1 // SPDX-License-Identifier: GPL-2.0-only
5 * (C) Copyright Al Viro 2000, 2001
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
39 /* Maximum number of mounts in a mount namespace */
40 static unsigned int sysctl_mount_max __read_mostly = 100000;
42 static unsigned int m_hash_mask __read_mostly;
43 static unsigned int m_hash_shift __read_mostly;
44 static unsigned int mp_hash_mask __read_mostly;
45 static unsigned int mp_hash_shift __read_mostly;
47 static __initdata unsigned long mhash_entries;
48 static int __init set_mhash_entries(char *str)
52 mhash_entries = simple_strtoul(str, &str, 0);
55 __setup("mhash_entries=", set_mhash_entries);
57 static __initdata unsigned long mphash_entries;
58 static int __init set_mphash_entries(char *str)
62 mphash_entries = simple_strtoul(str, &str, 0);
65 __setup("mphash_entries=", set_mphash_entries);
68 static DEFINE_IDA(mnt_id_ida);
69 static DEFINE_IDA(mnt_group_ida);
71 static struct hlist_head *mount_hashtable __read_mostly;
72 static struct hlist_head *mountpoint_hashtable __read_mostly;
73 static struct kmem_cache *mnt_cache __read_mostly;
74 static DECLARE_RWSEM(namespace_sem);
75 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
76 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
79 unsigned int attr_set;
80 unsigned int attr_clr;
81 unsigned int propagation;
82 unsigned int lookup_flags;
84 struct user_namespace *mnt_userns;
88 struct kobject *fs_kobj;
89 EXPORT_SYMBOL_GPL(fs_kobj);
92 * vfsmount lock may be taken for read to prevent changes to the
93 * vfsmount hash, ie. during mountpoint lookups or walking back
96 * It should be taken for write in all cases where the vfsmount
97 * tree or hash is modified or when a vfsmount structure is modified.
99 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
101 static inline void lock_mount_hash(void)
103 write_seqlock(&mount_lock);
106 static inline void unlock_mount_hash(void)
108 write_sequnlock(&mount_lock);
111 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
113 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
114 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
115 tmp = tmp + (tmp >> m_hash_shift);
116 return &mount_hashtable[tmp & m_hash_mask];
119 static inline struct hlist_head *mp_hash(struct dentry *dentry)
121 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
122 tmp = tmp + (tmp >> mp_hash_shift);
123 return &mountpoint_hashtable[tmp & mp_hash_mask];
126 static int mnt_alloc_id(struct mount *mnt)
128 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
136 static void mnt_free_id(struct mount *mnt)
138 ida_free(&mnt_id_ida, mnt->mnt_id);
142 * Allocate a new peer group ID
144 static int mnt_alloc_group_id(struct mount *mnt)
146 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
150 mnt->mnt_group_id = res;
155 * Release a peer group ID
157 void mnt_release_group_id(struct mount *mnt)
159 ida_free(&mnt_group_ida, mnt->mnt_group_id);
160 mnt->mnt_group_id = 0;
164 * vfsmount lock must be held for read
166 static inline void mnt_add_count(struct mount *mnt, int n)
169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
178 * vfsmount lock must be held for write
180 int mnt_get_count(struct mount *mnt)
186 for_each_possible_cpu(cpu) {
187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
192 return mnt->mnt_count;
196 static struct mount *alloc_vfsmnt(const char *name)
198 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
202 err = mnt_alloc_id(mnt);
207 mnt->mnt_devname = kstrdup_const(name,
209 if (!mnt->mnt_devname)
214 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
216 goto out_free_devname;
218 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
221 mnt->mnt_writers = 0;
224 INIT_HLIST_NODE(&mnt->mnt_hash);
225 INIT_LIST_HEAD(&mnt->mnt_child);
226 INIT_LIST_HEAD(&mnt->mnt_mounts);
227 INIT_LIST_HEAD(&mnt->mnt_list);
228 INIT_LIST_HEAD(&mnt->mnt_expire);
229 INIT_LIST_HEAD(&mnt->mnt_share);
230 INIT_LIST_HEAD(&mnt->mnt_slave_list);
231 INIT_LIST_HEAD(&mnt->mnt_slave);
232 INIT_HLIST_NODE(&mnt->mnt_mp_list);
233 INIT_LIST_HEAD(&mnt->mnt_umounting);
234 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
235 mnt->mnt.mnt_userns = &init_user_ns;
241 kfree_const(mnt->mnt_devname);
246 kmem_cache_free(mnt_cache, mnt);
251 * Most r/o checks on a fs are for operations that take
252 * discrete amounts of time, like a write() or unlink().
253 * We must keep track of when those operations start
254 * (for permission checks) and when they end, so that
255 * we can determine when writes are able to occur to
259 * __mnt_is_readonly: check whether a mount is read-only
260 * @mnt: the mount to check for its write status
262 * This shouldn't be used directly ouside of the VFS.
263 * It does not guarantee that the filesystem will stay
264 * r/w, just that it is right *now*. This can not and
265 * should not be used in place of IS_RDONLY(inode).
266 * mnt_want/drop_write() will _keep_ the filesystem
269 bool __mnt_is_readonly(struct vfsmount *mnt)
271 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
273 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
275 static inline void mnt_inc_writers(struct mount *mnt)
278 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
284 static inline void mnt_dec_writers(struct mount *mnt)
287 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
293 static unsigned int mnt_get_writers(struct mount *mnt)
296 unsigned int count = 0;
299 for_each_possible_cpu(cpu) {
300 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
305 return mnt->mnt_writers;
309 static int mnt_is_readonly(struct vfsmount *mnt)
311 if (mnt->mnt_sb->s_readonly_remount)
313 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
315 return __mnt_is_readonly(mnt);
319 * Most r/o & frozen checks on a fs are for operations that take discrete
320 * amounts of time, like a write() or unlink(). We must keep track of when
321 * those operations start (for permission checks) and when they end, so that we
322 * can determine when writes are able to occur to a filesystem.
325 * __mnt_want_write - get write access to a mount without freeze protection
326 * @m: the mount on which to take a write
328 * This tells the low-level filesystem that a write is about to be performed to
329 * it, and makes sure that writes are allowed (mnt it read-write) before
330 * returning success. This operation does not protect against filesystem being
331 * frozen. When the write operation is finished, __mnt_drop_write() must be
332 * called. This is effectively a refcount.
334 int __mnt_want_write(struct vfsmount *m)
336 struct mount *mnt = real_mount(m);
340 mnt_inc_writers(mnt);
342 * The store to mnt_inc_writers must be visible before we pass
343 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
344 * incremented count after it has set MNT_WRITE_HOLD.
347 might_lock(&mount_lock.lock);
348 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
349 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
353 * This prevents priority inversion, if the task
354 * setting MNT_WRITE_HOLD got preempted on a remote
355 * CPU, and it prevents life lock if the task setting
356 * MNT_WRITE_HOLD has a lower priority and is bound to
357 * the same CPU as the task that is spinning here.
366 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
367 * be set to match its requirements. So we must not load that until
368 * MNT_WRITE_HOLD is cleared.
371 if (mnt_is_readonly(m)) {
372 mnt_dec_writers(mnt);
381 * mnt_want_write - get write access to a mount
382 * @m: the mount on which to take a write
384 * This tells the low-level filesystem that a write is about to be performed to
385 * it, and makes sure that writes are allowed (mount is read-write, filesystem
386 * is not frozen) before returning success. When the write operation is
387 * finished, mnt_drop_write() must be called. This is effectively a refcount.
389 int mnt_want_write(struct vfsmount *m)
393 sb_start_write(m->mnt_sb);
394 ret = __mnt_want_write(m);
396 sb_end_write(m->mnt_sb);
399 EXPORT_SYMBOL_GPL(mnt_want_write);
402 * __mnt_want_write_file - get write access to a file's mount
403 * @file: the file who's mount on which to take a write
405 * This is like __mnt_want_write, but if the file is already open for writing it
406 * skips incrementing mnt_writers (since the open file already has a reference)
407 * and instead only does the check for emergency r/o remounts. This must be
408 * paired with __mnt_drop_write_file.
410 int __mnt_want_write_file(struct file *file)
412 if (file->f_mode & FMODE_WRITER) {
414 * Superblock may have become readonly while there are still
415 * writable fd's, e.g. due to a fs error with errors=remount-ro
417 if (__mnt_is_readonly(file->f_path.mnt))
421 return __mnt_want_write(file->f_path.mnt);
425 * mnt_want_write_file - get write access to a file's mount
426 * @file: the file who's mount on which to take a write
428 * This is like mnt_want_write, but if the file is already open for writing it
429 * skips incrementing mnt_writers (since the open file already has a reference)
430 * and instead only does the freeze protection and the check for emergency r/o
431 * remounts. This must be paired with mnt_drop_write_file.
433 int mnt_want_write_file(struct file *file)
437 sb_start_write(file_inode(file)->i_sb);
438 ret = __mnt_want_write_file(file);
440 sb_end_write(file_inode(file)->i_sb);
443 EXPORT_SYMBOL_GPL(mnt_want_write_file);
446 * __mnt_drop_write - give up write access to a mount
447 * @mnt: the mount on which to give up write access
449 * Tells the low-level filesystem that we are done
450 * performing writes to it. Must be matched with
451 * __mnt_want_write() call above.
453 void __mnt_drop_write(struct vfsmount *mnt)
456 mnt_dec_writers(real_mount(mnt));
461 * mnt_drop_write - give up write access to a mount
462 * @mnt: the mount on which to give up write access
464 * Tells the low-level filesystem that we are done performing writes to it and
465 * also allows filesystem to be frozen again. Must be matched with
466 * mnt_want_write() call above.
468 void mnt_drop_write(struct vfsmount *mnt)
470 __mnt_drop_write(mnt);
471 sb_end_write(mnt->mnt_sb);
473 EXPORT_SYMBOL_GPL(mnt_drop_write);
475 void __mnt_drop_write_file(struct file *file)
477 if (!(file->f_mode & FMODE_WRITER))
478 __mnt_drop_write(file->f_path.mnt);
481 void mnt_drop_write_file(struct file *file)
483 __mnt_drop_write_file(file);
484 sb_end_write(file_inode(file)->i_sb);
486 EXPORT_SYMBOL(mnt_drop_write_file);
489 * mnt_hold_writers - prevent write access to the given mount
490 * @mnt: mnt to prevent write access to
492 * Prevents write access to @mnt if there are no active writers for @mnt.
493 * This function needs to be called and return successfully before changing
494 * properties of @mnt that need to remain stable for callers with write access
497 * After this functions has been called successfully callers must pair it with
498 * a call to mnt_unhold_writers() in order to stop preventing write access to
501 * Context: This function expects lock_mount_hash() to be held serializing
502 * setting MNT_WRITE_HOLD.
503 * Return: On success 0 is returned.
504 * On error, -EBUSY is returned.
506 static inline int mnt_hold_writers(struct mount *mnt)
508 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
510 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
511 * should be visible before we do.
516 * With writers on hold, if this value is zero, then there are
517 * definitely no active writers (although held writers may subsequently
518 * increment the count, they'll have to wait, and decrement it after
519 * seeing MNT_READONLY).
521 * It is OK to have counter incremented on one CPU and decremented on
522 * another: the sum will add up correctly. The danger would be when we
523 * sum up each counter, if we read a counter before it is incremented,
524 * but then read another CPU's count which it has been subsequently
525 * decremented from -- we would see more decrements than we should.
526 * MNT_WRITE_HOLD protects against this scenario, because
527 * mnt_want_write first increments count, then smp_mb, then spins on
528 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
529 * we're counting up here.
531 if (mnt_get_writers(mnt) > 0)
538 * mnt_unhold_writers - stop preventing write access to the given mount
539 * @mnt: mnt to stop preventing write access to
541 * Stop preventing write access to @mnt allowing callers to gain write access
544 * This function can only be called after a successful call to
545 * mnt_hold_writers().
547 * Context: This function expects lock_mount_hash() to be held.
549 static inline void mnt_unhold_writers(struct mount *mnt)
552 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
553 * that become unheld will see MNT_READONLY.
556 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
559 static int mnt_make_readonly(struct mount *mnt)
563 ret = mnt_hold_writers(mnt);
565 mnt->mnt.mnt_flags |= MNT_READONLY;
566 mnt_unhold_writers(mnt);
570 int sb_prepare_remount_readonly(struct super_block *sb)
575 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
576 if (atomic_long_read(&sb->s_remove_count))
580 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
581 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
582 err = mnt_hold_writers(mnt);
587 if (!err && atomic_long_read(&sb->s_remove_count))
591 sb->s_readonly_remount = 1;
594 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
595 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
596 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
603 static void free_vfsmnt(struct mount *mnt)
605 struct user_namespace *mnt_userns;
607 mnt_userns = mnt_user_ns(&mnt->mnt);
608 if (!initial_idmapping(mnt_userns))
609 put_user_ns(mnt_userns);
610 kfree_const(mnt->mnt_devname);
612 free_percpu(mnt->mnt_pcp);
614 kmem_cache_free(mnt_cache, mnt);
617 static void delayed_free_vfsmnt(struct rcu_head *head)
619 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
622 /* call under rcu_read_lock */
623 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
626 if (read_seqretry(&mount_lock, seq))
630 mnt = real_mount(bastard);
631 mnt_add_count(mnt, 1);
632 smp_mb(); // see mntput_no_expire()
633 if (likely(!read_seqretry(&mount_lock, seq)))
635 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
636 mnt_add_count(mnt, -1);
640 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
641 mnt_add_count(mnt, -1);
646 /* caller will mntput() */
650 /* call under rcu_read_lock */
651 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
653 int res = __legitimize_mnt(bastard, seq);
656 if (unlikely(res < 0)) {
665 * find the first mount at @dentry on vfsmount @mnt.
666 * call under rcu_read_lock()
668 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
670 struct hlist_head *head = m_hash(mnt, dentry);
673 hlist_for_each_entry_rcu(p, head, mnt_hash)
674 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
680 * lookup_mnt - Return the first child mount mounted at path
682 * "First" means first mounted chronologically. If you create the
685 * mount /dev/sda1 /mnt
686 * mount /dev/sda2 /mnt
687 * mount /dev/sda3 /mnt
689 * Then lookup_mnt() on the base /mnt dentry in the root mount will
690 * return successively the root dentry and vfsmount of /dev/sda1, then
691 * /dev/sda2, then /dev/sda3, then NULL.
693 * lookup_mnt takes a reference to the found vfsmount.
695 struct vfsmount *lookup_mnt(const struct path *path)
697 struct mount *child_mnt;
703 seq = read_seqbegin(&mount_lock);
704 child_mnt = __lookup_mnt(path->mnt, path->dentry);
705 m = child_mnt ? &child_mnt->mnt : NULL;
706 } while (!legitimize_mnt(m, seq));
711 static inline void lock_ns_list(struct mnt_namespace *ns)
713 spin_lock(&ns->ns_lock);
716 static inline void unlock_ns_list(struct mnt_namespace *ns)
718 spin_unlock(&ns->ns_lock);
721 static inline bool mnt_is_cursor(struct mount *mnt)
723 return mnt->mnt.mnt_flags & MNT_CURSOR;
727 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
728 * current mount namespace.
730 * The common case is dentries are not mountpoints at all and that
731 * test is handled inline. For the slow case when we are actually
732 * dealing with a mountpoint of some kind, walk through all of the
733 * mounts in the current mount namespace and test to see if the dentry
736 * The mount_hashtable is not usable in the context because we
737 * need to identify all mounts that may be in the current mount
738 * namespace not just a mount that happens to have some specified
741 bool __is_local_mountpoint(struct dentry *dentry)
743 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
745 bool is_covered = false;
747 down_read(&namespace_sem);
749 list_for_each_entry(mnt, &ns->list, mnt_list) {
750 if (mnt_is_cursor(mnt))
752 is_covered = (mnt->mnt_mountpoint == dentry);
757 up_read(&namespace_sem);
762 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
764 struct hlist_head *chain = mp_hash(dentry);
765 struct mountpoint *mp;
767 hlist_for_each_entry(mp, chain, m_hash) {
768 if (mp->m_dentry == dentry) {
776 static struct mountpoint *get_mountpoint(struct dentry *dentry)
778 struct mountpoint *mp, *new = NULL;
781 if (d_mountpoint(dentry)) {
782 /* might be worth a WARN_ON() */
783 if (d_unlinked(dentry))
784 return ERR_PTR(-ENOENT);
786 read_seqlock_excl(&mount_lock);
787 mp = lookup_mountpoint(dentry);
788 read_sequnlock_excl(&mount_lock);
794 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
796 return ERR_PTR(-ENOMEM);
799 /* Exactly one processes may set d_mounted */
800 ret = d_set_mounted(dentry);
802 /* Someone else set d_mounted? */
806 /* The dentry is not available as a mountpoint? */
811 /* Add the new mountpoint to the hash table */
812 read_seqlock_excl(&mount_lock);
813 new->m_dentry = dget(dentry);
815 hlist_add_head(&new->m_hash, mp_hash(dentry));
816 INIT_HLIST_HEAD(&new->m_list);
817 read_sequnlock_excl(&mount_lock);
827 * vfsmount lock must be held. Additionally, the caller is responsible
828 * for serializing calls for given disposal list.
830 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
832 if (!--mp->m_count) {
833 struct dentry *dentry = mp->m_dentry;
834 BUG_ON(!hlist_empty(&mp->m_list));
835 spin_lock(&dentry->d_lock);
836 dentry->d_flags &= ~DCACHE_MOUNTED;
837 spin_unlock(&dentry->d_lock);
838 dput_to_list(dentry, list);
839 hlist_del(&mp->m_hash);
844 /* called with namespace_lock and vfsmount lock */
845 static void put_mountpoint(struct mountpoint *mp)
847 __put_mountpoint(mp, &ex_mountpoints);
850 static inline int check_mnt(struct mount *mnt)
852 return mnt->mnt_ns == current->nsproxy->mnt_ns;
856 * vfsmount lock must be held for write
858 static void touch_mnt_namespace(struct mnt_namespace *ns)
862 wake_up_interruptible(&ns->poll);
867 * vfsmount lock must be held for write
869 static void __touch_mnt_namespace(struct mnt_namespace *ns)
871 if (ns && ns->event != event) {
873 wake_up_interruptible(&ns->poll);
878 * vfsmount lock must be held for write
880 static struct mountpoint *unhash_mnt(struct mount *mnt)
882 struct mountpoint *mp;
883 mnt->mnt_parent = mnt;
884 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
885 list_del_init(&mnt->mnt_child);
886 hlist_del_init_rcu(&mnt->mnt_hash);
887 hlist_del_init(&mnt->mnt_mp_list);
894 * vfsmount lock must be held for write
896 static void umount_mnt(struct mount *mnt)
898 put_mountpoint(unhash_mnt(mnt));
902 * vfsmount lock must be held for write
904 void mnt_set_mountpoint(struct mount *mnt,
905 struct mountpoint *mp,
906 struct mount *child_mnt)
909 mnt_add_count(mnt, 1); /* essentially, that's mntget */
910 child_mnt->mnt_mountpoint = mp->m_dentry;
911 child_mnt->mnt_parent = mnt;
912 child_mnt->mnt_mp = mp;
913 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
916 static void __attach_mnt(struct mount *mnt, struct mount *parent)
918 hlist_add_head_rcu(&mnt->mnt_hash,
919 m_hash(&parent->mnt, mnt->mnt_mountpoint));
920 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
924 * vfsmount lock must be held for write
926 static void attach_mnt(struct mount *mnt,
927 struct mount *parent,
928 struct mountpoint *mp)
930 mnt_set_mountpoint(parent, mp, mnt);
931 __attach_mnt(mnt, parent);
934 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
936 struct mountpoint *old_mp = mnt->mnt_mp;
937 struct mount *old_parent = mnt->mnt_parent;
939 list_del_init(&mnt->mnt_child);
940 hlist_del_init(&mnt->mnt_mp_list);
941 hlist_del_init_rcu(&mnt->mnt_hash);
943 attach_mnt(mnt, parent, mp);
945 put_mountpoint(old_mp);
946 mnt_add_count(old_parent, -1);
950 * vfsmount lock must be held for write
952 static void commit_tree(struct mount *mnt)
954 struct mount *parent = mnt->mnt_parent;
957 struct mnt_namespace *n = parent->mnt_ns;
959 BUG_ON(parent == mnt);
961 list_add_tail(&head, &mnt->mnt_list);
962 list_for_each_entry(m, &head, mnt_list)
965 list_splice(&head, n->list.prev);
967 n->mounts += n->pending_mounts;
968 n->pending_mounts = 0;
970 __attach_mnt(mnt, parent);
971 touch_mnt_namespace(n);
974 static struct mount *next_mnt(struct mount *p, struct mount *root)
976 struct list_head *next = p->mnt_mounts.next;
977 if (next == &p->mnt_mounts) {
981 next = p->mnt_child.next;
982 if (next != &p->mnt_parent->mnt_mounts)
987 return list_entry(next, struct mount, mnt_child);
990 static struct mount *skip_mnt_tree(struct mount *p)
992 struct list_head *prev = p->mnt_mounts.prev;
993 while (prev != &p->mnt_mounts) {
994 p = list_entry(prev, struct mount, mnt_child);
995 prev = p->mnt_mounts.prev;
1001 * vfs_create_mount - Create a mount for a configured superblock
1002 * @fc: The configuration context with the superblock attached
1004 * Create a mount to an already configured superblock. If necessary, the
1005 * caller should invoke vfs_get_tree() before calling this.
1007 * Note that this does not attach the mount to anything.
1009 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1012 struct user_namespace *fs_userns;
1015 return ERR_PTR(-EINVAL);
1017 mnt = alloc_vfsmnt(fc->source ?: "none");
1019 return ERR_PTR(-ENOMEM);
1021 if (fc->sb_flags & SB_KERNMOUNT)
1022 mnt->mnt.mnt_flags = MNT_INTERNAL;
1024 atomic_inc(&fc->root->d_sb->s_active);
1025 mnt->mnt.mnt_sb = fc->root->d_sb;
1026 mnt->mnt.mnt_root = dget(fc->root);
1027 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1028 mnt->mnt_parent = mnt;
1030 fs_userns = mnt->mnt.mnt_sb->s_user_ns;
1031 if (!initial_idmapping(fs_userns))
1032 mnt->mnt.mnt_userns = get_user_ns(fs_userns);
1035 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1036 unlock_mount_hash();
1039 EXPORT_SYMBOL(vfs_create_mount);
1041 struct vfsmount *fc_mount(struct fs_context *fc)
1043 int err = vfs_get_tree(fc);
1045 up_write(&fc->root->d_sb->s_umount);
1046 return vfs_create_mount(fc);
1048 return ERR_PTR(err);
1050 EXPORT_SYMBOL(fc_mount);
1052 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1053 int flags, const char *name,
1056 struct fs_context *fc;
1057 struct vfsmount *mnt;
1061 return ERR_PTR(-EINVAL);
1063 fc = fs_context_for_mount(type, flags);
1065 return ERR_CAST(fc);
1068 ret = vfs_parse_fs_string(fc, "source",
1069 name, strlen(name));
1071 ret = parse_monolithic_mount_data(fc, data);
1080 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1083 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1084 const char *name, void *data)
1086 /* Until it is worked out how to pass the user namespace
1087 * through from the parent mount to the submount don't support
1088 * unprivileged mounts with submounts.
1090 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1091 return ERR_PTR(-EPERM);
1093 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1095 EXPORT_SYMBOL_GPL(vfs_submount);
1097 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1100 struct super_block *sb = old->mnt.mnt_sb;
1104 mnt = alloc_vfsmnt(old->mnt_devname);
1106 return ERR_PTR(-ENOMEM);
1108 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1109 mnt->mnt_group_id = 0; /* not a peer of original */
1111 mnt->mnt_group_id = old->mnt_group_id;
1113 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1114 err = mnt_alloc_group_id(mnt);
1119 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1120 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1122 atomic_inc(&sb->s_active);
1123 mnt->mnt.mnt_userns = mnt_user_ns(&old->mnt);
1124 if (!initial_idmapping(mnt->mnt.mnt_userns))
1125 mnt->mnt.mnt_userns = get_user_ns(mnt->mnt.mnt_userns);
1126 mnt->mnt.mnt_sb = sb;
1127 mnt->mnt.mnt_root = dget(root);
1128 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1129 mnt->mnt_parent = mnt;
1131 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1132 unlock_mount_hash();
1134 if ((flag & CL_SLAVE) ||
1135 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1136 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1137 mnt->mnt_master = old;
1138 CLEAR_MNT_SHARED(mnt);
1139 } else if (!(flag & CL_PRIVATE)) {
1140 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1141 list_add(&mnt->mnt_share, &old->mnt_share);
1142 if (IS_MNT_SLAVE(old))
1143 list_add(&mnt->mnt_slave, &old->mnt_slave);
1144 mnt->mnt_master = old->mnt_master;
1146 CLEAR_MNT_SHARED(mnt);
1148 if (flag & CL_MAKE_SHARED)
1149 set_mnt_shared(mnt);
1151 /* stick the duplicate mount on the same expiry list
1152 * as the original if that was on one */
1153 if (flag & CL_EXPIRE) {
1154 if (!list_empty(&old->mnt_expire))
1155 list_add(&mnt->mnt_expire, &old->mnt_expire);
1163 return ERR_PTR(err);
1166 static void cleanup_mnt(struct mount *mnt)
1168 struct hlist_node *p;
1171 * The warning here probably indicates that somebody messed
1172 * up a mnt_want/drop_write() pair. If this happens, the
1173 * filesystem was probably unable to make r/w->r/o transitions.
1174 * The locking used to deal with mnt_count decrement provides barriers,
1175 * so mnt_get_writers() below is safe.
1177 WARN_ON(mnt_get_writers(mnt));
1178 if (unlikely(mnt->mnt_pins.first))
1180 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1181 hlist_del(&m->mnt_umount);
1184 fsnotify_vfsmount_delete(&mnt->mnt);
1185 dput(mnt->mnt.mnt_root);
1186 deactivate_super(mnt->mnt.mnt_sb);
1188 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1191 static void __cleanup_mnt(struct rcu_head *head)
1193 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1196 static LLIST_HEAD(delayed_mntput_list);
1197 static void delayed_mntput(struct work_struct *unused)
1199 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1200 struct mount *m, *t;
1202 llist_for_each_entry_safe(m, t, node, mnt_llist)
1205 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1207 static void mntput_no_expire(struct mount *mnt)
1213 if (likely(READ_ONCE(mnt->mnt_ns))) {
1215 * Since we don't do lock_mount_hash() here,
1216 * ->mnt_ns can change under us. However, if it's
1217 * non-NULL, then there's a reference that won't
1218 * be dropped until after an RCU delay done after
1219 * turning ->mnt_ns NULL. So if we observe it
1220 * non-NULL under rcu_read_lock(), the reference
1221 * we are dropping is not the final one.
1223 mnt_add_count(mnt, -1);
1229 * make sure that if __legitimize_mnt() has not seen us grab
1230 * mount_lock, we'll see their refcount increment here.
1233 mnt_add_count(mnt, -1);
1234 count = mnt_get_count(mnt);
1238 unlock_mount_hash();
1241 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1243 unlock_mount_hash();
1246 mnt->mnt.mnt_flags |= MNT_DOOMED;
1249 list_del(&mnt->mnt_instance);
1251 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1252 struct mount *p, *tmp;
1253 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1254 __put_mountpoint(unhash_mnt(p), &list);
1255 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1258 unlock_mount_hash();
1259 shrink_dentry_list(&list);
1261 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1262 struct task_struct *task = current;
1263 if (likely(!(task->flags & PF_KTHREAD))) {
1264 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1265 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1268 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1269 schedule_delayed_work(&delayed_mntput_work, 1);
1275 void mntput(struct vfsmount *mnt)
1278 struct mount *m = real_mount(mnt);
1279 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1280 if (unlikely(m->mnt_expiry_mark))
1281 m->mnt_expiry_mark = 0;
1282 mntput_no_expire(m);
1285 EXPORT_SYMBOL(mntput);
1287 struct vfsmount *mntget(struct vfsmount *mnt)
1290 mnt_add_count(real_mount(mnt), 1);
1293 EXPORT_SYMBOL(mntget);
1296 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1297 * @path: path to check
1299 * d_mountpoint() can only be used reliably to establish if a dentry is
1300 * not mounted in any namespace and that common case is handled inline.
1301 * d_mountpoint() isn't aware of the possibility there may be multiple
1302 * mounts using a given dentry in a different namespace. This function
1303 * checks if the passed in path is a mountpoint rather than the dentry
1306 bool path_is_mountpoint(const struct path *path)
1311 if (!d_mountpoint(path->dentry))
1316 seq = read_seqbegin(&mount_lock);
1317 res = __path_is_mountpoint(path);
1318 } while (read_seqretry(&mount_lock, seq));
1323 EXPORT_SYMBOL(path_is_mountpoint);
1325 struct vfsmount *mnt_clone_internal(const struct path *path)
1328 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1331 p->mnt.mnt_flags |= MNT_INTERNAL;
1335 #ifdef CONFIG_PROC_FS
1336 static struct mount *mnt_list_next(struct mnt_namespace *ns,
1337 struct list_head *p)
1339 struct mount *mnt, *ret = NULL;
1342 list_for_each_continue(p, &ns->list) {
1343 mnt = list_entry(p, typeof(*mnt), mnt_list);
1344 if (!mnt_is_cursor(mnt)) {
1354 /* iterator; we want it to have access to namespace_sem, thus here... */
1355 static void *m_start(struct seq_file *m, loff_t *pos)
1357 struct proc_mounts *p = m->private;
1358 struct list_head *prev;
1360 down_read(&namespace_sem);
1362 prev = &p->ns->list;
1364 prev = &p->cursor.mnt_list;
1366 /* Read after we'd reached the end? */
1367 if (list_empty(prev))
1371 return mnt_list_next(p->ns, prev);
1374 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1376 struct proc_mounts *p = m->private;
1377 struct mount *mnt = v;
1380 return mnt_list_next(p->ns, &mnt->mnt_list);
1383 static void m_stop(struct seq_file *m, void *v)
1385 struct proc_mounts *p = m->private;
1386 struct mount *mnt = v;
1388 lock_ns_list(p->ns);
1390 list_move_tail(&p->cursor.mnt_list, &mnt->mnt_list);
1392 list_del_init(&p->cursor.mnt_list);
1393 unlock_ns_list(p->ns);
1394 up_read(&namespace_sem);
1397 static int m_show(struct seq_file *m, void *v)
1399 struct proc_mounts *p = m->private;
1400 struct mount *r = v;
1401 return p->show(m, &r->mnt);
1404 const struct seq_operations mounts_op = {
1411 void mnt_cursor_del(struct mnt_namespace *ns, struct mount *cursor)
1413 down_read(&namespace_sem);
1415 list_del(&cursor->mnt_list);
1417 up_read(&namespace_sem);
1419 #endif /* CONFIG_PROC_FS */
1422 * may_umount_tree - check if a mount tree is busy
1423 * @m: root of mount tree
1425 * This is called to check if a tree of mounts has any
1426 * open files, pwds, chroots or sub mounts that are
1429 int may_umount_tree(struct vfsmount *m)
1431 struct mount *mnt = real_mount(m);
1432 int actual_refs = 0;
1433 int minimum_refs = 0;
1437 /* write lock needed for mnt_get_count */
1439 for (p = mnt; p; p = next_mnt(p, mnt)) {
1440 actual_refs += mnt_get_count(p);
1443 unlock_mount_hash();
1445 if (actual_refs > minimum_refs)
1451 EXPORT_SYMBOL(may_umount_tree);
1454 * may_umount - check if a mount point is busy
1455 * @mnt: root of mount
1457 * This is called to check if a mount point has any
1458 * open files, pwds, chroots or sub mounts. If the
1459 * mount has sub mounts this will return busy
1460 * regardless of whether the sub mounts are busy.
1462 * Doesn't take quota and stuff into account. IOW, in some cases it will
1463 * give false negatives. The main reason why it's here is that we need
1464 * a non-destructive way to look for easily umountable filesystems.
1466 int may_umount(struct vfsmount *mnt)
1469 down_read(&namespace_sem);
1471 if (propagate_mount_busy(real_mount(mnt), 2))
1473 unlock_mount_hash();
1474 up_read(&namespace_sem);
1478 EXPORT_SYMBOL(may_umount);
1480 static void namespace_unlock(void)
1482 struct hlist_head head;
1483 struct hlist_node *p;
1487 hlist_move_list(&unmounted, &head);
1488 list_splice_init(&ex_mountpoints, &list);
1490 up_write(&namespace_sem);
1492 shrink_dentry_list(&list);
1494 if (likely(hlist_empty(&head)))
1497 synchronize_rcu_expedited();
1499 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1500 hlist_del(&m->mnt_umount);
1505 static inline void namespace_lock(void)
1507 down_write(&namespace_sem);
1510 enum umount_tree_flags {
1512 UMOUNT_PROPAGATE = 2,
1513 UMOUNT_CONNECTED = 4,
1516 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1518 /* Leaving mounts connected is only valid for lazy umounts */
1519 if (how & UMOUNT_SYNC)
1522 /* A mount without a parent has nothing to be connected to */
1523 if (!mnt_has_parent(mnt))
1526 /* Because the reference counting rules change when mounts are
1527 * unmounted and connected, umounted mounts may not be
1528 * connected to mounted mounts.
1530 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1533 /* Has it been requested that the mount remain connected? */
1534 if (how & UMOUNT_CONNECTED)
1537 /* Is the mount locked such that it needs to remain connected? */
1538 if (IS_MNT_LOCKED(mnt))
1541 /* By default disconnect the mount */
1546 * mount_lock must be held
1547 * namespace_sem must be held for write
1549 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1551 LIST_HEAD(tmp_list);
1554 if (how & UMOUNT_PROPAGATE)
1555 propagate_mount_unlock(mnt);
1557 /* Gather the mounts to umount */
1558 for (p = mnt; p; p = next_mnt(p, mnt)) {
1559 p->mnt.mnt_flags |= MNT_UMOUNT;
1560 list_move(&p->mnt_list, &tmp_list);
1563 /* Hide the mounts from mnt_mounts */
1564 list_for_each_entry(p, &tmp_list, mnt_list) {
1565 list_del_init(&p->mnt_child);
1568 /* Add propogated mounts to the tmp_list */
1569 if (how & UMOUNT_PROPAGATE)
1570 propagate_umount(&tmp_list);
1572 while (!list_empty(&tmp_list)) {
1573 struct mnt_namespace *ns;
1575 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1576 list_del_init(&p->mnt_expire);
1577 list_del_init(&p->mnt_list);
1581 __touch_mnt_namespace(ns);
1584 if (how & UMOUNT_SYNC)
1585 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1587 disconnect = disconnect_mount(p, how);
1588 if (mnt_has_parent(p)) {
1589 mnt_add_count(p->mnt_parent, -1);
1591 /* Don't forget about p */
1592 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1597 change_mnt_propagation(p, MS_PRIVATE);
1599 hlist_add_head(&p->mnt_umount, &unmounted);
1603 static void shrink_submounts(struct mount *mnt);
1605 static int do_umount_root(struct super_block *sb)
1609 down_write(&sb->s_umount);
1610 if (!sb_rdonly(sb)) {
1611 struct fs_context *fc;
1613 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1618 ret = parse_monolithic_mount_data(fc, NULL);
1620 ret = reconfigure_super(fc);
1624 up_write(&sb->s_umount);
1628 static int do_umount(struct mount *mnt, int flags)
1630 struct super_block *sb = mnt->mnt.mnt_sb;
1633 retval = security_sb_umount(&mnt->mnt, flags);
1638 * Allow userspace to request a mountpoint be expired rather than
1639 * unmounting unconditionally. Unmount only happens if:
1640 * (1) the mark is already set (the mark is cleared by mntput())
1641 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1643 if (flags & MNT_EXPIRE) {
1644 if (&mnt->mnt == current->fs->root.mnt ||
1645 flags & (MNT_FORCE | MNT_DETACH))
1649 * probably don't strictly need the lock here if we examined
1650 * all race cases, but it's a slowpath.
1653 if (mnt_get_count(mnt) != 2) {
1654 unlock_mount_hash();
1657 unlock_mount_hash();
1659 if (!xchg(&mnt->mnt_expiry_mark, 1))
1664 * If we may have to abort operations to get out of this
1665 * mount, and they will themselves hold resources we must
1666 * allow the fs to do things. In the Unix tradition of
1667 * 'Gee thats tricky lets do it in userspace' the umount_begin
1668 * might fail to complete on the first run through as other tasks
1669 * must return, and the like. Thats for the mount program to worry
1670 * about for the moment.
1673 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1674 sb->s_op->umount_begin(sb);
1678 * No sense to grab the lock for this test, but test itself looks
1679 * somewhat bogus. Suggestions for better replacement?
1680 * Ho-hum... In principle, we might treat that as umount + switch
1681 * to rootfs. GC would eventually take care of the old vfsmount.
1682 * Actually it makes sense, especially if rootfs would contain a
1683 * /reboot - static binary that would close all descriptors and
1684 * call reboot(9). Then init(8) could umount root and exec /reboot.
1686 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1688 * Special case for "unmounting" root ...
1689 * we just try to remount it readonly.
1691 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
1693 return do_umount_root(sb);
1699 /* Recheck MNT_LOCKED with the locks held */
1701 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1705 if (flags & MNT_DETACH) {
1706 if (!list_empty(&mnt->mnt_list))
1707 umount_tree(mnt, UMOUNT_PROPAGATE);
1710 shrink_submounts(mnt);
1712 if (!propagate_mount_busy(mnt, 2)) {
1713 if (!list_empty(&mnt->mnt_list))
1714 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1719 unlock_mount_hash();
1725 * __detach_mounts - lazily unmount all mounts on the specified dentry
1727 * During unlink, rmdir, and d_drop it is possible to loose the path
1728 * to an existing mountpoint, and wind up leaking the mount.
1729 * detach_mounts allows lazily unmounting those mounts instead of
1732 * The caller may hold dentry->d_inode->i_mutex.
1734 void __detach_mounts(struct dentry *dentry)
1736 struct mountpoint *mp;
1741 mp = lookup_mountpoint(dentry);
1746 while (!hlist_empty(&mp->m_list)) {
1747 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1748 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1750 hlist_add_head(&mnt->mnt_umount, &unmounted);
1752 else umount_tree(mnt, UMOUNT_CONNECTED);
1756 unlock_mount_hash();
1761 * Is the caller allowed to modify his namespace?
1763 static inline bool may_mount(void)
1765 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1768 static void warn_mandlock(void)
1770 pr_warn_once("=======================================================\n"
1771 "WARNING: The mand mount option has been deprecated and\n"
1772 " and is ignored by this kernel. Remove the mand\n"
1773 " option from the mount to silence this warning.\n"
1774 "=======================================================\n");
1777 static int can_umount(const struct path *path, int flags)
1779 struct mount *mnt = real_mount(path->mnt);
1783 if (path->dentry != path->mnt->mnt_root)
1785 if (!check_mnt(mnt))
1787 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
1789 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1794 // caller is responsible for flags being sane
1795 int path_umount(struct path *path, int flags)
1797 struct mount *mnt = real_mount(path->mnt);
1800 ret = can_umount(path, flags);
1802 ret = do_umount(mnt, flags);
1804 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1806 mntput_no_expire(mnt);
1810 static int ksys_umount(char __user *name, int flags)
1812 int lookup_flags = LOOKUP_MOUNTPOINT;
1816 // basic validity checks done first
1817 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1820 if (!(flags & UMOUNT_NOFOLLOW))
1821 lookup_flags |= LOOKUP_FOLLOW;
1822 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1825 return path_umount(&path, flags);
1828 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1830 return ksys_umount(name, flags);
1833 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1836 * The 2.0 compatible umount. No flags.
1838 SYSCALL_DEFINE1(oldumount, char __user *, name)
1840 return ksys_umount(name, 0);
1845 static bool is_mnt_ns_file(struct dentry *dentry)
1847 /* Is this a proxy for a mount namespace? */
1848 return dentry->d_op == &ns_dentry_operations &&
1849 dentry->d_fsdata == &mntns_operations;
1852 static struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1854 return container_of(ns, struct mnt_namespace, ns);
1857 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
1862 static bool mnt_ns_loop(struct dentry *dentry)
1864 /* Could bind mounting the mount namespace inode cause a
1865 * mount namespace loop?
1867 struct mnt_namespace *mnt_ns;
1868 if (!is_mnt_ns_file(dentry))
1871 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1872 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1875 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1878 struct mount *res, *p, *q, *r, *parent;
1880 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1881 return ERR_PTR(-EINVAL);
1883 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1884 return ERR_PTR(-EINVAL);
1886 res = q = clone_mnt(mnt, dentry, flag);
1890 q->mnt_mountpoint = mnt->mnt_mountpoint;
1893 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1895 if (!is_subdir(r->mnt_mountpoint, dentry))
1898 for (s = r; s; s = next_mnt(s, r)) {
1899 if (!(flag & CL_COPY_UNBINDABLE) &&
1900 IS_MNT_UNBINDABLE(s)) {
1901 if (s->mnt.mnt_flags & MNT_LOCKED) {
1902 /* Both unbindable and locked. */
1903 q = ERR_PTR(-EPERM);
1906 s = skip_mnt_tree(s);
1910 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1911 is_mnt_ns_file(s->mnt.mnt_root)) {
1912 s = skip_mnt_tree(s);
1915 while (p != s->mnt_parent) {
1921 q = clone_mnt(p, p->mnt.mnt_root, flag);
1925 list_add_tail(&q->mnt_list, &res->mnt_list);
1926 attach_mnt(q, parent, p->mnt_mp);
1927 unlock_mount_hash();
1934 umount_tree(res, UMOUNT_SYNC);
1935 unlock_mount_hash();
1940 /* Caller should check returned pointer for errors */
1942 struct vfsmount *collect_mounts(const struct path *path)
1946 if (!check_mnt(real_mount(path->mnt)))
1947 tree = ERR_PTR(-EINVAL);
1949 tree = copy_tree(real_mount(path->mnt), path->dentry,
1950 CL_COPY_ALL | CL_PRIVATE);
1953 return ERR_CAST(tree);
1957 static void free_mnt_ns(struct mnt_namespace *);
1958 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1960 void dissolve_on_fput(struct vfsmount *mnt)
1962 struct mnt_namespace *ns;
1965 ns = real_mount(mnt)->mnt_ns;
1968 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1972 unlock_mount_hash();
1978 void drop_collected_mounts(struct vfsmount *mnt)
1982 umount_tree(real_mount(mnt), 0);
1983 unlock_mount_hash();
1987 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1989 struct mount *child;
1991 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1992 if (!is_subdir(child->mnt_mountpoint, dentry))
1995 if (child->mnt.mnt_flags & MNT_LOCKED)
2002 * clone_private_mount - create a private clone of a path
2003 * @path: path to clone
2005 * This creates a new vfsmount, which will be the clone of @path. The new mount
2006 * will not be attached anywhere in the namespace and will be private (i.e.
2007 * changes to the originating mount won't be propagated into this).
2009 * Release with mntput().
2011 struct vfsmount *clone_private_mount(const struct path *path)
2013 struct mount *old_mnt = real_mount(path->mnt);
2014 struct mount *new_mnt;
2016 down_read(&namespace_sem);
2017 if (IS_MNT_UNBINDABLE(old_mnt))
2020 if (!check_mnt(old_mnt))
2023 if (has_locked_children(old_mnt, path->dentry))
2026 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2027 up_read(&namespace_sem);
2029 if (IS_ERR(new_mnt))
2030 return ERR_CAST(new_mnt);
2032 /* Longterm mount to be removed by kern_unmount*() */
2033 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2035 return &new_mnt->mnt;
2038 up_read(&namespace_sem);
2039 return ERR_PTR(-EINVAL);
2041 EXPORT_SYMBOL_GPL(clone_private_mount);
2043 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2044 struct vfsmount *root)
2047 int res = f(root, arg);
2050 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2051 res = f(&mnt->mnt, arg);
2058 static void lock_mnt_tree(struct mount *mnt)
2062 for (p = mnt; p; p = next_mnt(p, mnt)) {
2063 int flags = p->mnt.mnt_flags;
2064 /* Don't allow unprivileged users to change mount flags */
2065 flags |= MNT_LOCK_ATIME;
2067 if (flags & MNT_READONLY)
2068 flags |= MNT_LOCK_READONLY;
2070 if (flags & MNT_NODEV)
2071 flags |= MNT_LOCK_NODEV;
2073 if (flags & MNT_NOSUID)
2074 flags |= MNT_LOCK_NOSUID;
2076 if (flags & MNT_NOEXEC)
2077 flags |= MNT_LOCK_NOEXEC;
2078 /* Don't allow unprivileged users to reveal what is under a mount */
2079 if (list_empty(&p->mnt_expire))
2080 flags |= MNT_LOCKED;
2081 p->mnt.mnt_flags = flags;
2085 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2089 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2090 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2091 mnt_release_group_id(p);
2095 static int invent_group_ids(struct mount *mnt, bool recurse)
2099 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2100 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2101 int err = mnt_alloc_group_id(p);
2103 cleanup_group_ids(mnt, p);
2112 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2114 unsigned int max = READ_ONCE(sysctl_mount_max);
2115 unsigned int mounts = 0, old, pending, sum;
2118 for (p = mnt; p; p = next_mnt(p, mnt))
2122 pending = ns->pending_mounts;
2123 sum = old + pending;
2127 (mounts > (max - sum)))
2130 ns->pending_mounts = pending + mounts;
2135 * @source_mnt : mount tree to be attached
2136 * @nd : place the mount tree @source_mnt is attached
2137 * @parent_nd : if non-null, detach the source_mnt from its parent and
2138 * store the parent mount and mountpoint dentry.
2139 * (done when source_mnt is moved)
2141 * NOTE: in the table below explains the semantics when a source mount
2142 * of a given type is attached to a destination mount of a given type.
2143 * ---------------------------------------------------------------------------
2144 * | BIND MOUNT OPERATION |
2145 * |**************************************************************************
2146 * | source-->| shared | private | slave | unbindable |
2150 * |**************************************************************************
2151 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2153 * |non-shared| shared (+) | private | slave (*) | invalid |
2154 * ***************************************************************************
2155 * A bind operation clones the source mount and mounts the clone on the
2156 * destination mount.
2158 * (++) the cloned mount is propagated to all the mounts in the propagation
2159 * tree of the destination mount and the cloned mount is added to
2160 * the peer group of the source mount.
2161 * (+) the cloned mount is created under the destination mount and is marked
2162 * as shared. The cloned mount is added to the peer group of the source
2164 * (+++) the mount is propagated to all the mounts in the propagation tree
2165 * of the destination mount and the cloned mount is made slave
2166 * of the same master as that of the source mount. The cloned mount
2167 * is marked as 'shared and slave'.
2168 * (*) the cloned mount is made a slave of the same master as that of the
2171 * ---------------------------------------------------------------------------
2172 * | MOVE MOUNT OPERATION |
2173 * |**************************************************************************
2174 * | source-->| shared | private | slave | unbindable |
2178 * |**************************************************************************
2179 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2181 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2182 * ***************************************************************************
2184 * (+) the mount is moved to the destination. And is then propagated to
2185 * all the mounts in the propagation tree of the destination mount.
2186 * (+*) the mount is moved to the destination.
2187 * (+++) the mount is moved to the destination and is then propagated to
2188 * all the mounts belonging to the destination mount's propagation tree.
2189 * the mount is marked as 'shared and slave'.
2190 * (*) the mount continues to be a slave at the new location.
2192 * if the source mount is a tree, the operations explained above is
2193 * applied to each mount in the tree.
2194 * Must be called without spinlocks held, since this function can sleep
2197 static int attach_recursive_mnt(struct mount *source_mnt,
2198 struct mount *dest_mnt,
2199 struct mountpoint *dest_mp,
2202 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2203 HLIST_HEAD(tree_list);
2204 struct mnt_namespace *ns = dest_mnt->mnt_ns;
2205 struct mountpoint *smp;
2206 struct mount *child, *p;
2207 struct hlist_node *n;
2210 /* Preallocate a mountpoint in case the new mounts need
2211 * to be tucked under other mounts.
2213 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2215 return PTR_ERR(smp);
2217 /* Is there space to add these mounts to the mount namespace? */
2219 err = count_mounts(ns, source_mnt);
2224 if (IS_MNT_SHARED(dest_mnt)) {
2225 err = invent_group_ids(source_mnt, true);
2228 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2231 goto out_cleanup_ids;
2232 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2238 unhash_mnt(source_mnt);
2239 attach_mnt(source_mnt, dest_mnt, dest_mp);
2240 touch_mnt_namespace(source_mnt->mnt_ns);
2242 if (source_mnt->mnt_ns) {
2243 /* move from anon - the caller will destroy */
2244 list_del_init(&source_mnt->mnt_ns->list);
2246 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2247 commit_tree(source_mnt);
2250 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2252 hlist_del_init(&child->mnt_hash);
2253 q = __lookup_mnt(&child->mnt_parent->mnt,
2254 child->mnt_mountpoint);
2256 mnt_change_mountpoint(child, smp, q);
2257 /* Notice when we are propagating across user namespaces */
2258 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2259 lock_mnt_tree(child);
2260 child->mnt.mnt_flags &= ~MNT_LOCKED;
2263 put_mountpoint(smp);
2264 unlock_mount_hash();
2269 while (!hlist_empty(&tree_list)) {
2270 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2271 child->mnt_parent->mnt_ns->pending_mounts = 0;
2272 umount_tree(child, UMOUNT_SYNC);
2274 unlock_mount_hash();
2275 cleanup_group_ids(source_mnt, NULL);
2277 ns->pending_mounts = 0;
2279 read_seqlock_excl(&mount_lock);
2280 put_mountpoint(smp);
2281 read_sequnlock_excl(&mount_lock);
2286 static struct mountpoint *lock_mount(struct path *path)
2288 struct vfsmount *mnt;
2289 struct dentry *dentry = path->dentry;
2291 inode_lock(dentry->d_inode);
2292 if (unlikely(cant_mount(dentry))) {
2293 inode_unlock(dentry->d_inode);
2294 return ERR_PTR(-ENOENT);
2297 mnt = lookup_mnt(path);
2299 struct mountpoint *mp = get_mountpoint(dentry);
2302 inode_unlock(dentry->d_inode);
2308 inode_unlock(path->dentry->d_inode);
2311 dentry = path->dentry = dget(mnt->mnt_root);
2315 static void unlock_mount(struct mountpoint *where)
2317 struct dentry *dentry = where->m_dentry;
2319 read_seqlock_excl(&mount_lock);
2320 put_mountpoint(where);
2321 read_sequnlock_excl(&mount_lock);
2324 inode_unlock(dentry->d_inode);
2327 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2329 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2332 if (d_is_dir(mp->m_dentry) !=
2333 d_is_dir(mnt->mnt.mnt_root))
2336 return attach_recursive_mnt(mnt, p, mp, false);
2340 * Sanity check the flags to change_mnt_propagation.
2343 static int flags_to_propagation_type(int ms_flags)
2345 int type = ms_flags & ~(MS_REC | MS_SILENT);
2347 /* Fail if any non-propagation flags are set */
2348 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2350 /* Only one propagation flag should be set */
2351 if (!is_power_of_2(type))
2357 * recursively change the type of the mountpoint.
2359 static int do_change_type(struct path *path, int ms_flags)
2362 struct mount *mnt = real_mount(path->mnt);
2363 int recurse = ms_flags & MS_REC;
2367 if (path->dentry != path->mnt->mnt_root)
2370 type = flags_to_propagation_type(ms_flags);
2375 if (type == MS_SHARED) {
2376 err = invent_group_ids(mnt, recurse);
2382 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2383 change_mnt_propagation(m, type);
2384 unlock_mount_hash();
2391 static struct mount *__do_loopback(struct path *old_path, int recurse)
2393 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2395 if (IS_MNT_UNBINDABLE(old))
2398 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2401 if (!recurse && has_locked_children(old, old_path->dentry))
2405 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2407 mnt = clone_mnt(old, old_path->dentry, 0);
2410 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2416 * do loopback mount.
2418 static int do_loopback(struct path *path, const char *old_name,
2421 struct path old_path;
2422 struct mount *mnt = NULL, *parent;
2423 struct mountpoint *mp;
2425 if (!old_name || !*old_name)
2427 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2432 if (mnt_ns_loop(old_path.dentry))
2435 mp = lock_mount(path);
2441 parent = real_mount(path->mnt);
2442 if (!check_mnt(parent))
2445 mnt = __do_loopback(&old_path, recurse);
2451 err = graft_tree(mnt, parent, mp);
2454 umount_tree(mnt, UMOUNT_SYNC);
2455 unlock_mount_hash();
2460 path_put(&old_path);
2464 static struct file *open_detached_copy(struct path *path, bool recursive)
2466 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2467 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2468 struct mount *mnt, *p;
2472 return ERR_CAST(ns);
2475 mnt = __do_loopback(path, recursive);
2479 return ERR_CAST(mnt);
2483 for (p = mnt; p; p = next_mnt(p, mnt)) {
2488 list_add_tail(&ns->list, &mnt->mnt_list);
2490 unlock_mount_hash();
2494 path->mnt = &mnt->mnt;
2495 file = dentry_open(path, O_PATH, current_cred());
2497 dissolve_on_fput(path->mnt);
2499 file->f_mode |= FMODE_NEED_UNMOUNT;
2503 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
2507 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2508 bool detached = flags & OPEN_TREE_CLONE;
2512 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2514 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2515 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2519 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2522 if (flags & AT_NO_AUTOMOUNT)
2523 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2524 if (flags & AT_SYMLINK_NOFOLLOW)
2525 lookup_flags &= ~LOOKUP_FOLLOW;
2526 if (flags & AT_EMPTY_PATH)
2527 lookup_flags |= LOOKUP_EMPTY;
2529 if (detached && !may_mount())
2532 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2536 error = user_path_at(dfd, filename, lookup_flags, &path);
2537 if (unlikely(error)) {
2538 file = ERR_PTR(error);
2541 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2543 file = dentry_open(&path, O_PATH, current_cred());
2548 return PTR_ERR(file);
2550 fd_install(fd, file);
2555 * Don't allow locked mount flags to be cleared.
2557 * No locks need to be held here while testing the various MNT_LOCK
2558 * flags because those flags can never be cleared once they are set.
2560 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2562 unsigned int fl = mnt->mnt.mnt_flags;
2564 if ((fl & MNT_LOCK_READONLY) &&
2565 !(mnt_flags & MNT_READONLY))
2568 if ((fl & MNT_LOCK_NODEV) &&
2569 !(mnt_flags & MNT_NODEV))
2572 if ((fl & MNT_LOCK_NOSUID) &&
2573 !(mnt_flags & MNT_NOSUID))
2576 if ((fl & MNT_LOCK_NOEXEC) &&
2577 !(mnt_flags & MNT_NOEXEC))
2580 if ((fl & MNT_LOCK_ATIME) &&
2581 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2587 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2589 bool readonly_request = (mnt_flags & MNT_READONLY);
2591 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2594 if (readonly_request)
2595 return mnt_make_readonly(mnt);
2597 mnt->mnt.mnt_flags &= ~MNT_READONLY;
2601 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2603 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2604 mnt->mnt.mnt_flags = mnt_flags;
2605 touch_mnt_namespace(mnt->mnt_ns);
2608 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2610 struct super_block *sb = mnt->mnt_sb;
2612 if (!__mnt_is_readonly(mnt) &&
2613 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
2614 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2615 char *buf = (char *)__get_free_page(GFP_KERNEL);
2616 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2619 time64_to_tm(sb->s_time_max, 0, &tm);
2621 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2623 is_mounted(mnt) ? "remounted" : "mounted",
2625 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2627 free_page((unsigned long)buf);
2628 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
2633 * Handle reconfiguration of the mountpoint only without alteration of the
2634 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2637 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2639 struct super_block *sb = path->mnt->mnt_sb;
2640 struct mount *mnt = real_mount(path->mnt);
2643 if (!check_mnt(mnt))
2646 if (path->dentry != mnt->mnt.mnt_root)
2649 if (!can_change_locked_flags(mnt, mnt_flags))
2653 * We're only checking whether the superblock is read-only not
2654 * changing it, so only take down_read(&sb->s_umount).
2656 down_read(&sb->s_umount);
2658 ret = change_mount_ro_state(mnt, mnt_flags);
2660 set_mount_attributes(mnt, mnt_flags);
2661 unlock_mount_hash();
2662 up_read(&sb->s_umount);
2664 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2670 * change filesystem flags. dir should be a physical root of filesystem.
2671 * If you've mounted a non-root directory somewhere and want to do remount
2672 * on it - tough luck.
2674 static int do_remount(struct path *path, int ms_flags, int sb_flags,
2675 int mnt_flags, void *data)
2678 struct super_block *sb = path->mnt->mnt_sb;
2679 struct mount *mnt = real_mount(path->mnt);
2680 struct fs_context *fc;
2682 if (!check_mnt(mnt))
2685 if (path->dentry != path->mnt->mnt_root)
2688 if (!can_change_locked_flags(mnt, mnt_flags))
2691 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2696 err = parse_monolithic_mount_data(fc, data);
2698 down_write(&sb->s_umount);
2700 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2701 err = reconfigure_super(fc);
2704 set_mount_attributes(mnt, mnt_flags);
2705 unlock_mount_hash();
2708 up_write(&sb->s_umount);
2711 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2717 static inline int tree_contains_unbindable(struct mount *mnt)
2720 for (p = mnt; p; p = next_mnt(p, mnt)) {
2721 if (IS_MNT_UNBINDABLE(p))
2728 * Check that there aren't references to earlier/same mount namespaces in the
2729 * specified subtree. Such references can act as pins for mount namespaces
2730 * that aren't checked by the mount-cycle checking code, thereby allowing
2731 * cycles to be made.
2733 static bool check_for_nsfs_mounts(struct mount *subtree)
2739 for (p = subtree; p; p = next_mnt(p, subtree))
2740 if (mnt_ns_loop(p->mnt.mnt_root))
2745 unlock_mount_hash();
2749 static int do_set_group(struct path *from_path, struct path *to_path)
2751 struct mount *from, *to;
2754 from = real_mount(from_path->mnt);
2755 to = real_mount(to_path->mnt);
2760 /* To and From must be mounted */
2761 if (!is_mounted(&from->mnt))
2763 if (!is_mounted(&to->mnt))
2767 /* We should be allowed to modify mount namespaces of both mounts */
2768 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
2770 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
2774 /* To and From paths should be mount roots */
2775 if (from_path->dentry != from_path->mnt->mnt_root)
2777 if (to_path->dentry != to_path->mnt->mnt_root)
2780 /* Setting sharing groups is only allowed across same superblock */
2781 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
2784 /* From mount root should be wider than To mount root */
2785 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
2788 /* From mount should not have locked children in place of To's root */
2789 if (has_locked_children(from, to->mnt.mnt_root))
2792 /* Setting sharing groups is only allowed on private mounts */
2793 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
2796 /* From should not be private */
2797 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
2800 if (IS_MNT_SLAVE(from)) {
2801 struct mount *m = from->mnt_master;
2803 list_add(&to->mnt_slave, &m->mnt_slave_list);
2807 if (IS_MNT_SHARED(from)) {
2808 to->mnt_group_id = from->mnt_group_id;
2809 list_add(&to->mnt_share, &from->mnt_share);
2812 unlock_mount_hash();
2821 static int do_move_mount(struct path *old_path, struct path *new_path)
2823 struct mnt_namespace *ns;
2826 struct mount *parent;
2827 struct mountpoint *mp, *old_mp;
2831 mp = lock_mount(new_path);
2835 old = real_mount(old_path->mnt);
2836 p = real_mount(new_path->mnt);
2837 parent = old->mnt_parent;
2838 attached = mnt_has_parent(old);
2839 old_mp = old->mnt_mp;
2843 /* The mountpoint must be in our namespace. */
2847 /* The thing moved must be mounted... */
2848 if (!is_mounted(&old->mnt))
2851 /* ... and either ours or the root of anon namespace */
2852 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2855 if (old->mnt.mnt_flags & MNT_LOCKED)
2858 if (old_path->dentry != old_path->mnt->mnt_root)
2861 if (d_is_dir(new_path->dentry) !=
2862 d_is_dir(old_path->dentry))
2865 * Don't move a mount residing in a shared parent.
2867 if (attached && IS_MNT_SHARED(parent))
2870 * Don't move a mount tree containing unbindable mounts to a destination
2871 * mount which is shared.
2873 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2876 if (!check_for_nsfs_mounts(old))
2878 for (; mnt_has_parent(p); p = p->mnt_parent)
2882 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2887 /* if the mount is moved, it should no longer be expire
2889 list_del_init(&old->mnt_expire);
2891 put_mountpoint(old_mp);
2896 mntput_no_expire(parent);
2903 static int do_move_mount_old(struct path *path, const char *old_name)
2905 struct path old_path;
2908 if (!old_name || !*old_name)
2911 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2915 err = do_move_mount(&old_path, path);
2916 path_put(&old_path);
2921 * add a mount into a namespace's mount tree
2923 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
2924 struct path *path, int mnt_flags)
2926 struct mount *parent = real_mount(path->mnt);
2928 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2930 if (unlikely(!check_mnt(parent))) {
2931 /* that's acceptable only for automounts done in private ns */
2932 if (!(mnt_flags & MNT_SHRINKABLE))
2934 /* ... and for those we'd better have mountpoint still alive */
2935 if (!parent->mnt_ns)
2939 /* Refuse the same filesystem on the same mount point */
2940 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2941 path->mnt->mnt_root == path->dentry)
2944 if (d_is_symlink(newmnt->mnt.mnt_root))
2947 newmnt->mnt.mnt_flags = mnt_flags;
2948 return graft_tree(newmnt, parent, mp);
2951 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2954 * Create a new mount using a superblock configuration and request it
2955 * be added to the namespace tree.
2957 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2958 unsigned int mnt_flags)
2960 struct vfsmount *mnt;
2961 struct mountpoint *mp;
2962 struct super_block *sb = fc->root->d_sb;
2965 error = security_sb_kern_mount(sb);
2966 if (!error && mount_too_revealing(sb, &mnt_flags))
2969 if (unlikely(error)) {
2974 up_write(&sb->s_umount);
2976 mnt = vfs_create_mount(fc);
2978 return PTR_ERR(mnt);
2980 mnt_warn_timestamp_expiry(mountpoint, mnt);
2982 mp = lock_mount(mountpoint);
2987 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
2995 * create a new mount for userspace and request it to be added into the
2998 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
2999 int mnt_flags, const char *name, void *data)
3001 struct file_system_type *type;
3002 struct fs_context *fc;
3003 const char *subtype = NULL;
3009 type = get_fs_type(fstype);
3013 if (type->fs_flags & FS_HAS_SUBTYPE) {
3014 subtype = strchr(fstype, '.');
3018 put_filesystem(type);
3024 fc = fs_context_for_mount(type, sb_flags);
3025 put_filesystem(type);
3030 err = vfs_parse_fs_string(fc, "subtype",
3031 subtype, strlen(subtype));
3033 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3035 err = parse_monolithic_mount_data(fc, data);
3036 if (!err && !mount_capable(fc))
3039 err = vfs_get_tree(fc);
3041 err = do_new_mount_fc(fc, path, mnt_flags);
3047 int finish_automount(struct vfsmount *m, struct path *path)
3049 struct dentry *dentry = path->dentry;
3050 struct mountpoint *mp;
3059 mnt = real_mount(m);
3060 /* The new mount record should have at least 2 refs to prevent it being
3061 * expired before we get a chance to add it
3063 BUG_ON(mnt_get_count(mnt) < 2);
3065 if (m->mnt_sb == path->mnt->mnt_sb &&
3066 m->mnt_root == dentry) {
3072 * we don't want to use lock_mount() - in this case finding something
3073 * that overmounts our mountpoint to be means "quitely drop what we've
3074 * got", not "try to mount it on top".
3076 inode_lock(dentry->d_inode);
3078 if (unlikely(cant_mount(dentry))) {
3080 goto discard_locked;
3083 if (unlikely(__lookup_mnt(path->mnt, dentry))) {
3086 goto discard_locked;
3089 mp = get_mountpoint(dentry);
3092 goto discard_locked;
3095 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3104 inode_unlock(dentry->d_inode);
3106 /* remove m from any expiration list it may be on */
3107 if (!list_empty(&mnt->mnt_expire)) {
3109 list_del_init(&mnt->mnt_expire);
3118 * mnt_set_expiry - Put a mount on an expiration list
3119 * @mnt: The mount to list.
3120 * @expiry_list: The list to add the mount to.
3122 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3126 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3130 EXPORT_SYMBOL(mnt_set_expiry);
3133 * process a list of expirable mountpoints with the intent of discarding any
3134 * mountpoints that aren't in use and haven't been touched since last we came
3137 void mark_mounts_for_expiry(struct list_head *mounts)
3139 struct mount *mnt, *next;
3140 LIST_HEAD(graveyard);
3142 if (list_empty(mounts))
3148 /* extract from the expiration list every vfsmount that matches the
3149 * following criteria:
3150 * - only referenced by its parent vfsmount
3151 * - still marked for expiry (marked on the last call here; marks are
3152 * cleared by mntput())
3154 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3155 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3156 propagate_mount_busy(mnt, 1))
3158 list_move(&mnt->mnt_expire, &graveyard);
3160 while (!list_empty(&graveyard)) {
3161 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
3162 touch_mnt_namespace(mnt->mnt_ns);
3163 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3165 unlock_mount_hash();
3169 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
3172 * Ripoff of 'select_parent()'
3174 * search the list of submounts for a given mountpoint, and move any
3175 * shrinkable submounts to the 'graveyard' list.
3177 static int select_submounts(struct mount *parent, struct list_head *graveyard)
3179 struct mount *this_parent = parent;
3180 struct list_head *next;
3184 next = this_parent->mnt_mounts.next;
3186 while (next != &this_parent->mnt_mounts) {
3187 struct list_head *tmp = next;
3188 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
3191 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
3194 * Descend a level if the d_mounts list is non-empty.
3196 if (!list_empty(&mnt->mnt_mounts)) {
3201 if (!propagate_mount_busy(mnt, 1)) {
3202 list_move_tail(&mnt->mnt_expire, graveyard);
3207 * All done at this level ... ascend and resume the search
3209 if (this_parent != parent) {
3210 next = this_parent->mnt_child.next;
3211 this_parent = this_parent->mnt_parent;
3218 * process a list of expirable mountpoints with the intent of discarding any
3219 * submounts of a specific parent mountpoint
3221 * mount_lock must be held for write
3223 static void shrink_submounts(struct mount *mnt)
3225 LIST_HEAD(graveyard);
3228 /* extract submounts of 'mountpoint' from the expiration list */
3229 while (select_submounts(mnt, &graveyard)) {
3230 while (!list_empty(&graveyard)) {
3231 m = list_first_entry(&graveyard, struct mount,
3233 touch_mnt_namespace(m->mnt_ns);
3234 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
3239 static void *copy_mount_options(const void __user * data)
3242 unsigned left, offset;
3247 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3249 return ERR_PTR(-ENOMEM);
3251 left = copy_from_user(copy, data, PAGE_SIZE);
3254 * Not all architectures have an exact copy_from_user(). Resort to
3257 offset = PAGE_SIZE - left;
3260 if (get_user(c, (const char __user *)data + offset))
3267 if (left == PAGE_SIZE) {
3269 return ERR_PTR(-EFAULT);
3275 static char *copy_mount_string(const void __user *data)
3277 return data ? strndup_user(data, PATH_MAX) : NULL;
3281 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3282 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3284 * data is a (void *) that can point to any structure up to
3285 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3286 * information (or be NULL).
3288 * Pre-0.97 versions of mount() didn't have a flags word.
3289 * When the flags word was introduced its top half was required
3290 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3291 * Therefore, if this magic number is present, it carries no information
3292 * and must be discarded.
3294 int path_mount(const char *dev_name, struct path *path,
3295 const char *type_page, unsigned long flags, void *data_page)
3297 unsigned int mnt_flags = 0, sb_flags;
3301 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3302 flags &= ~MS_MGC_MSK;
3304 /* Basic sanity checks */
3306 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3308 if (flags & MS_NOUSER)
3311 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
3316 if (flags & SB_MANDLOCK)
3319 /* Default to relatime unless overriden */
3320 if (!(flags & MS_NOATIME))
3321 mnt_flags |= MNT_RELATIME;
3323 /* Separate the per-mountpoint flags */
3324 if (flags & MS_NOSUID)
3325 mnt_flags |= MNT_NOSUID;
3326 if (flags & MS_NODEV)
3327 mnt_flags |= MNT_NODEV;
3328 if (flags & MS_NOEXEC)
3329 mnt_flags |= MNT_NOEXEC;
3330 if (flags & MS_NOATIME)
3331 mnt_flags |= MNT_NOATIME;
3332 if (flags & MS_NODIRATIME)
3333 mnt_flags |= MNT_NODIRATIME;
3334 if (flags & MS_STRICTATIME)
3335 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
3336 if (flags & MS_RDONLY)
3337 mnt_flags |= MNT_READONLY;
3338 if (flags & MS_NOSYMFOLLOW)
3339 mnt_flags |= MNT_NOSYMFOLLOW;
3341 /* The default atime for remount is preservation */
3342 if ((flags & MS_REMOUNT) &&
3343 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3344 MS_STRICTATIME)) == 0)) {
3345 mnt_flags &= ~MNT_ATIME_MASK;
3346 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
3349 sb_flags = flags & (SB_RDONLY |
3358 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3359 return do_reconfigure_mnt(path, mnt_flags);
3360 if (flags & MS_REMOUNT)
3361 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
3362 if (flags & MS_BIND)
3363 return do_loopback(path, dev_name, flags & MS_REC);
3364 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
3365 return do_change_type(path, flags);
3366 if (flags & MS_MOVE)
3367 return do_move_mount_old(path, dev_name);
3369 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
3373 long do_mount(const char *dev_name, const char __user *dir_name,
3374 const char *type_page, unsigned long flags, void *data_page)
3379 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
3382 ret = path_mount(dev_name, &path, type_page, flags, data_page);
3387 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3389 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3392 static void dec_mnt_namespaces(struct ucounts *ucounts)
3394 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3397 static void free_mnt_ns(struct mnt_namespace *ns)
3399 if (!is_anon_ns(ns))
3400 ns_free_inum(&ns->ns);
3401 dec_mnt_namespaces(ns->ucounts);
3402 put_user_ns(ns->user_ns);
3407 * Assign a sequence number so we can detect when we attempt to bind
3408 * mount a reference to an older mount namespace into the current
3409 * mount namespace, preventing reference counting loops. A 64bit
3410 * number incrementing at 10Ghz will take 12,427 years to wrap which
3411 * is effectively never, so we can ignore the possibility.
3413 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3415 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
3417 struct mnt_namespace *new_ns;
3418 struct ucounts *ucounts;
3421 ucounts = inc_mnt_namespaces(user_ns);
3423 return ERR_PTR(-ENOSPC);
3425 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
3427 dec_mnt_namespaces(ucounts);
3428 return ERR_PTR(-ENOMEM);
3431 ret = ns_alloc_inum(&new_ns->ns);
3434 dec_mnt_namespaces(ucounts);
3435 return ERR_PTR(ret);
3438 new_ns->ns.ops = &mntns_operations;
3440 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
3441 refcount_set(&new_ns->ns.count, 1);
3442 INIT_LIST_HEAD(&new_ns->list);
3443 init_waitqueue_head(&new_ns->poll);
3444 spin_lock_init(&new_ns->ns_lock);
3445 new_ns->user_ns = get_user_ns(user_ns);
3446 new_ns->ucounts = ucounts;
3451 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3452 struct user_namespace *user_ns, struct fs_struct *new_fs)
3454 struct mnt_namespace *new_ns;
3455 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
3456 struct mount *p, *q;
3463 if (likely(!(flags & CLONE_NEWNS))) {
3470 new_ns = alloc_mnt_ns(user_ns, false);
3475 /* First pass: copy the tree topology */
3476 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
3477 if (user_ns != ns->user_ns)
3478 copy_flags |= CL_SHARED_TO_SLAVE;
3479 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
3482 free_mnt_ns(new_ns);
3483 return ERR_CAST(new);
3485 if (user_ns != ns->user_ns) {
3488 unlock_mount_hash();
3491 list_add_tail(&new_ns->list, &new->mnt_list);
3494 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3495 * as belonging to new namespace. We have already acquired a private
3496 * fs_struct, so tsk->fs->lock is not needed.
3504 if (&p->mnt == new_fs->root.mnt) {
3505 new_fs->root.mnt = mntget(&q->mnt);
3508 if (&p->mnt == new_fs->pwd.mnt) {
3509 new_fs->pwd.mnt = mntget(&q->mnt);
3513 p = next_mnt(p, old);
3514 q = next_mnt(q, new);
3517 while (p->mnt.mnt_root != q->mnt.mnt_root)
3518 p = next_mnt(p, old);
3530 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
3532 struct mount *mnt = real_mount(m);
3533 struct mnt_namespace *ns;
3534 struct super_block *s;
3538 ns = alloc_mnt_ns(&init_user_ns, true);
3541 return ERR_CAST(ns);
3546 list_add(&mnt->mnt_list, &ns->list);
3548 err = vfs_path_lookup(m->mnt_root, m,
3549 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3554 return ERR_PTR(err);
3556 /* trade a vfsmount reference for active sb one */
3557 s = path.mnt->mnt_sb;
3558 atomic_inc(&s->s_active);
3560 /* lock the sucker */
3561 down_write(&s->s_umount);
3562 /* ... and return the root of (sub)tree on it */
3565 EXPORT_SYMBOL(mount_subtree);
3567 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3568 char __user *, type, unsigned long, flags, void __user *, data)
3575 kernel_type = copy_mount_string(type);
3576 ret = PTR_ERR(kernel_type);
3577 if (IS_ERR(kernel_type))
3580 kernel_dev = copy_mount_string(dev_name);
3581 ret = PTR_ERR(kernel_dev);
3582 if (IS_ERR(kernel_dev))
3585 options = copy_mount_options(data);
3586 ret = PTR_ERR(options);
3587 if (IS_ERR(options))
3590 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3601 #define FSMOUNT_VALID_FLAGS \
3602 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
3603 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
3604 MOUNT_ATTR_NOSYMFOLLOW)
3606 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
3608 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
3609 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
3611 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
3613 unsigned int mnt_flags = 0;
3615 if (attr_flags & MOUNT_ATTR_RDONLY)
3616 mnt_flags |= MNT_READONLY;
3617 if (attr_flags & MOUNT_ATTR_NOSUID)
3618 mnt_flags |= MNT_NOSUID;
3619 if (attr_flags & MOUNT_ATTR_NODEV)
3620 mnt_flags |= MNT_NODEV;
3621 if (attr_flags & MOUNT_ATTR_NOEXEC)
3622 mnt_flags |= MNT_NOEXEC;
3623 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3624 mnt_flags |= MNT_NODIRATIME;
3625 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
3626 mnt_flags |= MNT_NOSYMFOLLOW;
3632 * Create a kernel mount representation for a new, prepared superblock
3633 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3635 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3636 unsigned int, attr_flags)
3638 struct mnt_namespace *ns;
3639 struct fs_context *fc;
3641 struct path newmount;
3644 unsigned int mnt_flags = 0;
3650 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3653 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
3656 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
3658 switch (attr_flags & MOUNT_ATTR__ATIME) {
3659 case MOUNT_ATTR_STRICTATIME:
3661 case MOUNT_ATTR_NOATIME:
3662 mnt_flags |= MNT_NOATIME;
3664 case MOUNT_ATTR_RELATIME:
3665 mnt_flags |= MNT_RELATIME;
3676 if (f.file->f_op != &fscontext_fops)
3679 fc = f.file->private_data;
3681 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3685 /* There must be a valid superblock or we can't mount it */
3691 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3692 pr_warn("VFS: Mount too revealing\n");
3697 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3700 if (fc->sb_flags & SB_MANDLOCK)
3703 newmount.mnt = vfs_create_mount(fc);
3704 if (IS_ERR(newmount.mnt)) {
3705 ret = PTR_ERR(newmount.mnt);
3708 newmount.dentry = dget(fc->root);
3709 newmount.mnt->mnt_flags = mnt_flags;
3711 /* We've done the mount bit - now move the file context into more or
3712 * less the same state as if we'd done an fspick(). We don't want to
3713 * do any memory allocation or anything like that at this point as we
3714 * don't want to have to handle any errors incurred.
3716 vfs_clean_context(fc);
3718 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3723 mnt = real_mount(newmount.mnt);
3727 list_add(&mnt->mnt_list, &ns->list);
3728 mntget(newmount.mnt);
3730 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3731 * it, not just simply put it.
3733 file = dentry_open(&newmount, O_PATH, fc->cred);
3735 dissolve_on_fput(newmount.mnt);
3736 ret = PTR_ERR(file);
3739 file->f_mode |= FMODE_NEED_UNMOUNT;
3741 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3743 fd_install(ret, file);
3748 path_put(&newmount);
3750 mutex_unlock(&fc->uapi_mutex);
3757 * Move a mount from one place to another. In combination with
3758 * fsopen()/fsmount() this is used to install a new mount and in combination
3759 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3762 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3764 SYSCALL_DEFINE5(move_mount,
3765 int, from_dfd, const char __user *, from_pathname,
3766 int, to_dfd, const char __user *, to_pathname,
3767 unsigned int, flags)
3769 struct path from_path, to_path;
3770 unsigned int lflags;
3776 if (flags & ~MOVE_MOUNT__MASK)
3779 /* If someone gives a pathname, they aren't permitted to move
3780 * from an fd that requires unmount as we can't get at the flag
3781 * to clear it afterwards.
3784 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3785 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3786 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3788 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3793 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3794 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3795 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3797 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3801 ret = security_move_mount(&from_path, &to_path);
3805 if (flags & MOVE_MOUNT_SET_GROUP)
3806 ret = do_set_group(&from_path, &to_path);
3808 ret = do_move_mount(&from_path, &to_path);
3813 path_put(&from_path);
3818 * Return true if path is reachable from root
3820 * namespace_sem or mount_lock is held
3822 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3823 const struct path *root)
3825 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3826 dentry = mnt->mnt_mountpoint;
3827 mnt = mnt->mnt_parent;
3829 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3832 bool path_is_under(const struct path *path1, const struct path *path2)
3835 read_seqlock_excl(&mount_lock);
3836 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3837 read_sequnlock_excl(&mount_lock);
3840 EXPORT_SYMBOL(path_is_under);
3843 * pivot_root Semantics:
3844 * Moves the root file system of the current process to the directory put_old,
3845 * makes new_root as the new root file system of the current process, and sets
3846 * root/cwd of all processes which had them on the current root to new_root.
3849 * The new_root and put_old must be directories, and must not be on the
3850 * same file system as the current process root. The put_old must be
3851 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3852 * pointed to by put_old must yield the same directory as new_root. No other
3853 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3855 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3856 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
3857 * in this situation.
3860 * - we don't move root/cwd if they are not at the root (reason: if something
3861 * cared enough to change them, it's probably wrong to force them elsewhere)
3862 * - it's okay to pick a root that isn't the root of a file system, e.g.
3863 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3864 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3867 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3868 const char __user *, put_old)
3870 struct path new, old, root;
3871 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
3872 struct mountpoint *old_mp, *root_mp;
3878 error = user_path_at(AT_FDCWD, new_root,
3879 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
3883 error = user_path_at(AT_FDCWD, put_old,
3884 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
3888 error = security_sb_pivotroot(&old, &new);
3892 get_fs_root(current->fs, &root);
3893 old_mp = lock_mount(&old);
3894 error = PTR_ERR(old_mp);
3899 new_mnt = real_mount(new.mnt);
3900 root_mnt = real_mount(root.mnt);
3901 old_mnt = real_mount(old.mnt);
3902 ex_parent = new_mnt->mnt_parent;
3903 root_parent = root_mnt->mnt_parent;
3904 if (IS_MNT_SHARED(old_mnt) ||
3905 IS_MNT_SHARED(ex_parent) ||
3906 IS_MNT_SHARED(root_parent))
3908 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3910 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3913 if (d_unlinked(new.dentry))
3916 if (new_mnt == root_mnt || old_mnt == root_mnt)
3917 goto out4; /* loop, on the same file system */
3919 if (root.mnt->mnt_root != root.dentry)
3920 goto out4; /* not a mountpoint */
3921 if (!mnt_has_parent(root_mnt))
3922 goto out4; /* not attached */
3923 if (new.mnt->mnt_root != new.dentry)
3924 goto out4; /* not a mountpoint */
3925 if (!mnt_has_parent(new_mnt))
3926 goto out4; /* not attached */
3927 /* make sure we can reach put_old from new_root */
3928 if (!is_path_reachable(old_mnt, old.dentry, &new))
3930 /* make certain new is below the root */
3931 if (!is_path_reachable(new_mnt, new.dentry, &root))
3934 umount_mnt(new_mnt);
3935 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
3936 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3937 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3938 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3940 /* mount old root on put_old */
3941 attach_mnt(root_mnt, old_mnt, old_mp);
3942 /* mount new_root on / */
3943 attach_mnt(new_mnt, root_parent, root_mp);
3944 mnt_add_count(root_parent, -1);
3945 touch_mnt_namespace(current->nsproxy->mnt_ns);
3946 /* A moved mount should not expire automatically */
3947 list_del_init(&new_mnt->mnt_expire);
3948 put_mountpoint(root_mp);
3949 unlock_mount_hash();
3950 chroot_fs_refs(&root, &new);
3953 unlock_mount(old_mp);
3955 mntput_no_expire(ex_parent);
3966 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
3968 unsigned int flags = mnt->mnt.mnt_flags;
3970 /* flags to clear */
3971 flags &= ~kattr->attr_clr;
3972 /* flags to raise */
3973 flags |= kattr->attr_set;
3978 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
3980 struct vfsmount *m = &mnt->mnt;
3981 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
3983 if (!kattr->mnt_userns)
3987 * Creating an idmapped mount with the filesystem wide idmapping
3988 * doesn't make sense so block that. We don't allow mushy semantics.
3990 if (kattr->mnt_userns == fs_userns)
3994 * Once a mount has been idmapped we don't allow it to change its
3995 * mapping. It makes things simpler and callers can just create
3996 * another bind-mount they can idmap if they want to.
3998 if (is_idmapped_mnt(m))
4001 /* The underlying filesystem doesn't support idmapped mounts yet. */
4002 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4005 /* We're not controlling the superblock. */
4006 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4009 /* Mount has already been visible in the filesystem hierarchy. */
4010 if (!is_anon_ns(mnt->mnt_ns))
4017 * mnt_allow_writers() - check whether the attribute change allows writers
4018 * @kattr: the new mount attributes
4019 * @mnt: the mount to which @kattr will be applied
4021 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4023 * Return: true if writers need to be held, false if not
4025 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4026 const struct mount *mnt)
4028 return !(kattr->attr_set & MNT_READONLY) ||
4029 (mnt->mnt.mnt_flags & MNT_READONLY);
4032 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4037 for (m = mnt; m; m = next_mnt(m, mnt)) {
4038 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4043 err = can_idmap_mount(kattr, m);
4047 if (!mnt_allow_writers(kattr, m)) {
4048 err = mnt_hold_writers(m);
4053 if (!kattr->recurse)
4060 for (p = mnt; p != m; p = next_mnt(p, mnt)) {
4061 /* If we had to hold writers unblock them. */
4062 if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4063 mnt_unhold_writers(p);
4069 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4071 struct user_namespace *mnt_userns, *old_mnt_userns;
4073 if (!kattr->mnt_userns)
4077 * We're the only ones able to change the mount's idmapping. So
4078 * mnt->mnt.mnt_userns is stable and we can retrieve it directly.
4080 old_mnt_userns = mnt->mnt.mnt_userns;
4082 mnt_userns = get_user_ns(kattr->mnt_userns);
4083 /* Pairs with smp_load_acquire() in mnt_user_ns(). */
4084 smp_store_release(&mnt->mnt.mnt_userns, mnt_userns);
4087 * If this is an idmapped filesystem drop the reference we've taken
4088 * in vfs_create_mount() before.
4090 if (!initial_idmapping(old_mnt_userns))
4091 put_user_ns(old_mnt_userns);
4094 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4098 for (m = mnt; m; m = next_mnt(m, mnt)) {
4101 do_idmap_mount(kattr, m);
4102 flags = recalc_flags(kattr, m);
4103 WRITE_ONCE(m->mnt.mnt_flags, flags);
4105 /* If we had to hold writers unblock them. */
4106 if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4107 mnt_unhold_writers(m);
4109 if (kattr->propagation)
4110 change_mnt_propagation(m, kattr->propagation);
4111 if (!kattr->recurse)
4114 touch_mnt_namespace(mnt->mnt_ns);
4117 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4119 struct mount *mnt = real_mount(path->mnt);
4122 if (path->dentry != mnt->mnt.mnt_root)
4125 if (kattr->propagation) {
4127 * Only take namespace_lock() if we're actually changing
4131 if (kattr->propagation == MS_SHARED) {
4132 err = invent_group_ids(mnt, kattr->recurse);
4143 /* Ensure that this isn't anything purely vfs internal. */
4144 if (!is_mounted(&mnt->mnt))
4148 * If this is an attached mount make sure it's located in the callers
4149 * mount namespace. If it's not don't let the caller interact with it.
4150 * If this is a detached mount make sure it has an anonymous mount
4151 * namespace attached to it, i.e. we've created it via OPEN_TREE_CLONE.
4153 if (!(mnt_has_parent(mnt) ? check_mnt(mnt) : is_anon_ns(mnt->mnt_ns)))
4157 * First, we get the mount tree in a shape where we can change mount
4158 * properties without failure. If we succeeded to do so we commit all
4159 * changes and if we failed we clean up.
4161 err = mount_setattr_prepare(kattr, mnt);
4163 mount_setattr_commit(kattr, mnt);
4166 unlock_mount_hash();
4168 if (kattr->propagation) {
4171 cleanup_group_ids(mnt, NULL);
4177 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
4178 struct mount_kattr *kattr, unsigned int flags)
4181 struct ns_common *ns;
4182 struct user_namespace *mnt_userns;
4185 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
4189 * We currently do not support clearing an idmapped mount. If this ever
4190 * is a use-case we can revisit this but for now let's keep it simple
4193 if (attr->attr_clr & MOUNT_ATTR_IDMAP)
4196 if (attr->userns_fd > INT_MAX)
4199 file = fget(attr->userns_fd);
4203 if (!proc_ns_file(file)) {
4208 ns = get_proc_ns(file_inode(file));
4209 if (ns->ops->type != CLONE_NEWUSER) {
4215 * The initial idmapping cannot be used to create an idmapped
4216 * mount. We use the initial idmapping as an indicator of a mount
4217 * that is not idmapped. It can simply be passed into helpers that
4218 * are aware of idmapped mounts as a convenient shortcut. A user
4219 * can just create a dedicated identity mapping to achieve the same
4222 mnt_userns = container_of(ns, struct user_namespace, ns);
4223 if (initial_idmapping(mnt_userns)) {
4227 kattr->mnt_userns = get_user_ns(mnt_userns);
4234 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
4235 struct mount_kattr *kattr, unsigned int flags)
4237 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
4239 if (flags & AT_NO_AUTOMOUNT)
4240 lookup_flags &= ~LOOKUP_AUTOMOUNT;
4241 if (flags & AT_SYMLINK_NOFOLLOW)
4242 lookup_flags &= ~LOOKUP_FOLLOW;
4243 if (flags & AT_EMPTY_PATH)
4244 lookup_flags |= LOOKUP_EMPTY;
4246 *kattr = (struct mount_kattr) {
4247 .lookup_flags = lookup_flags,
4248 .recurse = !!(flags & AT_RECURSIVE),
4251 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
4253 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
4255 kattr->propagation = attr->propagation;
4257 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
4260 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
4261 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
4264 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
4265 * users wanting to transition to a different atime setting cannot
4266 * simply specify the atime setting in @attr_set, but must also
4267 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
4268 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
4269 * @attr_clr and that @attr_set can't have any atime bits set if
4270 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
4272 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
4273 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
4277 * Clear all previous time settings as they are mutually
4280 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
4281 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
4282 case MOUNT_ATTR_RELATIME:
4283 kattr->attr_set |= MNT_RELATIME;
4285 case MOUNT_ATTR_NOATIME:
4286 kattr->attr_set |= MNT_NOATIME;
4288 case MOUNT_ATTR_STRICTATIME:
4294 if (attr->attr_set & MOUNT_ATTR__ATIME)
4298 return build_mount_idmapped(attr, usize, kattr, flags);
4301 static void finish_mount_kattr(struct mount_kattr *kattr)
4303 put_user_ns(kattr->mnt_userns);
4304 kattr->mnt_userns = NULL;
4307 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
4308 unsigned int, flags, struct mount_attr __user *, uattr,
4313 struct mount_attr attr;
4314 struct mount_kattr kattr;
4316 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
4318 if (flags & ~(AT_EMPTY_PATH |
4320 AT_SYMLINK_NOFOLLOW |
4324 if (unlikely(usize > PAGE_SIZE))
4326 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
4332 err = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
4336 /* Don't bother walking through the mounts if this is a nop. */
4337 if (attr.attr_set == 0 &&
4338 attr.attr_clr == 0 &&
4339 attr.propagation == 0)
4342 err = build_mount_kattr(&attr, usize, &kattr, flags);
4346 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
4348 err = do_mount_setattr(&target, &kattr);
4351 finish_mount_kattr(&kattr);
4355 static void __init init_mount_tree(void)
4357 struct vfsmount *mnt;
4359 struct mnt_namespace *ns;
4362 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
4364 panic("Can't create rootfs");
4366 ns = alloc_mnt_ns(&init_user_ns, false);
4368 panic("Can't allocate initial namespace");
4369 m = real_mount(mnt);
4373 list_add(&m->mnt_list, &ns->list);
4374 init_task.nsproxy->mnt_ns = ns;
4378 root.dentry = mnt->mnt_root;
4379 mnt->mnt_flags |= MNT_LOCKED;
4381 set_fs_pwd(current->fs, &root);
4382 set_fs_root(current->fs, &root);
4385 void __init mnt_init(void)
4389 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
4390 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
4392 mount_hashtable = alloc_large_system_hash("Mount-cache",
4393 sizeof(struct hlist_head),
4396 &m_hash_shift, &m_hash_mask, 0, 0);
4397 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
4398 sizeof(struct hlist_head),
4401 &mp_hash_shift, &mp_hash_mask, 0, 0);
4403 if (!mount_hashtable || !mountpoint_hashtable)
4404 panic("Failed to allocate mount hash table\n");
4410 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
4412 fs_kobj = kobject_create_and_add("fs", NULL);
4414 printk(KERN_WARNING "%s: kobj create error\n", __func__);
4420 void put_mnt_ns(struct mnt_namespace *ns)
4422 if (!refcount_dec_and_test(&ns->ns.count))
4424 drop_collected_mounts(&ns->root->mnt);
4428 struct vfsmount *kern_mount(struct file_system_type *type)
4430 struct vfsmount *mnt;
4431 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
4434 * it is a longterm mount, don't release mnt until
4435 * we unmount before file sys is unregistered
4437 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
4441 EXPORT_SYMBOL_GPL(kern_mount);
4443 void kern_unmount(struct vfsmount *mnt)
4445 /* release long term mount so mount point can be released */
4446 if (!IS_ERR_OR_NULL(mnt)) {
4447 real_mount(mnt)->mnt_ns = NULL;
4448 synchronize_rcu(); /* yecchhh... */
4452 EXPORT_SYMBOL(kern_unmount);
4454 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
4458 for (i = 0; i < num; i++)
4460 real_mount(mnt[i])->mnt_ns = NULL;
4461 synchronize_rcu_expedited();
4462 for (i = 0; i < num; i++)
4465 EXPORT_SYMBOL(kern_unmount_array);
4467 bool our_mnt(struct vfsmount *mnt)
4469 return check_mnt(real_mount(mnt));
4472 bool current_chrooted(void)
4474 /* Does the current process have a non-standard root */
4475 struct path ns_root;
4476 struct path fs_root;
4479 /* Find the namespace root */
4480 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
4481 ns_root.dentry = ns_root.mnt->mnt_root;
4483 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
4486 get_fs_root(current->fs, &fs_root);
4488 chrooted = !path_equal(&fs_root, &ns_root);
4496 static bool mnt_already_visible(struct mnt_namespace *ns,
4497 const struct super_block *sb,
4500 int new_flags = *new_mnt_flags;
4502 bool visible = false;
4504 down_read(&namespace_sem);
4506 list_for_each_entry(mnt, &ns->list, mnt_list) {
4507 struct mount *child;
4510 if (mnt_is_cursor(mnt))
4513 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
4516 /* This mount is not fully visible if it's root directory
4517 * is not the root directory of the filesystem.
4519 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
4522 /* A local view of the mount flags */
4523 mnt_flags = mnt->mnt.mnt_flags;
4525 /* Don't miss readonly hidden in the superblock flags */
4526 if (sb_rdonly(mnt->mnt.mnt_sb))
4527 mnt_flags |= MNT_LOCK_READONLY;
4529 /* Verify the mount flags are equal to or more permissive
4530 * than the proposed new mount.
4532 if ((mnt_flags & MNT_LOCK_READONLY) &&
4533 !(new_flags & MNT_READONLY))
4535 if ((mnt_flags & MNT_LOCK_ATIME) &&
4536 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
4539 /* This mount is not fully visible if there are any
4540 * locked child mounts that cover anything except for
4541 * empty directories.
4543 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
4544 struct inode *inode = child->mnt_mountpoint->d_inode;
4545 /* Only worry about locked mounts */
4546 if (!(child->mnt.mnt_flags & MNT_LOCKED))
4548 /* Is the directory permanetly empty? */
4549 if (!is_empty_dir_inode(inode))
4552 /* Preserve the locked attributes */
4553 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
4561 up_read(&namespace_sem);
4565 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
4567 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
4568 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
4569 unsigned long s_iflags;
4571 if (ns->user_ns == &init_user_ns)
4574 /* Can this filesystem be too revealing? */
4575 s_iflags = sb->s_iflags;
4576 if (!(s_iflags & SB_I_USERNS_VISIBLE))
4579 if ((s_iflags & required_iflags) != required_iflags) {
4580 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
4585 return !mnt_already_visible(ns, sb, new_mnt_flags);
4588 bool mnt_may_suid(struct vfsmount *mnt)
4591 * Foreign mounts (accessed via fchdir or through /proc
4592 * symlinks) are always treated as if they are nosuid. This
4593 * prevents namespaces from trusting potentially unsafe
4594 * suid/sgid bits, file caps, or security labels that originate
4595 * in other namespaces.
4597 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
4598 current_in_userns(mnt->mnt_sb->s_user_ns);
4601 static struct ns_common *mntns_get(struct task_struct *task)
4603 struct ns_common *ns = NULL;
4604 struct nsproxy *nsproxy;
4607 nsproxy = task->nsproxy;
4609 ns = &nsproxy->mnt_ns->ns;
4610 get_mnt_ns(to_mnt_ns(ns));
4617 static void mntns_put(struct ns_common *ns)
4619 put_mnt_ns(to_mnt_ns(ns));
4622 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
4624 struct nsproxy *nsproxy = nsset->nsproxy;
4625 struct fs_struct *fs = nsset->fs;
4626 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
4627 struct user_namespace *user_ns = nsset->cred->user_ns;
4631 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
4632 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
4633 !ns_capable(user_ns, CAP_SYS_ADMIN))
4636 if (is_anon_ns(mnt_ns))
4643 old_mnt_ns = nsproxy->mnt_ns;
4644 nsproxy->mnt_ns = mnt_ns;
4647 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4648 "/", LOOKUP_DOWN, &root);
4650 /* revert to old namespace */
4651 nsproxy->mnt_ns = old_mnt_ns;
4656 put_mnt_ns(old_mnt_ns);
4658 /* Update the pwd and root */
4659 set_fs_pwd(fs, &root);
4660 set_fs_root(fs, &root);
4666 static struct user_namespace *mntns_owner(struct ns_common *ns)
4668 return to_mnt_ns(ns)->user_ns;
4671 const struct proc_ns_operations mntns_operations = {
4673 .type = CLONE_NEWNS,
4676 .install = mntns_install,
4677 .owner = mntns_owner,
4680 #ifdef CONFIG_SYSCTL
4681 static struct ctl_table fs_namespace_sysctls[] = {
4683 .procname = "mount-max",
4684 .data = &sysctl_mount_max,
4685 .maxlen = sizeof(unsigned int),
4687 .proc_handler = proc_dointvec_minmax,
4688 .extra1 = SYSCTL_ONE,
4693 static int __init init_fs_namespace_sysctls(void)
4695 register_sysctl_init("fs", fs_namespace_sysctls);
4698 fs_initcall(init_fs_namespace_sysctls);
4700 #endif /* CONFIG_SYSCTL */