namei: allow restricted O_CREAT of FIFOs and regular files
[platform/kernel/linux-exynos.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  * Some corrections by tytso.
10  */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now 
56  * replaced with a single function lookup_dentry() that can handle all 
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *      inside the path - always follow.
99  *      in the last component in creation/removal/renaming - never follow.
100  *      if LOOKUP_FOLLOW passed - follow.
101  *      if the pathname has trailing slashes - follow.
102  *      otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124
125 #define EMBEDDED_NAME_MAX       (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130         struct filename *result;
131         char *kname;
132         int len;
133
134         result = audit_reusename(filename);
135         if (result)
136                 return result;
137
138         result = __getname();
139         if (unlikely(!result))
140                 return ERR_PTR(-ENOMEM);
141
142         /*
143          * First, try to embed the struct filename inside the names_cache
144          * allocation
145          */
146         kname = (char *)result->iname;
147         result->name = kname;
148
149         len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150         if (unlikely(len < 0)) {
151                 __putname(result);
152                 return ERR_PTR(len);
153         }
154
155         /*
156          * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157          * separate struct filename so we can dedicate the entire
158          * names_cache allocation for the pathname, and re-do the copy from
159          * userland.
160          */
161         if (unlikely(len == EMBEDDED_NAME_MAX)) {
162                 const size_t size = offsetof(struct filename, iname[1]);
163                 kname = (char *)result;
164
165                 /*
166                  * size is chosen that way we to guarantee that
167                  * result->iname[0] is within the same object and that
168                  * kname can't be equal to result->iname, no matter what.
169                  */
170                 result = kzalloc(size, GFP_KERNEL);
171                 if (unlikely(!result)) {
172                         __putname(kname);
173                         return ERR_PTR(-ENOMEM);
174                 }
175                 result->name = kname;
176                 len = strncpy_from_user(kname, filename, PATH_MAX);
177                 if (unlikely(len < 0)) {
178                         __putname(kname);
179                         kfree(result);
180                         return ERR_PTR(len);
181                 }
182                 if (unlikely(len == PATH_MAX)) {
183                         __putname(kname);
184                         kfree(result);
185                         return ERR_PTR(-ENAMETOOLONG);
186                 }
187         }
188
189         result->refcnt = 1;
190         /* The empty path is special. */
191         if (unlikely(!len)) {
192                 if (empty)
193                         *empty = 1;
194                 if (!(flags & LOOKUP_EMPTY)) {
195                         putname(result);
196                         return ERR_PTR(-ENOENT);
197                 }
198         }
199
200         result->uptr = filename;
201         result->aname = NULL;
202         audit_getname(result);
203         return result;
204 }
205
206 struct filename *
207 getname(const char __user * filename)
208 {
209         return getname_flags(filename, 0, NULL);
210 }
211
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215         struct filename *result;
216         int len = strlen(filename) + 1;
217
218         result = __getname();
219         if (unlikely(!result))
220                 return ERR_PTR(-ENOMEM);
221
222         if (len <= EMBEDDED_NAME_MAX) {
223                 result->name = (char *)result->iname;
224         } else if (len <= PATH_MAX) {
225                 const size_t size = offsetof(struct filename, iname[1]);
226                 struct filename *tmp;
227
228                 tmp = kmalloc(size, GFP_KERNEL);
229                 if (unlikely(!tmp)) {
230                         __putname(result);
231                         return ERR_PTR(-ENOMEM);
232                 }
233                 tmp->name = (char *)result;
234                 result = tmp;
235         } else {
236                 __putname(result);
237                 return ERR_PTR(-ENAMETOOLONG);
238         }
239         memcpy((char *)result->name, filename, len);
240         result->uptr = NULL;
241         result->aname = NULL;
242         result->refcnt = 1;
243         audit_getname(result);
244
245         return result;
246 }
247
248 void putname(struct filename *name)
249 {
250         BUG_ON(name->refcnt <= 0);
251
252         if (--name->refcnt > 0)
253                 return;
254
255         if (name->name != name->iname) {
256                 __putname(name->name);
257                 kfree(name);
258         } else
259                 __putname(name);
260 }
261
262 static int check_acl(struct inode *inode, int mask)
263 {
264 #ifdef CONFIG_FS_POSIX_ACL
265         struct posix_acl *acl;
266
267         if (mask & MAY_NOT_BLOCK) {
268                 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269                 if (!acl)
270                         return -EAGAIN;
271                 /* no ->get_acl() calls in RCU mode... */
272                 if (is_uncached_acl(acl))
273                         return -ECHILD;
274                 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
275         }
276
277         acl = get_acl(inode, ACL_TYPE_ACCESS);
278         if (IS_ERR(acl))
279                 return PTR_ERR(acl);
280         if (acl) {
281                 int error = posix_acl_permission(inode, acl, mask);
282                 posix_acl_release(acl);
283                 return error;
284         }
285 #endif
286
287         return -EAGAIN;
288 }
289
290 /*
291  * This does the basic permission checking
292  */
293 static int acl_permission_check(struct inode *inode, int mask)
294 {
295         unsigned int mode = inode->i_mode;
296
297         if (likely(uid_eq(current_fsuid(), inode->i_uid)))
298                 mode >>= 6;
299         else {
300                 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
301                         int error = check_acl(inode, mask);
302                         if (error != -EAGAIN)
303                                 return error;
304                 }
305
306                 if (in_group_p(inode->i_gid))
307                         mode >>= 3;
308         }
309
310         /*
311          * If the DACs are ok we don't need any capability check.
312          */
313         if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
314                 return 0;
315         return -EACCES;
316 }
317
318 /**
319  * generic_permission -  check for access rights on a Posix-like filesystem
320  * @inode:      inode to check access rights for
321  * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
322  *
323  * Used to check for read/write/execute permissions on a file.
324  * We use "fsuid" for this, letting us set arbitrary permissions
325  * for filesystem access without changing the "normal" uids which
326  * are used for other things.
327  *
328  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
329  * request cannot be satisfied (eg. requires blocking or too much complexity).
330  * It would then be called again in ref-walk mode.
331  */
332 int generic_permission(struct inode *inode, int mask)
333 {
334         int ret;
335
336         /*
337          * Do the basic permission checks.
338          */
339         ret = acl_permission_check(inode, mask);
340         if (ret != -EACCES)
341                 return ret;
342
343         if (S_ISDIR(inode->i_mode)) {
344                 /* DACs are overridable for directories */
345                 if (!(mask & MAY_WRITE))
346                         if (capable_wrt_inode_uidgid(inode,
347                                                      CAP_DAC_READ_SEARCH))
348                                 return 0;
349                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350                         return 0;
351                 return -EACCES;
352         }
353
354         /*
355          * Searching includes executable on directories, else just read.
356          */
357         mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
358         if (mask == MAY_READ)
359                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
360                         return 0;
361         /*
362          * Read/write DACs are always overridable.
363          * Executable DACs are overridable when there is
364          * at least one exec bit set.
365          */
366         if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
367                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
368                         return 0;
369
370         return -EACCES;
371 }
372 EXPORT_SYMBOL(generic_permission);
373
374 /*
375  * We _really_ want to just do "generic_permission()" without
376  * even looking at the inode->i_op values. So we keep a cache
377  * flag in inode->i_opflags, that says "this has not special
378  * permission function, use the fast case".
379  */
380 static inline int do_inode_permission(struct inode *inode, int mask)
381 {
382         if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
383                 if (likely(inode->i_op->permission))
384                         return inode->i_op->permission(inode, mask);
385
386                 /* This gets set once for the inode lifetime */
387                 spin_lock(&inode->i_lock);
388                 inode->i_opflags |= IOP_FASTPERM;
389                 spin_unlock(&inode->i_lock);
390         }
391         return generic_permission(inode, mask);
392 }
393
394 /**
395  * __inode_permission - Check for access rights to a given inode
396  * @inode: Inode to check permission on
397  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
398  *
399  * Check for read/write/execute permissions on an inode.
400  *
401  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
402  *
403  * This does not check for a read-only file system.  You probably want
404  * inode_permission().
405  */
406 int __inode_permission(struct inode *inode, int mask)
407 {
408         int retval;
409
410         if (unlikely(mask & MAY_WRITE)) {
411                 /*
412                  * Nobody gets write access to an immutable file.
413                  */
414                 if (IS_IMMUTABLE(inode))
415                         return -EPERM;
416
417                 /*
418                  * Updating mtime will likely cause i_uid and i_gid to be
419                  * written back improperly if their true value is unknown
420                  * to the vfs.
421                  */
422                 if (HAS_UNMAPPED_ID(inode))
423                         return -EACCES;
424         }
425
426         retval = do_inode_permission(inode, mask);
427         if (retval)
428                 return retval;
429
430         retval = devcgroup_inode_permission(inode, mask);
431         if (retval)
432                 return retval;
433
434         return security_inode_permission(inode, mask);
435 }
436 EXPORT_SYMBOL(__inode_permission);
437
438 /**
439  * sb_permission - Check superblock-level permissions
440  * @sb: Superblock of inode to check permission on
441  * @inode: Inode to check permission on
442  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
443  *
444  * Separate out file-system wide checks from inode-specific permission checks.
445  */
446 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
447 {
448         if (unlikely(mask & MAY_WRITE)) {
449                 umode_t mode = inode->i_mode;
450
451                 /* Nobody gets write access to a read-only fs. */
452                 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
453                         return -EROFS;
454         }
455         return 0;
456 }
457
458 /**
459  * inode_permission - Check for access rights to a given inode
460  * @inode: Inode to check permission on
461  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
462  *
463  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
464  * this, letting us set arbitrary permissions for filesystem access without
465  * changing the "normal" UIDs which are used for other things.
466  *
467  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
468  */
469 int inode_permission(struct inode *inode, int mask)
470 {
471         int retval;
472
473         retval = sb_permission(inode->i_sb, inode, mask);
474         if (retval)
475                 return retval;
476         return __inode_permission(inode, mask);
477 }
478 EXPORT_SYMBOL(inode_permission);
479
480 /**
481  * path_get - get a reference to a path
482  * @path: path to get the reference to
483  *
484  * Given a path increment the reference count to the dentry and the vfsmount.
485  */
486 void path_get(const struct path *path)
487 {
488         mntget(path->mnt);
489         dget(path->dentry);
490 }
491 EXPORT_SYMBOL(path_get);
492
493 /**
494  * path_put - put a reference to a path
495  * @path: path to put the reference to
496  *
497  * Given a path decrement the reference count to the dentry and the vfsmount.
498  */
499 void path_put(const struct path *path)
500 {
501         dput(path->dentry);
502         mntput(path->mnt);
503 }
504 EXPORT_SYMBOL(path_put);
505
506 #define EMBEDDED_LEVELS 2
507 struct nameidata {
508         struct path     path;
509         struct qstr     last;
510         struct path     root;
511         struct inode    *inode; /* path.dentry.d_inode */
512         unsigned int    flags;
513         unsigned        seq, m_seq;
514         int             last_type;
515         unsigned        depth;
516         int             total_link_count;
517         struct saved {
518                 struct path link;
519                 struct delayed_call done;
520                 const char *name;
521                 unsigned seq;
522         } *stack, internal[EMBEDDED_LEVELS];
523         struct filename *name;
524         struct nameidata *saved;
525         struct inode    *link_inode;
526         unsigned        root_seq;
527         int             dfd;
528 } __randomize_layout;
529
530 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
531 {
532         struct nameidata *old = current->nameidata;
533         p->stack = p->internal;
534         p->dfd = dfd;
535         p->name = name;
536         p->total_link_count = old ? old->total_link_count : 0;
537         p->saved = old;
538         current->nameidata = p;
539 }
540
541 static void restore_nameidata(void)
542 {
543         struct nameidata *now = current->nameidata, *old = now->saved;
544
545         current->nameidata = old;
546         if (old)
547                 old->total_link_count = now->total_link_count;
548         if (now->stack != now->internal)
549                 kfree(now->stack);
550 }
551
552 static int __nd_alloc_stack(struct nameidata *nd)
553 {
554         struct saved *p;
555
556         if (nd->flags & LOOKUP_RCU) {
557                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
558                                   GFP_ATOMIC);
559                 if (unlikely(!p))
560                         return -ECHILD;
561         } else {
562                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
563                                   GFP_KERNEL);
564                 if (unlikely(!p))
565                         return -ENOMEM;
566         }
567         memcpy(p, nd->internal, sizeof(nd->internal));
568         nd->stack = p;
569         return 0;
570 }
571
572 /**
573  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
574  * @path: nameidate to verify
575  *
576  * Rename can sometimes move a file or directory outside of a bind
577  * mount, path_connected allows those cases to be detected.
578  */
579 static bool path_connected(const struct path *path)
580 {
581         struct vfsmount *mnt = path->mnt;
582         struct super_block *sb = mnt->mnt_sb;
583
584         /* Bind mounts and multi-root filesystems can have disconnected paths */
585         if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
586                 return true;
587
588         return is_subdir(path->dentry, mnt->mnt_root);
589 }
590
591 static inline int nd_alloc_stack(struct nameidata *nd)
592 {
593         if (likely(nd->depth != EMBEDDED_LEVELS))
594                 return 0;
595         if (likely(nd->stack != nd->internal))
596                 return 0;
597         return __nd_alloc_stack(nd);
598 }
599
600 static void drop_links(struct nameidata *nd)
601 {
602         int i = nd->depth;
603         while (i--) {
604                 struct saved *last = nd->stack + i;
605                 do_delayed_call(&last->done);
606                 clear_delayed_call(&last->done);
607         }
608 }
609
610 static void terminate_walk(struct nameidata *nd)
611 {
612         drop_links(nd);
613         if (!(nd->flags & LOOKUP_RCU)) {
614                 int i;
615                 path_put(&nd->path);
616                 for (i = 0; i < nd->depth; i++)
617                         path_put(&nd->stack[i].link);
618                 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
619                         path_put(&nd->root);
620                         nd->root.mnt = NULL;
621                 }
622         } else {
623                 nd->flags &= ~LOOKUP_RCU;
624                 if (!(nd->flags & LOOKUP_ROOT))
625                         nd->root.mnt = NULL;
626                 rcu_read_unlock();
627         }
628         nd->depth = 0;
629 }
630
631 /* path_put is needed afterwards regardless of success or failure */
632 static bool legitimize_path(struct nameidata *nd,
633                             struct path *path, unsigned seq)
634 {
635         int res = __legitimize_mnt(path->mnt, nd->m_seq);
636         if (unlikely(res)) {
637                 if (res > 0)
638                         path->mnt = NULL;
639                 path->dentry = NULL;
640                 return false;
641         }
642         if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
643                 path->dentry = NULL;
644                 return false;
645         }
646         return !read_seqcount_retry(&path->dentry->d_seq, seq);
647 }
648
649 static bool legitimize_links(struct nameidata *nd)
650 {
651         int i;
652         for (i = 0; i < nd->depth; i++) {
653                 struct saved *last = nd->stack + i;
654                 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
655                         drop_links(nd);
656                         nd->depth = i + 1;
657                         return false;
658                 }
659         }
660         return true;
661 }
662
663 /*
664  * Path walking has 2 modes, rcu-walk and ref-walk (see
665  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
666  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
667  * normal reference counts on dentries and vfsmounts to transition to ref-walk
668  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
669  * got stuck, so ref-walk may continue from there. If this is not successful
670  * (eg. a seqcount has changed), then failure is returned and it's up to caller
671  * to restart the path walk from the beginning in ref-walk mode.
672  */
673
674 /**
675  * unlazy_walk - try to switch to ref-walk mode.
676  * @nd: nameidata pathwalk data
677  * Returns: 0 on success, -ECHILD on failure
678  *
679  * unlazy_walk attempts to legitimize the current nd->path and nd->root
680  * for ref-walk mode.
681  * Must be called from rcu-walk context.
682  * Nothing should touch nameidata between unlazy_walk() failure and
683  * terminate_walk().
684  */
685 static int unlazy_walk(struct nameidata *nd)
686 {
687         struct dentry *parent = nd->path.dentry;
688
689         BUG_ON(!(nd->flags & LOOKUP_RCU));
690
691         nd->flags &= ~LOOKUP_RCU;
692         if (unlikely(!legitimize_links(nd)))
693                 goto out2;
694         if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
695                 goto out1;
696         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
697                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
698                         goto out;
699         }
700         rcu_read_unlock();
701         BUG_ON(nd->inode != parent->d_inode);
702         return 0;
703
704 out2:
705         nd->path.mnt = NULL;
706         nd->path.dentry = NULL;
707 out1:
708         if (!(nd->flags & LOOKUP_ROOT))
709                 nd->root.mnt = NULL;
710 out:
711         rcu_read_unlock();
712         return -ECHILD;
713 }
714
715 /**
716  * unlazy_child - try to switch to ref-walk mode.
717  * @nd: nameidata pathwalk data
718  * @dentry: child of nd->path.dentry
719  * @seq: seq number to check dentry against
720  * Returns: 0 on success, -ECHILD on failure
721  *
722  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
723  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
724  * @nd.  Must be called from rcu-walk context.
725  * Nothing should touch nameidata between unlazy_child() failure and
726  * terminate_walk().
727  */
728 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
729 {
730         BUG_ON(!(nd->flags & LOOKUP_RCU));
731
732         nd->flags &= ~LOOKUP_RCU;
733         if (unlikely(!legitimize_links(nd)))
734                 goto out2;
735         if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
736                 goto out2;
737         if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
738                 goto out1;
739
740         /*
741          * We need to move both the parent and the dentry from the RCU domain
742          * to be properly refcounted. And the sequence number in the dentry
743          * validates *both* dentry counters, since we checked the sequence
744          * number of the parent after we got the child sequence number. So we
745          * know the parent must still be valid if the child sequence number is
746          */
747         if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
748                 goto out;
749         if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
750                 rcu_read_unlock();
751                 dput(dentry);
752                 goto drop_root_mnt;
753         }
754         /*
755          * Sequence counts matched. Now make sure that the root is
756          * still valid and get it if required.
757          */
758         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
759                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
760                         rcu_read_unlock();
761                         dput(dentry);
762                         return -ECHILD;
763                 }
764         }
765
766         rcu_read_unlock();
767         return 0;
768
769 out2:
770         nd->path.mnt = NULL;
771 out1:
772         nd->path.dentry = NULL;
773 out:
774         rcu_read_unlock();
775 drop_root_mnt:
776         if (!(nd->flags & LOOKUP_ROOT))
777                 nd->root.mnt = NULL;
778         return -ECHILD;
779 }
780
781 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
782 {
783         if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
784                 return dentry->d_op->d_revalidate(dentry, flags);
785         else
786                 return 1;
787 }
788
789 /**
790  * complete_walk - successful completion of path walk
791  * @nd:  pointer nameidata
792  *
793  * If we had been in RCU mode, drop out of it and legitimize nd->path.
794  * Revalidate the final result, unless we'd already done that during
795  * the path walk or the filesystem doesn't ask for it.  Return 0 on
796  * success, -error on failure.  In case of failure caller does not
797  * need to drop nd->path.
798  */
799 static int complete_walk(struct nameidata *nd)
800 {
801         struct dentry *dentry = nd->path.dentry;
802         int status;
803
804         if (nd->flags & LOOKUP_RCU) {
805                 if (!(nd->flags & LOOKUP_ROOT))
806                         nd->root.mnt = NULL;
807                 if (unlikely(unlazy_walk(nd)))
808                         return -ECHILD;
809         }
810
811         if (likely(!(nd->flags & LOOKUP_JUMPED)))
812                 return 0;
813
814         if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
815                 return 0;
816
817         status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
818         if (status > 0)
819                 return 0;
820
821         if (!status)
822                 status = -ESTALE;
823
824         return status;
825 }
826
827 static void set_root(struct nameidata *nd)
828 {
829         struct fs_struct *fs = current->fs;
830
831         if (nd->flags & LOOKUP_RCU) {
832                 unsigned seq;
833
834                 do {
835                         seq = read_seqcount_begin(&fs->seq);
836                         nd->root = fs->root;
837                         nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
838                 } while (read_seqcount_retry(&fs->seq, seq));
839         } else {
840                 get_fs_root(fs, &nd->root);
841         }
842 }
843
844 static void path_put_conditional(struct path *path, struct nameidata *nd)
845 {
846         dput(path->dentry);
847         if (path->mnt != nd->path.mnt)
848                 mntput(path->mnt);
849 }
850
851 static inline void path_to_nameidata(const struct path *path,
852                                         struct nameidata *nd)
853 {
854         if (!(nd->flags & LOOKUP_RCU)) {
855                 dput(nd->path.dentry);
856                 if (nd->path.mnt != path->mnt)
857                         mntput(nd->path.mnt);
858         }
859         nd->path.mnt = path->mnt;
860         nd->path.dentry = path->dentry;
861 }
862
863 static int nd_jump_root(struct nameidata *nd)
864 {
865         if (nd->flags & LOOKUP_RCU) {
866                 struct dentry *d;
867                 nd->path = nd->root;
868                 d = nd->path.dentry;
869                 nd->inode = d->d_inode;
870                 nd->seq = nd->root_seq;
871                 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
872                         return -ECHILD;
873         } else {
874                 path_put(&nd->path);
875                 nd->path = nd->root;
876                 path_get(&nd->path);
877                 nd->inode = nd->path.dentry->d_inode;
878         }
879         nd->flags |= LOOKUP_JUMPED;
880         return 0;
881 }
882
883 /*
884  * Helper to directly jump to a known parsed path from ->get_link,
885  * caller must have taken a reference to path beforehand.
886  */
887 void nd_jump_link(struct path *path)
888 {
889         struct nameidata *nd = current->nameidata;
890         path_put(&nd->path);
891
892         nd->path = *path;
893         nd->inode = nd->path.dentry->d_inode;
894         nd->flags |= LOOKUP_JUMPED;
895 }
896
897 static inline void put_link(struct nameidata *nd)
898 {
899         struct saved *last = nd->stack + --nd->depth;
900         do_delayed_call(&last->done);
901         if (!(nd->flags & LOOKUP_RCU))
902                 path_put(&last->link);
903 }
904
905 int sysctl_protected_symlinks __read_mostly = 0;
906 int sysctl_protected_hardlinks __read_mostly = 0;
907 int sysctl_protected_fifos __read_mostly;
908 int sysctl_protected_regular __read_mostly;
909
910 /**
911  * may_follow_link - Check symlink following for unsafe situations
912  * @nd: nameidata pathwalk data
913  *
914  * In the case of the sysctl_protected_symlinks sysctl being enabled,
915  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
916  * in a sticky world-writable directory. This is to protect privileged
917  * processes from failing races against path names that may change out
918  * from under them by way of other users creating malicious symlinks.
919  * It will permit symlinks to be followed only when outside a sticky
920  * world-writable directory, or when the uid of the symlink and follower
921  * match, or when the directory owner matches the symlink's owner.
922  *
923  * Returns 0 if following the symlink is allowed, -ve on error.
924  */
925 static inline int may_follow_link(struct nameidata *nd)
926 {
927         const struct inode *inode;
928         const struct inode *parent;
929         kuid_t puid;
930
931         if (!sysctl_protected_symlinks)
932                 return 0;
933
934         /* Allowed if owner and follower match. */
935         inode = nd->link_inode;
936         if (uid_eq(current_cred()->fsuid, inode->i_uid))
937                 return 0;
938
939         /* Allowed if parent directory not sticky and world-writable. */
940         parent = nd->inode;
941         if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
942                 return 0;
943
944         /* Allowed if parent directory and link owner match. */
945         puid = parent->i_uid;
946         if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
947                 return 0;
948
949         if (nd->flags & LOOKUP_RCU)
950                 return -ECHILD;
951
952         audit_log_link_denied("follow_link", &nd->stack[0].link);
953         return -EACCES;
954 }
955
956 /**
957  * safe_hardlink_source - Check for safe hardlink conditions
958  * @inode: the source inode to hardlink from
959  *
960  * Return false if at least one of the following conditions:
961  *    - inode is not a regular file
962  *    - inode is setuid
963  *    - inode is setgid and group-exec
964  *    - access failure for read and write
965  *
966  * Otherwise returns true.
967  */
968 static bool safe_hardlink_source(struct inode *inode)
969 {
970         umode_t mode = inode->i_mode;
971
972         /* Special files should not get pinned to the filesystem. */
973         if (!S_ISREG(mode))
974                 return false;
975
976         /* Setuid files should not get pinned to the filesystem. */
977         if (mode & S_ISUID)
978                 return false;
979
980         /* Executable setgid files should not get pinned to the filesystem. */
981         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
982                 return false;
983
984         /* Hardlinking to unreadable or unwritable sources is dangerous. */
985         if (inode_permission(inode, MAY_READ | MAY_WRITE))
986                 return false;
987
988         return true;
989 }
990
991 /**
992  * may_linkat - Check permissions for creating a hardlink
993  * @link: the source to hardlink from
994  *
995  * Block hardlink when all of:
996  *  - sysctl_protected_hardlinks enabled
997  *  - fsuid does not match inode
998  *  - hardlink source is unsafe (see safe_hardlink_source() above)
999  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
1000  *
1001  * Returns 0 if successful, -ve on error.
1002  */
1003 static int may_linkat(struct path *link)
1004 {
1005         struct inode *inode;
1006
1007         if (!sysctl_protected_hardlinks)
1008                 return 0;
1009
1010         inode = link->dentry->d_inode;
1011
1012         /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1013          * otherwise, it must be a safe source.
1014          */
1015         if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1016                 return 0;
1017
1018         audit_log_link_denied("linkat", link);
1019         return -EPERM;
1020 }
1021
1022 /**
1023  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1024  *                        should be allowed, or not, on files that already
1025  *                        exist.
1026  * @dir: the sticky parent directory
1027  * @inode: the inode of the file to open
1028  *
1029  * Block an O_CREAT open of a FIFO (or a regular file) when:
1030  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1031  *   - the file already exists
1032  *   - we are in a sticky directory
1033  *   - we don't own the file
1034  *   - the owner of the directory doesn't own the file
1035  *   - the directory is world writable
1036  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1037  * the directory doesn't have to be world writable: being group writable will
1038  * be enough.
1039  *
1040  * Returns 0 if the open is allowed, -ve on error.
1041  */
1042 static int may_create_in_sticky(struct dentry * const dir,
1043                                 struct inode * const inode)
1044 {
1045         if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1046             (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1047             likely(!(dir->d_inode->i_mode & S_ISVTX)) ||
1048             uid_eq(inode->i_uid, dir->d_inode->i_uid) ||
1049             uid_eq(current_fsuid(), inode->i_uid))
1050                 return 0;
1051
1052         if (likely(dir->d_inode->i_mode & 0002) ||
1053             (dir->d_inode->i_mode & 0020 &&
1054              ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1055               (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1056                 return -EACCES;
1057         }
1058         return 0;
1059 }
1060
1061 static __always_inline
1062 const char *get_link(struct nameidata *nd)
1063 {
1064         struct saved *last = nd->stack + nd->depth - 1;
1065         struct dentry *dentry = last->link.dentry;
1066         struct inode *inode = nd->link_inode;
1067         int error;
1068         const char *res;
1069
1070         if (!(nd->flags & LOOKUP_RCU)) {
1071                 touch_atime(&last->link);
1072                 cond_resched();
1073         } else if (atime_needs_update_rcu(&last->link, inode)) {
1074                 if (unlikely(unlazy_walk(nd)))
1075                         return ERR_PTR(-ECHILD);
1076                 touch_atime(&last->link);
1077         }
1078
1079         error = security_inode_follow_link(dentry, inode,
1080                                            nd->flags & LOOKUP_RCU);
1081         if (unlikely(error))
1082                 return ERR_PTR(error);
1083
1084         nd->last_type = LAST_BIND;
1085         res = inode->i_link;
1086         if (!res) {
1087                 const char * (*get)(struct dentry *, struct inode *,
1088                                 struct delayed_call *);
1089                 get = inode->i_op->get_link;
1090                 if (nd->flags & LOOKUP_RCU) {
1091                         res = get(NULL, inode, &last->done);
1092                         if (res == ERR_PTR(-ECHILD)) {
1093                                 if (unlikely(unlazy_walk(nd)))
1094                                         return ERR_PTR(-ECHILD);
1095                                 res = get(dentry, inode, &last->done);
1096                         }
1097                 } else {
1098                         res = get(dentry, inode, &last->done);
1099                 }
1100                 if (IS_ERR_OR_NULL(res))
1101                         return res;
1102         }
1103         if (*res == '/') {
1104                 if (!nd->root.mnt)
1105                         set_root(nd);
1106                 if (unlikely(nd_jump_root(nd)))
1107                         return ERR_PTR(-ECHILD);
1108                 while (unlikely(*++res == '/'))
1109                         ;
1110         }
1111         if (!*res)
1112                 res = NULL;
1113         return res;
1114 }
1115
1116 /*
1117  * follow_up - Find the mountpoint of path's vfsmount
1118  *
1119  * Given a path, find the mountpoint of its source file system.
1120  * Replace @path with the path of the mountpoint in the parent mount.
1121  * Up is towards /.
1122  *
1123  * Return 1 if we went up a level and 0 if we were already at the
1124  * root.
1125  */
1126 int follow_up(struct path *path)
1127 {
1128         struct mount *mnt = real_mount(path->mnt);
1129         struct mount *parent;
1130         struct dentry *mountpoint;
1131
1132         read_seqlock_excl(&mount_lock);
1133         parent = mnt->mnt_parent;
1134         if (parent == mnt) {
1135                 read_sequnlock_excl(&mount_lock);
1136                 return 0;
1137         }
1138         mntget(&parent->mnt);
1139         mountpoint = dget(mnt->mnt_mountpoint);
1140         read_sequnlock_excl(&mount_lock);
1141         dput(path->dentry);
1142         path->dentry = mountpoint;
1143         mntput(path->mnt);
1144         path->mnt = &parent->mnt;
1145         return 1;
1146 }
1147 EXPORT_SYMBOL(follow_up);
1148
1149 /*
1150  * Perform an automount
1151  * - return -EISDIR to tell follow_managed() to stop and return the path we
1152  *   were called with.
1153  */
1154 static int follow_automount(struct path *path, struct nameidata *nd,
1155                             bool *need_mntput)
1156 {
1157         struct vfsmount *mnt;
1158         int err;
1159
1160         if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1161                 return -EREMOTE;
1162
1163         /* We don't want to mount if someone's just doing a stat -
1164          * unless they're stat'ing a directory and appended a '/' to
1165          * the name.
1166          *
1167          * We do, however, want to mount if someone wants to open or
1168          * create a file of any type under the mountpoint, wants to
1169          * traverse through the mountpoint or wants to open the
1170          * mounted directory.  Also, autofs may mark negative dentries
1171          * as being automount points.  These will need the attentions
1172          * of the daemon to instantiate them before they can be used.
1173          */
1174         if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1175                            LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1176             path->dentry->d_inode)
1177                 return -EISDIR;
1178
1179         nd->total_link_count++;
1180         if (nd->total_link_count >= 40)
1181                 return -ELOOP;
1182
1183         mnt = path->dentry->d_op->d_automount(path);
1184         if (IS_ERR(mnt)) {
1185                 /*
1186                  * The filesystem is allowed to return -EISDIR here to indicate
1187                  * it doesn't want to automount.  For instance, autofs would do
1188                  * this so that its userspace daemon can mount on this dentry.
1189                  *
1190                  * However, we can only permit this if it's a terminal point in
1191                  * the path being looked up; if it wasn't then the remainder of
1192                  * the path is inaccessible and we should say so.
1193                  */
1194                 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1195                         return -EREMOTE;
1196                 return PTR_ERR(mnt);
1197         }
1198
1199         if (!mnt) /* mount collision */
1200                 return 0;
1201
1202         if (!*need_mntput) {
1203                 /* lock_mount() may release path->mnt on error */
1204                 mntget(path->mnt);
1205                 *need_mntput = true;
1206         }
1207         err = finish_automount(mnt, path);
1208
1209         switch (err) {
1210         case -EBUSY:
1211                 /* Someone else made a mount here whilst we were busy */
1212                 return 0;
1213         case 0:
1214                 path_put(path);
1215                 path->mnt = mnt;
1216                 path->dentry = dget(mnt->mnt_root);
1217                 return 0;
1218         default:
1219                 return err;
1220         }
1221
1222 }
1223
1224 /*
1225  * Handle a dentry that is managed in some way.
1226  * - Flagged for transit management (autofs)
1227  * - Flagged as mountpoint
1228  * - Flagged as automount point
1229  *
1230  * This may only be called in refwalk mode.
1231  *
1232  * Serialization is taken care of in namespace.c
1233  */
1234 static int follow_managed(struct path *path, struct nameidata *nd)
1235 {
1236         struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1237         unsigned managed;
1238         bool need_mntput = false;
1239         int ret = 0;
1240
1241         /* Given that we're not holding a lock here, we retain the value in a
1242          * local variable for each dentry as we look at it so that we don't see
1243          * the components of that value change under us */
1244         while (managed = ACCESS_ONCE(path->dentry->d_flags),
1245                managed &= DCACHE_MANAGED_DENTRY,
1246                unlikely(managed != 0)) {
1247                 /* Allow the filesystem to manage the transit without i_mutex
1248                  * being held. */
1249                 if (managed & DCACHE_MANAGE_TRANSIT) {
1250                         BUG_ON(!path->dentry->d_op);
1251                         BUG_ON(!path->dentry->d_op->d_manage);
1252                         ret = path->dentry->d_op->d_manage(path, false);
1253                         if (ret < 0)
1254                                 break;
1255                 }
1256
1257                 /* Transit to a mounted filesystem. */
1258                 if (managed & DCACHE_MOUNTED) {
1259                         struct vfsmount *mounted = lookup_mnt(path);
1260                         if (mounted) {
1261                                 dput(path->dentry);
1262                                 if (need_mntput)
1263                                         mntput(path->mnt);
1264                                 path->mnt = mounted;
1265                                 path->dentry = dget(mounted->mnt_root);
1266                                 need_mntput = true;
1267                                 continue;
1268                         }
1269
1270                         /* Something is mounted on this dentry in another
1271                          * namespace and/or whatever was mounted there in this
1272                          * namespace got unmounted before lookup_mnt() could
1273                          * get it */
1274                 }
1275
1276                 /* Handle an automount point */
1277                 if (managed & DCACHE_NEED_AUTOMOUNT) {
1278                         ret = follow_automount(path, nd, &need_mntput);
1279                         if (ret < 0)
1280                                 break;
1281                         continue;
1282                 }
1283
1284                 /* We didn't change the current path point */
1285                 break;
1286         }
1287
1288         if (need_mntput && path->mnt == mnt)
1289                 mntput(path->mnt);
1290         if (ret == -EISDIR || !ret)
1291                 ret = 1;
1292         if (need_mntput)
1293                 nd->flags |= LOOKUP_JUMPED;
1294         if (unlikely(ret < 0))
1295                 path_put_conditional(path, nd);
1296         return ret;
1297 }
1298
1299 int follow_down_one(struct path *path)
1300 {
1301         struct vfsmount *mounted;
1302
1303         mounted = lookup_mnt(path);
1304         if (mounted) {
1305                 dput(path->dentry);
1306                 mntput(path->mnt);
1307                 path->mnt = mounted;
1308                 path->dentry = dget(mounted->mnt_root);
1309                 return 1;
1310         }
1311         return 0;
1312 }
1313 EXPORT_SYMBOL(follow_down_one);
1314
1315 static inline int managed_dentry_rcu(const struct path *path)
1316 {
1317         return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1318                 path->dentry->d_op->d_manage(path, true) : 0;
1319 }
1320
1321 /*
1322  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1323  * we meet a managed dentry that would need blocking.
1324  */
1325 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1326                                struct inode **inode, unsigned *seqp)
1327 {
1328         for (;;) {
1329                 struct mount *mounted;
1330                 /*
1331                  * Don't forget we might have a non-mountpoint managed dentry
1332                  * that wants to block transit.
1333                  */
1334                 switch (managed_dentry_rcu(path)) {
1335                 case -ECHILD:
1336                 default:
1337                         return false;
1338                 case -EISDIR:
1339                         return true;
1340                 case 0:
1341                         break;
1342                 }
1343
1344                 if (!d_mountpoint(path->dentry))
1345                         return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1346
1347                 mounted = __lookup_mnt(path->mnt, path->dentry);
1348                 if (!mounted)
1349                         break;
1350                 path->mnt = &mounted->mnt;
1351                 path->dentry = mounted->mnt.mnt_root;
1352                 nd->flags |= LOOKUP_JUMPED;
1353                 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1354                 /*
1355                  * Update the inode too. We don't need to re-check the
1356                  * dentry sequence number here after this d_inode read,
1357                  * because a mount-point is always pinned.
1358                  */
1359                 *inode = path->dentry->d_inode;
1360         }
1361         return !read_seqretry(&mount_lock, nd->m_seq) &&
1362                 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1363 }
1364
1365 static int follow_dotdot_rcu(struct nameidata *nd)
1366 {
1367         struct inode *inode = nd->inode;
1368
1369         while (1) {
1370                 if (path_equal(&nd->path, &nd->root))
1371                         break;
1372                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1373                         struct dentry *old = nd->path.dentry;
1374                         struct dentry *parent = old->d_parent;
1375                         unsigned seq;
1376
1377                         inode = parent->d_inode;
1378                         seq = read_seqcount_begin(&parent->d_seq);
1379                         if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1380                                 return -ECHILD;
1381                         nd->path.dentry = parent;
1382                         nd->seq = seq;
1383                         if (unlikely(!path_connected(&nd->path)))
1384                                 return -ENOENT;
1385                         break;
1386                 } else {
1387                         struct mount *mnt = real_mount(nd->path.mnt);
1388                         struct mount *mparent = mnt->mnt_parent;
1389                         struct dentry *mountpoint = mnt->mnt_mountpoint;
1390                         struct inode *inode2 = mountpoint->d_inode;
1391                         unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1392                         if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1393                                 return -ECHILD;
1394                         if (&mparent->mnt == nd->path.mnt)
1395                                 break;
1396                         /* we know that mountpoint was pinned */
1397                         nd->path.dentry = mountpoint;
1398                         nd->path.mnt = &mparent->mnt;
1399                         inode = inode2;
1400                         nd->seq = seq;
1401                 }
1402         }
1403         while (unlikely(d_mountpoint(nd->path.dentry))) {
1404                 struct mount *mounted;
1405                 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1406                 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1407                         return -ECHILD;
1408                 if (!mounted)
1409                         break;
1410                 nd->path.mnt = &mounted->mnt;
1411                 nd->path.dentry = mounted->mnt.mnt_root;
1412                 inode = nd->path.dentry->d_inode;
1413                 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1414         }
1415         nd->inode = inode;
1416         return 0;
1417 }
1418
1419 /*
1420  * Follow down to the covering mount currently visible to userspace.  At each
1421  * point, the filesystem owning that dentry may be queried as to whether the
1422  * caller is permitted to proceed or not.
1423  */
1424 int follow_down(struct path *path)
1425 {
1426         unsigned managed;
1427         int ret;
1428
1429         while (managed = ACCESS_ONCE(path->dentry->d_flags),
1430                unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1431                 /* Allow the filesystem to manage the transit without i_mutex
1432                  * being held.
1433                  *
1434                  * We indicate to the filesystem if someone is trying to mount
1435                  * something here.  This gives autofs the chance to deny anyone
1436                  * other than its daemon the right to mount on its
1437                  * superstructure.
1438                  *
1439                  * The filesystem may sleep at this point.
1440                  */
1441                 if (managed & DCACHE_MANAGE_TRANSIT) {
1442                         BUG_ON(!path->dentry->d_op);
1443                         BUG_ON(!path->dentry->d_op->d_manage);
1444                         ret = path->dentry->d_op->d_manage(path, false);
1445                         if (ret < 0)
1446                                 return ret == -EISDIR ? 0 : ret;
1447                 }
1448
1449                 /* Transit to a mounted filesystem. */
1450                 if (managed & DCACHE_MOUNTED) {
1451                         struct vfsmount *mounted = lookup_mnt(path);
1452                         if (!mounted)
1453                                 break;
1454                         dput(path->dentry);
1455                         mntput(path->mnt);
1456                         path->mnt = mounted;
1457                         path->dentry = dget(mounted->mnt_root);
1458                         continue;
1459                 }
1460
1461                 /* Don't handle automount points here */
1462                 break;
1463         }
1464         return 0;
1465 }
1466 EXPORT_SYMBOL(follow_down);
1467
1468 /*
1469  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1470  */
1471 static void follow_mount(struct path *path)
1472 {
1473         while (d_mountpoint(path->dentry)) {
1474                 struct vfsmount *mounted = lookup_mnt(path);
1475                 if (!mounted)
1476                         break;
1477                 dput(path->dentry);
1478                 mntput(path->mnt);
1479                 path->mnt = mounted;
1480                 path->dentry = dget(mounted->mnt_root);
1481         }
1482 }
1483
1484 static int path_parent_directory(struct path *path)
1485 {
1486         struct dentry *old = path->dentry;
1487         /* rare case of legitimate dget_parent()... */
1488         path->dentry = dget_parent(path->dentry);
1489         dput(old);
1490         if (unlikely(!path_connected(path)))
1491                 return -ENOENT;
1492         return 0;
1493 }
1494
1495 static int follow_dotdot(struct nameidata *nd)
1496 {
1497         while(1) {
1498                 if (nd->path.dentry == nd->root.dentry &&
1499                     nd->path.mnt == nd->root.mnt) {
1500                         break;
1501                 }
1502                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1503                         int ret = path_parent_directory(&nd->path);
1504                         if (ret)
1505                                 return ret;
1506                         break;
1507                 }
1508                 if (!follow_up(&nd->path))
1509                         break;
1510         }
1511         follow_mount(&nd->path);
1512         nd->inode = nd->path.dentry->d_inode;
1513         return 0;
1514 }
1515
1516 /*
1517  * This looks up the name in dcache and possibly revalidates the found dentry.
1518  * NULL is returned if the dentry does not exist in the cache.
1519  */
1520 static struct dentry *lookup_dcache(const struct qstr *name,
1521                                     struct dentry *dir,
1522                                     unsigned int flags)
1523 {
1524         struct dentry *dentry = d_lookup(dir, name);
1525         if (dentry) {
1526                 int error = d_revalidate(dentry, flags);
1527                 if (unlikely(error <= 0)) {
1528                         if (!error)
1529                                 d_invalidate(dentry);
1530                         dput(dentry);
1531                         return ERR_PTR(error);
1532                 }
1533         }
1534         return dentry;
1535 }
1536
1537 /*
1538  * Call i_op->lookup on the dentry.  The dentry must be negative and
1539  * unhashed.
1540  *
1541  * dir->d_inode->i_mutex must be held
1542  */
1543 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1544                                   unsigned int flags)
1545 {
1546         struct dentry *old;
1547
1548         /* Don't create child dentry for a dead directory. */
1549         if (unlikely(IS_DEADDIR(dir))) {
1550                 dput(dentry);
1551                 return ERR_PTR(-ENOENT);
1552         }
1553
1554         old = dir->i_op->lookup(dir, dentry, flags);
1555         if (unlikely(old)) {
1556                 dput(dentry);
1557                 dentry = old;
1558         }
1559         return dentry;
1560 }
1561
1562 static struct dentry *__lookup_hash(const struct qstr *name,
1563                 struct dentry *base, unsigned int flags)
1564 {
1565         struct dentry *dentry = lookup_dcache(name, base, flags);
1566
1567         if (dentry)
1568                 return dentry;
1569
1570         dentry = d_alloc(base, name);
1571         if (unlikely(!dentry))
1572                 return ERR_PTR(-ENOMEM);
1573
1574         return lookup_real(base->d_inode, dentry, flags);
1575 }
1576
1577 static int lookup_fast(struct nameidata *nd,
1578                        struct path *path, struct inode **inode,
1579                        unsigned *seqp)
1580 {
1581         struct vfsmount *mnt = nd->path.mnt;
1582         struct dentry *dentry, *parent = nd->path.dentry;
1583         int status = 1;
1584         int err;
1585
1586         /*
1587          * Rename seqlock is not required here because in the off chance
1588          * of a false negative due to a concurrent rename, the caller is
1589          * going to fall back to non-racy lookup.
1590          */
1591         if (nd->flags & LOOKUP_RCU) {
1592                 unsigned seq;
1593                 bool negative;
1594                 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1595                 if (unlikely(!dentry)) {
1596                         if (unlazy_walk(nd))
1597                                 return -ECHILD;
1598                         return 0;
1599                 }
1600
1601                 /*
1602                  * This sequence count validates that the inode matches
1603                  * the dentry name information from lookup.
1604                  */
1605                 *inode = d_backing_inode(dentry);
1606                 negative = d_is_negative(dentry);
1607                 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1608                         return -ECHILD;
1609
1610                 /*
1611                  * This sequence count validates that the parent had no
1612                  * changes while we did the lookup of the dentry above.
1613                  *
1614                  * The memory barrier in read_seqcount_begin of child is
1615                  *  enough, we can use __read_seqcount_retry here.
1616                  */
1617                 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1618                         return -ECHILD;
1619
1620                 *seqp = seq;
1621                 status = d_revalidate(dentry, nd->flags);
1622                 if (likely(status > 0)) {
1623                         /*
1624                          * Note: do negative dentry check after revalidation in
1625                          * case that drops it.
1626                          */
1627                         if (unlikely(negative))
1628                                 return -ENOENT;
1629                         path->mnt = mnt;
1630                         path->dentry = dentry;
1631                         if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1632                                 return 1;
1633                 }
1634                 if (unlazy_child(nd, dentry, seq))
1635                         return -ECHILD;
1636                 if (unlikely(status == -ECHILD))
1637                         /* we'd been told to redo it in non-rcu mode */
1638                         status = d_revalidate(dentry, nd->flags);
1639         } else {
1640                 dentry = __d_lookup(parent, &nd->last);
1641                 if (unlikely(!dentry))
1642                         return 0;
1643                 status = d_revalidate(dentry, nd->flags);
1644         }
1645         if (unlikely(status <= 0)) {
1646                 if (!status)
1647                         d_invalidate(dentry);
1648                 dput(dentry);
1649                 return status;
1650         }
1651         if (unlikely(d_is_negative(dentry))) {
1652                 dput(dentry);
1653                 return -ENOENT;
1654         }
1655
1656         path->mnt = mnt;
1657         path->dentry = dentry;
1658         err = follow_managed(path, nd);
1659         if (likely(err > 0))
1660                 *inode = d_backing_inode(path->dentry);
1661         return err;
1662 }
1663
1664 /* Fast lookup failed, do it the slow way */
1665 static struct dentry *lookup_slow(const struct qstr *name,
1666                                   struct dentry *dir,
1667                                   unsigned int flags)
1668 {
1669         struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1670         struct inode *inode = dir->d_inode;
1671         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1672
1673         inode_lock_shared(inode);
1674         /* Don't go there if it's already dead */
1675         if (unlikely(IS_DEADDIR(inode)))
1676                 goto out;
1677 again:
1678         dentry = d_alloc_parallel(dir, name, &wq);
1679         if (IS_ERR(dentry))
1680                 goto out;
1681         if (unlikely(!d_in_lookup(dentry))) {
1682                 if (!(flags & LOOKUP_NO_REVAL)) {
1683                         int error = d_revalidate(dentry, flags);
1684                         if (unlikely(error <= 0)) {
1685                                 if (!error) {
1686                                         d_invalidate(dentry);
1687                                         dput(dentry);
1688                                         goto again;
1689                                 }
1690                                 dput(dentry);
1691                                 dentry = ERR_PTR(error);
1692                         }
1693                 }
1694         } else {
1695                 old = inode->i_op->lookup(inode, dentry, flags);
1696                 d_lookup_done(dentry);
1697                 if (unlikely(old)) {
1698                         dput(dentry);
1699                         dentry = old;
1700                 }
1701         }
1702 out:
1703         inode_unlock_shared(inode);
1704         return dentry;
1705 }
1706
1707 static inline int may_lookup(struct nameidata *nd)
1708 {
1709         if (nd->flags & LOOKUP_RCU) {
1710                 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1711                 if (err != -ECHILD)
1712                         return err;
1713                 if (unlazy_walk(nd))
1714                         return -ECHILD;
1715         }
1716         return inode_permission(nd->inode, MAY_EXEC);
1717 }
1718
1719 static inline int handle_dots(struct nameidata *nd, int type)
1720 {
1721         if (type == LAST_DOTDOT) {
1722                 if (!nd->root.mnt)
1723                         set_root(nd);
1724                 if (nd->flags & LOOKUP_RCU) {
1725                         return follow_dotdot_rcu(nd);
1726                 } else
1727                         return follow_dotdot(nd);
1728         }
1729         return 0;
1730 }
1731
1732 static int pick_link(struct nameidata *nd, struct path *link,
1733                      struct inode *inode, unsigned seq)
1734 {
1735         int error;
1736         struct saved *last;
1737         if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1738                 path_to_nameidata(link, nd);
1739                 return -ELOOP;
1740         }
1741         if (!(nd->flags & LOOKUP_RCU)) {
1742                 if (link->mnt == nd->path.mnt)
1743                         mntget(link->mnt);
1744         }
1745         error = nd_alloc_stack(nd);
1746         if (unlikely(error)) {
1747                 if (error == -ECHILD) {
1748                         if (unlikely(!legitimize_path(nd, link, seq))) {
1749                                 drop_links(nd);
1750                                 nd->depth = 0;
1751                                 nd->flags &= ~LOOKUP_RCU;
1752                                 nd->path.mnt = NULL;
1753                                 nd->path.dentry = NULL;
1754                                 if (!(nd->flags & LOOKUP_ROOT))
1755                                         nd->root.mnt = NULL;
1756                                 rcu_read_unlock();
1757                         } else if (likely(unlazy_walk(nd)) == 0)
1758                                 error = nd_alloc_stack(nd);
1759                 }
1760                 if (error) {
1761                         path_put(link);
1762                         return error;
1763                 }
1764         }
1765
1766         last = nd->stack + nd->depth++;
1767         last->link = *link;
1768         clear_delayed_call(&last->done);
1769         nd->link_inode = inode;
1770         last->seq = seq;
1771         return 1;
1772 }
1773
1774 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1775
1776 /*
1777  * Do we need to follow links? We _really_ want to be able
1778  * to do this check without having to look at inode->i_op,
1779  * so we keep a cache of "no, this doesn't need follow_link"
1780  * for the common case.
1781  */
1782 static inline int step_into(struct nameidata *nd, struct path *path,
1783                             int flags, struct inode *inode, unsigned seq)
1784 {
1785         if (!(flags & WALK_MORE) && nd->depth)
1786                 put_link(nd);
1787         if (likely(!d_is_symlink(path->dentry)) ||
1788            !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1789                 /* not a symlink or should not follow */
1790                 path_to_nameidata(path, nd);
1791                 nd->inode = inode;
1792                 nd->seq = seq;
1793                 return 0;
1794         }
1795         /* make sure that d_is_symlink above matches inode */
1796         if (nd->flags & LOOKUP_RCU) {
1797                 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1798                         return -ECHILD;
1799         }
1800         return pick_link(nd, path, inode, seq);
1801 }
1802
1803 static int walk_component(struct nameidata *nd, int flags)
1804 {
1805         struct path path;
1806         struct inode *inode;
1807         unsigned seq;
1808         int err;
1809         /*
1810          * "." and ".." are special - ".." especially so because it has
1811          * to be able to know about the current root directory and
1812          * parent relationships.
1813          */
1814         if (unlikely(nd->last_type != LAST_NORM)) {
1815                 err = handle_dots(nd, nd->last_type);
1816                 if (!(flags & WALK_MORE) && nd->depth)
1817                         put_link(nd);
1818                 return err;
1819         }
1820         err = lookup_fast(nd, &path, &inode, &seq);
1821         if (unlikely(err <= 0)) {
1822                 if (err < 0)
1823                         return err;
1824                 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1825                                           nd->flags);
1826                 if (IS_ERR(path.dentry))
1827                         return PTR_ERR(path.dentry);
1828
1829                 path.mnt = nd->path.mnt;
1830                 err = follow_managed(&path, nd);
1831                 if (unlikely(err < 0))
1832                         return err;
1833
1834                 if (unlikely(d_is_negative(path.dentry))) {
1835                         path_to_nameidata(&path, nd);
1836                         return -ENOENT;
1837                 }
1838
1839                 seq = 0;        /* we are already out of RCU mode */
1840                 inode = d_backing_inode(path.dentry);
1841         }
1842
1843         return step_into(nd, &path, flags, inode, seq);
1844 }
1845
1846 /*
1847  * We can do the critical dentry name comparison and hashing
1848  * operations one word at a time, but we are limited to:
1849  *
1850  * - Architectures with fast unaligned word accesses. We could
1851  *   do a "get_unaligned()" if this helps and is sufficiently
1852  *   fast.
1853  *
1854  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1855  *   do not trap on the (extremely unlikely) case of a page
1856  *   crossing operation.
1857  *
1858  * - Furthermore, we need an efficient 64-bit compile for the
1859  *   64-bit case in order to generate the "number of bytes in
1860  *   the final mask". Again, that could be replaced with a
1861  *   efficient population count instruction or similar.
1862  */
1863 #ifdef CONFIG_DCACHE_WORD_ACCESS
1864
1865 #include <asm/word-at-a-time.h>
1866
1867 #ifdef HASH_MIX
1868
1869 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1870
1871 #elif defined(CONFIG_64BIT)
1872 /*
1873  * Register pressure in the mixing function is an issue, particularly
1874  * on 32-bit x86, but almost any function requires one state value and
1875  * one temporary.  Instead, use a function designed for two state values
1876  * and no temporaries.
1877  *
1878  * This function cannot create a collision in only two iterations, so
1879  * we have two iterations to achieve avalanche.  In those two iterations,
1880  * we have six layers of mixing, which is enough to spread one bit's
1881  * influence out to 2^6 = 64 state bits.
1882  *
1883  * Rotate constants are scored by considering either 64 one-bit input
1884  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1885  * probability of that delta causing a change to each of the 128 output
1886  * bits, using a sample of random initial states.
1887  *
1888  * The Shannon entropy of the computed probabilities is then summed
1889  * to produce a score.  Ideally, any input change has a 50% chance of
1890  * toggling any given output bit.
1891  *
1892  * Mixing scores (in bits) for (12,45):
1893  * Input delta: 1-bit      2-bit
1894  * 1 round:     713.3    42542.6
1895  * 2 rounds:   2753.7   140389.8
1896  * 3 rounds:   5954.1   233458.2
1897  * 4 rounds:   7862.6   256672.2
1898  * Perfect:    8192     258048
1899  *            (64*128) (64*63/2 * 128)
1900  */
1901 #define HASH_MIX(x, y, a)       \
1902         (       x ^= (a),       \
1903         y ^= x, x = rol64(x,12),\
1904         x += y, y = rol64(y,45),\
1905         y *= 9                  )
1906
1907 /*
1908  * Fold two longs into one 32-bit hash value.  This must be fast, but
1909  * latency isn't quite as critical, as there is a fair bit of additional
1910  * work done before the hash value is used.
1911  */
1912 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1913 {
1914         y ^= x * GOLDEN_RATIO_64;
1915         y *= GOLDEN_RATIO_64;
1916         return y >> 32;
1917 }
1918
1919 #else   /* 32-bit case */
1920
1921 /*
1922  * Mixing scores (in bits) for (7,20):
1923  * Input delta: 1-bit      2-bit
1924  * 1 round:     330.3     9201.6
1925  * 2 rounds:   1246.4    25475.4
1926  * 3 rounds:   1907.1    31295.1
1927  * 4 rounds:   2042.3    31718.6
1928  * Perfect:    2048      31744
1929  *            (32*64)   (32*31/2 * 64)
1930  */
1931 #define HASH_MIX(x, y, a)       \
1932         (       x ^= (a),       \
1933         y ^= x, x = rol32(x, 7),\
1934         x += y, y = rol32(y,20),\
1935         y *= 9                  )
1936
1937 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1938 {
1939         /* Use arch-optimized multiply if one exists */
1940         return __hash_32(y ^ __hash_32(x));
1941 }
1942
1943 #endif
1944
1945 /*
1946  * Return the hash of a string of known length.  This is carfully
1947  * designed to match hash_name(), which is the more critical function.
1948  * In particular, we must end by hashing a final word containing 0..7
1949  * payload bytes, to match the way that hash_name() iterates until it
1950  * finds the delimiter after the name.
1951  */
1952 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1953 {
1954         unsigned long a, x = 0, y = (unsigned long)salt;
1955
1956         for (;;) {
1957                 if (!len)
1958                         goto done;
1959                 a = load_unaligned_zeropad(name);
1960                 if (len < sizeof(unsigned long))
1961                         break;
1962                 HASH_MIX(x, y, a);
1963                 name += sizeof(unsigned long);
1964                 len -= sizeof(unsigned long);
1965         }
1966         x ^= a & bytemask_from_count(len);
1967 done:
1968         return fold_hash(x, y);
1969 }
1970 EXPORT_SYMBOL(full_name_hash);
1971
1972 /* Return the "hash_len" (hash and length) of a null-terminated string */
1973 u64 hashlen_string(const void *salt, const char *name)
1974 {
1975         unsigned long a = 0, x = 0, y = (unsigned long)salt;
1976         unsigned long adata, mask, len;
1977         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1978
1979         len = 0;
1980         goto inside;
1981
1982         do {
1983                 HASH_MIX(x, y, a);
1984                 len += sizeof(unsigned long);
1985 inside:
1986                 a = load_unaligned_zeropad(name+len);
1987         } while (!has_zero(a, &adata, &constants));
1988
1989         adata = prep_zero_mask(a, adata, &constants);
1990         mask = create_zero_mask(adata);
1991         x ^= a & zero_bytemask(mask);
1992
1993         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1994 }
1995 EXPORT_SYMBOL(hashlen_string);
1996
1997 /*
1998  * Calculate the length and hash of the path component, and
1999  * return the "hash_len" as the result.
2000  */
2001 static inline u64 hash_name(const void *salt, const char *name)
2002 {
2003         unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2004         unsigned long adata, bdata, mask, len;
2005         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2006
2007         len = 0;
2008         goto inside;
2009
2010         do {
2011                 HASH_MIX(x, y, a);
2012                 len += sizeof(unsigned long);
2013 inside:
2014                 a = load_unaligned_zeropad(name+len);
2015                 b = a ^ REPEAT_BYTE('/');
2016         } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2017
2018         adata = prep_zero_mask(a, adata, &constants);
2019         bdata = prep_zero_mask(b, bdata, &constants);
2020         mask = create_zero_mask(adata | bdata);
2021         x ^= a & zero_bytemask(mask);
2022
2023         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2024 }
2025
2026 #else   /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2027
2028 /* Return the hash of a string of known length */
2029 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2030 {
2031         unsigned long hash = init_name_hash(salt);
2032         while (len--)
2033                 hash = partial_name_hash((unsigned char)*name++, hash);
2034         return end_name_hash(hash);
2035 }
2036 EXPORT_SYMBOL(full_name_hash);
2037
2038 /* Return the "hash_len" (hash and length) of a null-terminated string */
2039 u64 hashlen_string(const void *salt, const char *name)
2040 {
2041         unsigned long hash = init_name_hash(salt);
2042         unsigned long len = 0, c;
2043
2044         c = (unsigned char)*name;
2045         while (c) {
2046                 len++;
2047                 hash = partial_name_hash(c, hash);
2048                 c = (unsigned char)name[len];
2049         }
2050         return hashlen_create(end_name_hash(hash), len);
2051 }
2052 EXPORT_SYMBOL(hashlen_string);
2053
2054 /*
2055  * We know there's a real path component here of at least
2056  * one character.
2057  */
2058 static inline u64 hash_name(const void *salt, const char *name)
2059 {
2060         unsigned long hash = init_name_hash(salt);
2061         unsigned long len = 0, c;
2062
2063         c = (unsigned char)*name;
2064         do {
2065                 len++;
2066                 hash = partial_name_hash(c, hash);
2067                 c = (unsigned char)name[len];
2068         } while (c && c != '/');
2069         return hashlen_create(end_name_hash(hash), len);
2070 }
2071
2072 #endif
2073
2074 /*
2075  * Name resolution.
2076  * This is the basic name resolution function, turning a pathname into
2077  * the final dentry. We expect 'base' to be positive and a directory.
2078  *
2079  * Returns 0 and nd will have valid dentry and mnt on success.
2080  * Returns error and drops reference to input namei data on failure.
2081  */
2082 static int link_path_walk(const char *name, struct nameidata *nd)
2083 {
2084         int err;
2085
2086         while (*name=='/')
2087                 name++;
2088         if (!*name)
2089                 return 0;
2090
2091         /* At this point we know we have a real path component. */
2092         for(;;) {
2093                 u64 hash_len;
2094                 int type;
2095
2096                 err = may_lookup(nd);
2097                 if (err)
2098                         return err;
2099
2100                 hash_len = hash_name(nd->path.dentry, name);
2101
2102                 type = LAST_NORM;
2103                 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2104                         case 2:
2105                                 if (name[1] == '.') {
2106                                         type = LAST_DOTDOT;
2107                                         nd->flags |= LOOKUP_JUMPED;
2108                                 }
2109                                 break;
2110                         case 1:
2111                                 type = LAST_DOT;
2112                 }
2113                 if (likely(type == LAST_NORM)) {
2114                         struct dentry *parent = nd->path.dentry;
2115                         nd->flags &= ~LOOKUP_JUMPED;
2116                         if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2117                                 struct qstr this = { { .hash_len = hash_len }, .name = name };
2118                                 err = parent->d_op->d_hash(parent, &this);
2119                                 if (err < 0)
2120                                         return err;
2121                                 hash_len = this.hash_len;
2122                                 name = this.name;
2123                         }
2124                 }
2125
2126                 nd->last.hash_len = hash_len;
2127                 nd->last.name = name;
2128                 nd->last_type = type;
2129
2130                 name += hashlen_len(hash_len);
2131                 if (!*name)
2132                         goto OK;
2133                 /*
2134                  * If it wasn't NUL, we know it was '/'. Skip that
2135                  * slash, and continue until no more slashes.
2136                  */
2137                 do {
2138                         name++;
2139                 } while (unlikely(*name == '/'));
2140                 if (unlikely(!*name)) {
2141 OK:
2142                         /* pathname body, done */
2143                         if (!nd->depth)
2144                                 return 0;
2145                         name = nd->stack[nd->depth - 1].name;
2146                         /* trailing symlink, done */
2147                         if (!name)
2148                                 return 0;
2149                         /* last component of nested symlink */
2150                         err = walk_component(nd, WALK_FOLLOW);
2151                 } else {
2152                         /* not the last component */
2153                         err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2154                 }
2155                 if (err < 0)
2156                         return err;
2157
2158                 if (err) {
2159                         const char *s = get_link(nd);
2160
2161                         if (IS_ERR(s))
2162                                 return PTR_ERR(s);
2163                         err = 0;
2164                         if (unlikely(!s)) {
2165                                 /* jumped */
2166                                 put_link(nd);
2167                         } else {
2168                                 nd->stack[nd->depth - 1].name = name;
2169                                 name = s;
2170                                 continue;
2171                         }
2172                 }
2173                 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2174                         if (nd->flags & LOOKUP_RCU) {
2175                                 if (unlazy_walk(nd))
2176                                         return -ECHILD;
2177                         }
2178                         return -ENOTDIR;
2179                 }
2180         }
2181 }
2182
2183 static const char *path_init(struct nameidata *nd, unsigned flags)
2184 {
2185         const char *s = nd->name->name;
2186
2187         if (!*s)
2188                 flags &= ~LOOKUP_RCU;
2189
2190         nd->last_type = LAST_ROOT; /* if there are only slashes... */
2191         nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2192         nd->depth = 0;
2193         if (flags & LOOKUP_ROOT) {
2194                 struct dentry *root = nd->root.dentry;
2195                 struct inode *inode = root->d_inode;
2196                 if (*s && unlikely(!d_can_lookup(root)))
2197                         return ERR_PTR(-ENOTDIR);
2198                 nd->path = nd->root;
2199                 nd->inode = inode;
2200                 if (flags & LOOKUP_RCU) {
2201                         rcu_read_lock();
2202                         nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2203                         nd->root_seq = nd->seq;
2204                         nd->m_seq = read_seqbegin(&mount_lock);
2205                 } else {
2206                         path_get(&nd->path);
2207                 }
2208                 return s;
2209         }
2210
2211         nd->root.mnt = NULL;
2212         nd->path.mnt = NULL;
2213         nd->path.dentry = NULL;
2214
2215         nd->m_seq = read_seqbegin(&mount_lock);
2216         if (*s == '/') {
2217                 if (flags & LOOKUP_RCU)
2218                         rcu_read_lock();
2219                 set_root(nd);
2220                 if (likely(!nd_jump_root(nd)))
2221                         return s;
2222                 nd->root.mnt = NULL;
2223                 rcu_read_unlock();
2224                 return ERR_PTR(-ECHILD);
2225         } else if (nd->dfd == AT_FDCWD) {
2226                 if (flags & LOOKUP_RCU) {
2227                         struct fs_struct *fs = current->fs;
2228                         unsigned seq;
2229
2230                         rcu_read_lock();
2231
2232                         do {
2233                                 seq = read_seqcount_begin(&fs->seq);
2234                                 nd->path = fs->pwd;
2235                                 nd->inode = nd->path.dentry->d_inode;
2236                                 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2237                         } while (read_seqcount_retry(&fs->seq, seq));
2238                 } else {
2239                         get_fs_pwd(current->fs, &nd->path);
2240                         nd->inode = nd->path.dentry->d_inode;
2241                 }
2242                 return s;
2243         } else {
2244                 /* Caller must check execute permissions on the starting path component */
2245                 struct fd f = fdget_raw(nd->dfd);
2246                 struct dentry *dentry;
2247
2248                 if (!f.file)
2249                         return ERR_PTR(-EBADF);
2250
2251                 dentry = f.file->f_path.dentry;
2252
2253                 if (*s) {
2254                         if (!d_can_lookup(dentry)) {
2255                                 fdput(f);
2256                                 return ERR_PTR(-ENOTDIR);
2257                         }
2258                 }
2259
2260                 nd->path = f.file->f_path;
2261                 if (flags & LOOKUP_RCU) {
2262                         rcu_read_lock();
2263                         nd->inode = nd->path.dentry->d_inode;
2264                         nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2265                 } else {
2266                         path_get(&nd->path);
2267                         nd->inode = nd->path.dentry->d_inode;
2268                 }
2269                 fdput(f);
2270                 return s;
2271         }
2272 }
2273
2274 static const char *trailing_symlink(struct nameidata *nd)
2275 {
2276         const char *s;
2277         int error = may_follow_link(nd);
2278         if (unlikely(error))
2279                 return ERR_PTR(error);
2280         nd->flags |= LOOKUP_PARENT;
2281         nd->stack[0].name = NULL;
2282         s = get_link(nd);
2283         return s ? s : "";
2284 }
2285
2286 static inline int lookup_last(struct nameidata *nd)
2287 {
2288         if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2289                 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2290
2291         nd->flags &= ~LOOKUP_PARENT;
2292         return walk_component(nd, 0);
2293 }
2294
2295 static int handle_lookup_down(struct nameidata *nd)
2296 {
2297         struct path path = nd->path;
2298         struct inode *inode = nd->inode;
2299         unsigned seq = nd->seq;
2300         int err;
2301
2302         if (nd->flags & LOOKUP_RCU) {
2303                 /*
2304                  * don't bother with unlazy_walk on failure - we are
2305                  * at the very beginning of walk, so we lose nothing
2306                  * if we simply redo everything in non-RCU mode
2307                  */
2308                 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2309                         return -ECHILD;
2310         } else {
2311                 dget(path.dentry);
2312                 err = follow_managed(&path, nd);
2313                 if (unlikely(err < 0))
2314                         return err;
2315                 inode = d_backing_inode(path.dentry);
2316                 seq = 0;
2317         }
2318         path_to_nameidata(&path, nd);
2319         nd->inode = inode;
2320         nd->seq = seq;
2321         return 0;
2322 }
2323
2324 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2325 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2326 {
2327         const char *s = path_init(nd, flags);
2328         int err;
2329
2330         if (IS_ERR(s))
2331                 return PTR_ERR(s);
2332
2333         if (unlikely(flags & LOOKUP_DOWN)) {
2334                 err = handle_lookup_down(nd);
2335                 if (unlikely(err < 0)) {
2336                         terminate_walk(nd);
2337                         return err;
2338                 }
2339         }
2340
2341         while (!(err = link_path_walk(s, nd))
2342                 && ((err = lookup_last(nd)) > 0)) {
2343                 s = trailing_symlink(nd);
2344                 if (IS_ERR(s)) {
2345                         err = PTR_ERR(s);
2346                         break;
2347                 }
2348         }
2349         if (!err)
2350                 err = complete_walk(nd);
2351
2352         if (!err && nd->flags & LOOKUP_DIRECTORY)
2353                 if (!d_can_lookup(nd->path.dentry))
2354                         err = -ENOTDIR;
2355         if (!err) {
2356                 *path = nd->path;
2357                 nd->path.mnt = NULL;
2358                 nd->path.dentry = NULL;
2359         }
2360         terminate_walk(nd);
2361         return err;
2362 }
2363
2364 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2365                            struct path *path, struct path *root)
2366 {
2367         int retval;
2368         struct nameidata nd;
2369         if (IS_ERR(name))
2370                 return PTR_ERR(name);
2371         if (unlikely(root)) {
2372                 nd.root = *root;
2373                 flags |= LOOKUP_ROOT;
2374         }
2375         set_nameidata(&nd, dfd, name);
2376         retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2377         if (unlikely(retval == -ECHILD))
2378                 retval = path_lookupat(&nd, flags, path);
2379         if (unlikely(retval == -ESTALE))
2380                 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2381
2382         if (likely(!retval))
2383                 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2384         restore_nameidata();
2385         putname(name);
2386         return retval;
2387 }
2388
2389 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2390 static int path_parentat(struct nameidata *nd, unsigned flags,
2391                                 struct path *parent)
2392 {
2393         const char *s = path_init(nd, flags);
2394         int err;
2395         if (IS_ERR(s))
2396                 return PTR_ERR(s);
2397         err = link_path_walk(s, nd);
2398         if (!err)
2399                 err = complete_walk(nd);
2400         if (!err) {
2401                 *parent = nd->path;
2402                 nd->path.mnt = NULL;
2403                 nd->path.dentry = NULL;
2404         }
2405         terminate_walk(nd);
2406         return err;
2407 }
2408
2409 static struct filename *filename_parentat(int dfd, struct filename *name,
2410                                 unsigned int flags, struct path *parent,
2411                                 struct qstr *last, int *type)
2412 {
2413         int retval;
2414         struct nameidata nd;
2415
2416         if (IS_ERR(name))
2417                 return name;
2418         set_nameidata(&nd, dfd, name);
2419         retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2420         if (unlikely(retval == -ECHILD))
2421                 retval = path_parentat(&nd, flags, parent);
2422         if (unlikely(retval == -ESTALE))
2423                 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2424         if (likely(!retval)) {
2425                 *last = nd.last;
2426                 *type = nd.last_type;
2427                 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2428         } else {
2429                 putname(name);
2430                 name = ERR_PTR(retval);
2431         }
2432         restore_nameidata();
2433         return name;
2434 }
2435
2436 /* does lookup, returns the object with parent locked */
2437 struct dentry *kern_path_locked(const char *name, struct path *path)
2438 {
2439         struct filename *filename;
2440         struct dentry *d;
2441         struct qstr last;
2442         int type;
2443
2444         filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2445                                     &last, &type);
2446         if (IS_ERR(filename))
2447                 return ERR_CAST(filename);
2448         if (unlikely(type != LAST_NORM)) {
2449                 path_put(path);
2450                 putname(filename);
2451                 return ERR_PTR(-EINVAL);
2452         }
2453         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2454         d = __lookup_hash(&last, path->dentry, 0);
2455         if (IS_ERR(d)) {
2456                 inode_unlock(path->dentry->d_inode);
2457                 path_put(path);
2458         }
2459         putname(filename);
2460         return d;
2461 }
2462
2463 int kern_path(const char *name, unsigned int flags, struct path *path)
2464 {
2465         return filename_lookup(AT_FDCWD, getname_kernel(name),
2466                                flags, path, NULL);
2467 }
2468 EXPORT_SYMBOL(kern_path);
2469
2470 /**
2471  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2472  * @dentry:  pointer to dentry of the base directory
2473  * @mnt: pointer to vfs mount of the base directory
2474  * @name: pointer to file name
2475  * @flags: lookup flags
2476  * @path: pointer to struct path to fill
2477  */
2478 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2479                     const char *name, unsigned int flags,
2480                     struct path *path)
2481 {
2482         struct path root = {.mnt = mnt, .dentry = dentry};
2483         /* the first argument of filename_lookup() is ignored with root */
2484         return filename_lookup(AT_FDCWD, getname_kernel(name),
2485                                flags , path, &root);
2486 }
2487 EXPORT_SYMBOL(vfs_path_lookup);
2488
2489 /**
2490  * lookup_one_len - filesystem helper to lookup single pathname component
2491  * @name:       pathname component to lookup
2492  * @base:       base directory to lookup from
2493  * @len:        maximum length @len should be interpreted to
2494  *
2495  * Note that this routine is purely a helper for filesystem usage and should
2496  * not be called by generic code.
2497  *
2498  * The caller must hold base->i_mutex.
2499  */
2500 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2501 {
2502         struct qstr this;
2503         unsigned int c;
2504         int err;
2505
2506         WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2507
2508         this.name = name;
2509         this.len = len;
2510         this.hash = full_name_hash(base, name, len);
2511         if (!len)
2512                 return ERR_PTR(-EACCES);
2513
2514         if (unlikely(name[0] == '.')) {
2515                 if (len < 2 || (len == 2 && name[1] == '.'))
2516                         return ERR_PTR(-EACCES);
2517         }
2518
2519         while (len--) {
2520                 c = *(const unsigned char *)name++;
2521                 if (c == '/' || c == '\0')
2522                         return ERR_PTR(-EACCES);
2523         }
2524         /*
2525          * See if the low-level filesystem might want
2526          * to use its own hash..
2527          */
2528         if (base->d_flags & DCACHE_OP_HASH) {
2529                 int err = base->d_op->d_hash(base, &this);
2530                 if (err < 0)
2531                         return ERR_PTR(err);
2532         }
2533
2534         err = inode_permission(base->d_inode, MAY_EXEC);
2535         if (err)
2536                 return ERR_PTR(err);
2537
2538         return __lookup_hash(&this, base, 0);
2539 }
2540 EXPORT_SYMBOL(lookup_one_len);
2541
2542 /**
2543  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2544  * @name:       pathname component to lookup
2545  * @base:       base directory to lookup from
2546  * @len:        maximum length @len should be interpreted to
2547  *
2548  * Note that this routine is purely a helper for filesystem usage and should
2549  * not be called by generic code.
2550  *
2551  * Unlike lookup_one_len, it should be called without the parent
2552  * i_mutex held, and will take the i_mutex itself if necessary.
2553  */
2554 struct dentry *lookup_one_len_unlocked(const char *name,
2555                                        struct dentry *base, int len)
2556 {
2557         struct qstr this;
2558         unsigned int c;
2559         int err;
2560         struct dentry *ret;
2561
2562         this.name = name;
2563         this.len = len;
2564         this.hash = full_name_hash(base, name, len);
2565         if (!len)
2566                 return ERR_PTR(-EACCES);
2567
2568         if (unlikely(name[0] == '.')) {
2569                 if (len < 2 || (len == 2 && name[1] == '.'))
2570                         return ERR_PTR(-EACCES);
2571         }
2572
2573         while (len--) {
2574                 c = *(const unsigned char *)name++;
2575                 if (c == '/' || c == '\0')
2576                         return ERR_PTR(-EACCES);
2577         }
2578         /*
2579          * See if the low-level filesystem might want
2580          * to use its own hash..
2581          */
2582         if (base->d_flags & DCACHE_OP_HASH) {
2583                 int err = base->d_op->d_hash(base, &this);
2584                 if (err < 0)
2585                         return ERR_PTR(err);
2586         }
2587
2588         err = inode_permission(base->d_inode, MAY_EXEC);
2589         if (err)
2590                 return ERR_PTR(err);
2591
2592         ret = lookup_dcache(&this, base, 0);
2593         if (!ret)
2594                 ret = lookup_slow(&this, base, 0);
2595         return ret;
2596 }
2597 EXPORT_SYMBOL(lookup_one_len_unlocked);
2598
2599 #ifdef CONFIG_UNIX98_PTYS
2600 int path_pts(struct path *path)
2601 {
2602         /* Find something mounted on "pts" in the same directory as
2603          * the input path.
2604          */
2605         struct dentry *child, *parent;
2606         struct qstr this;
2607         int ret;
2608
2609         ret = path_parent_directory(path);
2610         if (ret)
2611                 return ret;
2612
2613         parent = path->dentry;
2614         this.name = "pts";
2615         this.len = 3;
2616         child = d_hash_and_lookup(parent, &this);
2617         if (!child)
2618                 return -ENOENT;
2619
2620         path->dentry = child;
2621         dput(parent);
2622         follow_mount(path);
2623         return 0;
2624 }
2625 #endif
2626
2627 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2628                  struct path *path, int *empty)
2629 {
2630         return filename_lookup(dfd, getname_flags(name, flags, empty),
2631                                flags, path, NULL);
2632 }
2633 EXPORT_SYMBOL(user_path_at_empty);
2634
2635 /**
2636  * mountpoint_last - look up last component for umount
2637  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2638  *
2639  * This is a special lookup_last function just for umount. In this case, we
2640  * need to resolve the path without doing any revalidation.
2641  *
2642  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2643  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2644  * in almost all cases, this lookup will be served out of the dcache. The only
2645  * cases where it won't are if nd->last refers to a symlink or the path is
2646  * bogus and it doesn't exist.
2647  *
2648  * Returns:
2649  * -error: if there was an error during lookup. This includes -ENOENT if the
2650  *         lookup found a negative dentry.
2651  *
2652  * 0:      if we successfully resolved nd->last and found it to not to be a
2653  *         symlink that needs to be followed.
2654  *
2655  * 1:      if we successfully resolved nd->last and found it to be a symlink
2656  *         that needs to be followed.
2657  */
2658 static int
2659 mountpoint_last(struct nameidata *nd)
2660 {
2661         int error = 0;
2662         struct dentry *dir = nd->path.dentry;
2663         struct path path;
2664
2665         /* If we're in rcuwalk, drop out of it to handle last component */
2666         if (nd->flags & LOOKUP_RCU) {
2667                 if (unlazy_walk(nd))
2668                         return -ECHILD;
2669         }
2670
2671         nd->flags &= ~LOOKUP_PARENT;
2672
2673         if (unlikely(nd->last_type != LAST_NORM)) {
2674                 error = handle_dots(nd, nd->last_type);
2675                 if (error)
2676                         return error;
2677                 path.dentry = dget(nd->path.dentry);
2678         } else {
2679                 path.dentry = d_lookup(dir, &nd->last);
2680                 if (!path.dentry) {
2681                         /*
2682                          * No cached dentry. Mounted dentries are pinned in the
2683                          * cache, so that means that this dentry is probably
2684                          * a symlink or the path doesn't actually point
2685                          * to a mounted dentry.
2686                          */
2687                         path.dentry = lookup_slow(&nd->last, dir,
2688                                              nd->flags | LOOKUP_NO_REVAL);
2689                         if (IS_ERR(path.dentry))
2690                                 return PTR_ERR(path.dentry);
2691                 }
2692         }
2693         if (d_is_negative(path.dentry)) {
2694                 dput(path.dentry);
2695                 return -ENOENT;
2696         }
2697         path.mnt = nd->path.mnt;
2698         return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2699 }
2700
2701 /**
2702  * path_mountpoint - look up a path to be umounted
2703  * @nd:         lookup context
2704  * @flags:      lookup flags
2705  * @path:       pointer to container for result
2706  *
2707  * Look up the given name, but don't attempt to revalidate the last component.
2708  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2709  */
2710 static int
2711 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2712 {
2713         const char *s = path_init(nd, flags);
2714         int err;
2715         if (IS_ERR(s))
2716                 return PTR_ERR(s);
2717         while (!(err = link_path_walk(s, nd)) &&
2718                 (err = mountpoint_last(nd)) > 0) {
2719                 s = trailing_symlink(nd);
2720                 if (IS_ERR(s)) {
2721                         err = PTR_ERR(s);
2722                         break;
2723                 }
2724         }
2725         if (!err) {
2726                 *path = nd->path;
2727                 nd->path.mnt = NULL;
2728                 nd->path.dentry = NULL;
2729                 follow_mount(path);
2730         }
2731         terminate_walk(nd);
2732         return err;
2733 }
2734
2735 static int
2736 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2737                         unsigned int flags)
2738 {
2739         struct nameidata nd;
2740         int error;
2741         if (IS_ERR(name))
2742                 return PTR_ERR(name);
2743         set_nameidata(&nd, dfd, name);
2744         error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2745         if (unlikely(error == -ECHILD))
2746                 error = path_mountpoint(&nd, flags, path);
2747         if (unlikely(error == -ESTALE))
2748                 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2749         if (likely(!error))
2750                 audit_inode(name, path->dentry, 0);
2751         restore_nameidata();
2752         putname(name);
2753         return error;
2754 }
2755
2756 /**
2757  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2758  * @dfd:        directory file descriptor
2759  * @name:       pathname from userland
2760  * @flags:      lookup flags
2761  * @path:       pointer to container to hold result
2762  *
2763  * A umount is a special case for path walking. We're not actually interested
2764  * in the inode in this situation, and ESTALE errors can be a problem. We
2765  * simply want track down the dentry and vfsmount attached at the mountpoint
2766  * and avoid revalidating the last component.
2767  *
2768  * Returns 0 and populates "path" on success.
2769  */
2770 int
2771 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2772                         struct path *path)
2773 {
2774         return filename_mountpoint(dfd, getname(name), path, flags);
2775 }
2776
2777 int
2778 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2779                         unsigned int flags)
2780 {
2781         return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2782 }
2783 EXPORT_SYMBOL(kern_path_mountpoint);
2784
2785 int __check_sticky(struct inode *dir, struct inode *inode)
2786 {
2787         kuid_t fsuid = current_fsuid();
2788
2789         if (uid_eq(inode->i_uid, fsuid))
2790                 return 0;
2791         if (uid_eq(dir->i_uid, fsuid))
2792                 return 0;
2793         return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2794 }
2795 EXPORT_SYMBOL(__check_sticky);
2796
2797 /*
2798  *      Check whether we can remove a link victim from directory dir, check
2799  *  whether the type of victim is right.
2800  *  1. We can't do it if dir is read-only (done in permission())
2801  *  2. We should have write and exec permissions on dir
2802  *  3. We can't remove anything from append-only dir
2803  *  4. We can't do anything with immutable dir (done in permission())
2804  *  5. If the sticky bit on dir is set we should either
2805  *      a. be owner of dir, or
2806  *      b. be owner of victim, or
2807  *      c. have CAP_FOWNER capability
2808  *  6. If the victim is append-only or immutable we can't do antyhing with
2809  *     links pointing to it.
2810  *  7. If the victim has an unknown uid or gid we can't change the inode.
2811  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2812  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2813  * 10. We can't remove a root or mountpoint.
2814  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2815  *     nfs_async_unlink().
2816  */
2817 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2818 {
2819         struct inode *inode = d_backing_inode(victim);
2820         int error;
2821
2822         if (d_is_negative(victim))
2823                 return -ENOENT;
2824         BUG_ON(!inode);
2825
2826         BUG_ON(victim->d_parent->d_inode != dir);
2827         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2828
2829         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2830         if (error)
2831                 return error;
2832         if (IS_APPEND(dir))
2833                 return -EPERM;
2834
2835         if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2836             IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2837                 return -EPERM;
2838         if (isdir) {
2839                 if (!d_is_dir(victim))
2840                         return -ENOTDIR;
2841                 if (IS_ROOT(victim))
2842                         return -EBUSY;
2843         } else if (d_is_dir(victim))
2844                 return -EISDIR;
2845         if (IS_DEADDIR(dir))
2846                 return -ENOENT;
2847         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2848                 return -EBUSY;
2849         return 0;
2850 }
2851
2852 /*      Check whether we can create an object with dentry child in directory
2853  *  dir.
2854  *  1. We can't do it if child already exists (open has special treatment for
2855  *     this case, but since we are inlined it's OK)
2856  *  2. We can't do it if dir is read-only (done in permission())
2857  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2858  *  4. We should have write and exec permissions on dir
2859  *  5. We can't do it if dir is immutable (done in permission())
2860  */
2861 static inline int may_create(struct inode *dir, struct dentry *child)
2862 {
2863         struct user_namespace *s_user_ns;
2864         audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2865         if (child->d_inode)
2866                 return -EEXIST;
2867         if (IS_DEADDIR(dir))
2868                 return -ENOENT;
2869         s_user_ns = dir->i_sb->s_user_ns;
2870         if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2871             !kgid_has_mapping(s_user_ns, current_fsgid()))
2872                 return -EOVERFLOW;
2873         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2874 }
2875
2876 /*
2877  * p1 and p2 should be directories on the same fs.
2878  */
2879 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2880 {
2881         struct dentry *p;
2882
2883         if (p1 == p2) {
2884                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2885                 return NULL;
2886         }
2887
2888         mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2889
2890         p = d_ancestor(p2, p1);
2891         if (p) {
2892                 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2893                 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2894                 return p;
2895         }
2896
2897         p = d_ancestor(p1, p2);
2898         if (p) {
2899                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2900                 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2901                 return p;
2902         }
2903
2904         inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2905         inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2906         return NULL;
2907 }
2908 EXPORT_SYMBOL(lock_rename);
2909
2910 void unlock_rename(struct dentry *p1, struct dentry *p2)
2911 {
2912         inode_unlock(p1->d_inode);
2913         if (p1 != p2) {
2914                 inode_unlock(p2->d_inode);
2915                 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2916         }
2917 }
2918 EXPORT_SYMBOL(unlock_rename);
2919
2920 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2921                 bool want_excl)
2922 {
2923         int error = may_create(dir, dentry);
2924         if (error)
2925                 return error;
2926
2927         if (!dir->i_op->create)
2928                 return -EACCES; /* shouldn't it be ENOSYS? */
2929         mode &= S_IALLUGO;
2930         mode |= S_IFREG;
2931         error = security_inode_create(dir, dentry, mode);
2932         if (error)
2933                 return error;
2934         error = dir->i_op->create(dir, dentry, mode, want_excl);
2935         if (!error)
2936                 fsnotify_create(dir, dentry);
2937         return error;
2938 }
2939 EXPORT_SYMBOL(vfs_create);
2940
2941 bool may_open_dev(const struct path *path)
2942 {
2943         return !(path->mnt->mnt_flags & MNT_NODEV) &&
2944                 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2945 }
2946
2947 static int may_open(const struct path *path, int acc_mode, int flag)
2948 {
2949         struct dentry *dentry = path->dentry;
2950         struct inode *inode = dentry->d_inode;
2951         int error;
2952
2953         if (!inode)
2954                 return -ENOENT;
2955
2956         switch (inode->i_mode & S_IFMT) {
2957         case S_IFLNK:
2958                 return -ELOOP;
2959         case S_IFDIR:
2960                 if (acc_mode & MAY_WRITE)
2961                         return -EISDIR;
2962                 break;
2963         case S_IFBLK:
2964         case S_IFCHR:
2965                 if (!may_open_dev(path))
2966                         return -EACCES;
2967                 /*FALLTHRU*/
2968         case S_IFIFO:
2969         case S_IFSOCK:
2970                 flag &= ~O_TRUNC;
2971                 break;
2972         }
2973
2974         error = inode_permission(inode, MAY_OPEN | acc_mode);
2975         if (error)
2976                 return error;
2977
2978         /*
2979          * An append-only file must be opened in append mode for writing.
2980          */
2981         if (IS_APPEND(inode)) {
2982                 if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2983                         return -EPERM;
2984                 if (flag & O_TRUNC)
2985                         return -EPERM;
2986         }
2987
2988         /* O_NOATIME can only be set by the owner or superuser */
2989         if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2990                 return -EPERM;
2991
2992         return 0;
2993 }
2994
2995 static int handle_truncate(struct file *filp)
2996 {
2997         const struct path *path = &filp->f_path;
2998         struct inode *inode = path->dentry->d_inode;
2999         int error = get_write_access(inode);
3000         if (error)
3001                 return error;
3002         /*
3003          * Refuse to truncate files with mandatory locks held on them.
3004          */
3005         error = locks_verify_locked(filp);
3006         if (!error)
3007                 error = security_path_truncate(path);
3008         if (!error) {
3009                 error = do_truncate(path->dentry, 0,
3010                                     ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3011                                     filp);
3012         }
3013         put_write_access(inode);
3014         return error;
3015 }
3016
3017 static inline int open_to_namei_flags(int flag)
3018 {
3019         if ((flag & O_ACCMODE) == 3)
3020                 flag--;
3021         return flag;
3022 }
3023
3024 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3025 {
3026         struct user_namespace *s_user_ns;
3027         int error = security_path_mknod(dir, dentry, mode, 0);
3028         if (error)
3029                 return error;
3030
3031         s_user_ns = dir->dentry->d_sb->s_user_ns;
3032         if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3033             !kgid_has_mapping(s_user_ns, current_fsgid()))
3034                 return -EOVERFLOW;
3035
3036         error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3037         if (error)
3038                 return error;
3039
3040         return security_inode_create(dir->dentry->d_inode, dentry, mode);
3041 }
3042
3043 /*
3044  * Attempt to atomically look up, create and open a file from a negative
3045  * dentry.
3046  *
3047  * Returns 0 if successful.  The file will have been created and attached to
3048  * @file by the filesystem calling finish_open().
3049  *
3050  * Returns 1 if the file was looked up only or didn't need creating.  The
3051  * caller will need to perform the open themselves.  @path will have been
3052  * updated to point to the new dentry.  This may be negative.
3053  *
3054  * Returns an error code otherwise.
3055  */
3056 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3057                         struct path *path, struct file *file,
3058                         const struct open_flags *op,
3059                         int open_flag, umode_t mode,
3060                         int *opened)
3061 {
3062         struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3063         struct inode *dir =  nd->path.dentry->d_inode;
3064         int error;
3065
3066         if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3067                 open_flag &= ~O_TRUNC;
3068
3069         if (nd->flags & LOOKUP_DIRECTORY)
3070                 open_flag |= O_DIRECTORY;
3071
3072         file->f_path.dentry = DENTRY_NOT_SET;
3073         file->f_path.mnt = nd->path.mnt;
3074         error = dir->i_op->atomic_open(dir, dentry, file,
3075                                        open_to_namei_flags(open_flag),
3076                                        mode, opened);
3077         d_lookup_done(dentry);
3078         if (!error) {
3079                 /*
3080                  * We didn't have the inode before the open, so check open
3081                  * permission here.
3082                  */
3083                 int acc_mode = op->acc_mode;
3084                 if (*opened & FILE_CREATED) {
3085                         WARN_ON(!(open_flag & O_CREAT));
3086                         fsnotify_create(dir, dentry);
3087                         acc_mode = 0;
3088                 }
3089                 error = may_open(&file->f_path, acc_mode, open_flag);
3090                 if (WARN_ON(error > 0))
3091                         error = -EINVAL;
3092         } else if (error > 0) {
3093                 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3094                         error = -EIO;
3095                 } else {
3096                         if (file->f_path.dentry) {
3097                                 dput(dentry);
3098                                 dentry = file->f_path.dentry;
3099                         }
3100                         if (*opened & FILE_CREATED)
3101                                 fsnotify_create(dir, dentry);
3102                         if (unlikely(d_is_negative(dentry))) {
3103                                 error = -ENOENT;
3104                         } else {
3105                                 path->dentry = dentry;
3106                                 path->mnt = nd->path.mnt;
3107                                 return 1;
3108                         }
3109                 }
3110         }
3111         dput(dentry);
3112         return error;
3113 }
3114
3115 /*
3116  * Look up and maybe create and open the last component.
3117  *
3118  * Must be called with i_mutex held on parent.
3119  *
3120  * Returns 0 if the file was successfully atomically created (if necessary) and
3121  * opened.  In this case the file will be returned attached to @file.
3122  *
3123  * Returns 1 if the file was not completely opened at this time, though lookups
3124  * and creations will have been performed and the dentry returned in @path will
3125  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3126  * specified then a negative dentry may be returned.
3127  *
3128  * An error code is returned otherwise.
3129  *
3130  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3131  * cleared otherwise prior to returning.
3132  */
3133 static int lookup_open(struct nameidata *nd, struct path *path,
3134                         struct file *file,
3135                         const struct open_flags *op,
3136                         bool got_write, int *opened)
3137 {
3138         struct dentry *dir = nd->path.dentry;
3139         struct inode *dir_inode = dir->d_inode;
3140         int open_flag = op->open_flag;
3141         struct dentry *dentry;
3142         int error, create_error = 0;
3143         umode_t mode = op->mode;
3144         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3145
3146         if (unlikely(IS_DEADDIR(dir_inode)))
3147                 return -ENOENT;
3148
3149         *opened &= ~FILE_CREATED;
3150         dentry = d_lookup(dir, &nd->last);
3151         for (;;) {
3152                 if (!dentry) {
3153                         dentry = d_alloc_parallel(dir, &nd->last, &wq);
3154                         if (IS_ERR(dentry))
3155                                 return PTR_ERR(dentry);
3156                 }
3157                 if (d_in_lookup(dentry))
3158                         break;
3159
3160                 error = d_revalidate(dentry, nd->flags);
3161                 if (likely(error > 0))
3162                         break;
3163                 if (error)
3164                         goto out_dput;
3165                 d_invalidate(dentry);
3166                 dput(dentry);
3167                 dentry = NULL;
3168         }
3169         if (dentry->d_inode) {
3170                 /* Cached positive dentry: will open in f_op->open */
3171                 goto out_no_open;
3172         }
3173
3174         /*
3175          * Checking write permission is tricky, bacuse we don't know if we are
3176          * going to actually need it: O_CREAT opens should work as long as the
3177          * file exists.  But checking existence breaks atomicity.  The trick is
3178          * to check access and if not granted clear O_CREAT from the flags.
3179          *
3180          * Another problem is returing the "right" error value (e.g. for an
3181          * O_EXCL open we want to return EEXIST not EROFS).
3182          */
3183         if (open_flag & O_CREAT) {
3184                 if (!IS_POSIXACL(dir->d_inode))
3185                         mode &= ~current_umask();
3186                 if (unlikely(!got_write)) {
3187                         create_error = -EROFS;
3188                         open_flag &= ~O_CREAT;
3189                         if (open_flag & (O_EXCL | O_TRUNC))
3190                                 goto no_open;
3191                         /* No side effects, safe to clear O_CREAT */
3192                 } else {
3193                         create_error = may_o_create(&nd->path, dentry, mode);
3194                         if (create_error) {
3195                                 open_flag &= ~O_CREAT;
3196                                 if (open_flag & O_EXCL)
3197                                         goto no_open;
3198                         }
3199                 }
3200         } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3201                    unlikely(!got_write)) {
3202                 /*
3203                  * No O_CREATE -> atomicity not a requirement -> fall
3204                  * back to lookup + open
3205                  */
3206                 goto no_open;
3207         }
3208
3209         if (dir_inode->i_op->atomic_open) {
3210                 error = atomic_open(nd, dentry, path, file, op, open_flag,
3211                                     mode, opened);
3212                 if (unlikely(error == -ENOENT) && create_error)
3213                         error = create_error;
3214                 return error;
3215         }
3216
3217 no_open:
3218         if (d_in_lookup(dentry)) {
3219                 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3220                                                              nd->flags);
3221                 d_lookup_done(dentry);
3222                 if (unlikely(res)) {
3223                         if (IS_ERR(res)) {
3224                                 error = PTR_ERR(res);
3225                                 goto out_dput;
3226                         }
3227                         dput(dentry);
3228                         dentry = res;
3229                 }
3230         }
3231
3232         /* Negative dentry, just create the file */
3233         if (!dentry->d_inode && (open_flag & O_CREAT)) {
3234                 *opened |= FILE_CREATED;
3235                 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3236                 if (!dir_inode->i_op->create) {
3237                         error = -EACCES;
3238                         goto out_dput;
3239                 }
3240                 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3241                                                 open_flag & O_EXCL);
3242                 if (error)
3243                         goto out_dput;
3244                 fsnotify_create(dir_inode, dentry);
3245         }
3246         if (unlikely(create_error) && !dentry->d_inode) {
3247                 error = create_error;
3248                 goto out_dput;
3249         }
3250 out_no_open:
3251         path->dentry = dentry;
3252         path->mnt = nd->path.mnt;
3253         return 1;
3254
3255 out_dput:
3256         dput(dentry);
3257         return error;
3258 }
3259
3260 /*
3261  * Handle the last step of open()
3262  */
3263 static int do_last(struct nameidata *nd,
3264                    struct file *file, const struct open_flags *op,
3265                    int *opened)
3266 {
3267         struct dentry *dir = nd->path.dentry;
3268         int open_flag = op->open_flag;
3269         bool will_truncate = (open_flag & O_TRUNC) != 0;
3270         bool got_write = false;
3271         int acc_mode = op->acc_mode;
3272         unsigned seq;
3273         struct inode *inode;
3274         struct path path;
3275         int error;
3276
3277         nd->flags &= ~LOOKUP_PARENT;
3278         nd->flags |= op->intent;
3279
3280         if (nd->last_type != LAST_NORM) {
3281                 error = handle_dots(nd, nd->last_type);
3282                 if (unlikely(error))
3283                         return error;
3284                 goto finish_open;
3285         }
3286
3287         if (!(open_flag & O_CREAT)) {
3288                 if (nd->last.name[nd->last.len])
3289                         nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3290                 /* we _can_ be in RCU mode here */
3291                 error = lookup_fast(nd, &path, &inode, &seq);
3292                 if (likely(error > 0))
3293                         goto finish_lookup;
3294
3295                 if (error < 0)
3296                         return error;
3297
3298                 BUG_ON(nd->inode != dir->d_inode);
3299                 BUG_ON(nd->flags & LOOKUP_RCU);
3300         } else {
3301                 /* create side of things */
3302                 /*
3303                  * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3304                  * has been cleared when we got to the last component we are
3305                  * about to look up
3306                  */
3307                 error = complete_walk(nd);
3308                 if (error)
3309                         return error;
3310
3311                 audit_inode(nd->name, dir, LOOKUP_PARENT);
3312                 /* trailing slashes? */
3313                 if (unlikely(nd->last.name[nd->last.len]))
3314                         return -EISDIR;
3315         }
3316
3317         if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3318                 error = mnt_want_write(nd->path.mnt);
3319                 if (!error)
3320                         got_write = true;
3321                 /*
3322                  * do _not_ fail yet - we might not need that or fail with
3323                  * a different error; let lookup_open() decide; we'll be
3324                  * dropping this one anyway.
3325                  */
3326         }
3327         if (open_flag & O_CREAT)
3328                 inode_lock(dir->d_inode);
3329         else
3330                 inode_lock_shared(dir->d_inode);
3331         error = lookup_open(nd, &path, file, op, got_write, opened);
3332         if (open_flag & O_CREAT)
3333                 inode_unlock(dir->d_inode);
3334         else
3335                 inode_unlock_shared(dir->d_inode);
3336
3337         if (error <= 0) {
3338                 if (error)
3339                         goto out;
3340
3341                 if ((*opened & FILE_CREATED) ||
3342                     !S_ISREG(file_inode(file)->i_mode))
3343                         will_truncate = false;
3344
3345                 audit_inode(nd->name, file->f_path.dentry, 0);
3346                 goto opened;
3347         }
3348
3349         if (*opened & FILE_CREATED) {
3350                 /* Don't check for write permission, don't truncate */
3351                 open_flag &= ~O_TRUNC;
3352                 will_truncate = false;
3353                 acc_mode = 0;
3354                 path_to_nameidata(&path, nd);
3355                 goto finish_open_created;
3356         }
3357
3358         /*
3359          * If atomic_open() acquired write access it is dropped now due to
3360          * possible mount and symlink following (this might be optimized away if
3361          * necessary...)
3362          */
3363         if (got_write) {
3364                 mnt_drop_write(nd->path.mnt);
3365                 got_write = false;
3366         }
3367
3368         error = follow_managed(&path, nd);
3369         if (unlikely(error < 0))
3370                 return error;
3371
3372         if (unlikely(d_is_negative(path.dentry))) {
3373                 path_to_nameidata(&path, nd);
3374                 return -ENOENT;
3375         }
3376
3377         /*
3378          * create/update audit record if it already exists.
3379          */
3380         audit_inode(nd->name, path.dentry, 0);
3381
3382         if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3383                 path_to_nameidata(&path, nd);
3384                 return -EEXIST;
3385         }
3386
3387         seq = 0;        /* out of RCU mode, so the value doesn't matter */
3388         inode = d_backing_inode(path.dentry);
3389 finish_lookup:
3390         error = step_into(nd, &path, 0, inode, seq);
3391         if (unlikely(error))
3392                 return error;
3393 finish_open:
3394         /* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3395         error = complete_walk(nd);
3396         if (error)
3397                 return error;
3398         audit_inode(nd->name, nd->path.dentry, 0);
3399         if (open_flag & O_CREAT) {
3400                 error = -EISDIR;
3401                 if (d_is_dir(nd->path.dentry))
3402                         goto out;
3403                 error = may_create_in_sticky(dir,
3404                                              d_backing_inode(nd->path.dentry));
3405                 if (unlikely(error))
3406                         goto out;
3407         }
3408         error = -ENOTDIR;
3409         if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3410                 goto out;
3411         if (!d_is_reg(nd->path.dentry))
3412                 will_truncate = false;
3413
3414         if (will_truncate) {
3415                 error = mnt_want_write(nd->path.mnt);
3416                 if (error)
3417                         goto out;
3418                 got_write = true;
3419         }
3420 finish_open_created:
3421         error = may_open(&nd->path, acc_mode, open_flag);
3422         if (error)
3423                 goto out;
3424         BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3425         error = vfs_open(&nd->path, file, current_cred());
3426         if (error)
3427                 goto out;
3428         *opened |= FILE_OPENED;
3429 opened:
3430         error = open_check_o_direct(file);
3431         if (!error)
3432                 error = ima_file_check(file, op->acc_mode, *opened);
3433         if (!error && will_truncate)
3434                 error = handle_truncate(file);
3435 out:
3436         if (unlikely(error) && (*opened & FILE_OPENED))
3437                 fput(file);
3438         if (unlikely(error > 0)) {
3439                 WARN_ON(1);
3440                 error = -EINVAL;
3441         }
3442         if (got_write)
3443                 mnt_drop_write(nd->path.mnt);
3444         return error;
3445 }
3446
3447 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3448 {
3449         struct dentry *child = NULL;
3450         struct inode *dir = dentry->d_inode;
3451         struct inode *inode;
3452         int error;
3453
3454         /* we want directory to be writable */
3455         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3456         if (error)
3457                 goto out_err;
3458         error = -EOPNOTSUPP;
3459         if (!dir->i_op->tmpfile)
3460                 goto out_err;
3461         error = -ENOMEM;
3462         child = d_alloc(dentry, &slash_name);
3463         if (unlikely(!child))
3464                 goto out_err;
3465         error = dir->i_op->tmpfile(dir, child, mode);
3466         if (error)
3467                 goto out_err;
3468         error = -ENOENT;
3469         inode = child->d_inode;
3470         if (unlikely(!inode))
3471                 goto out_err;
3472         if (!(open_flag & O_EXCL)) {
3473                 spin_lock(&inode->i_lock);
3474                 inode->i_state |= I_LINKABLE;
3475                 spin_unlock(&inode->i_lock);
3476         }
3477         return child;
3478
3479 out_err:
3480         dput(child);
3481         return ERR_PTR(error);
3482 }
3483 EXPORT_SYMBOL(vfs_tmpfile);
3484
3485 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3486                 const struct open_flags *op,
3487                 struct file *file, int *opened)
3488 {
3489         struct dentry *child;
3490         struct path path;
3491         int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3492         if (unlikely(error))
3493                 return error;
3494         error = mnt_want_write(path.mnt);
3495         if (unlikely(error))
3496                 goto out;
3497         child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3498         error = PTR_ERR(child);
3499         if (unlikely(IS_ERR(child)))
3500                 goto out2;
3501         dput(path.dentry);
3502         path.dentry = child;
3503         audit_inode(nd->name, child, 0);
3504         /* Don't check for other permissions, the inode was just created */
3505         error = may_open(&path, 0, op->open_flag);
3506         if (error)
3507                 goto out2;
3508         file->f_path.mnt = path.mnt;
3509         error = finish_open(file, child, NULL, opened);
3510         if (error)
3511                 goto out2;
3512         error = open_check_o_direct(file);
3513         if (error)
3514                 fput(file);
3515 out2:
3516         mnt_drop_write(path.mnt);
3517 out:
3518         path_put(&path);
3519         return error;
3520 }
3521
3522 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3523 {
3524         struct path path;
3525         int error = path_lookupat(nd, flags, &path);
3526         if (!error) {
3527                 audit_inode(nd->name, path.dentry, 0);
3528                 error = vfs_open(&path, file, current_cred());
3529                 path_put(&path);
3530         }
3531         return error;
3532 }
3533
3534 static struct file *path_openat(struct nameidata *nd,
3535                         const struct open_flags *op, unsigned flags)
3536 {
3537         const char *s;
3538         struct file *file;
3539         int opened = 0;
3540         int error;
3541
3542         file = get_empty_filp();
3543         if (IS_ERR(file))
3544                 return file;
3545
3546         file->f_flags = op->open_flag;
3547
3548         if (unlikely(file->f_flags & __O_TMPFILE)) {
3549                 error = do_tmpfile(nd, flags, op, file, &opened);
3550                 goto out2;
3551         }
3552
3553         if (unlikely(file->f_flags & O_PATH)) {
3554                 error = do_o_path(nd, flags, file);
3555                 if (!error)
3556                         opened |= FILE_OPENED;
3557                 goto out2;
3558         }
3559
3560         s = path_init(nd, flags);
3561         if (IS_ERR(s)) {
3562                 put_filp(file);
3563                 return ERR_CAST(s);
3564         }
3565         while (!(error = link_path_walk(s, nd)) &&
3566                 (error = do_last(nd, file, op, &opened)) > 0) {
3567                 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3568                 s = trailing_symlink(nd);
3569                 if (IS_ERR(s)) {
3570                         error = PTR_ERR(s);
3571                         break;
3572                 }
3573         }
3574         terminate_walk(nd);
3575 out2:
3576         if (!(opened & FILE_OPENED)) {
3577                 BUG_ON(!error);
3578                 put_filp(file);
3579         }
3580         if (unlikely(error)) {
3581                 if (error == -EOPENSTALE) {
3582                         if (flags & LOOKUP_RCU)
3583                                 error = -ECHILD;
3584                         else
3585                                 error = -ESTALE;
3586                 }
3587                 file = ERR_PTR(error);
3588         }
3589         return file;
3590 }
3591
3592 struct file *do_filp_open(int dfd, struct filename *pathname,
3593                 const struct open_flags *op)
3594 {
3595         struct nameidata nd;
3596         int flags = op->lookup_flags;
3597         struct file *filp;
3598
3599         set_nameidata(&nd, dfd, pathname);
3600         filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3601         if (unlikely(filp == ERR_PTR(-ECHILD)))
3602                 filp = path_openat(&nd, op, flags);
3603         if (unlikely(filp == ERR_PTR(-ESTALE)))
3604                 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3605         restore_nameidata();
3606         return filp;
3607 }
3608
3609 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3610                 const char *name, const struct open_flags *op)
3611 {
3612         struct nameidata nd;
3613         struct file *file;
3614         struct filename *filename;
3615         int flags = op->lookup_flags | LOOKUP_ROOT;
3616
3617         nd.root.mnt = mnt;
3618         nd.root.dentry = dentry;
3619
3620         if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3621                 return ERR_PTR(-ELOOP);
3622
3623         filename = getname_kernel(name);
3624         if (IS_ERR(filename))
3625                 return ERR_CAST(filename);
3626
3627         set_nameidata(&nd, -1, filename);
3628         file = path_openat(&nd, op, flags | LOOKUP_RCU);
3629         if (unlikely(file == ERR_PTR(-ECHILD)))
3630                 file = path_openat(&nd, op, flags);
3631         if (unlikely(file == ERR_PTR(-ESTALE)))
3632                 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3633         restore_nameidata();
3634         putname(filename);
3635         return file;
3636 }
3637
3638 static struct dentry *filename_create(int dfd, struct filename *name,
3639                                 struct path *path, unsigned int lookup_flags)
3640 {
3641         struct dentry *dentry = ERR_PTR(-EEXIST);
3642         struct qstr last;
3643         int type;
3644         int err2;
3645         int error;
3646         bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3647
3648         /*
3649          * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3650          * other flags passed in are ignored!
3651          */
3652         lookup_flags &= LOOKUP_REVAL;
3653
3654         name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3655         if (IS_ERR(name))
3656                 return ERR_CAST(name);
3657
3658         /*
3659          * Yucky last component or no last component at all?
3660          * (foo/., foo/.., /////)
3661          */
3662         if (unlikely(type != LAST_NORM))
3663                 goto out;
3664
3665         /* don't fail immediately if it's r/o, at least try to report other errors */
3666         err2 = mnt_want_write(path->mnt);
3667         /*
3668          * Do the final lookup.
3669          */
3670         lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3671         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3672         dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3673         if (IS_ERR(dentry))
3674                 goto unlock;
3675
3676         error = -EEXIST;
3677         if (d_is_positive(dentry))
3678                 goto fail;
3679
3680         /*
3681          * Special case - lookup gave negative, but... we had foo/bar/
3682          * From the vfs_mknod() POV we just have a negative dentry -
3683          * all is fine. Let's be bastards - you had / on the end, you've
3684          * been asking for (non-existent) directory. -ENOENT for you.
3685          */
3686         if (unlikely(!is_dir && last.name[last.len])) {
3687                 error = -ENOENT;
3688                 goto fail;
3689         }
3690         if (unlikely(err2)) {
3691                 error = err2;
3692                 goto fail;
3693         }
3694         putname(name);
3695         return dentry;
3696 fail:
3697         dput(dentry);
3698         dentry = ERR_PTR(error);
3699 unlock:
3700         inode_unlock(path->dentry->d_inode);
3701         if (!err2)
3702                 mnt_drop_write(path->mnt);
3703 out:
3704         path_put(path);
3705         putname(name);
3706         return dentry;
3707 }
3708
3709 struct dentry *kern_path_create(int dfd, const char *pathname,
3710                                 struct path *path, unsigned int lookup_flags)
3711 {
3712         return filename_create(dfd, getname_kernel(pathname),
3713                                 path, lookup_flags);
3714 }
3715 EXPORT_SYMBOL(kern_path_create);
3716
3717 void done_path_create(struct path *path, struct dentry *dentry)
3718 {
3719         dput(dentry);
3720         inode_unlock(path->dentry->d_inode);
3721         mnt_drop_write(path->mnt);
3722         path_put(path);
3723 }
3724 EXPORT_SYMBOL(done_path_create);
3725
3726 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3727                                 struct path *path, unsigned int lookup_flags)
3728 {
3729         return filename_create(dfd, getname(pathname), path, lookup_flags);
3730 }
3731 EXPORT_SYMBOL(user_path_create);
3732
3733 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3734 {
3735         int error = may_create(dir, dentry);
3736
3737         if (error)
3738                 return error;
3739
3740         if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3741                 return -EPERM;
3742
3743         if (!dir->i_op->mknod)
3744                 return -EPERM;
3745
3746         error = devcgroup_inode_mknod(mode, dev);
3747         if (error)
3748                 return error;
3749
3750         error = security_inode_mknod(dir, dentry, mode, dev);
3751         if (error)
3752                 return error;
3753
3754         error = dir->i_op->mknod(dir, dentry, mode, dev);
3755         if (!error)
3756                 fsnotify_create(dir, dentry);
3757         return error;
3758 }
3759 EXPORT_SYMBOL(vfs_mknod);
3760
3761 static int may_mknod(umode_t mode)
3762 {
3763         switch (mode & S_IFMT) {
3764         case S_IFREG:
3765         case S_IFCHR:
3766         case S_IFBLK:
3767         case S_IFIFO:
3768         case S_IFSOCK:
3769         case 0: /* zero mode translates to S_IFREG */
3770                 return 0;
3771         case S_IFDIR:
3772                 return -EPERM;
3773         default:
3774                 return -EINVAL;
3775         }
3776 }
3777
3778 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3779                 unsigned, dev)
3780 {
3781         struct dentry *dentry;
3782         struct path path;
3783         int error;
3784         unsigned int lookup_flags = 0;
3785
3786         error = may_mknod(mode);
3787         if (error)
3788                 return error;
3789 retry:
3790         dentry = user_path_create(dfd, filename, &path, lookup_flags);
3791         if (IS_ERR(dentry))
3792                 return PTR_ERR(dentry);
3793
3794         if (!IS_POSIXACL(path.dentry->d_inode))
3795                 mode &= ~current_umask();
3796         error = security_path_mknod(&path, dentry, mode, dev);
3797         if (error)
3798                 goto out;
3799         switch (mode & S_IFMT) {
3800                 case 0: case S_IFREG:
3801                         error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3802                         if (!error)
3803                                 ima_post_path_mknod(dentry);
3804                         break;
3805                 case S_IFCHR: case S_IFBLK:
3806                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3807                                         new_decode_dev(dev));
3808                         break;
3809                 case S_IFIFO: case S_IFSOCK:
3810                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3811                         break;
3812         }
3813 out:
3814         done_path_create(&path, dentry);
3815         if (retry_estale(error, lookup_flags)) {
3816                 lookup_flags |= LOOKUP_REVAL;
3817                 goto retry;
3818         }
3819         return error;
3820 }
3821
3822 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3823 {
3824         return sys_mknodat(AT_FDCWD, filename, mode, dev);
3825 }
3826
3827 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3828 {
3829         int error = may_create(dir, dentry);
3830         unsigned max_links = dir->i_sb->s_max_links;
3831
3832         if (error)
3833                 return error;
3834
3835         if (!dir->i_op->mkdir)
3836                 return -EPERM;
3837
3838         mode &= (S_IRWXUGO|S_ISVTX);
3839         error = security_inode_mkdir(dir, dentry, mode);
3840         if (error)
3841                 return error;
3842
3843         if (max_links && dir->i_nlink >= max_links)
3844                 return -EMLINK;
3845
3846         error = dir->i_op->mkdir(dir, dentry, mode);
3847         if (!error)
3848                 fsnotify_mkdir(dir, dentry);
3849         return error;
3850 }
3851 EXPORT_SYMBOL(vfs_mkdir);
3852
3853 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3854 {
3855         struct dentry *dentry;
3856         struct path path;
3857         int error;
3858         unsigned int lookup_flags = LOOKUP_DIRECTORY;
3859
3860 retry:
3861         dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3862         if (IS_ERR(dentry))
3863                 return PTR_ERR(dentry);
3864
3865         if (!IS_POSIXACL(path.dentry->d_inode))
3866                 mode &= ~current_umask();
3867         error = security_path_mkdir(&path, dentry, mode);
3868         if (!error)
3869                 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3870         done_path_create(&path, dentry);
3871         if (retry_estale(error, lookup_flags)) {
3872                 lookup_flags |= LOOKUP_REVAL;
3873                 goto retry;
3874         }
3875         return error;
3876 }
3877
3878 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3879 {
3880         return sys_mkdirat(AT_FDCWD, pathname, mode);
3881 }
3882
3883 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3884 {
3885         int error = may_delete(dir, dentry, 1);
3886
3887         if (error)
3888                 return error;
3889
3890         if (!dir->i_op->rmdir)
3891                 return -EPERM;
3892
3893         dget(dentry);
3894         inode_lock(dentry->d_inode);
3895
3896         error = -EBUSY;
3897         if (is_local_mountpoint(dentry))
3898                 goto out;
3899
3900         error = security_inode_rmdir(dir, dentry);
3901         if (error)
3902                 goto out;
3903
3904         shrink_dcache_parent(dentry);
3905         error = dir->i_op->rmdir(dir, dentry);
3906         if (error)
3907                 goto out;
3908
3909         dentry->d_inode->i_flags |= S_DEAD;
3910         dont_mount(dentry);
3911         detach_mounts(dentry);
3912
3913 out:
3914         inode_unlock(dentry->d_inode);
3915         dput(dentry);
3916         if (!error)
3917                 d_delete(dentry);
3918         return error;
3919 }
3920 EXPORT_SYMBOL(vfs_rmdir);
3921
3922 static long do_rmdir(int dfd, const char __user *pathname)
3923 {
3924         int error = 0;
3925         struct filename *name;
3926         struct dentry *dentry;
3927         struct path path;
3928         struct qstr last;
3929         int type;
3930         unsigned int lookup_flags = 0;
3931 retry:
3932         name = filename_parentat(dfd, getname(pathname), lookup_flags,
3933                                 &path, &last, &type);
3934         if (IS_ERR(name))
3935                 return PTR_ERR(name);
3936
3937         switch (type) {
3938         case LAST_DOTDOT:
3939                 error = -ENOTEMPTY;
3940                 goto exit1;
3941         case LAST_DOT:
3942                 error = -EINVAL;
3943                 goto exit1;
3944         case LAST_ROOT:
3945                 error = -EBUSY;
3946                 goto exit1;
3947         }
3948
3949         error = mnt_want_write(path.mnt);
3950         if (error)
3951                 goto exit1;
3952
3953         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3954         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3955         error = PTR_ERR(dentry);
3956         if (IS_ERR(dentry))
3957                 goto exit2;
3958         if (!dentry->d_inode) {
3959                 error = -ENOENT;
3960                 goto exit3;
3961         }
3962         error = security_path_rmdir(&path, dentry);
3963         if (error)
3964                 goto exit3;
3965         error = vfs_rmdir(path.dentry->d_inode, dentry);
3966 exit3:
3967         dput(dentry);
3968 exit2:
3969         inode_unlock(path.dentry->d_inode);
3970         mnt_drop_write(path.mnt);
3971 exit1:
3972         path_put(&path);
3973         putname(name);
3974         if (retry_estale(error, lookup_flags)) {
3975                 lookup_flags |= LOOKUP_REVAL;
3976                 goto retry;
3977         }
3978         return error;
3979 }
3980
3981 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3982 {
3983         return do_rmdir(AT_FDCWD, pathname);
3984 }
3985
3986 /**
3987  * vfs_unlink - unlink a filesystem object
3988  * @dir:        parent directory
3989  * @dentry:     victim
3990  * @delegated_inode: returns victim inode, if the inode is delegated.
3991  *
3992  * The caller must hold dir->i_mutex.
3993  *
3994  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3995  * return a reference to the inode in delegated_inode.  The caller
3996  * should then break the delegation on that inode and retry.  Because
3997  * breaking a delegation may take a long time, the caller should drop
3998  * dir->i_mutex before doing so.
3999  *
4000  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4001  * be appropriate for callers that expect the underlying filesystem not
4002  * to be NFS exported.
4003  */
4004 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
4005 {
4006         struct inode *target = dentry->d_inode;
4007         int error = may_delete(dir, dentry, 0);
4008
4009         if (error)
4010                 return error;
4011
4012         if (!dir->i_op->unlink)
4013                 return -EPERM;
4014
4015         inode_lock(target);
4016         if (is_local_mountpoint(dentry))
4017                 error = -EBUSY;
4018         else {
4019                 error = security_inode_unlink(dir, dentry);
4020                 if (!error) {
4021                         error = try_break_deleg(target, delegated_inode);
4022                         if (error)
4023                                 goto out;
4024                         error = dir->i_op->unlink(dir, dentry);
4025                         if (!error) {
4026                                 dont_mount(dentry);
4027                                 detach_mounts(dentry);
4028                         }
4029                 }
4030         }
4031 out:
4032         inode_unlock(target);
4033
4034         /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4035         if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4036                 fsnotify_link_count(target);
4037                 d_delete(dentry);
4038         }
4039
4040         return error;
4041 }
4042 EXPORT_SYMBOL(vfs_unlink);
4043
4044 /*
4045  * Make sure that the actual truncation of the file will occur outside its
4046  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4047  * writeout happening, and we don't want to prevent access to the directory
4048  * while waiting on the I/O.
4049  */
4050 static long do_unlinkat(int dfd, const char __user *pathname)
4051 {
4052         int error;
4053         struct filename *name;
4054         struct dentry *dentry;
4055         struct path path;
4056         struct qstr last;
4057         int type;
4058         struct inode *inode = NULL;
4059         struct inode *delegated_inode = NULL;
4060         unsigned int lookup_flags = 0;
4061 retry:
4062         name = filename_parentat(dfd, getname(pathname), lookup_flags,
4063                                 &path, &last, &type);
4064         if (IS_ERR(name))
4065                 return PTR_ERR(name);
4066
4067         error = -EISDIR;
4068         if (type != LAST_NORM)
4069                 goto exit1;
4070
4071         error = mnt_want_write(path.mnt);
4072         if (error)
4073                 goto exit1;
4074 retry_deleg:
4075         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4076         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4077         error = PTR_ERR(dentry);
4078         if (!IS_ERR(dentry)) {
4079                 /* Why not before? Because we want correct error value */
4080                 if (last.name[last.len])
4081                         goto slashes;
4082                 inode = dentry->d_inode;
4083                 if (d_is_negative(dentry))
4084                         goto slashes;
4085                 ihold(inode);
4086                 error = security_path_unlink(&path, dentry);
4087                 if (error)
4088                         goto exit2;
4089                 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4090 exit2:
4091                 dput(dentry);
4092         }
4093         inode_unlock(path.dentry->d_inode);
4094         if (inode)
4095                 iput(inode);    /* truncate the inode here */
4096         inode = NULL;
4097         if (delegated_inode) {
4098                 error = break_deleg_wait(&delegated_inode);
4099                 if (!error)
4100                         goto retry_deleg;
4101         }
4102         mnt_drop_write(path.mnt);
4103 exit1:
4104         path_put(&path);
4105         putname(name);
4106         if (retry_estale(error, lookup_flags)) {
4107                 lookup_flags |= LOOKUP_REVAL;
4108                 inode = NULL;
4109                 goto retry;
4110         }
4111         return error;
4112
4113 slashes:
4114         if (d_is_negative(dentry))
4115                 error = -ENOENT;
4116         else if (d_is_dir(dentry))
4117                 error = -EISDIR;
4118         else
4119                 error = -ENOTDIR;
4120         goto exit2;
4121 }
4122
4123 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4124 {
4125         if ((flag & ~AT_REMOVEDIR) != 0)
4126                 return -EINVAL;
4127
4128         if (flag & AT_REMOVEDIR)
4129                 return do_rmdir(dfd, pathname);
4130
4131         return do_unlinkat(dfd, pathname);
4132 }
4133
4134 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4135 {
4136         return do_unlinkat(AT_FDCWD, pathname);
4137 }
4138
4139 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4140 {
4141         int error = may_create(dir, dentry);
4142
4143         if (error)
4144                 return error;
4145
4146         if (!dir->i_op->symlink)
4147                 return -EPERM;
4148
4149         error = security_inode_symlink(dir, dentry, oldname);
4150         if (error)
4151                 return error;
4152
4153         error = dir->i_op->symlink(dir, dentry, oldname);
4154         if (!error)
4155                 fsnotify_create(dir, dentry);
4156         return error;
4157 }
4158 EXPORT_SYMBOL(vfs_symlink);
4159
4160 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4161                 int, newdfd, const char __user *, newname)
4162 {
4163         int error;
4164         struct filename *from;
4165         struct dentry *dentry;
4166         struct path path;
4167         unsigned int lookup_flags = 0;
4168
4169         from = getname(oldname);
4170         if (IS_ERR(from))
4171                 return PTR_ERR(from);
4172 retry:
4173         dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4174         error = PTR_ERR(dentry);
4175         if (IS_ERR(dentry))
4176                 goto out_putname;
4177
4178         error = security_path_symlink(&path, dentry, from->name);
4179         if (!error)
4180                 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4181         done_path_create(&path, dentry);
4182         if (retry_estale(error, lookup_flags)) {
4183                 lookup_flags |= LOOKUP_REVAL;
4184                 goto retry;
4185         }
4186 out_putname:
4187         putname(from);
4188         return error;
4189 }
4190
4191 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4192 {
4193         return sys_symlinkat(oldname, AT_FDCWD, newname);
4194 }
4195
4196 /**
4197  * vfs_link - create a new link
4198  * @old_dentry: object to be linked
4199  * @dir:        new parent
4200  * @new_dentry: where to create the new link
4201  * @delegated_inode: returns inode needing a delegation break
4202  *
4203  * The caller must hold dir->i_mutex
4204  *
4205  * If vfs_link discovers a delegation on the to-be-linked file in need
4206  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4207  * inode in delegated_inode.  The caller should then break the delegation
4208  * and retry.  Because breaking a delegation may take a long time, the
4209  * caller should drop the i_mutex before doing so.
4210  *
4211  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4212  * be appropriate for callers that expect the underlying filesystem not
4213  * to be NFS exported.
4214  */
4215 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4216 {
4217         struct inode *inode = old_dentry->d_inode;
4218         unsigned max_links = dir->i_sb->s_max_links;
4219         int error;
4220
4221         if (!inode)
4222                 return -ENOENT;
4223
4224         error = may_create(dir, new_dentry);
4225         if (error)
4226                 return error;
4227
4228         if (dir->i_sb != inode->i_sb)
4229                 return -EXDEV;
4230
4231         /*
4232          * A link to an append-only or immutable file cannot be created.
4233          */
4234         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4235                 return -EPERM;
4236         /*
4237          * Updating the link count will likely cause i_uid and i_gid to
4238          * be writen back improperly if their true value is unknown to
4239          * the vfs.
4240          */
4241         if (HAS_UNMAPPED_ID(inode))
4242                 return -EPERM;
4243         if (!dir->i_op->link)
4244                 return -EPERM;
4245         if (S_ISDIR(inode->i_mode))
4246                 return -EPERM;
4247
4248         error = security_inode_link(old_dentry, dir, new_dentry);
4249         if (error)
4250                 return error;
4251
4252         inode_lock(inode);
4253         /* Make sure we don't allow creating hardlink to an unlinked file */
4254         if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4255                 error =  -ENOENT;
4256         else if (max_links && inode->i_nlink >= max_links)
4257                 error = -EMLINK;
4258         else {
4259                 error = try_break_deleg(inode, delegated_inode);
4260                 if (!error)
4261                         error = dir->i_op->link(old_dentry, dir, new_dentry);
4262         }
4263
4264         if (!error && (inode->i_state & I_LINKABLE)) {
4265                 spin_lock(&inode->i_lock);
4266                 inode->i_state &= ~I_LINKABLE;
4267                 spin_unlock(&inode->i_lock);
4268         }
4269         inode_unlock(inode);
4270         if (!error)
4271                 fsnotify_link(dir, inode, new_dentry);
4272         return error;
4273 }
4274 EXPORT_SYMBOL(vfs_link);
4275
4276 /*
4277  * Hardlinks are often used in delicate situations.  We avoid
4278  * security-related surprises by not following symlinks on the
4279  * newname.  --KAB
4280  *
4281  * We don't follow them on the oldname either to be compatible
4282  * with linux 2.0, and to avoid hard-linking to directories
4283  * and other special files.  --ADM
4284  */
4285 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4286                 int, newdfd, const char __user *, newname, int, flags)
4287 {
4288         struct dentry *new_dentry;
4289         struct path old_path, new_path;
4290         struct inode *delegated_inode = NULL;
4291         int how = 0;
4292         int error;
4293
4294         if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4295                 return -EINVAL;
4296         /*
4297          * To use null names we require CAP_DAC_READ_SEARCH
4298          * This ensures that not everyone will be able to create
4299          * handlink using the passed filedescriptor.
4300          */
4301         if (flags & AT_EMPTY_PATH) {
4302                 if (!capable(CAP_DAC_READ_SEARCH))
4303                         return -ENOENT;
4304                 how = LOOKUP_EMPTY;
4305         }
4306
4307         if (flags & AT_SYMLINK_FOLLOW)
4308                 how |= LOOKUP_FOLLOW;
4309 retry:
4310         error = user_path_at(olddfd, oldname, how, &old_path);
4311         if (error)
4312                 return error;
4313
4314         new_dentry = user_path_create(newdfd, newname, &new_path,
4315                                         (how & LOOKUP_REVAL));
4316         error = PTR_ERR(new_dentry);
4317         if (IS_ERR(new_dentry))
4318                 goto out;
4319
4320         error = -EXDEV;
4321         if (old_path.mnt != new_path.mnt)
4322                 goto out_dput;
4323         error = may_linkat(&old_path);
4324         if (unlikely(error))
4325                 goto out_dput;
4326         error = security_path_link(old_path.dentry, &new_path, new_dentry);
4327         if (error)
4328                 goto out_dput;
4329         error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4330 out_dput:
4331         done_path_create(&new_path, new_dentry);
4332         if (delegated_inode) {
4333                 error = break_deleg_wait(&delegated_inode);
4334                 if (!error) {
4335                         path_put(&old_path);
4336                         goto retry;
4337                 }
4338         }
4339         if (retry_estale(error, how)) {
4340                 path_put(&old_path);
4341                 how |= LOOKUP_REVAL;
4342                 goto retry;
4343         }
4344 out:
4345         path_put(&old_path);
4346
4347         return error;
4348 }
4349
4350 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4351 {
4352         return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4353 }
4354
4355 /**
4356  * vfs_rename - rename a filesystem object
4357  * @old_dir:    parent of source
4358  * @old_dentry: source
4359  * @new_dir:    parent of destination
4360  * @new_dentry: destination
4361  * @delegated_inode: returns an inode needing a delegation break
4362  * @flags:      rename flags
4363  *
4364  * The caller must hold multiple mutexes--see lock_rename()).
4365  *
4366  * If vfs_rename discovers a delegation in need of breaking at either
4367  * the source or destination, it will return -EWOULDBLOCK and return a
4368  * reference to the inode in delegated_inode.  The caller should then
4369  * break the delegation and retry.  Because breaking a delegation may
4370  * take a long time, the caller should drop all locks before doing
4371  * so.
4372  *
4373  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4374  * be appropriate for callers that expect the underlying filesystem not
4375  * to be NFS exported.
4376  *
4377  * The worst of all namespace operations - renaming directory. "Perverted"
4378  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4379  * Problems:
4380  *
4381  *      a) we can get into loop creation.
4382  *      b) race potential - two innocent renames can create a loop together.
4383  *         That's where 4.4 screws up. Current fix: serialization on
4384  *         sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4385  *         story.
4386  *      c) we have to lock _four_ objects - parents and victim (if it exists),
4387  *         and source (if it is not a directory).
4388  *         And that - after we got ->i_mutex on parents (until then we don't know
4389  *         whether the target exists).  Solution: try to be smart with locking
4390  *         order for inodes.  We rely on the fact that tree topology may change
4391  *         only under ->s_vfs_rename_mutex _and_ that parent of the object we
4392  *         move will be locked.  Thus we can rank directories by the tree
4393  *         (ancestors first) and rank all non-directories after them.
4394  *         That works since everybody except rename does "lock parent, lookup,
4395  *         lock child" and rename is under ->s_vfs_rename_mutex.
4396  *         HOWEVER, it relies on the assumption that any object with ->lookup()
4397  *         has no more than 1 dentry.  If "hybrid" objects will ever appear,
4398  *         we'd better make sure that there's no link(2) for them.
4399  *      d) conversion from fhandle to dentry may come in the wrong moment - when
4400  *         we are removing the target. Solution: we will have to grab ->i_mutex
4401  *         in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4402  *         ->i_mutex on parents, which works but leads to some truly excessive
4403  *         locking].
4404  */
4405 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4406                struct inode *new_dir, struct dentry *new_dentry,
4407                struct inode **delegated_inode, unsigned int flags)
4408 {
4409         int error;
4410         bool is_dir = d_is_dir(old_dentry);
4411         struct inode *source = old_dentry->d_inode;
4412         struct inode *target = new_dentry->d_inode;
4413         bool new_is_dir = false;
4414         unsigned max_links = new_dir->i_sb->s_max_links;
4415         struct name_snapshot old_name;
4416
4417         if (source == target)
4418                 return 0;
4419
4420         error = may_delete(old_dir, old_dentry, is_dir);
4421         if (error)
4422                 return error;
4423
4424         if (!target) {
4425                 error = may_create(new_dir, new_dentry);
4426         } else {
4427                 new_is_dir = d_is_dir(new_dentry);
4428
4429                 if (!(flags & RENAME_EXCHANGE))
4430                         error = may_delete(new_dir, new_dentry, is_dir);
4431                 else
4432                         error = may_delete(new_dir, new_dentry, new_is_dir);
4433         }
4434         if (error)
4435                 return error;
4436
4437         if (!old_dir->i_op->rename)
4438                 return -EPERM;
4439
4440         /*
4441          * If we are going to change the parent - check write permissions,
4442          * we'll need to flip '..'.
4443          */
4444         if (new_dir != old_dir) {
4445                 if (is_dir) {
4446                         error = inode_permission(source, MAY_WRITE);
4447                         if (error)
4448                                 return error;
4449                 }
4450                 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4451                         error = inode_permission(target, MAY_WRITE);
4452                         if (error)
4453                                 return error;
4454                 }
4455         }
4456
4457         error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4458                                       flags);
4459         if (error)
4460                 return error;
4461
4462         take_dentry_name_snapshot(&old_name, old_dentry);
4463         dget(new_dentry);
4464         if (!is_dir || (flags & RENAME_EXCHANGE))
4465                 lock_two_nondirectories(source, target);
4466         else if (target)
4467                 inode_lock(target);
4468
4469         error = -EBUSY;
4470         if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4471                 goto out;
4472
4473         if (max_links && new_dir != old_dir) {
4474                 error = -EMLINK;
4475                 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4476                         goto out;
4477                 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4478                     old_dir->i_nlink >= max_links)
4479                         goto out;
4480         }
4481         if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4482                 shrink_dcache_parent(new_dentry);
4483         if (!is_dir) {
4484                 error = try_break_deleg(source, delegated_inode);
4485                 if (error)
4486                         goto out;
4487         }
4488         if (target && !new_is_dir) {
4489                 error = try_break_deleg(target, delegated_inode);
4490                 if (error)
4491                         goto out;
4492         }
4493         error = old_dir->i_op->rename(old_dir, old_dentry,
4494                                        new_dir, new_dentry, flags);
4495         if (error)
4496                 goto out;
4497
4498         if (!(flags & RENAME_EXCHANGE) && target) {
4499                 if (is_dir)
4500                         target->i_flags |= S_DEAD;
4501                 dont_mount(new_dentry);
4502                 detach_mounts(new_dentry);
4503         }
4504         if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4505                 if (!(flags & RENAME_EXCHANGE))
4506                         d_move(old_dentry, new_dentry);
4507                 else
4508                         d_exchange(old_dentry, new_dentry);
4509         }
4510 out:
4511         if (!is_dir || (flags & RENAME_EXCHANGE))
4512                 unlock_two_nondirectories(source, target);
4513         else if (target)
4514                 inode_unlock(target);
4515         dput(new_dentry);
4516         if (!error) {
4517                 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4518                               !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4519                 if (flags & RENAME_EXCHANGE) {
4520                         fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4521                                       new_is_dir, NULL, new_dentry);
4522                 }
4523         }
4524         release_dentry_name_snapshot(&old_name);
4525
4526         return error;
4527 }
4528 EXPORT_SYMBOL(vfs_rename);
4529
4530 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4531                 int, newdfd, const char __user *, newname, unsigned int, flags)
4532 {
4533         struct dentry *old_dentry, *new_dentry;
4534         struct dentry *trap;
4535         struct path old_path, new_path;
4536         struct qstr old_last, new_last;
4537         int old_type, new_type;
4538         struct inode *delegated_inode = NULL;
4539         struct filename *from;
4540         struct filename *to;
4541         unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4542         bool should_retry = false;
4543         int error;
4544
4545         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4546                 return -EINVAL;
4547
4548         if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4549             (flags & RENAME_EXCHANGE))
4550                 return -EINVAL;
4551
4552         if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4553                 return -EPERM;
4554
4555         if (flags & RENAME_EXCHANGE)
4556                 target_flags = 0;
4557
4558 retry:
4559         from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4560                                 &old_path, &old_last, &old_type);
4561         if (IS_ERR(from)) {
4562                 error = PTR_ERR(from);
4563                 goto exit;
4564         }
4565
4566         to = filename_parentat(newdfd, getname(newname), lookup_flags,
4567                                 &new_path, &new_last, &new_type);
4568         if (IS_ERR(to)) {
4569                 error = PTR_ERR(to);
4570                 goto exit1;
4571         }
4572
4573         error = -EXDEV;
4574         if (old_path.mnt != new_path.mnt)
4575                 goto exit2;
4576
4577         error = -EBUSY;
4578         if (old_type != LAST_NORM)
4579                 goto exit2;
4580
4581         if (flags & RENAME_NOREPLACE)
4582                 error = -EEXIST;
4583         if (new_type != LAST_NORM)
4584                 goto exit2;
4585
4586         error = mnt_want_write(old_path.mnt);
4587         if (error)
4588                 goto exit2;
4589
4590 retry_deleg:
4591         trap = lock_rename(new_path.dentry, old_path.dentry);
4592
4593         old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4594         error = PTR_ERR(old_dentry);
4595         if (IS_ERR(old_dentry))
4596                 goto exit3;
4597         /* source must exist */
4598         error = -ENOENT;
4599         if (d_is_negative(old_dentry))
4600                 goto exit4;
4601         new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4602         error = PTR_ERR(new_dentry);
4603         if (IS_ERR(new_dentry))
4604                 goto exit4;
4605         error = -EEXIST;
4606         if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4607                 goto exit5;
4608         if (flags & RENAME_EXCHANGE) {
4609                 error = -ENOENT;
4610                 if (d_is_negative(new_dentry))
4611                         goto exit5;
4612
4613                 if (!d_is_dir(new_dentry)) {
4614                         error = -ENOTDIR;
4615                         if (new_last.name[new_last.len])
4616                                 goto exit5;
4617                 }
4618         }
4619         /* unless the source is a directory trailing slashes give -ENOTDIR */
4620         if (!d_is_dir(old_dentry)) {
4621                 error = -ENOTDIR;
4622                 if (old_last.name[old_last.len])
4623                         goto exit5;
4624                 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4625                         goto exit5;
4626         }
4627         /* source should not be ancestor of target */
4628         error = -EINVAL;
4629         if (old_dentry == trap)
4630                 goto exit5;
4631         /* target should not be an ancestor of source */
4632         if (!(flags & RENAME_EXCHANGE))
4633                 error = -ENOTEMPTY;
4634         if (new_dentry == trap)
4635                 goto exit5;
4636
4637         error = security_path_rename(&old_path, old_dentry,
4638                                      &new_path, new_dentry, flags);
4639         if (error)
4640                 goto exit5;
4641         error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4642                            new_path.dentry->d_inode, new_dentry,
4643                            &delegated_inode, flags);
4644 exit5:
4645         dput(new_dentry);
4646 exit4:
4647         dput(old_dentry);
4648 exit3:
4649         unlock_rename(new_path.dentry, old_path.dentry);
4650         if (delegated_inode) {
4651                 error = break_deleg_wait(&delegated_inode);
4652                 if (!error)
4653                         goto retry_deleg;
4654         }
4655         mnt_drop_write(old_path.mnt);
4656 exit2:
4657         if (retry_estale(error, lookup_flags))
4658                 should_retry = true;
4659         path_put(&new_path);
4660         putname(to);
4661 exit1:
4662         path_put(&old_path);
4663         putname(from);
4664         if (should_retry) {
4665                 should_retry = false;
4666                 lookup_flags |= LOOKUP_REVAL;
4667                 goto retry;
4668         }
4669 exit:
4670         return error;
4671 }
4672
4673 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4674                 int, newdfd, const char __user *, newname)
4675 {
4676         return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4677 }
4678
4679 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4680 {
4681         return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4682 }
4683
4684 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4685 {
4686         int error = may_create(dir, dentry);
4687         if (error)
4688                 return error;
4689
4690         if (!dir->i_op->mknod)
4691                 return -EPERM;
4692
4693         return dir->i_op->mknod(dir, dentry,
4694                                 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4695 }
4696 EXPORT_SYMBOL(vfs_whiteout);
4697
4698 int readlink_copy(char __user *buffer, int buflen, const char *link)
4699 {
4700         int len = PTR_ERR(link);
4701         if (IS_ERR(link))
4702                 goto out;
4703
4704         len = strlen(link);
4705         if (len > (unsigned) buflen)
4706                 len = buflen;
4707         if (copy_to_user(buffer, link, len))
4708                 len = -EFAULT;
4709 out:
4710         return len;
4711 }
4712
4713 /*
4714  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4715  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4716  * for any given inode is up to filesystem.
4717  */
4718 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4719                             int buflen)
4720 {
4721         DEFINE_DELAYED_CALL(done);
4722         struct inode *inode = d_inode(dentry);
4723         const char *link = inode->i_link;
4724         int res;
4725
4726         if (!link) {
4727                 link = inode->i_op->get_link(dentry, inode, &done);
4728                 if (IS_ERR(link))
4729                         return PTR_ERR(link);
4730         }
4731         res = readlink_copy(buffer, buflen, link);
4732         do_delayed_call(&done);
4733         return res;
4734 }
4735
4736 /**
4737  * vfs_readlink - copy symlink body into userspace buffer
4738  * @dentry: dentry on which to get symbolic link
4739  * @buffer: user memory pointer
4740  * @buflen: size of buffer
4741  *
4742  * Does not touch atime.  That's up to the caller if necessary
4743  *
4744  * Does not call security hook.
4745  */
4746 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4747 {
4748         struct inode *inode = d_inode(dentry);
4749
4750         if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4751                 if (unlikely(inode->i_op->readlink))
4752                         return inode->i_op->readlink(dentry, buffer, buflen);
4753
4754                 if (!d_is_symlink(dentry))
4755                         return -EINVAL;
4756
4757                 spin_lock(&inode->i_lock);
4758                 inode->i_opflags |= IOP_DEFAULT_READLINK;
4759                 spin_unlock(&inode->i_lock);
4760         }
4761
4762         return generic_readlink(dentry, buffer, buflen);
4763 }
4764 EXPORT_SYMBOL(vfs_readlink);
4765
4766 /**
4767  * vfs_get_link - get symlink body
4768  * @dentry: dentry on which to get symbolic link
4769  * @done: caller needs to free returned data with this
4770  *
4771  * Calls security hook and i_op->get_link() on the supplied inode.
4772  *
4773  * It does not touch atime.  That's up to the caller if necessary.
4774  *
4775  * Does not work on "special" symlinks like /proc/$$/fd/N
4776  */
4777 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4778 {
4779         const char *res = ERR_PTR(-EINVAL);
4780         struct inode *inode = d_inode(dentry);
4781
4782         if (d_is_symlink(dentry)) {
4783                 res = ERR_PTR(security_inode_readlink(dentry));
4784                 if (!res)
4785                         res = inode->i_op->get_link(dentry, inode, done);
4786         }
4787         return res;
4788 }
4789 EXPORT_SYMBOL(vfs_get_link);
4790
4791 /* get the link contents into pagecache */
4792 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4793                           struct delayed_call *callback)
4794 {
4795         char *kaddr;
4796         struct page *page;
4797         struct address_space *mapping = inode->i_mapping;
4798
4799         if (!dentry) {
4800                 page = find_get_page(mapping, 0);
4801                 if (!page)
4802                         return ERR_PTR(-ECHILD);
4803                 if (!PageUptodate(page)) {
4804                         put_page(page);
4805                         return ERR_PTR(-ECHILD);
4806                 }
4807         } else {
4808                 page = read_mapping_page(mapping, 0, NULL);
4809                 if (IS_ERR(page))
4810                         return (char*)page;
4811         }
4812         set_delayed_call(callback, page_put_link, page);
4813         BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4814         kaddr = page_address(page);
4815         nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4816         return kaddr;
4817 }
4818
4819 EXPORT_SYMBOL(page_get_link);
4820
4821 void page_put_link(void *arg)
4822 {
4823         put_page(arg);
4824 }
4825 EXPORT_SYMBOL(page_put_link);
4826
4827 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4828 {
4829         DEFINE_DELAYED_CALL(done);
4830         int res = readlink_copy(buffer, buflen,
4831                                 page_get_link(dentry, d_inode(dentry),
4832                                               &done));
4833         do_delayed_call(&done);
4834         return res;
4835 }
4836 EXPORT_SYMBOL(page_readlink);
4837
4838 /*
4839  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4840  */
4841 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4842 {
4843         struct address_space *mapping = inode->i_mapping;
4844         struct page *page;
4845         void *fsdata;
4846         int err;
4847         unsigned int flags = 0;
4848         if (nofs)
4849                 flags |= AOP_FLAG_NOFS;
4850
4851 retry:
4852         err = pagecache_write_begin(NULL, mapping, 0, len-1,
4853                                 flags, &page, &fsdata);
4854         if (err)
4855                 goto fail;
4856
4857         memcpy(page_address(page), symname, len-1);
4858
4859         err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4860                                                         page, fsdata);
4861         if (err < 0)
4862                 goto fail;
4863         if (err < len-1)
4864                 goto retry;
4865
4866         mark_inode_dirty(inode);
4867         return 0;
4868 fail:
4869         return err;
4870 }
4871 EXPORT_SYMBOL(__page_symlink);
4872
4873 int page_symlink(struct inode *inode, const char *symname, int len)
4874 {
4875         return __page_symlink(inode, symname, len,
4876                         !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4877 }
4878 EXPORT_SYMBOL(page_symlink);
4879
4880 const struct inode_operations page_symlink_inode_operations = {
4881         .get_link       = page_get_link,
4882 };
4883 EXPORT_SYMBOL(page_symlink_inode_operations);