fs_type("rootfs");
3693         if (!type)
3694                 panic("Can't find rootfs type");
3695         mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3696         put_filesystem(type);
3697         if (IS_ERR(mnt))
3698                 panic("Can't create rootfs");
3699
3700         ns = alloc_mnt_ns(&init_user_ns, false);
3701         if (IS_ERR(ns))
3702                 panic("Can't allocate initial namespace");
3703         m = real_mount(mnt);
3704         m->mnt_ns = ns;
3705         ns->root = m;
3706         ns->mounts = 1;
3707         list_add(&m->mnt_list, &ns->list);
3708         init_task.nsproxy->mnt_ns = ns;
3709         get_mnt_ns(ns);
3710
3711         root.mnt = mnt;
3712         root.dentry = mnt->mnt_root;
3713         mnt->mnt_flags |= MNT_LOCKED;
3714
3715         set_fs_pwd(current->fs, &root);
3716         set_fs_root(current->fs, &root);
3717 }
3718
3719 void __init mnt_init(void)
3720 {
3721         int err;
3722
3723         mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3724                         0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3725
3726         mount_hashtable = alloc_large_system_hash("Mount-cache",
3727                                 sizeof(struct hlist_head),
3728                                 mhash_entries, 19,
3729                                 HASH_ZERO,
3730                                 &m_hash_shift, &m_hash_mask, 0, 0);
3731         mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3732                                 sizeof(struct hlist_head),
3733                                 mphash_entries, 19,
3734                                 HASH_ZERO,
3735                                 &mp_hash_shift, &mp_hash_mask, 0, 0);
3736
3737         if (!mount_hashtable || !mountpoint_hashtable)
3738                 panic("Failed to allocate mount hash table\n");
3739
3740         kernfs_init();
3741
3742         err = sysfs_init();
3743         if (err)
3744                 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3745                         __func__, err);
3746         fs_kobj = kobject_create_and_add("fs", NULL);
3747         if (!fs_kobj)
3748                 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3749         init_rootfs();
3750         init_mount_tree();
3751 }
3752
3753 void put_mnt_ns(struct mnt_namespace *ns)
3754 {
3755         if (!atomic_dec_and_test(&ns->count))
3756                 return;
3757         drop_collected_mounts(&ns->root->mnt);
3758         free_mnt_ns(ns);
3759 }
3760
3761 struct vfsmount *kern_mount(struct file_system_type *type)
3762 {
3763         struct vfsmount *mnt;
3764         mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
3765         if (!IS_ERR(mnt)) {
3766                 /*
3767                  * it is a longterm mount, don't release mnt until
3768                  * we unmount before file sys is unregistered
3769                 */
3770                 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3771         }
3772         return mnt;
3773 }
3774 EXPORT_SYMBOL_GPL(kern_mount);
3775
3776 void kern_unmount(struct vfsmount *mnt)
3777 {
3778         /* release long term mount so mount point can be released */
3779         if (!IS_ERR_OR_NULL(mnt)) {
3780                 real_mount(mnt)->mnt_ns = NULL;
3781                 synchronize_rcu();      /* yecchhh... */
3782                 mntput(mnt);
3783         }
3784 }
3785 EXPORT_SYMBOL(kern_unmount);
3786
3787 bool our_mnt(struct vfsmount *mnt)
3788 {
3789         return check_mnt(real_mount(mnt));
3790 }
3791
3792 bool current_chrooted(void)
3793 {
3794         /* Does the current process have a non-standard root */
3795         struct path ns_root;
3796         struct path fs_root;
3797         bool chrooted;
3798
3799         /* Find the namespace root */
3800         ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3801         ns_root.dentry = ns_root.mnt->mnt_root;
3802         path_get(&ns_root);
3803         while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3804                 ;
3805
3806         get_fs_root(current->fs, &fs_root);
3807
3808         chrooted = !path_equal(&fs_root, &ns_root);
3809
3810         path_put(&fs_root);
3811         path_put(&ns_root);
3812
3813         return chrooted;
3814 }
3815
3816 static bool mnt_already_visible(struct mnt_namespace *ns,
3817                                 const struct super_block *sb,
3818                                 int *new_mnt_flags)
3819 {
3820         int new_flags = *new_mnt_flags;
3821         struct mount *mnt;
3822         bool visible = false;
3823
3824         down_read(&namespace_sem);
3825         list_for_each_entry(mnt, &ns->list, mnt_list) {
3826                 struct mount *child;
3827                 int mnt_flags;
3828
3829                 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
3830                         continue;
3831
3832                 /* This mount is not fully visible if it's root directory
3833                  * is not the root directory of the filesystem.
3834                  */
3835                 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3836                         continue;
3837
3838                 /* A local view of the mount flags */
3839                 mnt_flags = mnt->mnt.mnt_flags;
3840
3841                 /* Don't miss readonly hidden in the superblock flags */
3842                 if (sb_rdonly(mnt->mnt.mnt_sb))
3843                         mnt_flags |= MNT_LOCK_READONLY;
3844
3845                 /* Verify the mount flags are equal to or more permissive
3846                  * than the proposed new mount.
3847                  */
3848                 if ((mnt_flags & MNT_LOCK_READONLY) &&
3849                     !(new_flags & MNT_READONLY))
3850                         continue;
3851                 if ((mnt_flags & MNT_LOCK_ATIME) &&
3852                     ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3853                         continue;
3854
3855                 /* This mount is not fully visible if there are any
3856                  * locked child mounts that cover anything except for
3857                  * empty directories.
3858                  */
3859                 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3860                         struct inode *inode = child->mnt_mountpoint->d_inode;
3861                         /* Only worry about locked mounts */
3862                         if (!(child->mnt.mnt_flags & MNT_LOCKED))
3863                                 continue;
3864                         /* Is the directory permanetly empty? */
3865                         if (!is_empty_dir_inode(inode))
3866                                 goto next;
3867                 }
3868                 /* Preserve the locked attributes */
3869                 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3870                                                MNT_LOCK_ATIME);
3871                 visible = true;
3872                 goto found;
3873         next:   ;
3874         }
3875 found:
3876         up_read(&namespace_sem);
3877         return visible;
3878 }
3879
3880 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
3881 {
3882         const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3883         struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3884         unsigned long s_iflags;
3885
3886         if (ns->user_ns == &init_user_ns)
3887                 return false;
3888
3889         /* Can this filesystem be too revealing? */
3890         s_iflags = sb->s_iflags;
3891         if (!(s_iflags & SB_I_USERNS_VISIBLE))
3892                 return false;
3893
3894         if ((s_iflags & required_iflags) != required_iflags) {
3895                 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3896                           required_iflags);
3897                 return true;
3898         }
3899
3900         return !mnt_already_visible(ns, sb, new_mnt_flags);
3901 }
3902
3903 bool mnt_may_suid(struct vfsmount *mnt)
3904 {
3905         /*
3906          * Foreign mounts (accessed via fchdir or through /proc
3907          * symlinks) are always treated as if they are nosuid.  This
3908          * prevents namespaces from trusting potentially unsafe
3909          * suid/sgid bits, file caps, or security labels that originate
3910          * in other namespaces.
3911          */
3912         return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3913                current_in_userns(mnt->mnt_sb->s_user_ns);
3914 }
3915
3916 static struct ns_common *mntns_get(struct task_struct *task)
3917 {
3918         struct ns_common *ns = NULL;
3919         struct nsproxy *nsproxy;
3920
3921         task_lock(task);
3922         nsproxy = task->nsproxy;
3923         if (nsproxy) {
3924                 ns = &nsproxy->mnt_ns->ns;
3925                 get_mnt_ns(to_mnt_ns(ns));
3926         }
3927         task_unlock(task);
3928
3929         return ns;
3930 }
3931
3932 static void mntns_put(struct ns_common *ns)
3933 {
3934         put_mnt_ns(to_mnt_ns(ns));
3935 }
3936
3937 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3938 {
3939         struct fs_struct *fs = current->fs;
3940         struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
3941         struct path root;
3942         int err;
3943
3944         if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3945             !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3946             !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3947                 return -EPERM;
3948
3949         if (is_anon_ns(mnt_ns))
3950                 return -EINVAL;
3951
3952         if (fs->users != 1)
3953                 return -EINVAL;
3954
3955         get_mnt_ns(mnt_ns);
3956         old_mnt_ns = nsproxy->mnt_ns;
3957         nsproxy->mnt_ns = mnt_ns;
3958
3959         /* Find the root */
3960         err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3961                                 "/", LOOKUP_DOWN, &root);
3962         if (err) {
3963                 /* revert to old namespace */
3964                 nsproxy->mnt_ns = old_mnt_ns;
3965                 put_mnt_ns(mnt_ns);
3966                 return err;
3967         }
3968
3969         put_mnt_ns(old_mnt_ns);
3970
3971         /* Update the pwd and root */
3972         set_fs_pwd(fs, &root);
3973         set_fs_root(fs, &root);
3974
3975         path_put(&root);
3976         return 0;
3977 }
3978
3979 static struct user_namespace *mntns_owner(struct ns_common *ns)
3980 {
3981         return to_mnt_ns(ns)->user_ns;
3982 }
3983
3984 const struct proc_ns_operations mntns_operations = {
3985         .name           = "mnt",
3986         .type           = CLONE_NEWNS,
3987         .get            = mntns_get,
3988         .put            = mntns_put,
3989         .install        = mntns_install,
3990         .owner          = mntns_owner,
3991 };