getname_kernel() needs to make sure that ->name != ->iname in long case
[platform/kernel/linux-exynos.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  * Some corrections by tytso.
10  */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now 
56  * replaced with a single function lookup_dentry() that can handle all 
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *      inside the path - always follow.
99  *      in the last component in creation/removal/renaming - never follow.
100  *      if LOOKUP_FOLLOW passed - follow.
101  *      if the pathname has trailing slashes - follow.
102  *      otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124
125 #define EMBEDDED_NAME_MAX       (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130         struct filename *result;
131         char *kname;
132         int len;
133
134         result = audit_reusename(filename);
135         if (result)
136                 return result;
137
138         result = __getname();
139         if (unlikely(!result))
140                 return ERR_PTR(-ENOMEM);
141
142         /*
143          * First, try to embed the struct filename inside the names_cache
144          * allocation
145          */
146         kname = (char *)result->iname;
147         result->name = kname;
148
149         len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150         if (unlikely(len < 0)) {
151                 __putname(result);
152                 return ERR_PTR(len);
153         }
154
155         /*
156          * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157          * separate struct filename so we can dedicate the entire
158          * names_cache allocation for the pathname, and re-do the copy from
159          * userland.
160          */
161         if (unlikely(len == EMBEDDED_NAME_MAX)) {
162                 const size_t size = offsetof(struct filename, iname[1]);
163                 kname = (char *)result;
164
165                 /*
166                  * size is chosen that way we to guarantee that
167                  * result->iname[0] is within the same object and that
168                  * kname can't be equal to result->iname, no matter what.
169                  */
170                 result = kzalloc(size, GFP_KERNEL);
171                 if (unlikely(!result)) {
172                         __putname(kname);
173                         return ERR_PTR(-ENOMEM);
174                 }
175                 result->name = kname;
176                 len = strncpy_from_user(kname, filename, PATH_MAX);
177                 if (unlikely(len < 0)) {
178                         __putname(kname);
179                         kfree(result);
180                         return ERR_PTR(len);
181                 }
182                 if (unlikely(len == PATH_MAX)) {
183                         __putname(kname);
184                         kfree(result);
185                         return ERR_PTR(-ENAMETOOLONG);
186                 }
187         }
188
189         result->refcnt = 1;
190         /* The empty path is special. */
191         if (unlikely(!len)) {
192                 if (empty)
193                         *empty = 1;
194                 if (!(flags & LOOKUP_EMPTY)) {
195                         putname(result);
196                         return ERR_PTR(-ENOENT);
197                 }
198         }
199
200         result->uptr = filename;
201         result->aname = NULL;
202         audit_getname(result);
203         return result;
204 }
205
206 struct filename *
207 getname(const char __user * filename)
208 {
209         return getname_flags(filename, 0, NULL);
210 }
211
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215         struct filename *result;
216         int len = strlen(filename) + 1;
217
218         result = __getname();
219         if (unlikely(!result))
220                 return ERR_PTR(-ENOMEM);
221
222         if (len <= EMBEDDED_NAME_MAX) {
223                 result->name = (char *)result->iname;
224         } else if (len <= PATH_MAX) {
225                 const size_t size = offsetof(struct filename, iname[1]);
226                 struct filename *tmp;
227
228                 tmp = kmalloc(size, GFP_KERNEL);
229                 if (unlikely(!tmp)) {
230                         __putname(result);
231                         return ERR_PTR(-ENOMEM);
232                 }
233                 tmp->name = (char *)result;
234                 result = tmp;
235         } else {
236                 __putname(result);
237                 return ERR_PTR(-ENAMETOOLONG);
238         }
239         memcpy((char *)result->name, filename, len);
240         result->uptr = NULL;
241         result->aname = NULL;
242         result->refcnt = 1;
243         audit_getname(result);
244
245         return result;
246 }
247
248 void putname(struct filename *name)
249 {
250         BUG_ON(name->refcnt <= 0);
251
252         if (--name->refcnt > 0)
253                 return;
254
255         if (name->name != name->iname) {
256                 __putname(name->name);
257                 kfree(name);
258         } else
259                 __putname(name);
260 }
261
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265         struct posix_acl *acl;
266
267         if (mask & MAY_NOT_BLOCK) {
268                 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269                 if (!acl)
270                         return -EAGAIN;
271                 /* no ->get_acl() calls in RCU mode... */
272                 if (is_uncached_acl(acl))
273                         return -ECHILD;
274                 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
275         }
276
277         acl = get_acl(inode, ACL_TYPE_ACCESS);
278         if (IS_ERR(acl))
279                 return PTR_ERR(acl);
280         if (acl) {
281                 int error = posix_acl_permission(inode, acl, mask);
282                 posix_acl_release(acl);
283                 return error;
284         }
285 #endif
286
287         return -EAGAIN;
288 }
289
290 /*
291  * This does the basic permission checking
292  */
293 static int acl_permission_check(struct inode *inode, int mask)
294 {
295         unsigned int mode = inode->i_mode;
296
297         if (likely(uid_eq(current_fsuid(), inode->i_uid)))
298                 mode >>= 6;
299         else {
300                 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
301                         int error = check_acl(inode, mask);
302                         if (error != -EAGAIN)
303                                 return error;
304                 }
305
306                 if (in_group_p(inode->i_gid))
307                         mode >>= 3;
308         }
309
310         /*
311          * If the DACs are ok we don't need any capability check.
312          */
313         if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
314                 return 0;
315         return -EACCES;
316 }
317
318 /**
319  * generic_permission -  check for access rights on a Posix-like filesystem
320  * @inode:      inode to check access rights for
321  * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
322  *
323  * Used to check for read/write/execute permissions on a file.
324  * We use "fsuid" for this, letting us set arbitrary permissions
325  * for filesystem access without changing the "normal" uids which
326  * are used for other things.
327  *
328  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
329  * request cannot be satisfied (eg. requires blocking or too much complexity).
330  * It would then be called again in ref-walk mode.
331  */
332 int generic_permission(struct inode *inode, int mask)
333 {
334         int ret;
335
336         /*
337          * Do the basic permission checks.
338          */
339         ret = acl_permission_check(inode, mask);
340         if (ret != -EACCES)
341                 return ret;
342
343         if (S_ISDIR(inode->i_mode)) {
344                 /* DACs are overridable for directories */
345                 if (!(mask & MAY_WRITE))
346                         if (capable_wrt_inode_uidgid(inode,
347                                                      CAP_DAC_READ_SEARCH))
348                                 return 0;
349                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350                         return 0;
351                 return -EACCES;
352         }
353
354         /*
355          * Searching includes executable on directories, else just read.
356          */
357         mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
358         if (mask == MAY_READ)
359                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
360                         return 0;
361         /*
362          * Read/write DACs are always overridable.
363          * Executable DACs are overridable when there is
364          * at least one exec bit set.
365          */
366         if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
367                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
368                         return 0;
369
370         return -EACCES;
371 }
372 EXPORT_SYMBOL(generic_permission);
373
374 /*
375  * We _really_ want to just do "generic_permission()" without
376  * even looking at the inode->i_op values. So we keep a cache
377  * flag in inode->i_opflags, that says "this has not special
378  * permission function, use the fast case".
379  */
380 static inline int do_inode_permission(struct inode *inode, int mask)
381 {
382         if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
383                 if (likely(inode->i_op->permission))
384                         return inode->i_op->permission(inode, mask);
385
386                 /* This gets set once for the inode lifetime */
387                 spin_lock(&inode->i_lock);
388                 inode->i_opflags |= IOP_FASTPERM;
389                 spin_unlock(&inode->i_lock);
390         }
391         return generic_permission(inode, mask);
392 }
393
394 /**
395  * __inode_permission - Check for access rights to a given inode
396  * @inode: Inode to check permission on
397  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
398  *
399  * Check for read/write/execute permissions on an inode.
400  *
401  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
402  *
403  * This does not check for a read-only file system.  You probably want
404  * inode_permission().
405  */
406 int __inode_permission(struct inode *inode, int mask)
407 {
408         int retval;
409
410         if (unlikely(mask & MAY_WRITE)) {
411                 /*
412                  * Nobody gets write access to an immutable file.
413                  */
414                 if (IS_IMMUTABLE(inode))
415                         return -EPERM;
416
417                 /*
418                  * Updating mtime will likely cause i_uid and i_gid to be
419                  * written back improperly if their true value is unknown
420                  * to the vfs.
421                  */
422                 if (HAS_UNMAPPED_ID(inode))
423                         return -EACCES;
424         }
425
426         retval = do_inode_permission(inode, mask);
427         if (retval)
428                 return retval;
429
430         retval = devcgroup_inode_permission(inode, mask);
431         if (retval)
432                 return retval;
433
434         return security_inode_permission(inode, mask);
435 }
436 EXPORT_SYMBOL(__inode_permission);
437
438 /**
439  * sb_permission - Check superblock-level permissions
440  * @sb: Superblock of inode to check permission on
441  * @inode: Inode to check permission on
442  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
443  *
444  * Separate out file-system wide checks from inode-specific permission checks.
445  */
446 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
447 {
448         if (unlikely(mask & MAY_WRITE)) {
449                 umode_t mode = inode->i_mode;
450
451                 /* Nobody gets write access to a read-only fs. */
452                 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
453                         return -EROFS;
454         }
455         return 0;
456 }
457
458 /**
459  * inode_permission - Check for access rights to a given inode
460  * @inode: Inode to check permission on
461  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
462  *
463  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
464  * this, letting us set arbitrary permissions for filesystem access without
465  * changing the "normal" UIDs which are used for other things.
466  *
467  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
468  */
469 int inode_permission(struct inode *inode, int mask)
470 {
471         int retval;
472
473         retval = sb_permission(inode->i_sb, inode, mask);
474         if (retval)
475                 return retval;
476         return __inode_permission(inode, mask);
477 }
478 EXPORT_SYMBOL(inode_permission);
479
480 /**
481  * path_get - get a reference to a path
482  * @path: path to get the reference to
483  *
484  * Given a path increment the reference count to the dentry and the vfsmount.
485  */
486 void path_get(const struct path *path)
487 {
488         mntget(path->mnt);
489         dget(path->dentry);
490 }
491 EXPORT_SYMBOL(path_get);
492
493 /**
494  * path_put - put a reference to a path
495  * @path: path to put the reference to
496  *
497  * Given a path decrement the reference count to the dentry and the vfsmount.
498  */
499 void path_put(const struct path *path)
500 {
501         dput(path->dentry);
502         mntput(path->mnt);
503 }
504 EXPORT_SYMBOL(path_put);
505
506 #define EMBEDDED_LEVELS 2
507 struct nameidata {
508         struct path     path;
509         struct qstr     last;
510         struct path     root;
511         struct inode    *inode; /* path.dentry.d_inode */
512         unsigned int    flags;
513         unsigned        seq, m_seq;
514         int             last_type;
515         unsigned        depth;
516         int             total_link_count;
517         struct saved {
518                 struct path link;
519                 struct delayed_call done;
520                 const char *name;
521                 unsigned seq;
522         } *stack, internal[EMBEDDED_LEVELS];
523         struct filename *name;
524         struct nameidata *saved;
525         struct inode    *link_inode;
526         unsigned        root_seq;
527         int             dfd;
528 } __randomize_layout;
529
530 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
531 {
532         struct nameidata *old = current->nameidata;
533         p->stack = p->internal;
534         p->dfd = dfd;
535         p->name = name;
536         p->total_link_count = old ? old->total_link_count : 0;
537         p->saved = old;
538         current->nameidata = p;
539 }
540
541 static void restore_nameidata(void)
542 {
543         struct nameidata *now = current->nameidata, *old = now->saved;
544
545         current->nameidata = old;
546         if (old)
547                 old->total_link_count = now->total_link_count;
548         if (now->stack != now->internal)
549                 kfree(now->stack);
550 }
551
552 static int __nd_alloc_stack(struct nameidata *nd)
553 {
554         struct saved *p;
555
556         if (nd->flags & LOOKUP_RCU) {
557                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
558                                   GFP_ATOMIC);
559                 if (unlikely(!p))
560                         return -ECHILD;
561         } else {
562                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
563                                   GFP_KERNEL);
564                 if (unlikely(!p))
565                         return -ENOMEM;
566         }
567         memcpy(p, nd->internal, sizeof(nd->internal));
568         nd->stack = p;
569         return 0;
570 }
571
572 /**
573  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
574  * @path: nameidate to verify
575  *
576  * Rename can sometimes move a file or directory outside of a bind
577  * mount, path_connected allows those cases to be detected.
578  */
579 static bool path_connected(const struct path *path)
580 {
581         struct vfsmount *mnt = path->mnt;
582         struct super_block *sb = mnt->mnt_sb;
583
584         /* Bind mounts and multi-root filesystems can have disconnected paths */
585         if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
586                 return true;
587
588         return is_subdir(path->dentry, mnt->mnt_root);
589 }
590
591 static inline int nd_alloc_stack(struct nameidata *nd)
592 {
593         if (likely(nd->depth != EMBEDDED_LEVELS))
594                 return 0;
595         if (likely(nd->stack != nd->internal))
596                 return 0;
597         return __nd_alloc_stack(nd);
598 }
599
600 static void drop_links(struct nameidata *nd)
601 {
602         int i = nd->depth;
603         while (i--) {
604                 struct saved *last = nd->stack + i;
605                 do_delayed_call(&last->done);
606                 clear_delayed_call(&last->done);
607         }
608 }
609
610 static void terminate_walk(struct nameidata *nd)
611 {
612         drop_links(nd);
613         if (!(nd->flags & LOOKUP_RCU)) {
614                 int i;
615                 path_put(&nd->path);
616                 for (i = 0; i < nd->depth; i++)
617                         path_put(&nd->stack[i].link);
618                 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
619                         path_put(&nd->root);
620                         nd->root.mnt = NULL;
621                 }
622         } else {
623                 nd->flags &= ~LOOKUP_RCU;
624                 if (!(nd->flags & LOOKUP_ROOT))
625                         nd->root.mnt = NULL;
626                 rcu_read_unlock();
627         }
628         nd->depth = 0;
629 }
630
631 /* path_put is needed afterwards regardless of success or failure */
632 static bool legitimize_path(struct nameidata *nd,
633                             struct path *path, unsigned seq)
634 {
635         int res = __legitimize_mnt(path->mnt, nd->m_seq);
636         if (unlikely(res)) {
637                 if (res > 0)
638                         path->mnt = NULL;
639                 path->dentry = NULL;
640                 return false;
641         }
642         if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
643                 path->dentry = NULL;
644                 return false;
645         }
646         return !read_seqcount_retry(&path->dentry->d_seq, seq);
647 }
648
649 static bool legitimize_links(struct nameidata *nd)
650 {
651         int i;
652         for (i = 0; i < nd->depth; i++) {
653                 struct saved *last = nd->stack + i;
654                 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
655                         drop_links(nd);
656                         nd->depth = i + 1;
657                         return false;
658                 }
659         }
660         return true;
661 }
662
663 /*
664  * Path walking has 2 modes, rcu-walk and ref-walk (see
665  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
666  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
667  * normal reference counts on dentries and vfsmounts to transition to ref-walk
668  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
669  * got stuck, so ref-walk may continue from there. If this is not successful
670  * (eg. a seqcount has changed), then failure is returned and it's up to caller
671  * to restart the path walk from the beginning in ref-walk mode.
672  */
673
674 /**
675  * unlazy_walk - try to switch to ref-walk mode.
676  * @nd: nameidata pathwalk data
677  * Returns: 0 on success, -ECHILD on failure
678  *
679  * unlazy_walk attempts to legitimize the current nd->path and nd->root
680  * for ref-walk mode.
681  * Must be called from rcu-walk context.
682  * Nothing should touch nameidata between unlazy_walk() failure and
683  * terminate_walk().
684  */
685 static int unlazy_walk(struct nameidata *nd)
686 {
687         struct dentry *parent = nd->path.dentry;
688
689         BUG_ON(!(nd->flags & LOOKUP_RCU));
690
691         nd->flags &= ~LOOKUP_RCU;
692         if (unlikely(!legitimize_links(nd)))
693                 goto out2;
694         if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
695                 goto out1;
696         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
697                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
698                         goto out;
699         }
700         rcu_read_unlock();
701         BUG_ON(nd->inode != parent->d_inode);
702         return 0;
703
704 out2:
705         nd->path.mnt = NULL;
706         nd->path.dentry = NULL;
707 out1:
708         if (!(nd->flags & LOOKUP_ROOT))
709                 nd->root.mnt = NULL;
710 out:
711         rcu_read_unlock();
712         return -ECHILD;
713 }
714
715 /**
716  * unlazy_child - try to switch to ref-walk mode.
717  * @nd: nameidata pathwalk data
718  * @dentry: child of nd->path.dentry
719  * @seq: seq number to check dentry against
720  * Returns: 0 on success, -ECHILD on failure
721  *
722  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
723  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
724  * @nd.  Must be called from rcu-walk context.
725  * Nothing should touch nameidata between unlazy_child() failure and
726  * terminate_walk().
727  */
728 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
729 {
730         BUG_ON(!(nd->flags & LOOKUP_RCU));
731
732         nd->flags &= ~LOOKUP_RCU;
733         if (unlikely(!legitimize_links(nd)))
734                 goto out2;
735         if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
736                 goto out2;
737         if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
738                 goto out1;
739
740         /*
741          * We need to move both the parent and the dentry from the RCU domain
742          * to be properly refcounted. And the sequence number in the dentry
743          * validates *both* dentry counters, since we checked the sequence
744          * number of the parent after we got the child sequence number. So we
745          * know the parent must still be valid if the child sequence number is
746          */
747         if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
748                 goto out;
749         if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
750                 rcu_read_unlock();
751                 dput(dentry);
752                 goto drop_root_mnt;
753         }
754         /*
755          * Sequence counts matched. Now make sure that the root is
756          * still valid and get it if required.
757          */
758         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
759                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
760                         rcu_read_unlock();
761                         dput(dentry);
762                         return -ECHILD;
763                 }
764         }
765
766         rcu_read_unlock();
767         return 0;
768
769 out2:
770         nd->path.mnt = NULL;
771 out1:
772         nd->path.dentry = NULL;
773 out:
774         rcu_read_unlock();
775 drop_root_mnt:
776         if (!(nd->flags & LOOKUP_ROOT))
777                 nd->root.mnt = NULL;
778         return -ECHILD;
779 }
780
781 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
782 {
783         if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
784                 return dentry->d_op->d_revalidate(dentry, flags);
785         else
786                 return 1;
787 }
788
789 /**
790  * complete_walk - successful completion of path walk
791  * @nd:  pointer nameidata
792  *
793  * If we had been in RCU mode, drop out of it and legitimize nd->path.
794  * Revalidate the final result, unless we'd already done that during
795  * the path walk or the filesystem doesn't ask for it.  Return 0 on
796  * success, -error on failure.  In case of failure caller does not
797  * need to drop nd->path.
798  */
799 static int complete_walk(struct nameidata *nd)
800 {
801         struct dentry *dentry = nd->path.dentry;
802         int status;
803
804         if (nd->flags & LOOKUP_RCU) {
805                 if (!(nd->flags & LOOKUP_ROOT))
806                         nd->root.mnt = NULL;
807                 if (unlikely(unlazy_walk(nd)))
808                         return -ECHILD;
809         }
810
811         if (likely(!(nd->flags & LOOKUP_JUMPED)))
812                 return 0;
813
814         if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
815                 return 0;
816
817         status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
818         if (status > 0)
819                 return 0;
820
821         if (!status)
822                 status = -ESTALE;
823
824         return status;
825 }
826
827 static void set_root(struct nameidata *nd)
828 {
829         struct fs_struct *fs = current->fs;
830
831         if (nd->flags & LOOKUP_RCU) {
832                 unsigned seq;
833
834                 do {
835                         seq = read_seqcount_begin(&fs->seq);
836                         nd->root = fs->root;
837                         nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
838                 } while (read_seqcount_retry(&fs->seq, seq));
839         } else {
840                 get_fs_root(fs, &nd->root);
841         }
842 }
843
844 static void path_put_conditional(struct path *path, struct nameidata *nd)
845 {
846         dput(path->dentry);
847         if (path->mnt != nd->path.mnt)
848                 mntput(path->mnt);
849 }
850
851 static inline void path_to_nameidata(const struct path *path,
852                                         struct nameidata *nd)
853 {
854         if (!(nd->flags & LOOKUP_RCU)) {
855                 dput(nd->path.dentry);
856                 if (nd->path.mnt != path->mnt)
857                         mntput(nd->path.mnt);
858         }
859         nd->path.mnt = path->mnt;
860         nd->path.dentry = path->dentry;
861 }
862
863 static int nd_jump_root(struct nameidata *nd)
864 {
865         if (nd->flags & LOOKUP_RCU) {
866                 struct dentry *d;
867                 nd->path = nd->root;
868                 d = nd->path.dentry;
869                 nd->inode = d->d_inode;
870                 nd->seq = nd->root_seq;
871                 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
872                         return -ECHILD;
873         } else {
874                 path_put(&nd->path);
875                 nd->path = nd->root;
876                 path_get(&nd->path);
877                 nd->inode = nd->path.dentry->d_inode;
878         }
879         nd->flags |= LOOKUP_JUMPED;
880         return 0;
881 }
882
883 /*
884  * Helper to directly jump to a known parsed path from ->get_link,
885  * caller must have taken a reference to path beforehand.
886  */
887 void nd_jump_link(struct path *path)
888 {
889         struct nameidata *nd = current->nameidata;
890         path_put(&nd->path);
891
892         nd->path = *path;
893         nd->inode = nd->path.dentry->d_inode;
894         nd->flags |= LOOKUP_JUMPED;
895 }
896
897 static inline void put_link(struct nameidata *nd)
898 {
899         struct saved *last = nd->stack + --nd->depth;
900         do_delayed_call(&last->done);
901         if (!(nd->flags & LOOKUP_RCU))
902                 path_put(&last->link);
903 }
904
905 int sysctl_protected_symlinks __read_mostly = 0;
906 int sysctl_protected_hardlinks __read_mostly = 0;
907
908 /**
909  * may_follow_link - Check symlink following for unsafe situations
910  * @nd: nameidata pathwalk data
911  *
912  * In the case of the sysctl_protected_symlinks sysctl being enabled,
913  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
914  * in a sticky world-writable directory. This is to protect privileged
915  * processes from failing races against path names that may change out
916  * from under them by way of other users creating malicious symlinks.
917  * It will permit symlinks to be followed only when outside a sticky
918  * world-writable directory, or when the uid of the symlink and follower
919  * match, or when the directory owner matches the symlink's owner.
920  *
921  * Returns 0 if following the symlink is allowed, -ve on error.
922  */
923 static inline int may_follow_link(struct nameidata *nd)
924 {
925         const struct inode *inode;
926         const struct inode *parent;
927         kuid_t puid;
928
929         if (!sysctl_protected_symlinks)
930                 return 0;
931
932         /* Allowed if owner and follower match. */
933         inode = nd->link_inode;
934         if (uid_eq(current_cred()->fsuid, inode->i_uid))
935                 return 0;
936
937         /* Allowed if parent directory not sticky and world-writable. */
938         parent = nd->inode;
939         if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
940                 return 0;
941
942         /* Allowed if parent directory and link owner match. */
943         puid = parent->i_uid;
944         if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
945                 return 0;
946
947         if (nd->flags & LOOKUP_RCU)
948                 return -ECHILD;
949
950         audit_log_link_denied("follow_link", &nd->stack[0].link);
951         return -EACCES;
952 }
953
954 /**
955  * safe_hardlink_source - Check for safe hardlink conditions
956  * @inode: the source inode to hardlink from
957  *
958  * Return false if at least one of the following conditions:
959  *    - inode is not a regular file
960  *    - inode is setuid
961  *    - inode is setgid and group-exec
962  *    - access failure for read and write
963  *
964  * Otherwise returns true.
965  */
966 static bool safe_hardlink_source(struct inode *inode)
967 {
968         umode_t mode = inode->i_mode;
969
970         /* Special files should not get pinned to the filesystem. */
971         if (!S_ISREG(mode))
972                 return false;
973
974         /* Setuid files should not get pinned to the filesystem. */
975         if (mode & S_ISUID)
976                 return false;
977
978         /* Executable setgid files should not get pinned to the filesystem. */
979         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
980                 return false;
981
982         /* Hardlinking to unreadable or unwritable sources is dangerous. */
983         if (inode_permission(inode, MAY_READ | MAY_WRITE))
984                 return false;
985
986         return true;
987 }
988
989 /**
990  * may_linkat - Check permissions for creating a hardlink
991  * @link: the source to hardlink from
992  *
993  * Block hardlink when all of:
994  *  - sysctl_protected_hardlinks enabled
995  *  - fsuid does not match inode
996  *  - hardlink source is unsafe (see safe_hardlink_source() above)
997  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
998  *
999  * Returns 0 if successful, -ve on error.
1000  */
1001 static int may_linkat(struct path *link)
1002 {
1003         struct inode *inode;
1004
1005         if (!sysctl_protected_hardlinks)
1006                 return 0;
1007
1008         inode = link->dentry->d_inode;
1009
1010         /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1011          * otherwise, it must be a safe source.
1012          */
1013         if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1014                 return 0;
1015
1016         audit_log_link_denied("linkat", link);
1017         return -EPERM;
1018 }
1019
1020 static __always_inline
1021 const char *get_link(struct nameidata *nd)
1022 {
1023         struct saved *last = nd->stack + nd->depth - 1;
1024         struct dentry *dentry = last->link.dentry;
1025         struct inode *inode = nd->link_inode;
1026         int error;
1027         const char *res;
1028
1029         if (!(nd->flags & LOOKUP_RCU)) {
1030                 touch_atime(&last->link);
1031                 cond_resched();
1032         } else if (atime_needs_update_rcu(&last->link, inode)) {
1033                 if (unlikely(unlazy_walk(nd)))
1034                         return ERR_PTR(-ECHILD);
1035                 touch_atime(&last->link);
1036         }
1037
1038         error = security_inode_follow_link(dentry, inode,
1039                                            nd->flags & LOOKUP_RCU);
1040         if (unlikely(error))
1041                 return ERR_PTR(error);
1042
1043         nd->last_type = LAST_BIND;
1044         res = inode->i_link;
1045         if (!res) {
1046                 const char * (*get)(struct dentry *, struct inode *,
1047                                 struct delayed_call *);
1048                 get = inode->i_op->get_link;
1049                 if (nd->flags & LOOKUP_RCU) {
1050                         res = get(NULL, inode, &last->done);
1051                         if (res == ERR_PTR(-ECHILD)) {
1052                                 if (unlikely(unlazy_walk(nd)))
1053                                         return ERR_PTR(-ECHILD);
1054                                 res = get(dentry, inode, &last->done);
1055                         }
1056                 } else {
1057                         res = get(dentry, inode, &last->done);
1058                 }
1059                 if (IS_ERR_OR_NULL(res))
1060                         return res;
1061         }
1062         if (*res == '/') {
1063                 if (!nd->root.mnt)
1064                         set_root(nd);
1065                 if (unlikely(nd_jump_root(nd)))
1066                         return ERR_PTR(-ECHILD);
1067                 while (unlikely(*++res == '/'))
1068                         ;
1069         }
1070         if (!*res)
1071                 res = NULL;
1072         return res;
1073 }
1074
1075 /*
1076  * follow_up - Find the mountpoint of path's vfsmount
1077  *
1078  * Given a path, find the mountpoint of its source file system.
1079  * Replace @path with the path of the mountpoint in the parent mount.
1080  * Up is towards /.
1081  *
1082  * Return 1 if we went up a level and 0 if we were already at the
1083  * root.
1084  */
1085 int follow_up(struct path *path)
1086 {
1087         struct mount *mnt = real_mount(path->mnt);
1088         struct mount *parent;
1089         struct dentry *mountpoint;
1090
1091         read_seqlock_excl(&mount_lock);
1092         parent = mnt->mnt_parent;
1093         if (parent == mnt) {
1094                 read_sequnlock_excl(&mount_lock);
1095                 return 0;
1096         }
1097         mntget(&parent->mnt);
1098         mountpoint = dget(mnt->mnt_mountpoint);
1099         read_sequnlock_excl(&mount_lock);
1100         dput(path->dentry);
1101         path->dentry = mountpoint;
1102         mntput(path->mnt);
1103         path->mnt = &parent->mnt;
1104         return 1;
1105 }
1106 EXPORT_SYMBOL(follow_up);
1107
1108 /*
1109  * Perform an automount
1110  * - return -EISDIR to tell follow_managed() to stop and return the path we
1111  *   were called with.
1112  */
1113 static int follow_automount(struct path *path, struct nameidata *nd,
1114                             bool *need_mntput)
1115 {
1116         struct vfsmount *mnt;
1117         int err;
1118
1119         if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1120                 return -EREMOTE;
1121
1122         /* We don't want to mount if someone's just doing a stat -
1123          * unless they're stat'ing a directory and appended a '/' to
1124          * the name.
1125          *
1126          * We do, however, want to mount if someone wants to open or
1127          * create a file of any type under the mountpoint, wants to
1128          * traverse through the mountpoint or wants to open the
1129          * mounted directory.  Also, autofs may mark negative dentries
1130          * as being automount points.  These will need the attentions
1131          * of the daemon to instantiate them before they can be used.
1132          */
1133         if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1134                            LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1135             path->dentry->d_inode)
1136                 return -EISDIR;
1137
1138         nd->total_link_count++;
1139         if (nd->total_link_count >= 40)
1140                 return -ELOOP;
1141
1142         mnt = path->dentry->d_op->d_automount(path);
1143         if (IS_ERR(mnt)) {
1144                 /*
1145                  * The filesystem is allowed to return -EISDIR here to indicate
1146                  * it doesn't want to automount.  For instance, autofs would do
1147                  * this so that its userspace daemon can mount on this dentry.
1148                  *
1149                  * However, we can only permit this if it's a terminal point in
1150                  * the path being looked up; if it wasn't then the remainder of
1151                  * the path is inaccessible and we should say so.
1152                  */
1153                 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1154                         return -EREMOTE;
1155                 return PTR_ERR(mnt);
1156         }
1157
1158         if (!mnt) /* mount collision */
1159                 return 0;
1160
1161         if (!*need_mntput) {
1162                 /* lock_mount() may release path->mnt on error */
1163                 mntget(path->mnt);
1164                 *need_mntput = true;
1165         }
1166         err = finish_automount(mnt, path);
1167
1168         switch (err) {
1169         case -EBUSY:
1170                 /* Someone else made a mount here whilst we were busy */
1171                 return 0;
1172         case 0:
1173                 path_put(path);
1174                 path->mnt = mnt;
1175                 path->dentry = dget(mnt->mnt_root);
1176                 return 0;
1177         default:
1178                 return err;
1179         }
1180
1181 }
1182
1183 /*
1184  * Handle a dentry that is managed in some way.
1185  * - Flagged for transit management (autofs)
1186  * - Flagged as mountpoint
1187  * - Flagged as automount point
1188  *
1189  * This may only be called in refwalk mode.
1190  *
1191  * Serialization is taken care of in namespace.c
1192  */
1193 static int follow_managed(struct path *path, struct nameidata *nd)
1194 {
1195         struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1196         unsigned managed;
1197         bool need_mntput = false;
1198         int ret = 0;
1199
1200         /* Given that we're not holding a lock here, we retain the value in a
1201          * local variable for each dentry as we look at it so that we don't see
1202          * the components of that value change under us */
1203         while (managed = ACCESS_ONCE(path->dentry->d_flags),
1204                managed &= DCACHE_MANAGED_DENTRY,
1205                unlikely(managed != 0)) {
1206                 /* Allow the filesystem to manage the transit without i_mutex
1207                  * being held. */
1208                 if (managed & DCACHE_MANAGE_TRANSIT) {
1209                         BUG_ON(!path->dentry->d_op);
1210                         BUG_ON(!path->dentry->d_op->d_manage);
1211                         ret = path->dentry->d_op->d_manage(path, false);
1212                         if (ret < 0)
1213                                 break;
1214                 }
1215
1216                 /* Transit to a mounted filesystem. */
1217                 if (managed & DCACHE_MOUNTED) {
1218                         struct vfsmount *mounted = lookup_mnt(path);
1219                         if (mounted) {
1220                                 dput(path->dentry);
1221                                 if (need_mntput)
1222                                         mntput(path->mnt);
1223                                 path->mnt = mounted;
1224                                 path->dentry = dget(mounted->mnt_root);
1225                                 need_mntput = true;
1226                                 continue;
1227                         }
1228
1229                         /* Something is mounted on this dentry in another
1230                          * namespace and/or whatever was mounted there in this
1231                          * namespace got unmounted before lookup_mnt() could
1232                          * get it */
1233                 }
1234
1235                 /* Handle an automount point */
1236                 if (managed & DCACHE_NEED_AUTOMOUNT) {
1237                         ret = follow_automount(path, nd, &need_mntput);
1238                         if (ret < 0)
1239                                 break;
1240                         continue;
1241                 }
1242
1243                 /* We didn't change the current path point */
1244                 break;
1245         }
1246
1247         if (need_mntput && path->mnt == mnt)
1248                 mntput(path->mnt);
1249         if (ret == -EISDIR || !ret)
1250                 ret = 1;
1251         if (need_mntput)
1252                 nd->flags |= LOOKUP_JUMPED;
1253         if (unlikely(ret < 0))
1254                 path_put_conditional(path, nd);
1255         return ret;
1256 }
1257
1258 int follow_down_one(struct path *path)
1259 {
1260         struct vfsmount *mounted;
1261
1262         mounted = lookup_mnt(path);
1263         if (mounted) {
1264                 dput(path->dentry);
1265                 mntput(path->mnt);
1266                 path->mnt = mounted;
1267                 path->dentry = dget(mounted->mnt_root);
1268                 return 1;
1269         }
1270         return 0;
1271 }
1272 EXPORT_SYMBOL(follow_down_one);
1273
1274 static inline int managed_dentry_rcu(const struct path *path)
1275 {
1276         return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1277                 path->dentry->d_op->d_manage(path, true) : 0;
1278 }
1279
1280 /*
1281  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1282  * we meet a managed dentry that would need blocking.
1283  */
1284 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1285                                struct inode **inode, unsigned *seqp)
1286 {
1287         for (;;) {
1288                 struct mount *mounted;
1289                 /*
1290                  * Don't forget we might have a non-mountpoint managed dentry
1291                  * that wants to block transit.
1292                  */
1293                 switch (managed_dentry_rcu(path)) {
1294                 case -ECHILD:
1295                 default:
1296                         return false;
1297                 case -EISDIR:
1298                         return true;
1299                 case 0:
1300                         break;
1301                 }
1302
1303                 if (!d_mountpoint(path->dentry))
1304                         return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1305
1306                 mounted = __lookup_mnt(path->mnt, path->dentry);
1307                 if (!mounted)
1308                         break;
1309                 path->mnt = &mounted->mnt;
1310                 path->dentry = mounted->mnt.mnt_root;
1311                 nd->flags |= LOOKUP_JUMPED;
1312                 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1313                 /*
1314                  * Update the inode too. We don't need to re-check the
1315                  * dentry sequence number here after this d_inode read,
1316                  * because a mount-point is always pinned.
1317                  */
1318                 *inode = path->dentry->d_inode;
1319         }
1320         return !read_seqretry(&mount_lock, nd->m_seq) &&
1321                 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1322 }
1323
1324 static int follow_dotdot_rcu(struct nameidata *nd)
1325 {
1326         struct inode *inode = nd->inode;
1327
1328         while (1) {
1329                 if (path_equal(&nd->path, &nd->root))
1330                         break;
1331                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1332                         struct dentry *old = nd->path.dentry;
1333                         struct dentry *parent = old->d_parent;
1334                         unsigned seq;
1335
1336                         inode = parent->d_inode;
1337                         seq = read_seqcount_begin(&parent->d_seq);
1338                         if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1339                                 return -ECHILD;
1340                         nd->path.dentry = parent;
1341                         nd->seq = seq;
1342                         if (unlikely(!path_connected(&nd->path)))
1343                                 return -ENOENT;
1344                         break;
1345                 } else {
1346                         struct mount *mnt = real_mount(nd->path.mnt);
1347                         struct mount *mparent = mnt->mnt_parent;
1348                         struct dentry *mountpoint = mnt->mnt_mountpoint;
1349                         struct inode *inode2 = mountpoint->d_inode;
1350                         unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1351                         if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1352                                 return -ECHILD;
1353                         if (&mparent->mnt == nd->path.mnt)
1354                                 break;
1355                         /* we know that mountpoint was pinned */
1356                         nd->path.dentry = mountpoint;
1357                         nd->path.mnt = &mparent->mnt;
1358                         inode = inode2;
1359                         nd->seq = seq;
1360                 }
1361         }
1362         while (unlikely(d_mountpoint(nd->path.dentry))) {
1363                 struct mount *mounted;
1364                 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1365                 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1366                         return -ECHILD;
1367                 if (!mounted)
1368                         break;
1369                 nd->path.mnt = &mounted->mnt;
1370                 nd->path.dentry = mounted->mnt.mnt_root;
1371                 inode = nd->path.dentry->d_inode;
1372                 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1373         }
1374         nd->inode = inode;
1375         return 0;
1376 }
1377
1378 /*
1379  * Follow down to the covering mount currently visible to userspace.  At each
1380  * point, the filesystem owning that dentry may be queried as to whether the
1381  * caller is permitted to proceed or not.
1382  */
1383 int follow_down(struct path *path)
1384 {
1385         unsigned managed;
1386         int ret;
1387
1388         while (managed = ACCESS_ONCE(path->dentry->d_flags),
1389                unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1390                 /* Allow the filesystem to manage the transit without i_mutex
1391                  * being held.
1392                  *
1393                  * We indicate to the filesystem if someone is trying to mount
1394                  * something here.  This gives autofs the chance to deny anyone
1395                  * other than its daemon the right to mount on its
1396                  * superstructure.
1397                  *
1398                  * The filesystem may sleep at this point.
1399                  */
1400                 if (managed & DCACHE_MANAGE_TRANSIT) {
1401                         BUG_ON(!path->dentry->d_op);
1402                         BUG_ON(!path->dentry->d_op->d_manage);
1403                         ret = path->dentry->d_op->d_manage(path, false);
1404                         if (ret < 0)
1405                                 return ret == -EISDIR ? 0 : ret;
1406                 }
1407
1408                 /* Transit to a mounted filesystem. */
1409                 if (managed & DCACHE_MOUNTED) {
1410                         struct vfsmount *mounted = lookup_mnt(path);
1411                         if (!mounted)
1412                                 break;
1413                         dput(path->dentry);
1414                         mntput(path->mnt);
1415                         path->mnt = mounted;
1416                         path->dentry = dget(mounted->mnt_root);
1417                         continue;
1418                 }
1419
1420                 /* Don't handle automount points here */
1421                 break;
1422         }
1423         return 0;
1424 }
1425 EXPORT_SYMBOL(follow_down);
1426
1427 /*
1428  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1429  */
1430 static void follow_mount(struct path *path)
1431 {
1432         while (d_mountpoint(path->dentry)) {
1433                 struct vfsmount *mounted = lookup_mnt(path);
1434                 if (!mounted)
1435                         break;
1436                 dput(path->dentry);
1437                 mntput(path->mnt);
1438                 path->mnt = mounted;
1439                 path->dentry = dget(mounted->mnt_root);
1440         }
1441 }
1442
1443 static int path_parent_directory(struct path *path)
1444 {
1445         struct dentry *old = path->dentry;
1446         /* rare case of legitimate dget_parent()... */
1447         path->dentry = dget_parent(path->dentry);
1448         dput(old);
1449         if (unlikely(!path_connected(path)))
1450                 return -ENOENT;
1451         return 0;
1452 }
1453
1454 static int follow_dotdot(struct nameidata *nd)
1455 {
1456         while(1) {
1457                 if (nd->path.dentry == nd->root.dentry &&
1458                     nd->path.mnt == nd->root.mnt) {
1459                         break;
1460                 }
1461                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1462                         int ret = path_parent_directory(&nd->path);
1463                         if (ret)
1464                                 return ret;
1465                         break;
1466                 }
1467                 if (!follow_up(&nd->path))
1468                         break;
1469         }
1470         follow_mount(&nd->path);
1471         nd->inode = nd->path.dentry->d_inode;
1472         return 0;
1473 }
1474
1475 /*
1476  * This looks up the name in dcache and possibly revalidates the found dentry.
1477  * NULL is returned if the dentry does not exist in the cache.
1478  */
1479 static struct dentry *lookup_dcache(const struct qstr *name,
1480                                     struct dentry *dir,
1481                                     unsigned int flags)
1482 {
1483         struct dentry *dentry = d_lookup(dir, name);
1484         if (dentry) {
1485                 int error = d_revalidate(dentry, flags);
1486                 if (unlikely(error <= 0)) {
1487                         if (!error)
1488                                 d_invalidate(dentry);
1489                         dput(dentry);
1490                         return ERR_PTR(error);
1491                 }
1492         }
1493         return dentry;
1494 }
1495
1496 /*
1497  * Call i_op->lookup on the dentry.  The dentry must be negative and
1498  * unhashed.
1499  *
1500  * dir->d_inode->i_mutex must be held
1501  */
1502 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1503                                   unsigned int flags)
1504 {
1505         struct dentry *old;
1506
1507         /* Don't create child dentry for a dead directory. */
1508         if (unlikely(IS_DEADDIR(dir))) {
1509                 dput(dentry);
1510                 return ERR_PTR(-ENOENT);
1511         }
1512
1513         old = dir->i_op->lookup(dir, dentry, flags);
1514         if (unlikely(old)) {
1515                 dput(dentry);
1516                 dentry = old;
1517         }
1518         return dentry;
1519 }
1520
1521 static struct dentry *__lookup_hash(const struct qstr *name,
1522                 struct dentry *base, unsigned int flags)
1523 {
1524         struct dentry *dentry = lookup_dcache(name, base, flags);
1525
1526         if (dentry)
1527                 return dentry;
1528
1529         dentry = d_alloc(base, name);
1530         if (unlikely(!dentry))
1531                 return ERR_PTR(-ENOMEM);
1532
1533         return lookup_real(base->d_inode, dentry, flags);
1534 }
1535
1536 static int lookup_fast(struct nameidata *nd,
1537                        struct path *path, struct inode **inode,
1538                        unsigned *seqp)
1539 {
1540         struct vfsmount *mnt = nd->path.mnt;
1541         struct dentry *dentry, *parent = nd->path.dentry;
1542         int status = 1;
1543         int err;
1544
1545         /*
1546          * Rename seqlock is not required here because in the off chance
1547          * of a false negative due to a concurrent rename, the caller is
1548          * going to fall back to non-racy lookup.
1549          */
1550         if (nd->flags & LOOKUP_RCU) {
1551                 unsigned seq;
1552                 bool negative;
1553                 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1554                 if (unlikely(!dentry)) {
1555                         if (unlazy_walk(nd))
1556                                 return -ECHILD;
1557                         return 0;
1558                 }
1559
1560                 /*
1561                  * This sequence count validates that the inode matches
1562                  * the dentry name information from lookup.
1563                  */
1564                 *inode = d_backing_inode(dentry);
1565                 negative = d_is_negative(dentry);
1566                 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1567                         return -ECHILD;
1568
1569                 /*
1570                  * This sequence count validates that the parent had no
1571                  * changes while we did the lookup of the dentry above.
1572                  *
1573                  * The memory barrier in read_seqcount_begin of child is
1574                  *  enough, we can use __read_seqcount_retry here.
1575                  */
1576                 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1577                         return -ECHILD;
1578
1579                 *seqp = seq;
1580                 status = d_revalidate(dentry, nd->flags);
1581                 if (likely(status > 0)) {
1582                         /*
1583                          * Note: do negative dentry check after revalidation in
1584                          * case that drops it.
1585                          */
1586                         if (unlikely(negative))
1587                                 return -ENOENT;
1588                         path->mnt = mnt;
1589                         path->dentry = dentry;
1590                         if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1591                                 return 1;
1592                 }
1593                 if (unlazy_child(nd, dentry, seq))
1594                         return -ECHILD;
1595                 if (unlikely(status == -ECHILD))
1596                         /* we'd been told to redo it in non-rcu mode */
1597                         status = d_revalidate(dentry, nd->flags);
1598         } else {
1599                 dentry = __d_lookup(parent, &nd->last);
1600                 if (unlikely(!dentry))
1601                         return 0;
1602                 status = d_revalidate(dentry, nd->flags);
1603         }
1604         if (unlikely(status <= 0)) {
1605                 if (!status)
1606                         d_invalidate(dentry);
1607                 dput(dentry);
1608                 return status;
1609         }
1610         if (unlikely(d_is_negative(dentry))) {
1611                 dput(dentry);
1612                 return -ENOENT;
1613         }
1614
1615         path->mnt = mnt;
1616         path->dentry = dentry;
1617         err = follow_managed(path, nd);
1618         if (likely(err > 0))
1619                 *inode = d_backing_inode(path->dentry);
1620         return err;
1621 }
1622
1623 /* Fast lookup failed, do it the slow way */
1624 static struct dentry *lookup_slow(const struct qstr *name,
1625                                   struct dentry *dir,
1626                                   unsigned int flags)
1627 {
1628         struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1629         struct inode *inode = dir->d_inode;
1630         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1631
1632         inode_lock_shared(inode);
1633         /* Don't go there if it's already dead */
1634         if (unlikely(IS_DEADDIR(inode)))
1635                 goto out;
1636 again:
1637         dentry = d_alloc_parallel(dir, name, &wq);
1638         if (IS_ERR(dentry))
1639                 goto out;
1640         if (unlikely(!d_in_lookup(dentry))) {
1641                 if (!(flags & LOOKUP_NO_REVAL)) {
1642                         int error = d_revalidate(dentry, flags);
1643                         if (unlikely(error <= 0)) {
1644                                 if (!error) {
1645                                         d_invalidate(dentry);
1646                                         dput(dentry);
1647                                         goto again;
1648                                 }
1649                                 dput(dentry);
1650                                 dentry = ERR_PTR(error);
1651                         }
1652                 }
1653         } else {
1654                 old = inode->i_op->lookup(inode, dentry, flags);
1655                 d_lookup_done(dentry);
1656                 if (unlikely(old)) {
1657                         dput(dentry);
1658                         dentry = old;
1659                 }
1660         }
1661 out:
1662         inode_unlock_shared(inode);
1663         return dentry;
1664 }
1665
1666 static inline int may_lookup(struct nameidata *nd)
1667 {
1668         if (nd->flags & LOOKUP_RCU) {
1669                 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1670                 if (err != -ECHILD)
1671                         return err;
1672                 if (unlazy_walk(nd))
1673                         return -ECHILD;
1674         }
1675         return inode_permission(nd->inode, MAY_EXEC);
1676 }
1677
1678 static inline int handle_dots(struct nameidata *nd, int type)
1679 {
1680         if (type == LAST_DOTDOT) {
1681                 if (!nd->root.mnt)
1682                         set_root(nd);
1683                 if (nd->flags & LOOKUP_RCU) {
1684                         return follow_dotdot_rcu(nd);
1685                 } else
1686                         return follow_dotdot(nd);
1687         }
1688         return 0;
1689 }
1690
1691 static int pick_link(struct nameidata *nd, struct path *link,
1692                      struct inode *inode, unsigned seq)
1693 {
1694         int error;
1695         struct saved *last;
1696         if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1697                 path_to_nameidata(link, nd);
1698                 return -ELOOP;
1699         }
1700         if (!(nd->flags & LOOKUP_RCU)) {
1701                 if (link->mnt == nd->path.mnt)
1702                         mntget(link->mnt);
1703         }
1704         error = nd_alloc_stack(nd);
1705         if (unlikely(error)) {
1706                 if (error == -ECHILD) {
1707                         if (unlikely(!legitimize_path(nd, link, seq))) {
1708                                 drop_links(nd);
1709                                 nd->depth = 0;
1710                                 nd->flags &= ~LOOKUP_RCU;
1711                                 nd->path.mnt = NULL;
1712                                 nd->path.dentry = NULL;
1713                                 if (!(nd->flags & LOOKUP_ROOT))
1714                                         nd->root.mnt = NULL;
1715                                 rcu_read_unlock();
1716                         } else if (likely(unlazy_walk(nd)) == 0)
1717                                 error = nd_alloc_stack(nd);
1718                 }
1719                 if (error) {
1720                         path_put(link);
1721                         return error;
1722                 }
1723         }
1724
1725         last = nd->stack + nd->depth++;
1726         last->link = *link;
1727         clear_delayed_call(&last->done);
1728         nd->link_inode = inode;
1729         last->seq = seq;
1730         return 1;
1731 }
1732
1733 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1734
1735 /*
1736  * Do we need to follow links? We _really_ want to be able
1737  * to do this check without having to look at inode->i_op,
1738  * so we keep a cache of "no, this doesn't need follow_link"
1739  * for the common case.
1740  */
1741 static inline int step_into(struct nameidata *nd, struct path *path,
1742                             int flags, struct inode *inode, unsigned seq)
1743 {
1744         if (!(flags & WALK_MORE) && nd->depth)
1745                 put_link(nd);
1746         if (likely(!d_is_symlink(path->dentry)) ||
1747            !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1748                 /* not a symlink or should not follow */
1749                 path_to_nameidata(path, nd);
1750                 nd->inode = inode;
1751                 nd->seq = seq;
1752                 return 0;
1753         }
1754         /* make sure that d_is_symlink above matches inode */
1755         if (nd->flags & LOOKUP_RCU) {
1756                 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1757                         return -ECHILD;
1758         }
1759         return pick_link(nd, path, inode, seq);
1760 }
1761
1762 static int walk_component(struct nameidata *nd, int flags)
1763 {
1764         struct path path;
1765         struct inode *inode;
1766         unsigned seq;
1767         int err;
1768         /*
1769          * "." and ".." are special - ".." especially so because it has
1770          * to be able to know about the current root directory and
1771          * parent relationships.
1772          */
1773         if (unlikely(nd->last_type != LAST_NORM)) {
1774                 err = handle_dots(nd, nd->last_type);
1775                 if (!(flags & WALK_MORE) && nd->depth)
1776                         put_link(nd);
1777                 return err;
1778         }
1779         err = lookup_fast(nd, &path, &inode, &seq);
1780         if (unlikely(err <= 0)) {
1781                 if (err < 0)
1782                         return err;
1783                 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1784                                           nd->flags);
1785                 if (IS_ERR(path.dentry))
1786                         return PTR_ERR(path.dentry);
1787
1788                 path.mnt = nd->path.mnt;
1789                 err = follow_managed(&path, nd);
1790                 if (unlikely(err < 0))
1791                         return err;
1792
1793                 if (unlikely(d_is_negative(path.dentry))) {
1794                         path_to_nameidata(&path, nd);
1795                         return -ENOENT;
1796                 }
1797
1798                 seq = 0;        /* we are already out of RCU mode */
1799                 inode = d_backing_inode(path.dentry);
1800         }
1801
1802         return step_into(nd, &path, flags, inode, seq);
1803 }
1804
1805 /*
1806  * We can do the critical dentry name comparison and hashing
1807  * operations one word at a time, but we are limited to:
1808  *
1809  * - Architectures with fast unaligned word accesses. We could
1810  *   do a "get_unaligned()" if this helps and is sufficiently
1811  *   fast.
1812  *
1813  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1814  *   do not trap on the (extremely unlikely) case of a page
1815  *   crossing operation.
1816  *
1817  * - Furthermore, we need an efficient 64-bit compile for the
1818  *   64-bit case in order to generate the "number of bytes in
1819  *   the final mask". Again, that could be replaced with a
1820  *   efficient population count instruction or similar.
1821  */
1822 #ifdef CONFIG_DCACHE_WORD_ACCESS
1823
1824 #include <asm/word-at-a-time.h>
1825
1826 #ifdef HASH_MIX
1827
1828 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1829
1830 #elif defined(CONFIG_64BIT)
1831 /*
1832  * Register pressure in the mixing function is an issue, particularly
1833  * on 32-bit x86, but almost any function requires one state value and
1834  * one temporary.  Instead, use a function designed for two state values
1835  * and no temporaries.
1836  *
1837  * This function cannot create a collision in only two iterations, so
1838  * we have two iterations to achieve avalanche.  In those two iterations,
1839  * we have six layers of mixing, which is enough to spread one bit's
1840  * influence out to 2^6 = 64 state bits.
1841  *
1842  * Rotate constants are scored by considering either 64 one-bit input
1843  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1844  * probability of that delta causing a change to each of the 128 output
1845  * bits, using a sample of random initial states.
1846  *
1847  * The Shannon entropy of the computed probabilities is then summed
1848  * to produce a score.  Ideally, any input change has a 50% chance of
1849  * toggling any given output bit.
1850  *
1851  * Mixing scores (in bits) for (12,45):
1852  * Input delta: 1-bit      2-bit
1853  * 1 round:     713.3    42542.6
1854  * 2 rounds:   2753.7   140389.8
1855  * 3 rounds:   5954.1   233458.2
1856  * 4 rounds:   7862.6   256672.2
1857  * Perfect:    8192     258048
1858  *            (64*128) (64*63/2 * 128)
1859  */
1860 #define HASH_MIX(x, y, a)       \
1861         (       x ^= (a),       \
1862         y ^= x, x = rol64(x,12),\
1863         x += y, y = rol64(y,45),\
1864         y *= 9                  )
1865
1866 /*
1867  * Fold two longs into one 32-bit hash value.  This must be fast, but
1868  * latency isn't quite as critical, as there is a fair bit of additional
1869  * work done before the hash value is used.
1870  */
1871 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1872 {
1873         y ^= x * GOLDEN_RATIO_64;
1874         y *= GOLDEN_RATIO_64;
1875         return y >> 32;
1876 }
1877
1878 #else   /* 32-bit case */
1879
1880 /*
1881  * Mixing scores (in bits) for (7,20):
1882  * Input delta: 1-bit      2-bit
1883  * 1 round:     330.3     9201.6
1884  * 2 rounds:   1246.4    25475.4
1885  * 3 rounds:   1907.1    31295.1
1886  * 4 rounds:   2042.3    31718.6
1887  * Perfect:    2048      31744
1888  *            (32*64)   (32*31/2 * 64)
1889  */
1890 #define HASH_MIX(x, y, a)       \
1891         (       x ^= (a),       \
1892         y ^= x, x = rol32(x, 7),\
1893         x += y, y = rol32(y,20),\
1894         y *= 9                  )
1895
1896 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1897 {
1898         /* Use arch-optimized multiply if one exists */
1899         return __hash_32(y ^ __hash_32(x));
1900 }
1901
1902 #endif
1903
1904 /*
1905  * Return the hash of a string of known length.  This is carfully
1906  * designed to match hash_name(), which is the more critical function.
1907  * In particular, we must end by hashing a final word containing 0..7
1908  * payload bytes, to match the way that hash_name() iterates until it
1909  * finds the delimiter after the name.
1910  */
1911 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1912 {
1913         unsigned long a, x = 0, y = (unsigned long)salt;
1914
1915         for (;;) {
1916                 if (!len)
1917                         goto done;
1918                 a = load_unaligned_zeropad(name);
1919                 if (len < sizeof(unsigned long))
1920                         break;
1921                 HASH_MIX(x, y, a);
1922                 name += sizeof(unsigned long);
1923                 len -= sizeof(unsigned long);
1924         }
1925         x ^= a & bytemask_from_count(len);
1926 done:
1927         return fold_hash(x, y);
1928 }
1929 EXPORT_SYMBOL(full_name_hash);
1930
1931 /* Return the "hash_len" (hash and length) of a null-terminated string */
1932 u64 hashlen_string(const void *salt, const char *name)
1933 {
1934         unsigned long a = 0, x = 0, y = (unsigned long)salt;
1935         unsigned long adata, mask, len;
1936         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1937
1938         len = 0;
1939         goto inside;
1940
1941         do {
1942                 HASH_MIX(x, y, a);
1943                 len += sizeof(unsigned long);
1944 inside:
1945                 a = load_unaligned_zeropad(name+len);
1946         } while (!has_zero(a, &adata, &constants));
1947
1948         adata = prep_zero_mask(a, adata, &constants);
1949         mask = create_zero_mask(adata);
1950         x ^= a & zero_bytemask(mask);
1951
1952         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1953 }
1954 EXPORT_SYMBOL(hashlen_string);
1955
1956 /*
1957  * Calculate the length and hash of the path component, and
1958  * return the "hash_len" as the result.
1959  */
1960 static inline u64 hash_name(const void *salt, const char *name)
1961 {
1962         unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1963         unsigned long adata, bdata, mask, len;
1964         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1965
1966         len = 0;
1967         goto inside;
1968
1969         do {
1970                 HASH_MIX(x, y, a);
1971                 len += sizeof(unsigned long);
1972 inside:
1973                 a = load_unaligned_zeropad(name+len);
1974                 b = a ^ REPEAT_BYTE('/');
1975         } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1976
1977         adata = prep_zero_mask(a, adata, &constants);
1978         bdata = prep_zero_mask(b, bdata, &constants);
1979         mask = create_zero_mask(adata | bdata);
1980         x ^= a & zero_bytemask(mask);
1981
1982         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1983 }
1984
1985 #else   /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1986
1987 /* Return the hash of a string of known length */
1988 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1989 {
1990         unsigned long hash = init_name_hash(salt);
1991         while (len--)
1992                 hash = partial_name_hash((unsigned char)*name++, hash);
1993         return end_name_hash(hash);
1994 }
1995 EXPORT_SYMBOL(full_name_hash);
1996
1997 /* Return the "hash_len" (hash and length) of a null-terminated string */
1998 u64 hashlen_string(const void *salt, const char *name)
1999 {
2000         unsigned long hash = init_name_hash(salt);
2001         unsigned long len = 0, c;
2002
2003         c = (unsigned char)*name;
2004         while (c) {
2005                 len++;
2006                 hash = partial_name_hash(c, hash);
2007                 c = (unsigned char)name[len];
2008         }
2009         return hashlen_create(end_name_hash(hash), len);
2010 }
2011 EXPORT_SYMBOL(hashlen_string);
2012
2013 /*
2014  * We know there's a real path component here of at least
2015  * one character.
2016  */
2017 static inline u64 hash_name(const void *salt, const char *name)
2018 {
2019         unsigned long hash = init_name_hash(salt);
2020         unsigned long len = 0, c;
2021
2022         c = (unsigned char)*name;
2023         do {
2024                 len++;
2025                 hash = partial_name_hash(c, hash);
2026                 c = (unsigned char)name[len];
2027         } while (c && c != '/');
2028         return hashlen_create(end_name_hash(hash), len);
2029 }
2030
2031 #endif
2032
2033 /*
2034  * Name resolution.
2035  * This is the basic name resolution function, turning a pathname into
2036  * the final dentry. We expect 'base' to be positive and a directory.
2037  *
2038  * Returns 0 and nd will have valid dentry and mnt on success.
2039  * Returns error and drops reference to input namei data on failure.
2040  */
2041 static int link_path_walk(const char *name, struct nameidata *nd)
2042 {
2043         int err;
2044
2045         while (*name=='/')
2046                 name++;
2047         if (!*name)
2048                 return 0;
2049
2050         /* At this point we know we have a real path component. */
2051         for(;;) {
2052                 u64 hash_len;
2053                 int type;
2054
2055                 err = may_lookup(nd);
2056                 if (err)
2057                         return err;
2058
2059                 hash_len = hash_name(nd->path.dentry, name);
2060
2061                 type = LAST_NORM;
2062                 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2063                         case 2:
2064                                 if (name[1] == '.') {
2065                                         type = LAST_DOTDOT;
2066                                         nd->flags |= LOOKUP_JUMPED;
2067                                 }
2068                                 break;
2069                         case 1:
2070                                 type = LAST_DOT;
2071                 }
2072                 if (likely(type == LAST_NORM)) {
2073                         struct dentry *parent = nd->path.dentry;
2074                         nd->flags &= ~LOOKUP_JUMPED;
2075                         if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2076                                 struct qstr this = { { .hash_len = hash_len }, .name = name };
2077                                 err = parent->d_op->d_hash(parent, &this);
2078                                 if (err < 0)
2079                                         return err;
2080                                 hash_len = this.hash_len;
2081                                 name = this.name;
2082                         }
2083                 }
2084
2085                 nd->last.hash_len = hash_len;
2086                 nd->last.name = name;
2087                 nd->last_type = type;
2088
2089                 name += hashlen_len(hash_len);
2090                 if (!*name)
2091                         goto OK;
2092                 /*
2093                  * If it wasn't NUL, we know it was '/'. Skip that
2094                  * slash, and continue until no more slashes.
2095                  */
2096                 do {
2097                         name++;
2098                 } while (unlikely(*name == '/'));
2099                 if (unlikely(!*name)) {
2100 OK:
2101                         /* pathname body, done */
2102                         if (!nd->depth)
2103                                 return 0;
2104                         name = nd->stack[nd->depth - 1].name;
2105                         /* trailing symlink, done */
2106                         if (!name)
2107                                 return 0;
2108                         /* last component of nested symlink */
2109                         err = walk_component(nd, WALK_FOLLOW);
2110                 } else {
2111                         /* not the last component */
2112                         err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2113                 }
2114                 if (err < 0)
2115                         return err;
2116
2117                 if (err) {
2118                         const char *s = get_link(nd);
2119
2120                         if (IS_ERR(s))
2121                                 return PTR_ERR(s);
2122                         err = 0;
2123                         if (unlikely(!s)) {
2124                                 /* jumped */
2125                                 put_link(nd);
2126                         } else {
2127                                 nd->stack[nd->depth - 1].name = name;
2128                                 name = s;
2129                                 continue;
2130                         }
2131                 }
2132                 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2133                         if (nd->flags & LOOKUP_RCU) {
2134                                 if (unlazy_walk(nd))
2135                                         return -ECHILD;
2136                         }
2137                         return -ENOTDIR;
2138                 }
2139         }
2140 }
2141
2142 static const char *path_init(struct nameidata *nd, unsigned flags)
2143 {
2144         const char *s = nd->name->name;
2145
2146         if (!*s)
2147                 flags &= ~LOOKUP_RCU;
2148
2149         nd->last_type = LAST_ROOT; /* if there are only slashes... */
2150         nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2151         nd->depth = 0;
2152         if (flags & LOOKUP_ROOT) {
2153                 struct dentry *root = nd->root.dentry;
2154                 struct inode *inode = root->d_inode;
2155                 if (*s && unlikely(!d_can_lookup(root)))
2156                         return ERR_PTR(-ENOTDIR);
2157                 nd->path = nd->root;
2158                 nd->inode = inode;
2159                 if (flags & LOOKUP_RCU) {
2160                         rcu_read_lock();
2161                         nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2162                         nd->root_seq = nd->seq;
2163                         nd->m_seq = read_seqbegin(&mount_lock);
2164                 } else {
2165                         path_get(&nd->path);
2166                 }
2167                 return s;
2168         }
2169
2170         nd->root.mnt = NULL;
2171         nd->path.mnt = NULL;
2172         nd->path.dentry = NULL;
2173
2174         nd->m_seq = read_seqbegin(&mount_lock);
2175         if (*s == '/') {
2176                 if (flags & LOOKUP_RCU)
2177                         rcu_read_lock();
2178                 set_root(nd);
2179                 if (likely(!nd_jump_root(nd)))
2180                         return s;
2181                 nd->root.mnt = NULL;
2182                 rcu_read_unlock();
2183                 return ERR_PTR(-ECHILD);
2184         } else if (nd->dfd == AT_FDCWD) {
2185                 if (flags & LOOKUP_RCU) {
2186                         struct fs_struct *fs = current->fs;
2187                         unsigned seq;
2188
2189                         rcu_read_lock();
2190
2191                         do {
2192                                 seq = read_seqcount_begin(&fs->seq);
2193                                 nd->path = fs->pwd;
2194                                 nd->inode = nd->path.dentry->d_inode;
2195                                 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2196                         } while (read_seqcount_retry(&fs->seq, seq));
2197                 } else {
2198                         get_fs_pwd(current->fs, &nd->path);
2199                         nd->inode = nd->path.dentry->d_inode;
2200                 }
2201                 return s;
2202         } else {
2203                 /* Caller must check execute permissions on the starting path component */
2204                 struct fd f = fdget_raw(nd->dfd);
2205                 struct dentry *dentry;
2206
2207                 if (!f.file)
2208                         return ERR_PTR(-EBADF);
2209
2210                 dentry = f.file->f_path.dentry;
2211
2212                 if (*s) {
2213                         if (!d_can_lookup(dentry)) {
2214                                 fdput(f);
2215                                 return ERR_PTR(-ENOTDIR);
2216                         }
2217                 }
2218
2219                 nd->path = f.file->f_path;
2220                 if (flags & LOOKUP_RCU) {
2221                         rcu_read_lock();
2222                         nd->inode = nd->path.dentry->d_inode;
2223                         nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2224                 } else {
2225                         path_get(&nd->path);
2226                         nd->inode = nd->path.dentry->d_inode;
2227                 }
2228                 fdput(f);
2229                 return s;
2230         }
2231 }
2232
2233 static const char *trailing_symlink(struct nameidata *nd)
2234 {
2235         const char *s;
2236         int error = may_follow_link(nd);
2237         if (unlikely(error))
2238                 return ERR_PTR(error);
2239         nd->flags |= LOOKUP_PARENT;
2240         nd->stack[0].name = NULL;
2241         s = get_link(nd);
2242         return s ? s : "";
2243 }
2244
2245 static inline int lookup_last(struct nameidata *nd)
2246 {
2247         if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2248                 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2249
2250         nd->flags &= ~LOOKUP_PARENT;
2251         return walk_component(nd, 0);
2252 }
2253
2254 static int handle_lookup_down(struct nameidata *nd)
2255 {
2256         struct path path = nd->path;
2257         struct inode *inode = nd->inode;
2258         unsigned seq = nd->seq;
2259         int err;
2260
2261         if (nd->flags & LOOKUP_RCU) {
2262                 /*
2263                  * don't bother with unlazy_walk on failure - we are
2264                  * at the very beginning of walk, so we lose nothing
2265                  * if we simply redo everything in non-RCU mode
2266                  */
2267                 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2268                         return -ECHILD;
2269         } else {
2270                 dget(path.dentry);
2271                 err = follow_managed(&path, nd);
2272                 if (unlikely(err < 0))
2273                         return err;
2274                 inode = d_backing_inode(path.dentry);
2275                 seq = 0;
2276         }
2277         path_to_nameidata(&path, nd);
2278         nd->inode = inode;
2279         nd->seq = seq;
2280         return 0;
2281 }
2282
2283 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2284 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2285 {
2286         const char *s = path_init(nd, flags);
2287         int err;
2288
2289         if (IS_ERR(s))
2290                 return PTR_ERR(s);
2291
2292         if (unlikely(flags & LOOKUP_DOWN)) {
2293                 err = handle_lookup_down(nd);
2294                 if (unlikely(err < 0)) {
2295                         terminate_walk(nd);
2296                         return err;
2297                 }
2298         }
2299
2300         while (!(err = link_path_walk(s, nd))
2301                 && ((err = lookup_last(nd)) > 0)) {
2302                 s = trailing_symlink(nd);
2303                 if (IS_ERR(s)) {
2304                         err = PTR_ERR(s);
2305                         break;
2306                 }
2307         }
2308         if (!err)
2309                 err = complete_walk(nd);
2310
2311         if (!err && nd->flags & LOOKUP_DIRECTORY)
2312                 if (!d_can_lookup(nd->path.dentry))
2313                         err = -ENOTDIR;
2314         if (!err) {
2315                 *path = nd->path;
2316                 nd->path.mnt = NULL;
2317                 nd->path.dentry = NULL;
2318         }
2319         terminate_walk(nd);
2320         return err;
2321 }
2322
2323 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2324                            struct path *path, struct path *root)
2325 {
2326         int retval;
2327         struct nameidata nd;
2328         if (IS_ERR(name))
2329                 return PTR_ERR(name);
2330         if (unlikely(root)) {
2331                 nd.root = *root;
2332                 flags |= LOOKUP_ROOT;
2333         }
2334         set_nameidata(&nd, dfd, name);
2335         retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2336         if (unlikely(retval == -ECHILD))
2337                 retval = path_lookupat(&nd, flags, path);
2338         if (unlikely(retval == -ESTALE))
2339                 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2340
2341         if (likely(!retval))
2342                 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2343         restore_nameidata();
2344         putname(name);
2345         return retval;
2346 }
2347
2348 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2349 static int path_parentat(struct nameidata *nd, unsigned flags,
2350                                 struct path *parent)
2351 {
2352         const char *s = path_init(nd, flags);
2353         int err;
2354         if (IS_ERR(s))
2355                 return PTR_ERR(s);
2356         err = link_path_walk(s, nd);
2357         if (!err)
2358                 err = complete_walk(nd);
2359         if (!err) {
2360                 *parent = nd->path;
2361                 nd->path.mnt = NULL;
2362                 nd->path.dentry = NULL;
2363         }
2364         terminate_walk(nd);
2365         return err;
2366 }
2367
2368 static struct filename *filename_parentat(int dfd, struct filename *name,
2369                                 unsigned int flags, struct path *parent,
2370                                 struct qstr *last, int *type)
2371 {
2372         int retval;
2373         struct nameidata nd;
2374
2375         if (IS_ERR(name))
2376                 return name;
2377         set_nameidata(&nd, dfd, name);
2378         retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2379         if (unlikely(retval == -ECHILD))
2380                 retval = path_parentat(&nd, flags, parent);
2381         if (unlikely(retval == -ESTALE))
2382                 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2383         if (likely(!retval)) {
2384                 *last = nd.last;
2385                 *type = nd.last_type;
2386                 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2387         } else {
2388                 putname(name);
2389                 name = ERR_PTR(retval);
2390         }
2391         restore_nameidata();
2392         return name;
2393 }
2394
2395 /* does lookup, returns the object with parent locked */
2396 struct dentry *kern_path_locked(const char *name, struct path *path)
2397 {
2398         struct filename *filename;
2399         struct dentry *d;
2400         struct qstr last;
2401         int type;
2402
2403         filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2404                                     &last, &type);
2405         if (IS_ERR(filename))
2406                 return ERR_CAST(filename);
2407         if (unlikely(type != LAST_NORM)) {
2408                 path_put(path);
2409                 putname(filename);
2410                 return ERR_PTR(-EINVAL);
2411         }
2412         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2413         d = __lookup_hash(&last, path->dentry, 0);
2414         if (IS_ERR(d)) {
2415                 inode_unlock(path->dentry->d_inode);
2416                 path_put(path);
2417         }
2418         putname(filename);
2419         return d;
2420 }
2421
2422 int kern_path(const char *name, unsigned int flags, struct path *path)
2423 {
2424         return filename_lookup(AT_FDCWD, getname_kernel(name),
2425                                flags, path, NULL);
2426 }
2427 EXPORT_SYMBOL(kern_path);
2428
2429 /**
2430  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2431  * @dentry:  pointer to dentry of the base directory
2432  * @mnt: pointer to vfs mount of the base directory
2433  * @name: pointer to file name
2434  * @flags: lookup flags
2435  * @path: pointer to struct path to fill
2436  */
2437 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2438                     const char *name, unsigned int flags,
2439                     struct path *path)
2440 {
2441         struct path root = {.mnt = mnt, .dentry = dentry};
2442         /* the first argument of filename_lookup() is ignored with root */
2443         return filename_lookup(AT_FDCWD, getname_kernel(name),
2444                                flags , path, &root);
2445 }
2446 EXPORT_SYMBOL(vfs_path_lookup);
2447
2448 /**
2449  * lookup_one_len - filesystem helper to lookup single pathname component
2450  * @name:       pathname component to lookup
2451  * @base:       base directory to lookup from
2452  * @len:        maximum length @len should be interpreted to
2453  *
2454  * Note that this routine is purely a helper for filesystem usage and should
2455  * not be called by generic code.
2456  *
2457  * The caller must hold base->i_mutex.
2458  */
2459 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2460 {
2461         struct qstr this;
2462         unsigned int c;
2463         int err;
2464
2465         WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2466
2467         this.name = name;
2468         this.len = len;
2469         this.hash = full_name_hash(base, name, len);
2470         if (!len)
2471                 return ERR_PTR(-EACCES);
2472
2473         if (unlikely(name[0] == '.')) {
2474                 if (len < 2 || (len == 2 && name[1] == '.'))
2475                         return ERR_PTR(-EACCES);
2476         }
2477
2478         while (len--) {
2479                 c = *(const unsigned char *)name++;
2480                 if (c == '/' || c == '\0')
2481                         return ERR_PTR(-EACCES);
2482         }
2483         /*
2484          * See if the low-level filesystem might want
2485          * to use its own hash..
2486          */
2487         if (base->d_flags & DCACHE_OP_HASH) {
2488                 int err = base->d_op->d_hash(base, &this);
2489                 if (err < 0)
2490                         return ERR_PTR(err);
2491         }
2492
2493         err = inode_permission(base->d_inode, MAY_EXEC);
2494         if (err)
2495                 return ERR_PTR(err);
2496
2497         return __lookup_hash(&this, base, 0);
2498 }
2499 EXPORT_SYMBOL(lookup_one_len);
2500
2501 /**
2502  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2503  * @name:       pathname component to lookup
2504  * @base:       base directory to lookup from
2505  * @len:        maximum length @len should be interpreted to
2506  *
2507  * Note that this routine is purely a helper for filesystem usage and should
2508  * not be called by generic code.
2509  *
2510  * Unlike lookup_one_len, it should be called without the parent
2511  * i_mutex held, and will take the i_mutex itself if necessary.
2512  */
2513 struct dentry *lookup_one_len_unlocked(const char *name,
2514                                        struct dentry *base, int len)
2515 {
2516         struct qstr this;
2517         unsigned int c;
2518         int err;
2519         struct dentry *ret;
2520
2521         this.name = name;
2522         this.len = len;
2523         this.hash = full_name_hash(base, name, len);
2524         if (!len)
2525                 return ERR_PTR(-EACCES);
2526
2527         if (unlikely(name[0] == '.')) {
2528                 if (len < 2 || (len == 2 && name[1] == '.'))
2529                         return ERR_PTR(-EACCES);
2530         }
2531
2532         while (len--) {
2533                 c = *(const unsigned char *)name++;
2534                 if (c == '/' || c == '\0')
2535                         return ERR_PTR(-EACCES);
2536         }
2537         /*
2538          * See if the low-level filesystem might want
2539          * to use its own hash..
2540          */
2541         if (base->d_flags & DCACHE_OP_HASH) {
2542                 int err = base->d_op->d_hash(base, &this);
2543                 if (err < 0)
2544                         return ERR_PTR(err);
2545         }
2546
2547         err = inode_permission(base->d_inode, MAY_EXEC);
2548         if (err)
2549                 return ERR_PTR(err);
2550
2551         ret = lookup_dcache(&this, base, 0);
2552         if (!ret)
2553                 ret = lookup_slow(&this, base, 0);
2554         return ret;
2555 }
2556 EXPORT_SYMBOL(lookup_one_len_unlocked);
2557
2558 #ifdef CONFIG_UNIX98_PTYS
2559 int path_pts(struct path *path)
2560 {
2561         /* Find something mounted on "pts" in the same directory as
2562          * the input path.
2563          */
2564         struct dentry *child, *parent;
2565         struct qstr this;
2566         int ret;
2567
2568         ret = path_parent_directory(path);
2569         if (ret)
2570                 return ret;
2571
2572         parent = path->dentry;
2573         this.name = "pts";
2574         this.len = 3;
2575         child = d_hash_and_lookup(parent, &this);
2576         if (!child)
2577                 return -ENOENT;
2578
2579         path->dentry = child;
2580         dput(parent);
2581         follow_mount(path);
2582         return 0;
2583 }
2584 #endif
2585
2586 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2587                  struct path *path, int *empty)
2588 {
2589         return filename_lookup(dfd, getname_flags(name, flags, empty),
2590                                flags, path, NULL);
2591 }
2592 EXPORT_SYMBOL(user_path_at_empty);
2593
2594 /**
2595  * mountpoint_last - look up last component for umount
2596  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2597  *
2598  * This is a special lookup_last function just for umount. In this case, we
2599  * need to resolve the path without doing any revalidation.
2600  *
2601  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2602  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2603  * in almost all cases, this lookup will be served out of the dcache. The only
2604  * cases where it won't are if nd->last refers to a symlink or the path is
2605  * bogus and it doesn't exist.
2606  *
2607  * Returns:
2608  * -error: if there was an error during lookup. This includes -ENOENT if the
2609  *         lookup found a negative dentry.
2610  *
2611  * 0:      if we successfully resolved nd->last and found it to not to be a
2612  *         symlink that needs to be followed.
2613  *
2614  * 1:      if we successfully resolved nd->last and found it to be a symlink
2615  *         that needs to be followed.
2616  */
2617 static int
2618 mountpoint_last(struct nameidata *nd)
2619 {
2620         int error = 0;
2621         struct dentry *dir = nd->path.dentry;
2622         struct path path;
2623
2624         /* If we're in rcuwalk, drop out of it to handle last component */
2625         if (nd->flags & LOOKUP_RCU) {
2626                 if (unlazy_walk(nd))
2627                         return -ECHILD;
2628         }
2629
2630         nd->flags &= ~LOOKUP_PARENT;
2631
2632         if (unlikely(nd->last_type != LAST_NORM)) {
2633                 error = handle_dots(nd, nd->last_type);
2634                 if (error)
2635                         return error;
2636                 path.dentry = dget(nd->path.dentry);
2637         } else {
2638                 path.dentry = d_lookup(dir, &nd->last);
2639                 if (!path.dentry) {
2640                         /*
2641                          * No cached dentry. Mounted dentries are pinned in the
2642                          * cache, so that means that this dentry is probably
2643                          * a symlink or the path doesn't actually point
2644                          * to a mounted dentry.
2645                          */
2646                         path.dentry = lookup_slow(&nd->last, dir,
2647                                              nd->flags | LOOKUP_NO_REVAL);
2648                         if (IS_ERR(path.dentry))
2649                                 return PTR_ERR(path.dentry);
2650                 }
2651         }
2652         if (d_is_negative(path.dentry)) {
2653                 dput(path.dentry);
2654                 return -ENOENT;
2655         }
2656         path.mnt = nd->path.mnt;
2657         return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2658 }
2659
2660 /**
2661  * path_mountpoint - look up a path to be umounted
2662  * @nd:         lookup context
2663  * @flags:      lookup flags
2664  * @path:       pointer to container for result
2665  *
2666  * Look up the given name, but don't attempt to revalidate the last component.
2667  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2668  */
2669 static int
2670 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2671 {
2672         const char *s = path_init(nd, flags);
2673         int err;
2674         if (IS_ERR(s))
2675                 return PTR_ERR(s);
2676         while (!(err = link_path_walk(s, nd)) &&
2677                 (err = mountpoint_last(nd)) > 0) {
2678                 s = trailing_symlink(nd);
2679                 if (IS_ERR(s)) {
2680                         err = PTR_ERR(s);
2681                         break;
2682                 }
2683         }
2684         if (!err) {
2685                 *path = nd->path;
2686                 nd->path.mnt = NULL;
2687                 nd->path.dentry = NULL;
2688                 follow_mount(path);
2689         }
2690         terminate_walk(nd);
2691         return err;
2692 }
2693
2694 static int
2695 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2696                         unsigned int flags)
2697 {
2698         struct nameidata nd;
2699         int error;
2700         if (IS_ERR(name))
2701                 return PTR_ERR(name);
2702         set_nameidata(&nd, dfd, name);
2703         error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2704         if (unlikely(error == -ECHILD))
2705                 error = path_mountpoint(&nd, flags, path);
2706         if (unlikely(error == -ESTALE))
2707                 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2708         if (likely(!error))
2709                 audit_inode(name, path->dentry, 0);
2710         restore_nameidata();
2711         putname(name);
2712         return error;
2713 }
2714
2715 /**
2716  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2717  * @dfd:        directory file descriptor
2718  * @name:       pathname from userland
2719  * @flags:      lookup flags
2720  * @path:       pointer to container to hold result
2721  *
2722  * A umount is a special case for path walking. We're not actually interested
2723  * in the inode in this situation, and ESTALE errors can be a problem. We
2724  * simply want track down the dentry and vfsmount attached at the mountpoint
2725  * and avoid revalidating the last component.
2726  *
2727  * Returns 0 and populates "path" on success.
2728  */
2729 int
2730 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2731                         struct path *path)
2732 {
2733         return filename_mountpoint(dfd, getname(name), path, flags);
2734 }
2735
2736 int
2737 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2738                         unsigned int flags)
2739 {
2740         return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2741 }
2742 EXPORT_SYMBOL(kern_path_mountpoint);
2743
2744 int __check_sticky(struct inode *dir, struct inode *inode)
2745 {
2746         kuid_t fsuid = current_fsuid();
2747
2748         if (uid_eq(inode->i_uid, fsuid))
2749                 return 0;
2750         if (uid_eq(dir->i_uid, fsuid))
2751                 return 0;
2752         return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2753 }
2754 EXPORT_SYMBOL(__check_sticky);
2755
2756 /*
2757  *      Check whether we can remove a link victim from directory dir, check
2758  *  whether the type of victim is right.
2759  *  1. We can't do it if dir is read-only (done in permission())
2760  *  2. We should have write and exec permissions on dir
2761  *  3. We can't remove anything from append-only dir
2762  *  4. We can't do anything with immutable dir (done in permission())
2763  *  5. If the sticky bit on dir is set we should either
2764  *      a. be owner of dir, or
2765  *      b. be owner of victim, or
2766  *      c. have CAP_FOWNER capability
2767  *  6. If the victim is append-only or immutable we can't do antyhing with
2768  *     links pointing to it.
2769  *  7. If the victim has an unknown uid or gid we can't change the inode.
2770  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2771  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2772  * 10. We can't remove a root or mountpoint.
2773  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2774  *     nfs_async_unlink().
2775  */
2776 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2777 {
2778         struct inode *inode = d_backing_inode(victim);
2779         int error;
2780
2781         if (d_is_negative(victim))
2782                 return -ENOENT;
2783         BUG_ON(!inode);
2784
2785         BUG_ON(victim->d_parent->d_inode != dir);
2786         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2787
2788         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2789         if (error)
2790                 return error;
2791         if (IS_APPEND(dir))
2792                 return -EPERM;
2793
2794         if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2795             IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2796                 return -EPERM;
2797         if (isdir) {
2798                 if (!d_is_dir(victim))
2799                         return -ENOTDIR;
2800                 if (IS_ROOT(victim))
2801                         return -EBUSY;
2802         } else if (d_is_dir(victim))
2803                 return -EISDIR;
2804         if (IS_DEADDIR(dir))
2805                 return -ENOENT;
2806         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2807                 return -EBUSY;
2808         return 0;
2809 }
2810
2811 /*      Check whether we can create an object with dentry child in directory
2812  *  dir.
2813  *  1. We can't do it if child already exists (open has special treatment for
2814  *     this case, but since we are inlined it's OK)
2815  *  2. We can't do it if dir is read-only (done in permission())
2816  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2817  *  4. We should have write and exec permissions on dir
2818  *  5. We can't do it if dir is immutable (done in permission())
2819  */
2820 static inline int may_create(struct inode *dir, struct dentry *child)
2821 {
2822         struct user_namespace *s_user_ns;
2823         audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2824         if (child->d_inode)
2825                 return -EEXIST;
2826         if (IS_DEADDIR(dir))
2827                 return -ENOENT;
2828         s_user_ns = dir->i_sb->s_user_ns;
2829         if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2830             !kgid_has_mapping(s_user_ns, current_fsgid()))
2831                 return -EOVERFLOW;
2832         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2833 }
2834
2835 /*
2836  * p1 and p2 should be directories on the same fs.
2837  */
2838 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2839 {
2840         struct dentry *p;
2841
2842         if (p1 == p2) {
2843                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2844                 return NULL;
2845         }
2846
2847         mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2848
2849         p = d_ancestor(p2, p1);
2850         if (p) {
2851                 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2852                 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2853                 return p;
2854         }
2855
2856         p = d_ancestor(p1, p2);
2857         if (p) {
2858                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2859                 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2860                 return p;
2861         }
2862
2863         inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2864         inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2865         return NULL;
2866 }
2867 EXPORT_SYMBOL(lock_rename);
2868
2869 void unlock_rename(struct dentry *p1, struct dentry *p2)
2870 {
2871         inode_unlock(p1->d_inode);
2872         if (p1 != p2) {
2873                 inode_unlock(p2->d_inode);
2874                 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2875         }
2876 }
2877 EXPORT_SYMBOL(unlock_rename);
2878
2879 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2880                 bool want_excl)
2881 {
2882         int error = may_create(dir, dentry);
2883         if (error)
2884                 return error;
2885
2886         if (!dir->i_op->create)
2887                 return -EACCES; /* shouldn't it be ENOSYS? */
2888         mode &= S_IALLUGO;
2889         mode |= S_IFREG;
2890         error = security_inode_create(dir, dentry, mode);
2891         if (error)
2892                 return error;
2893         error = dir->i_op->create(dir, dentry, mode, want_excl);
2894         if (!error)
2895                 fsnotify_create(dir, dentry);
2896         return error;
2897 }
2898 EXPORT_SYMBOL(vfs_create);
2899
2900 bool may_open_dev(const struct path *path)
2901 {
2902         return !(path->mnt->mnt_flags & MNT_NODEV) &&
2903                 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2904 }
2905
2906 static int may_open(const struct path *path, int acc_mode, int flag)
2907 {
2908         struct dentry *dentry = path->dentry;
2909         struct inode *inode = dentry->d_inode;
2910         int error;
2911
2912         if (!inode)
2913                 return -ENOENT;
2914
2915         switch (inode->i_mode & S_IFMT) {
2916         case S_IFLNK:
2917                 return -ELOOP;
2918         case S_IFDIR:
2919                 if (acc_mode & MAY_WRITE)
2920                         return -EISDIR;
2921                 break;
2922         case S_IFBLK:
2923         case S_IFCHR:
2924                 if (!may_open_dev(path))
2925                         return -EACCES;
2926                 /*FALLTHRU*/
2927         case S_IFIFO:
2928         case S_IFSOCK:
2929                 flag &= ~O_TRUNC;
2930                 break;
2931         }
2932
2933         error = inode_permission(inode, MAY_OPEN | acc_mode);
2934         if (error)
2935                 return error;
2936
2937         /*
2938          * An append-only file must be opened in append mode for writing.
2939          */
2940         if (IS_APPEND(inode)) {
2941                 if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2942                         return -EPERM;
2943                 if (flag & O_TRUNC)
2944                         return -EPERM;
2945         }
2946
2947         /* O_NOATIME can only be set by the owner or superuser */
2948         if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2949                 return -EPERM;
2950
2951         return 0;
2952 }
2953
2954 static int handle_truncate(struct file *filp)
2955 {
2956         const struct path *path = &filp->f_path;
2957         struct inode *inode = path->dentry->d_inode;
2958         int error = get_write_access(inode);
2959         if (error)
2960                 return error;
2961         /*
2962          * Refuse to truncate files with mandatory locks held on them.
2963          */
2964         error = locks_verify_locked(filp);
2965         if (!error)
2966                 error = security_path_truncate(path);
2967         if (!error) {
2968                 error = do_truncate(path->dentry, 0,
2969                                     ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2970                                     filp);
2971         }
2972         put_write_access(inode);
2973         return error;
2974 }
2975
2976 static inline int open_to_namei_flags(int flag)
2977 {
2978         if ((flag & O_ACCMODE) == 3)
2979                 flag--;
2980         return flag;
2981 }
2982
2983 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2984 {
2985         struct user_namespace *s_user_ns;
2986         int error = security_path_mknod(dir, dentry, mode, 0);
2987         if (error)
2988                 return error;
2989
2990         s_user_ns = dir->dentry->d_sb->s_user_ns;
2991         if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2992             !kgid_has_mapping(s_user_ns, current_fsgid()))
2993                 return -EOVERFLOW;
2994
2995         error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2996         if (error)
2997                 return error;
2998
2999         return security_inode_create(dir->dentry->d_inode, dentry, mode);
3000 }
3001
3002 /*
3003  * Attempt to atomically look up, create and open a file from a negative
3004  * dentry.
3005  *
3006  * Returns 0 if successful.  The file will have been created and attached to
3007  * @file by the filesystem calling finish_open().
3008  *
3009  * Returns 1 if the file was looked up only or didn't need creating.  The
3010  * caller will need to perform the open themselves.  @path will have been
3011  * updated to point to the new dentry.  This may be negative.
3012  *
3013  * Returns an error code otherwise.
3014  */
3015 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3016                         struct path *path, struct file *file,
3017                         const struct open_flags *op,
3018                         int open_flag, umode_t mode,
3019                         int *opened)
3020 {
3021         struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3022         struct inode *dir =  nd->path.dentry->d_inode;
3023         int error;
3024
3025         if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3026                 open_flag &= ~O_TRUNC;
3027
3028         if (nd->flags & LOOKUP_DIRECTORY)
3029                 open_flag |= O_DIRECTORY;
3030
3031         file->f_path.dentry = DENTRY_NOT_SET;
3032         file->f_path.mnt = nd->path.mnt;
3033         error = dir->i_op->atomic_open(dir, dentry, file,
3034                                        open_to_namei_flags(open_flag),
3035                                        mode, opened);
3036         d_lookup_done(dentry);
3037         if (!error) {
3038                 /*
3039                  * We didn't have the inode before the open, so check open
3040                  * permission here.
3041                  */
3042                 int acc_mode = op->acc_mode;
3043                 if (*opened & FILE_CREATED) {
3044                         WARN_ON(!(open_flag & O_CREAT));
3045                         fsnotify_create(dir, dentry);
3046                         acc_mode = 0;
3047                 }
3048                 error = may_open(&file->f_path, acc_mode, open_flag);
3049                 if (WARN_ON(error > 0))
3050                         error = -EINVAL;
3051         } else if (error > 0) {
3052                 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3053                         error = -EIO;
3054                 } else {
3055                         if (file->f_path.dentry) {
3056                                 dput(dentry);
3057                                 dentry = file->f_path.dentry;
3058                         }
3059                         if (*opened & FILE_CREATED)
3060                                 fsnotify_create(dir, dentry);
3061                         if (unlikely(d_is_negative(dentry))) {
3062                                 error = -ENOENT;
3063                         } else {
3064                                 path->dentry = dentry;
3065                                 path->mnt = nd->path.mnt;
3066                                 return 1;
3067                         }
3068                 }
3069         }
3070         dput(dentry);
3071         return error;
3072 }
3073
3074 /*
3075  * Look up and maybe create and open the last component.
3076  *
3077  * Must be called with i_mutex held on parent.
3078  *
3079  * Returns 0 if the file was successfully atomically created (if necessary) and
3080  * opened.  In this case the file will be returned attached to @file.
3081  *
3082  * Returns 1 if the file was not completely opened at this time, though lookups
3083  * and creations will have been performed and the dentry returned in @path will
3084  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3085  * specified then a negative dentry may be returned.
3086  *
3087  * An error code is returned otherwise.
3088  *
3089  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3090  * cleared otherwise prior to returning.
3091  */
3092 static int lookup_open(struct nameidata *nd, struct path *path,
3093                         struct file *file,
3094                         const struct open_flags *op,
3095                         bool got_write, int *opened)
3096 {
3097         struct dentry *dir = nd->path.dentry;
3098         struct inode *dir_inode = dir->d_inode;
3099         int open_flag = op->open_flag;
3100         struct dentry *dentry;
3101         int error, create_error = 0;
3102         umode_t mode = op->mode;
3103         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3104
3105         if (unlikely(IS_DEADDIR(dir_inode)))
3106                 return -ENOENT;
3107
3108         *opened &= ~FILE_CREATED;
3109         dentry = d_lookup(dir, &nd->last);
3110         for (;;) {
3111                 if (!dentry) {
3112                         dentry = d_alloc_parallel(dir, &nd->last, &wq);
3113                         if (IS_ERR(dentry))
3114                                 return PTR_ERR(dentry);
3115                 }
3116                 if (d_in_lookup(dentry))
3117                         break;
3118
3119                 error = d_revalidate(dentry, nd->flags);
3120                 if (likely(error > 0))
3121                         break;
3122                 if (error)
3123                         goto out_dput;
3124                 d_invalidate(dentry);
3125                 dput(dentry);
3126                 dentry = NULL;
3127         }
3128         if (dentry->d_inode) {
3129                 /* Cached positive dentry: will open in f_op->open */
3130                 goto out_no_open;
3131         }
3132
3133         /*
3134          * Checking write permission is tricky, bacuse we don't know if we are
3135          * going to actually need it: O_CREAT opens should work as long as the
3136          * file exists.  But checking existence breaks atomicity.  The trick is
3137          * to check access and if not granted clear O_CREAT from the flags.
3138          *
3139          * Another problem is returing the "right" error value (e.g. for an
3140          * O_EXCL open we want to return EEXIST not EROFS).
3141          */
3142         if (open_flag & O_CREAT) {
3143                 if (!IS_POSIXACL(dir->d_inode))
3144                         mode &= ~current_umask();
3145                 if (unlikely(!got_write)) {
3146                         create_error = -EROFS;
3147                         open_flag &= ~O_CREAT;
3148                         if (open_flag & (O_EXCL | O_TRUNC))
3149                                 goto no_open;
3150                         /* No side effects, safe to clear O_CREAT */
3151                 } else {
3152                         create_error = may_o_create(&nd->path, dentry, mode);
3153                         if (create_error) {
3154                                 open_flag &= ~O_CREAT;
3155                                 if (open_flag & O_EXCL)
3156                                         goto no_open;
3157                         }
3158                 }
3159         } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3160                    unlikely(!got_write)) {
3161                 /*
3162                  * No O_CREATE -> atomicity not a requirement -> fall
3163                  * back to lookup + open
3164                  */
3165                 goto no_open;
3166         }
3167
3168         if (dir_inode->i_op->atomic_open) {
3169                 error = atomic_open(nd, dentry, path, file, op, open_flag,
3170                                     mode, opened);
3171                 if (unlikely(error == -ENOENT) && create_error)
3172                         error = create_error;
3173                 return error;
3174         }
3175
3176 no_open:
3177         if (d_in_lookup(dentry)) {
3178                 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3179                                                              nd->flags);
3180                 d_lookup_done(dentry);
3181                 if (unlikely(res)) {
3182                         if (IS_ERR(res)) {
3183                                 error = PTR_ERR(res);
3184                                 goto out_dput;
3185                         }
3186                         dput(dentry);
3187                         dentry = res;
3188                 }
3189         }
3190
3191         /* Negative dentry, just create the file */
3192         if (!dentry->d_inode && (open_flag & O_CREAT)) {
3193                 *opened |= FILE_CREATED;
3194                 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3195                 if (!dir_inode->i_op->create) {
3196                         error = -EACCES;
3197                         goto out_dput;
3198                 }
3199                 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3200                                                 open_flag & O_EXCL);
3201                 if (error)
3202                         goto out_dput;
3203                 fsnotify_create(dir_inode, dentry);
3204         }
3205         if (unlikely(create_error) && !dentry->d_inode) {
3206                 error = create_error;
3207                 goto out_dput;
3208         }
3209 out_no_open:
3210         path->dentry = dentry;
3211         path->mnt = nd->path.mnt;
3212         return 1;
3213
3214 out_dput:
3215         dput(dentry);
3216         return error;
3217 }
3218
3219 /*
3220  * Handle the last step of open()
3221  */
3222 static int do_last(struct nameidata *nd,
3223                    struct file *file, const struct open_flags *op,
3224                    int *opened)
3225 {
3226         struct dentry *dir = nd->path.dentry;
3227         int open_flag = op->open_flag;
3228         bool will_truncate = (open_flag & O_TRUNC) != 0;
3229         bool got_write = false;
3230         int acc_mode = op->acc_mode;
3231         unsigned seq;
3232         struct inode *inode;
3233         struct path path;
3234         int error;
3235
3236         nd->flags &= ~LOOKUP_PARENT;
3237         nd->flags |= op->intent;
3238
3239         if (nd->last_type != LAST_NORM) {
3240                 error = handle_dots(nd, nd->last_type);
3241                 if (unlikely(error))
3242                         return error;
3243                 goto finish_open;
3244         }
3245
3246         if (!(open_flag & O_CREAT)) {
3247                 if (nd->last.name[nd->last.len])
3248                         nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3249                 /* we _can_ be in RCU mode here */
3250                 error = lookup_fast(nd, &path, &inode, &seq);
3251                 if (likely(error > 0))
3252                         goto finish_lookup;
3253
3254                 if (error < 0)
3255                         return error;
3256
3257                 BUG_ON(nd->inode != dir->d_inode);
3258                 BUG_ON(nd->flags & LOOKUP_RCU);
3259         } else {
3260                 /* create side of things */
3261                 /*
3262                  * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3263                  * has been cleared when we got to the last component we are
3264                  * about to look up
3265                  */
3266                 error = complete_walk(nd);
3267                 if (error)
3268                         return error;
3269
3270                 audit_inode(nd->name, dir, LOOKUP_PARENT);
3271                 /* trailing slashes? */
3272                 if (unlikely(nd->last.name[nd->last.len]))
3273                         return -EISDIR;
3274         }
3275
3276         if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3277                 error = mnt_want_write(nd->path.mnt);
3278                 if (!error)
3279                         got_write = true;
3280                 /*
3281                  * do _not_ fail yet - we might not need that or fail with
3282                  * a different error; let lookup_open() decide; we'll be
3283                  * dropping this one anyway.
3284                  */
3285         }
3286         if (open_flag & O_CREAT)
3287                 inode_lock(dir->d_inode);
3288         else
3289                 inode_lock_shared(dir->d_inode);
3290         error = lookup_open(nd, &path, file, op, got_write, opened);
3291         if (open_flag & O_CREAT)
3292                 inode_unlock(dir->d_inode);
3293         else
3294                 inode_unlock_shared(dir->d_inode);
3295
3296         if (error <= 0) {
3297                 if (error)
3298                         goto out;
3299
3300                 if ((*opened & FILE_CREATED) ||
3301                     !S_ISREG(file_inode(file)->i_mode))
3302                         will_truncate = false;
3303
3304                 audit_inode(nd->name, file->f_path.dentry, 0);
3305                 goto opened;
3306         }
3307
3308         if (*opened & FILE_CREATED) {
3309                 /* Don't check for write permission, don't truncate */
3310                 open_flag &= ~O_TRUNC;
3311                 will_truncate = false;
3312                 acc_mode = 0;
3313                 path_to_nameidata(&path, nd);
3314                 goto finish_open_created;
3315         }
3316
3317         /*
3318          * If atomic_open() acquired write access it is dropped now due to
3319          * possible mount and symlink following (this might be optimized away if
3320          * necessary...)
3321          */
3322         if (got_write) {
3323                 mnt_drop_write(nd->path.mnt);
3324                 got_write = false;
3325         }
3326
3327         error = follow_managed(&path, nd);
3328         if (unlikely(error < 0))
3329                 return error;
3330
3331         if (unlikely(d_is_negative(path.dentry))) {
3332                 path_to_nameidata(&path, nd);
3333                 return -ENOENT;
3334         }
3335
3336         /*
3337          * create/update audit record if it already exists.
3338          */
3339         audit_inode(nd->name, path.dentry, 0);
3340
3341         if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3342                 path_to_nameidata(&path, nd);
3343                 return -EEXIST;
3344         }
3345
3346         seq = 0;        /* out of RCU mode, so the value doesn't matter */
3347         inode = d_backing_inode(path.dentry);
3348 finish_lookup:
3349         error = step_into(nd, &path, 0, inode, seq);
3350         if (unlikely(error))
3351                 return error;
3352 finish_open:
3353         /* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3354         error = complete_walk(nd);
3355         if (error)
3356                 return error;
3357         audit_inode(nd->name, nd->path.dentry, 0);
3358         error = -EISDIR;
3359         if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3360                 goto out;
3361         error = -ENOTDIR;
3362         if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3363                 goto out;
3364         if (!d_is_reg(nd->path.dentry))
3365                 will_truncate = false;
3366
3367         if (will_truncate) {
3368                 error = mnt_want_write(nd->path.mnt);
3369                 if (error)
3370                         goto out;
3371                 got_write = true;
3372         }
3373 finish_open_created:
3374         error = may_open(&nd->path, acc_mode, open_flag);
3375         if (error)
3376                 goto out;
3377         BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3378         error = vfs_open(&nd->path, file, current_cred());
3379         if (error)
3380                 goto out;
3381         *opened |= FILE_OPENED;
3382 opened:
3383         error = open_check_o_direct(file);
3384         if (!error)
3385                 error = ima_file_check(file, op->acc_mode, *opened);
3386         if (!error && will_truncate)
3387                 error = handle_truncate(file);
3388 out:
3389         if (unlikely(error) && (*opened & FILE_OPENED))
3390                 fput(file);
3391         if (unlikely(error > 0)) {
3392                 WARN_ON(1);
3393                 error = -EINVAL;
3394         }
3395         if (got_write)
3396                 mnt_drop_write(nd->path.mnt);
3397         return error;
3398 }
3399
3400 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3401 {
3402         struct dentry *child = NULL;
3403         struct inode *dir = dentry->d_inode;
3404         struct inode *inode;
3405         int error;
3406
3407         /* we want directory to be writable */
3408         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3409         if (error)
3410                 goto out_err;
3411         error = -EOPNOTSUPP;
3412         if (!dir->i_op->tmpfile)
3413                 goto out_err;
3414         error = -ENOMEM;
3415         child = d_alloc(dentry, &slash_name);
3416         if (unlikely(!child))
3417                 goto out_err;
3418         error = dir->i_op->tmpfile(dir, child, mode);
3419         if (error)
3420                 goto out_err;
3421         error = -ENOENT;
3422         inode = child->d_inode;
3423         if (unlikely(!inode))
3424                 goto out_err;
3425         if (!(open_flag & O_EXCL)) {
3426                 spin_lock(&inode->i_lock);
3427                 inode->i_state |= I_LINKABLE;
3428                 spin_unlock(&inode->i_lock);
3429         }
3430         return child;
3431
3432 out_err:
3433         dput(child);
3434         return ERR_PTR(error);
3435 }
3436 EXPORT_SYMBOL(vfs_tmpfile);
3437
3438 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3439                 const struct open_flags *op,
3440                 struct file *file, int *opened)
3441 {
3442         struct dentry *child;
3443         struct path path;
3444         int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3445         if (unlikely(error))
3446                 return error;
3447         error = mnt_want_write(path.mnt);
3448         if (unlikely(error))
3449                 goto out;
3450         child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3451         error = PTR_ERR(child);
3452         if (unlikely(IS_ERR(child)))
3453                 goto out2;
3454         dput(path.dentry);
3455         path.dentry = child;
3456         audit_inode(nd->name, child, 0);
3457         /* Don't check for other permissions, the inode was just created */
3458         error = may_open(&path, 0, op->open_flag);
3459         if (error)
3460                 goto out2;
3461         file->f_path.mnt = path.mnt;
3462         error = finish_open(file, child, NULL, opened);
3463         if (error)
3464                 goto out2;
3465         error = open_check_o_direct(file);
3466         if (error)
3467                 fput(file);
3468 out2:
3469         mnt_drop_write(path.mnt);
3470 out:
3471         path_put(&path);
3472         return error;
3473 }
3474
3475 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3476 {
3477         struct path path;
3478         int error = path_lookupat(nd, flags, &path);
3479         if (!error) {
3480                 audit_inode(nd->name, path.dentry, 0);
3481                 error = vfs_open(&path, file, current_cred());
3482                 path_put(&path);
3483         }
3484         return error;
3485 }
3486
3487 static struct file *path_openat(struct nameidata *nd,
3488                         const struct open_flags *op, unsigned flags)
3489 {
3490         const char *s;
3491         struct file *file;
3492         int opened = 0;
3493         int error;
3494
3495         file = get_empty_filp();
3496         if (IS_ERR(file))
3497                 return file;
3498
3499         file->f_flags = op->open_flag;
3500
3501         if (unlikely(file->f_flags & __O_TMPFILE)) {
3502                 error = do_tmpfile(nd, flags, op, file, &opened);
3503                 goto out2;
3504         }
3505
3506         if (unlikely(file->f_flags & O_PATH)) {
3507                 error = do_o_path(nd, flags, file);
3508                 if (!error)
3509                         opened |= FILE_OPENED;
3510                 goto out2;
3511         }
3512
3513         s = path_init(nd, flags);
3514         if (IS_ERR(s)) {
3515                 put_filp(file);
3516                 return ERR_CAST(s);
3517         }
3518         while (!(error = link_path_walk(s, nd)) &&
3519                 (error = do_last(nd, file, op, &opened)) > 0) {
3520                 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3521                 s = trailing_symlink(nd);
3522                 if (IS_ERR(s)) {
3523                         error = PTR_ERR(s);
3524                         break;
3525                 }
3526         }
3527         terminate_walk(nd);
3528 out2:
3529         if (!(opened & FILE_OPENED)) {
3530                 BUG_ON(!error);
3531                 put_filp(file);
3532         }
3533         if (unlikely(error)) {
3534                 if (error == -EOPENSTALE) {
3535                         if (flags & LOOKUP_RCU)
3536                                 error = -ECHILD;
3537                         else
3538                                 error = -ESTALE;
3539                 }
3540                 file = ERR_PTR(error);
3541         }
3542         return file;
3543 }
3544
3545 struct file *do_filp_open(int dfd, struct filename *pathname,
3546                 const struct open_flags *op)
3547 {
3548         struct nameidata nd;
3549         int flags = op->lookup_flags;
3550         struct file *filp;
3551
3552         set_nameidata(&nd, dfd, pathname);
3553         filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3554         if (unlikely(filp == ERR_PTR(-ECHILD)))
3555                 filp = path_openat(&nd, op, flags);
3556         if (unlikely(filp == ERR_PTR(-ESTALE)))
3557                 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3558         restore_nameidata();
3559         return filp;
3560 }
3561
3562 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3563                 const char *name, const struct open_flags *op)
3564 {
3565         struct nameidata nd;
3566         struct file *file;
3567         struct filename *filename;
3568         int flags = op->lookup_flags | LOOKUP_ROOT;
3569
3570         nd.root.mnt = mnt;
3571         nd.root.dentry = dentry;
3572
3573         if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3574                 return ERR_PTR(-ELOOP);
3575
3576         filename = getname_kernel(name);
3577         if (IS_ERR(filename))
3578                 return ERR_CAST(filename);
3579
3580         set_nameidata(&nd, -1, filename);
3581         file = path_openat(&nd, op, flags | LOOKUP_RCU);
3582         if (unlikely(file == ERR_PTR(-ECHILD)))
3583                 file = path_openat(&nd, op, flags);
3584         if (unlikely(file == ERR_PTR(-ESTALE)))
3585                 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3586         restore_nameidata();
3587         putname(filename);
3588         return file;
3589 }
3590
3591 static struct dentry *filename_create(int dfd, struct filename *name,
3592                                 struct path *path, unsigned int lookup_flags)
3593 {
3594         struct dentry *dentry = ERR_PTR(-EEXIST);
3595         struct qstr last;
3596         int type;
3597         int err2;
3598         int error;
3599         bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3600
3601         /*
3602          * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3603          * other flags passed in are ignored!
3604          */
3605         lookup_flags &= LOOKUP_REVAL;
3606
3607         name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3608         if (IS_ERR(name))
3609                 return ERR_CAST(name);
3610
3611         /*
3612          * Yucky last component or no last component at all?
3613          * (foo/., foo/.., /////)
3614          */
3615         if (unlikely(type != LAST_NORM))
3616                 goto out;
3617
3618         /* don't fail immediately if it's r/o, at least try to report other errors */
3619         err2 = mnt_want_write(path->mnt);
3620         /*
3621          * Do the final lookup.
3622          */
3623         lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3624         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3625         dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3626         if (IS_ERR(dentry))
3627                 goto unlock;
3628
3629         error = -EEXIST;
3630         if (d_is_positive(dentry))
3631                 goto fail;
3632
3633         /*
3634          * Special case - lookup gave negative, but... we had foo/bar/
3635          * From the vfs_mknod() POV we just have a negative dentry -
3636          * all is fine. Let's be bastards - you had / on the end, you've
3637          * been asking for (non-existent) directory. -ENOENT for you.
3638          */
3639         if (unlikely(!is_dir && last.name[last.len])) {
3640                 error = -ENOENT;
3641                 goto fail;
3642         }
3643         if (unlikely(err2)) {
3644                 error = err2;
3645                 goto fail;
3646         }
3647         putname(name);
3648         return dentry;
3649 fail:
3650         dput(dentry);
3651         dentry = ERR_PTR(error);
3652 unlock:
3653         inode_unlock(path->dentry->d_inode);
3654         if (!err2)
3655                 mnt_drop_write(path->mnt);
3656 out:
3657         path_put(path);
3658         putname(name);
3659         return dentry;
3660 }
3661
3662 struct dentry *kern_path_create(int dfd, const char *pathname,
3663                                 struct path *path, unsigned int lookup_flags)
3664 {
3665         return filename_create(dfd, getname_kernel(pathname),
3666                                 path, lookup_flags);
3667 }
3668 EXPORT_SYMBOL(kern_path_create);
3669
3670 void done_path_create(struct path *path, struct dentry *dentry)
3671 {
3672         dput(dentry);
3673         inode_unlock(path->dentry->d_inode);
3674         mnt_drop_write(path->mnt);
3675         path_put(path);
3676 }
3677 EXPORT_SYMBOL(done_path_create);
3678
3679 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3680                                 struct path *path, unsigned int lookup_flags)
3681 {
3682         return filename_create(dfd, getname(pathname), path, lookup_flags);
3683 }
3684 EXPORT_SYMBOL(user_path_create);
3685
3686 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3687 {
3688         int error = may_create(dir, dentry);
3689
3690         if (error)
3691                 return error;
3692
3693         if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3694                 return -EPERM;
3695
3696         if (!dir->i_op->mknod)
3697                 return -EPERM;
3698
3699         error = devcgroup_inode_mknod(mode, dev);
3700         if (error)
3701                 return error;
3702
3703         error = security_inode_mknod(dir, dentry, mode, dev);
3704         if (error)
3705                 return error;
3706
3707         error = dir->i_op->mknod(dir, dentry, mode, dev);
3708         if (!error)
3709                 fsnotify_create(dir, dentry);
3710         return error;
3711 }
3712 EXPORT_SYMBOL(vfs_mknod);
3713
3714 static int may_mknod(umode_t mode)
3715 {
3716         switch (mode & S_IFMT) {
3717         case S_IFREG:
3718         case S_IFCHR:
3719         case S_IFBLK:
3720         case S_IFIFO:
3721         case S_IFSOCK:
3722         case 0: /* zero mode translates to S_IFREG */
3723                 return 0;
3724         case S_IFDIR:
3725                 return -EPERM;
3726         default:
3727                 return -EINVAL;
3728         }
3729 }
3730
3731 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3732                 unsigned, dev)
3733 {
3734         struct dentry *dentry;
3735         struct path path;
3736         int error;
3737         unsigned int lookup_flags = 0;
3738
3739         error = may_mknod(mode);
3740         if (error)
3741                 return error;
3742 retry:
3743         dentry = user_path_create(dfd, filename, &path, lookup_flags);
3744         if (IS_ERR(dentry))
3745                 return PTR_ERR(dentry);
3746
3747         if (!IS_POSIXACL(path.dentry->d_inode))
3748                 mode &= ~current_umask();
3749         error = security_path_mknod(&path, dentry, mode, dev);
3750         if (error)
3751                 goto out;
3752         switch (mode & S_IFMT) {
3753                 case 0: case S_IFREG:
3754                         error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3755                         if (!error)
3756                                 ima_post_path_mknod(dentry);
3757                         break;
3758                 case S_IFCHR: case S_IFBLK:
3759                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3760                                         new_decode_dev(dev));
3761                         break;
3762                 case S_IFIFO: case S_IFSOCK:
3763                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3764                         break;
3765         }
3766 out:
3767         done_path_create(&path, dentry);
3768         if (retry_estale(error, lookup_flags)) {
3769                 lookup_flags |= LOOKUP_REVAL;
3770                 goto retry;
3771         }
3772         return error;
3773 }
3774
3775 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3776 {
3777         return sys_mknodat(AT_FDCWD, filename, mode, dev);
3778 }
3779
3780 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3781 {
3782         int error = may_create(dir, dentry);
3783         unsigned max_links = dir->i_sb->s_max_links;
3784
3785         if (error)
3786                 return error;
3787
3788         if (!dir->i_op->mkdir)
3789                 return -EPERM;
3790
3791         mode &= (S_IRWXUGO|S_ISVTX);
3792         error = security_inode_mkdir(dir, dentry, mode);
3793         if (error)
3794                 return error;
3795
3796         if (max_links && dir->i_nlink >= max_links)
3797                 return -EMLINK;
3798
3799         error = dir->i_op->mkdir(dir, dentry, mode);
3800         if (!error)
3801                 fsnotify_mkdir(dir, dentry);
3802         return error;
3803 }
3804 EXPORT_SYMBOL(vfs_mkdir);
3805
3806 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3807 {
3808         struct dentry *dentry;
3809         struct path path;
3810         int error;
3811         unsigned int lookup_flags = LOOKUP_DIRECTORY;
3812
3813 retry:
3814         dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3815         if (IS_ERR(dentry))
3816                 return PTR_ERR(dentry);
3817
3818         if (!IS_POSIXACL(path.dentry->d_inode))
3819                 mode &= ~current_umask();
3820         error = security_path_mkdir(&path, dentry, mode);
3821         if (!error)
3822                 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3823         done_path_create(&path, dentry);
3824         if (retry_estale(error, lookup_flags)) {
3825                 lookup_flags |= LOOKUP_REVAL;
3826                 goto retry;
3827         }
3828         return error;
3829 }
3830
3831 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3832 {
3833         return sys_mkdirat(AT_FDCWD, pathname, mode);
3834 }
3835
3836 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3837 {
3838         int error = may_delete(dir, dentry, 1);
3839
3840         if (error)
3841                 return error;
3842
3843         if (!dir->i_op->rmdir)
3844                 return -EPERM;
3845
3846         dget(dentry);
3847         inode_lock(dentry->d_inode);
3848
3849         error = -EBUSY;
3850         if (is_local_mountpoint(dentry))
3851                 goto out;
3852
3853         error = security_inode_rmdir(dir, dentry);
3854         if (error)
3855                 goto out;
3856
3857         shrink_dcache_parent(dentry);
3858         error = dir->i_op->rmdir(dir, dentry);
3859         if (error)
3860                 goto out;
3861
3862         dentry->d_inode->i_flags |= S_DEAD;
3863         dont_mount(dentry);
3864         detach_mounts(dentry);
3865
3866 out:
3867         inode_unlock(dentry->d_inode);
3868         dput(dentry);
3869         if (!error)
3870                 d_delete(dentry);
3871         return error;
3872 }
3873 EXPORT_SYMBOL(vfs_rmdir);
3874
3875 static long do_rmdir(int dfd, const char __user *pathname)
3876 {
3877         int error = 0;
3878         struct filename *name;
3879         struct dentry *dentry;
3880         struct path path;
3881         struct qstr last;
3882         int type;
3883         unsigned int lookup_flags = 0;
3884 retry:
3885         name = filename_parentat(dfd, getname(pathname), lookup_flags,
3886                                 &path, &last, &type);
3887         if (IS_ERR(name))
3888                 return PTR_ERR(name);
3889
3890         switch (type) {
3891         case LAST_DOTDOT:
3892                 error = -ENOTEMPTY;
3893                 goto exit1;
3894         case LAST_DOT:
3895                 error = -EINVAL;
3896                 goto exit1;
3897         case LAST_ROOT:
3898                 error = -EBUSY;
3899                 goto exit1;
3900         }
3901
3902         error = mnt_want_write(path.mnt);
3903         if (error)
3904                 goto exit1;
3905
3906         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3907         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3908         error = PTR_ERR(dentry);
3909         if (IS_ERR(dentry))
3910                 goto exit2;
3911         if (!dentry->d_inode) {
3912                 error = -ENOENT;
3913                 goto exit3;
3914         }
3915         error = security_path_rmdir(&path, dentry);
3916         if (error)
3917                 goto exit3;
3918         error = vfs_rmdir(path.dentry->d_inode, dentry);
3919 exit3:
3920         dput(dentry);
3921 exit2:
3922         inode_unlock(path.dentry->d_inode);
3923         mnt_drop_write(path.mnt);
3924 exit1:
3925         path_put(&path);
3926         putname(name);
3927         if (retry_estale(error, lookup_flags)) {
3928                 lookup_flags |= LOOKUP_REVAL;
3929                 goto retry;
3930         }
3931         return error;
3932 }
3933
3934 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3935 {
3936         return do_rmdir(AT_FDCWD, pathname);
3937 }
3938
3939 /**
3940  * vfs_unlink - unlink a filesystem object
3941  * @dir:        parent directory
3942  * @dentry:     victim
3943  * @delegated_inode: returns victim inode, if the inode is delegated.
3944  *
3945  * The caller must hold dir->i_mutex.
3946  *
3947  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3948  * return a reference to the inode in delegated_inode.  The caller
3949  * should then break the delegation on that inode and retry.  Because
3950  * breaking a delegation may take a long time, the caller should drop
3951  * dir->i_mutex before doing so.
3952  *
3953  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3954  * be appropriate for callers that expect the underlying filesystem not
3955  * to be NFS exported.
3956  */
3957 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3958 {
3959         struct inode *target = dentry->d_inode;
3960         int error = may_delete(dir, dentry, 0);
3961
3962         if (error)
3963                 return error;
3964
3965         if (!dir->i_op->unlink)
3966                 return -EPERM;
3967
3968         inode_lock(target);
3969         if (is_local_mountpoint(dentry))
3970                 error = -EBUSY;
3971         else {
3972                 error = security_inode_unlink(dir, dentry);
3973                 if (!error) {
3974                         error = try_break_deleg(target, delegated_inode);
3975                         if (error)
3976                                 goto out;
3977                         error = dir->i_op->unlink(dir, dentry);
3978                         if (!error) {
3979                                 dont_mount(dentry);
3980                                 detach_mounts(dentry);
3981                         }
3982                 }
3983         }
3984 out:
3985         inode_unlock(target);
3986
3987         /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3988         if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3989                 fsnotify_link_count(target);
3990                 d_delete(dentry);
3991         }
3992
3993         return error;
3994 }
3995 EXPORT_SYMBOL(vfs_unlink);
3996
3997 /*
3998  * Make sure that the actual truncation of the file will occur outside its
3999  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4000  * writeout happening, and we don't want to prevent access to the directory
4001  * while waiting on the I/O.
4002  */
4003 static long do_unlinkat(int dfd, const char __user *pathname)
4004 {
4005         int error;
4006         struct filename *name;
4007         struct dentry *dentry;
4008         struct path path;
4009         struct qstr last;
4010         int type;
4011         struct inode *inode = NULL;
4012         struct inode *delegated_inode = NULL;
4013         unsigned int lookup_flags = 0;
4014 retry:
4015         name = filename_parentat(dfd, getname(pathname), lookup_flags,
4016                                 &path, &last, &type);
4017         if (IS_ERR(name))
4018                 return PTR_ERR(name);
4019
4020         error = -EISDIR;
4021         if (type != LAST_NORM)
4022                 goto exit1;
4023
4024         error = mnt_want_write(path.mnt);
4025         if (error)
4026                 goto exit1;
4027 retry_deleg:
4028         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4029         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4030         error = PTR_ERR(dentry);
4031         if (!IS_ERR(dentry)) {
4032                 /* Why not before? Because we want correct error value */
4033                 if (last.name[last.len])
4034                         goto slashes;
4035                 inode = dentry->d_inode;
4036                 if (d_is_negative(dentry))
4037                         goto slashes;
4038                 ihold(inode);
4039                 error = security_path_unlink(&path, dentry);
4040                 if (error)
4041                         goto exit2;
4042                 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4043 exit2:
4044                 dput(dentry);
4045         }
4046         inode_unlock(path.dentry->d_inode);
4047         if (inode)
4048                 iput(inode);    /* truncate the inode here */
4049         inode = NULL;
4050         if (delegated_inode) {
4051                 error = break_deleg_wait(&delegated_inode);
4052                 if (!error)
4053                         goto retry_deleg;
4054         }
4055         mnt_drop_write(path.mnt);
4056 exit1:
4057         path_put(&path);
4058         putname(name);
4059         if (retry_estale(error, lookup_flags)) {
4060                 lookup_flags |= LOOKUP_REVAL;
4061                 inode = NULL;
4062                 goto retry;
4063         }
4064         return error;
4065
4066 slashes:
4067         if (d_is_negative(dentry))
4068                 error = -ENOENT;
4069         else if (d_is_dir(dentry))
4070                 error = -EISDIR;
4071         else
4072                 error = -ENOTDIR;
4073         goto exit2;
4074 }
4075
4076 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4077 {
4078         if ((flag & ~AT_REMOVEDIR) != 0)
4079                 return -EINVAL;
4080
4081         if (flag & AT_REMOVEDIR)
4082                 return do_rmdir(dfd, pathname);
4083
4084         return do_unlinkat(dfd, pathname);
4085 }
4086
4087 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4088 {
4089         return do_unlinkat(AT_FDCWD, pathname);
4090 }
4091
4092 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4093 {
4094         int error = may_create(dir, dentry);
4095
4096         if (error)
4097                 return error;
4098
4099         if (!dir->i_op->symlink)
4100                 return -EPERM;
4101
4102         error = security_inode_symlink(dir, dentry, oldname);
4103         if (error)
4104                 return error;
4105
4106         error = dir->i_op->symlink(dir, dentry, oldname);
4107         if (!error)
4108                 fsnotify_create(dir, dentry);
4109         return error;
4110 }
4111 EXPORT_SYMBOL(vfs_symlink);
4112
4113 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4114                 int, newdfd, const char __user *, newname)
4115 {
4116         int error;
4117         struct filename *from;
4118         struct dentry *dentry;
4119         struct path path;
4120         unsigned int lookup_flags = 0;
4121
4122         from = getname(oldname);
4123         if (IS_ERR(from))
4124                 return PTR_ERR(from);
4125 retry:
4126         dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4127         error = PTR_ERR(dentry);
4128         if (IS_ERR(dentry))
4129                 goto out_putname;
4130
4131         error = security_path_symlink(&path, dentry, from->name);
4132         if (!error)
4133                 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4134         done_path_create(&path, dentry);
4135         if (retry_estale(error, lookup_flags)) {
4136                 lookup_flags |= LOOKUP_REVAL;
4137                 goto retry;
4138         }
4139 out_putname:
4140         putname(from);
4141         return error;
4142 }
4143
4144 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4145 {
4146         return sys_symlinkat(oldname, AT_FDCWD, newname);
4147 }
4148
4149 /**
4150  * vfs_link - create a new link
4151  * @old_dentry: object to be linked
4152  * @dir:        new parent
4153  * @new_dentry: where to create the new link
4154  * @delegated_inode: returns inode needing a delegation break
4155  *
4156  * The caller must hold dir->i_mutex
4157  *
4158  * If vfs_link discovers a delegation on the to-be-linked file in need
4159  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4160  * inode in delegated_inode.  The caller should then break the delegation
4161  * and retry.  Because breaking a delegation may take a long time, the
4162  * caller should drop the i_mutex before doing so.
4163  *
4164  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4165  * be appropriate for callers that expect the underlying filesystem not
4166  * to be NFS exported.
4167  */
4168 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4169 {
4170         struct inode *inode = old_dentry->d_inode;
4171         unsigned max_links = dir->i_sb->s_max_links;
4172         int error;
4173
4174         if (!inode)
4175                 return -ENOENT;
4176
4177         error = may_create(dir, new_dentry);
4178         if (error)
4179                 return error;
4180
4181         if (dir->i_sb != inode->i_sb)
4182                 return -EXDEV;
4183
4184         /*
4185          * A link to an append-only or immutable file cannot be created.
4186          */
4187         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4188                 return -EPERM;
4189         /*
4190          * Updating the link count will likely cause i_uid and i_gid to
4191          * be writen back improperly if their true value is unknown to
4192          * the vfs.
4193          */
4194         if (HAS_UNMAPPED_ID(inode))
4195                 return -EPERM;
4196         if (!dir->i_op->link)
4197                 return -EPERM;
4198         if (S_ISDIR(inode->i_mode))
4199                 return -EPERM;
4200
4201         error = security_inode_link(old_dentry, dir, new_dentry);
4202         if (error)
4203                 return error;
4204
4205         inode_lock(inode);
4206         /* Make sure we don't allow creating hardlink to an unlinked file */
4207         if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4208                 error =  -ENOENT;
4209         else if (max_links && inode->i_nlink >= max_links)
4210                 error = -EMLINK;
4211         else {
4212                 error = try_break_deleg(inode, delegated_inode);
4213                 if (!error)
4214                         error = dir->i_op->link(old_dentry, dir, new_dentry);
4215         }
4216
4217         if (!error && (inode->i_state & I_LINKABLE)) {
4218                 spin_lock(&inode->i_lock);
4219                 inode->i_state &= ~I_LINKABLE;
4220                 spin_unlock(&inode->i_lock);
4221         }
4222         inode_unlock(inode);
4223         if (!error)
4224                 fsnotify_link(dir, inode, new_dentry);
4225         return error;
4226 }
4227 EXPORT_SYMBOL(vfs_link);
4228
4229 /*
4230  * Hardlinks are often used in delicate situations.  We avoid
4231  * security-related surprises by not following symlinks on the
4232  * newname.  --KAB
4233  *
4234  * We don't follow them on the oldname either to be compatible
4235  * with linux 2.0, and to avoid hard-linking to directories
4236  * and other special files.  --ADM
4237  */
4238 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4239                 int, newdfd, const char __user *, newname, int, flags)
4240 {
4241         struct dentry *new_dentry;
4242         struct path old_path, new_path;
4243         struct inode *delegated_inode = NULL;
4244         int how = 0;
4245         int error;
4246
4247         if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4248                 return -EINVAL;
4249         /*
4250          * To use null names we require CAP_DAC_READ_SEARCH
4251          * This ensures that not everyone will be able to create
4252          * handlink using the passed filedescriptor.
4253          */
4254         if (flags & AT_EMPTY_PATH) {
4255                 if (!capable(CAP_DAC_READ_SEARCH))
4256                         return -ENOENT;
4257                 how = LOOKUP_EMPTY;
4258         }
4259
4260         if (flags & AT_SYMLINK_FOLLOW)
4261                 how |= LOOKUP_FOLLOW;
4262 retry:
4263         error = user_path_at(olddfd, oldname, how, &old_path);
4264         if (error)
4265                 return error;
4266
4267         new_dentry = user_path_create(newdfd, newname, &new_path,
4268                                         (how & LOOKUP_REVAL));
4269         error = PTR_ERR(new_dentry);
4270         if (IS_ERR(new_dentry))
4271                 goto out;
4272
4273         error = -EXDEV;
4274         if (old_path.mnt != new_path.mnt)
4275                 goto out_dput;
4276         error = may_linkat(&old_path);
4277         if (unlikely(error))
4278                 goto out_dput;
4279         error = security_path_link(old_path.dentry, &new_path, new_dentry);
4280         if (error)
4281                 goto out_dput;
4282         error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4283 out_dput:
4284         done_path_create(&new_path, new_dentry);
4285         if (delegated_inode) {
4286                 error = break_deleg_wait(&delegated_inode);
4287                 if (!error) {
4288                         path_put(&old_path);
4289                         goto retry;
4290                 }
4291         }
4292         if (retry_estale(error, how)) {
4293                 path_put(&old_path);
4294                 how |= LOOKUP_REVAL;
4295                 goto retry;
4296         }
4297 out:
4298         path_put(&old_path);
4299
4300         return error;
4301 }
4302
4303 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4304 {
4305         return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4306 }
4307
4308 /**
4309  * vfs_rename - rename a filesystem object
4310  * @old_dir:    parent of source
4311  * @old_dentry: source
4312  * @new_dir:    parent of destination
4313  * @new_dentry: destination
4314  * @delegated_inode: returns an inode needing a delegation break
4315  * @flags:      rename flags
4316  *
4317  * The caller must hold multiple mutexes--see lock_rename()).
4318  *
4319  * If vfs_rename discovers a delegation in need of breaking at either
4320  * the source or destination, it will return -EWOULDBLOCK and return a
4321  * reference to the inode in delegated_inode.  The caller should then
4322  * break the delegation and retry.  Because breaking a delegation may
4323  * take a long time, the caller should drop all locks before doing
4324  * so.
4325  *
4326  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4327  * be appropriate for callers that expect the underlying filesystem not
4328  * to be NFS exported.
4329  *
4330  * The worst of all namespace operations - renaming directory. "Perverted"
4331  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4332  * Problems:
4333  *
4334  *      a) we can get into loop creation.
4335  *      b) race potential - two innocent renames can create a loop together.
4336  *         That's where 4.4 screws up. Current fix: serialization on
4337  *         sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4338  *         story.
4339  *      c) we have to lock _four_ objects - parents and victim (if it exists),
4340  *         and source (if it is not a directory).
4341  *         And that - after we got ->i_mutex on parents (until then we don't know
4342  *         whether the target exists).  Solution: try to be smart with locking
4343  *         order for inodes.  We rely on the fact that tree topology may change
4344  *         only under ->s_vfs_rename_mutex _and_ that parent of the object we
4345  *         move will be locked.  Thus we can rank directories by the tree
4346  *         (ancestors first) and rank all non-directories after them.
4347  *         That works since everybody except rename does "lock parent, lookup,
4348  *         lock child" and rename is under ->s_vfs_rename_mutex.
4349  *         HOWEVER, it relies on the assumption that any object with ->lookup()
4350  *         has no more than 1 dentry.  If "hybrid" objects will ever appear,
4351  *         we'd better make sure that there's no link(2) for them.
4352  *      d) conversion from fhandle to dentry may come in the wrong moment - when
4353  *         we are removing the target. Solution: we will have to grab ->i_mutex
4354  *         in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4355  *         ->i_mutex on parents, which works but leads to some truly excessive
4356  *         locking].
4357  */
4358 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4359                struct inode *new_dir, struct dentry *new_dentry,
4360                struct inode **delegated_inode, unsigned int flags)
4361 {
4362         int error;
4363         bool is_dir = d_is_dir(old_dentry);
4364         struct inode *source = old_dentry->d_inode;
4365         struct inode *target = new_dentry->d_inode;
4366         bool new_is_dir = false;
4367         unsigned max_links = new_dir->i_sb->s_max_links;
4368         struct name_snapshot old_name;
4369
4370         if (source == target)
4371                 return 0;
4372
4373         error = may_delete(old_dir, old_dentry, is_dir);
4374         if (error)
4375                 return error;
4376
4377         if (!target) {
4378                 error = may_create(new_dir, new_dentry);
4379         } else {
4380                 new_is_dir = d_is_dir(new_dentry);
4381
4382                 if (!(flags & RENAME_EXCHANGE))
4383                         error = may_delete(new_dir, new_dentry, is_dir);
4384                 else
4385                         error = may_delete(new_dir, new_dentry, new_is_dir);
4386         }
4387         if (error)
4388                 return error;
4389
4390         if (!old_dir->i_op->rename)
4391                 return -EPERM;
4392
4393         /*
4394          * If we are going to change the parent - check write permissions,
4395          * we'll need to flip '..'.
4396          */
4397         if (new_dir != old_dir) {
4398                 if (is_dir) {
4399                         error = inode_permission(source, MAY_WRITE);
4400                         if (error)
4401                                 return error;
4402                 }
4403                 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4404                         error = inode_permission(target, MAY_WRITE);
4405                         if (error)
4406                                 return error;
4407                 }
4408         }
4409
4410         error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4411                                       flags);
4412         if (error)
4413                 return error;
4414
4415         take_dentry_name_snapshot(&old_name, old_dentry);
4416         dget(new_dentry);
4417         if (!is_dir || (flags & RENAME_EXCHANGE))
4418                 lock_two_nondirectories(source, target);
4419         else if (target)
4420                 inode_lock(target);
4421
4422         error = -EBUSY;
4423         if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4424                 goto out;
4425
4426         if (max_links && new_dir != old_dir) {
4427                 error = -EMLINK;
4428                 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4429                         goto out;
4430                 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4431                     old_dir->i_nlink >= max_links)
4432                         goto out;
4433         }
4434         if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4435                 shrink_dcache_parent(new_dentry);
4436         if (!is_dir) {
4437                 error = try_break_deleg(source, delegated_inode);
4438                 if (error)
4439                         goto out;
4440         }
4441         if (target && !new_is_dir) {
4442                 error = try_break_deleg(target, delegated_inode);
4443                 if (error)
4444                         goto out;
4445         }
4446         error = old_dir->i_op->rename(old_dir, old_dentry,
4447                                        new_dir, new_dentry, flags);
4448         if (error)
4449                 goto out;
4450
4451         if (!(flags & RENAME_EXCHANGE) && target) {
4452                 if (is_dir)
4453                         target->i_flags |= S_DEAD;
4454                 dont_mount(new_dentry);
4455                 detach_mounts(new_dentry);
4456         }
4457         if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4458                 if (!(flags & RENAME_EXCHANGE))
4459                         d_move(old_dentry, new_dentry);
4460                 else
4461                         d_exchange(old_dentry, new_dentry);
4462         }
4463 out:
4464         if (!is_dir || (flags & RENAME_EXCHANGE))
4465                 unlock_two_nondirectories(source, target);
4466         else if (target)
4467                 inode_unlock(target);
4468         dput(new_dentry);
4469         if (!error) {
4470                 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4471                               !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4472                 if (flags & RENAME_EXCHANGE) {
4473                         fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4474                                       new_is_dir, NULL, new_dentry);
4475                 }
4476         }
4477         release_dentry_name_snapshot(&old_name);
4478
4479         return error;
4480 }
4481 EXPORT_SYMBOL(vfs_rename);
4482
4483 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4484                 int, newdfd, const char __user *, newname, unsigned int, flags)
4485 {
4486         struct dentry *old_dentry, *new_dentry;
4487         struct dentry *trap;
4488         struct path old_path, new_path;
4489         struct qstr old_last, new_last;
4490         int old_type, new_type;
4491         struct inode *delegated_inode = NULL;
4492         struct filename *from;
4493         struct filename *to;
4494         unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4495         bool should_retry = false;
4496         int error;
4497
4498         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4499                 return -EINVAL;
4500
4501         if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4502             (flags & RENAME_EXCHANGE))
4503                 return -EINVAL;
4504
4505         if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4506                 return -EPERM;
4507
4508         if (flags & RENAME_EXCHANGE)
4509                 target_flags = 0;
4510
4511 retry:
4512         from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4513                                 &old_path, &old_last, &old_type);
4514         if (IS_ERR(from)) {
4515                 error = PTR_ERR(from);
4516                 goto exit;
4517         }
4518
4519         to = filename_parentat(newdfd, getname(newname), lookup_flags,
4520                                 &new_path, &new_last, &new_type);
4521         if (IS_ERR(to)) {
4522                 error = PTR_ERR(to);
4523                 goto exit1;
4524         }
4525
4526         error = -EXDEV;
4527         if (old_path.mnt != new_path.mnt)
4528                 goto exit2;
4529
4530         error = -EBUSY;
4531         if (old_type != LAST_NORM)
4532                 goto exit2;
4533
4534         if (flags & RENAME_NOREPLACE)
4535                 error = -EEXIST;
4536         if (new_type != LAST_NORM)
4537                 goto exit2;
4538
4539         error = mnt_want_write(old_path.mnt);
4540         if (error)
4541                 goto exit2;
4542
4543 retry_deleg:
4544         trap = lock_rename(new_path.dentry, old_path.dentry);
4545
4546         old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4547         error = PTR_ERR(old_dentry);
4548         if (IS_ERR(old_dentry))
4549                 goto exit3;
4550         /* source must exist */
4551         error = -ENOENT;
4552         if (d_is_negative(old_dentry))
4553                 goto exit4;
4554         new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4555         error = PTR_ERR(new_dentry);
4556         if (IS_ERR(new_dentry))
4557                 goto exit4;
4558         error = -EEXIST;
4559         if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4560                 goto exit5;
4561         if (flags & RENAME_EXCHANGE) {
4562                 error = -ENOENT;
4563                 if (d_is_negative(new_dentry))
4564                         goto exit5;
4565
4566                 if (!d_is_dir(new_dentry)) {
4567                         error = -ENOTDIR;
4568                         if (new_last.name[new_last.len])
4569                                 goto exit5;
4570                 }
4571         }
4572         /* unless the source is a directory trailing slashes give -ENOTDIR */
4573         if (!d_is_dir(old_dentry)) {
4574                 error = -ENOTDIR;
4575                 if (old_last.name[old_last.len])
4576                         goto exit5;
4577                 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4578                         goto exit5;
4579         }
4580         /* source should not be ancestor of target */
4581         error = -EINVAL;
4582         if (old_dentry == trap)
4583                 goto exit5;
4584         /* target should not be an ancestor of source */
4585         if (!(flags & RENAME_EXCHANGE))
4586                 error = -ENOTEMPTY;
4587         if (new_dentry == trap)
4588                 goto exit5;
4589
4590         error = security_path_rename(&old_path, old_dentry,
4591                                      &new_path, new_dentry, flags);
4592         if (error)
4593                 goto exit5;
4594         error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4595                            new_path.dentry->d_inode, new_dentry,
4596                            &delegated_inode, flags);
4597 exit5:
4598         dput(new_dentry);
4599 exit4:
4600         dput(old_dentry);
4601 exit3:
4602         unlock_rename(new_path.dentry, old_path.dentry);
4603         if (delegated_inode) {
4604                 error = break_deleg_wait(&delegated_inode);
4605                 if (!error)
4606                         goto retry_deleg;
4607         }
4608         mnt_drop_write(old_path.mnt);
4609 exit2:
4610         if (retry_estale(error, lookup_flags))
4611                 should_retry = true;
4612         path_put(&new_path);
4613         putname(to);
4614 exit1:
4615         path_put(&old_path);
4616         putname(from);
4617         if (should_retry) {
4618                 should_retry = false;
4619                 lookup_flags |= LOOKUP_REVAL;
4620                 goto retry;
4621         }
4622 exit:
4623         return error;
4624 }
4625
4626 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4627                 int, newdfd, const char __user *, newname)
4628 {
4629         return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4630 }
4631
4632 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4633 {
4634         return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4635 }
4636
4637 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4638 {
4639         int error = may_create(dir, dentry);
4640         if (error)
4641                 return error;
4642
4643         if (!dir->i_op->mknod)
4644                 return -EPERM;
4645
4646         return dir->i_op->mknod(dir, dentry,
4647                                 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4648 }
4649 EXPORT_SYMBOL(vfs_whiteout);
4650
4651 int readlink_copy(char __user *buffer, int buflen, const char *link)
4652 {
4653         int len = PTR_ERR(link);
4654         if (IS_ERR(link))
4655                 goto out;
4656
4657         len = strlen(link);
4658         if (len > (unsigned) buflen)
4659                 len = buflen;
4660         if (copy_to_user(buffer, link, len))
4661                 len = -EFAULT;
4662 out:
4663         return len;
4664 }
4665
4666 /*
4667  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4668  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4669  * for any given inode is up to filesystem.
4670  */
4671 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4672                             int buflen)
4673 {
4674         DEFINE_DELAYED_CALL(done);
4675         struct inode *inode = d_inode(dentry);
4676         const char *link = inode->i_link;
4677         int res;
4678
4679         if (!link) {
4680                 link = inode->i_op->get_link(dentry, inode, &done);
4681                 if (IS_ERR(link))
4682                         return PTR_ERR(link);
4683         }
4684         res = readlink_copy(buffer, buflen, link);
4685         do_delayed_call(&done);
4686         return res;
4687 }
4688
4689 /**
4690  * vfs_readlink - copy symlink body into userspace buffer
4691  * @dentry: dentry on which to get symbolic link
4692  * @buffer: user memory pointer
4693  * @buflen: size of buffer
4694  *
4695  * Does not touch atime.  That's up to the caller if necessary
4696  *
4697  * Does not call security hook.
4698  */
4699 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4700 {
4701         struct inode *inode = d_inode(dentry);
4702
4703         if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4704                 if (unlikely(inode->i_op->readlink))
4705                         return inode->i_op->readlink(dentry, buffer, buflen);
4706
4707                 if (!d_is_symlink(dentry))
4708                         return -EINVAL;
4709
4710                 spin_lock(&inode->i_lock);
4711                 inode->i_opflags |= IOP_DEFAULT_READLINK;
4712                 spin_unlock(&inode->i_lock);
4713         }
4714
4715         return generic_readlink(dentry, buffer, buflen);
4716 }
4717 EXPORT_SYMBOL(vfs_readlink);
4718
4719 /**
4720  * vfs_get_link - get symlink body
4721  * @dentry: dentry on which to get symbolic link
4722  * @done: caller needs to free returned data with this
4723  *
4724  * Calls security hook and i_op->get_link() on the supplied inode.
4725  *
4726  * It does not touch atime.  That's up to the caller if necessary.
4727  *
4728  * Does not work on "special" symlinks like /proc/$$/fd/N
4729  */
4730 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4731 {
4732         const char *res = ERR_PTR(-EINVAL);
4733         struct inode *inode = d_inode(dentry);
4734
4735         if (d_is_symlink(dentry)) {
4736                 res = ERR_PTR(security_inode_readlink(dentry));
4737                 if (!res)
4738                         res = inode->i_op->get_link(dentry, inode, done);
4739         }
4740         return res;
4741 }
4742 EXPORT_SYMBOL(vfs_get_link);
4743
4744 /* get the link contents into pagecache */
4745 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4746                           struct delayed_call *callback)
4747 {
4748         char *kaddr;
4749         struct page *page;
4750         struct address_space *mapping = inode->i_mapping;
4751
4752         if (!dentry) {
4753                 page = find_get_page(mapping, 0);
4754                 if (!page)
4755                         return ERR_PTR(-ECHILD);
4756                 if (!PageUptodate(page)) {
4757                         put_page(page);
4758                         return ERR_PTR(-ECHILD);
4759                 }
4760         } else {
4761                 page = read_mapping_page(mapping, 0, NULL);
4762                 if (IS_ERR(page))
4763                         return (char*)page;
4764         }
4765         set_delayed_call(callback, page_put_link, page);
4766         BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4767         kaddr = page_address(page);
4768         nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4769         return kaddr;
4770 }
4771
4772 EXPORT_SYMBOL(page_get_link);
4773
4774 void page_put_link(void *arg)
4775 {
4776         put_page(arg);
4777 }
4778 EXPORT_SYMBOL(page_put_link);
4779
4780 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4781 {
4782         DEFINE_DELAYED_CALL(done);
4783         int res = readlink_copy(buffer, buflen,
4784                                 page_get_link(dentry, d_inode(dentry),
4785                                               &done));
4786         do_delayed_call(&done);
4787         return res;
4788 }
4789 EXPORT_SYMBOL(page_readlink);
4790
4791 /*
4792  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4793  */
4794 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4795 {
4796         struct address_space *mapping = inode->i_mapping;
4797         struct page *page;
4798         void *fsdata;
4799         int err;
4800         unsigned int flags = 0;
4801         if (nofs)
4802                 flags |= AOP_FLAG_NOFS;
4803
4804 retry:
4805         err = pagecache_write_begin(NULL, mapping, 0, len-1,
4806                                 flags, &page, &fsdata);
4807         if (err)
4808                 goto fail;
4809
4810         memcpy(page_address(page), symname, len-1);
4811
4812         err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4813                                                         page, fsdata);
4814         if (err < 0)
4815                 goto fail;
4816         if (err < len-1)
4817                 goto retry;
4818
4819         mark_inode_dirty(inode);
4820         return 0;
4821 fail:
4822         return err;
4823 }
4824 EXPORT_SYMBOL(__page_symlink);
4825
4826 int page_symlink(struct inode *inode, const char *symname, int len)
4827 {
4828         return __page_symlink(inode, symname, len,
4829                         !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4830 }
4831 EXPORT_SYMBOL(page_symlink);
4832
4833 const struct inode_operations page_symlink_inode_operations = {
4834         .get_link       = page_get_link,
4835 };
4836 EXPORT_SYMBOL(page_symlink_inode_operations);