net: use skb_to_full_sk() in skb_update_prio()
[platform/kernel/linux-rpi.git] / fs / namei.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  * Some corrections by tytso.
10  */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /* [Feb-1997 T. Schoebel-Theuer]
47  * Fundamental changes in the pathname lookup mechanisms (namei)
48  * were necessary because of omirr.  The reason is that omirr needs
49  * to know the _real_ pathname, not the user-supplied one, in case
50  * of symlinks (and also when transname replacements occur).
51  *
52  * The new code replaces the old recursive symlink resolution with
53  * an iterative one (in case of non-nested symlink chains).  It does
54  * this with calls to <fs>_follow_link().
55  * As a side effect, dir_namei(), _namei() and follow_link() are now 
56  * replaced with a single function lookup_dentry() that can handle all 
57  * the special cases of the former code.
58  *
59  * With the new dcache, the pathname is stored at each inode, at least as
60  * long as the refcount of the inode is positive.  As a side effect, the
61  * size of the dcache depends on the inode cache and thus is dynamic.
62  *
63  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64  * resolution to correspond with current state of the code.
65  *
66  * Note that the symlink resolution is not *completely* iterative.
67  * There is still a significant amount of tail- and mid- recursion in
68  * the algorithm.  Also, note that <fs>_readlink() is not used in
69  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70  * may return different results than <fs>_follow_link().  Many virtual
71  * filesystems (including /proc) exhibit this behavior.
72  */
73
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76  * and the name already exists in form of a symlink, try to create the new
77  * name indicated by the symlink. The old code always complained that the
78  * name already exists, due to not following the symlink even if its target
79  * is nonexistent.  The new semantics affects also mknod() and link() when
80  * the name is a symlink pointing to a non-existent name.
81  *
82  * I don't know which semantics is the right one, since I have no access
83  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85  * "old" one. Personally, I think the new semantics is much more logical.
86  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87  * file does succeed in both HP-UX and SunOs, but not in Solaris
88  * and in the old Linux semantics.
89  */
90
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92  * semantics.  See the comments in "open_namei" and "do_link" below.
93  *
94  * [10-Sep-98 Alan Modra] Another symlink change.
95  */
96
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98  *      inside the path - always follow.
99  *      in the last component in creation/removal/renaming - never follow.
100  *      if LOOKUP_FOLLOW passed - follow.
101  *      if the pathname has trailing slashes - follow.
102  *      otherwise - don't follow.
103  * (applied in that order).
104  *
105  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107  * During the 2.4 we need to fix the userland stuff depending on it -
108  * hopefully we will be able to get rid of that wart in 2.5. So far only
109  * XEmacs seems to be relying on it...
110  */
111 /*
112  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
114  * any extra contention...
115  */
116
117 /* In order to reduce some races, while at the same time doing additional
118  * checking and hopefully speeding things up, we copy filenames to the
119  * kernel data space before using them..
120  *
121  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122  * PATH_MAX includes the nul terminator --RR.
123  */
124
125 #define EMBEDDED_NAME_MAX       (PATH_MAX - offsetof(struct filename, iname))
126
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
129 {
130         struct filename *result;
131         char *kname;
132         int len;
133
134         result = audit_reusename(filename);
135         if (result)
136                 return result;
137
138         result = __getname();
139         if (unlikely(!result))
140                 return ERR_PTR(-ENOMEM);
141
142         /*
143          * First, try to embed the struct filename inside the names_cache
144          * allocation
145          */
146         kname = (char *)result->iname;
147         result->name = kname;
148
149         len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150         if (unlikely(len < 0)) {
151                 __putname(result);
152                 return ERR_PTR(len);
153         }
154
155         /*
156          * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157          * separate struct filename so we can dedicate the entire
158          * names_cache allocation for the pathname, and re-do the copy from
159          * userland.
160          */
161         if (unlikely(len == EMBEDDED_NAME_MAX)) {
162                 const size_t size = offsetof(struct filename, iname[1]);
163                 kname = (char *)result;
164
165                 /*
166                  * size is chosen that way we to guarantee that
167                  * result->iname[0] is within the same object and that
168                  * kname can't be equal to result->iname, no matter what.
169                  */
170                 result = kzalloc(size, GFP_KERNEL);
171                 if (unlikely(!result)) {
172                         __putname(kname);
173                         return ERR_PTR(-ENOMEM);
174                 }
175                 result->name = kname;
176                 len = strncpy_from_user(kname, filename, PATH_MAX);
177                 if (unlikely(len < 0)) {
178                         __putname(kname);
179                         kfree(result);
180                         return ERR_PTR(len);
181                 }
182                 if (unlikely(len == PATH_MAX)) {
183                         __putname(kname);
184                         kfree(result);
185                         return ERR_PTR(-ENAMETOOLONG);
186                 }
187         }
188
189         result->refcnt = 1;
190         /* The empty path is special. */
191         if (unlikely(!len)) {
192                 if (empty)
193                         *empty = 1;
194                 if (!(flags & LOOKUP_EMPTY)) {
195                         putname(result);
196                         return ERR_PTR(-ENOENT);
197                 }
198         }
199
200         result->uptr = filename;
201         result->aname = NULL;
202         audit_getname(result);
203         return result;
204 }
205
206 struct filename *
207 getname(const char __user * filename)
208 {
209         return getname_flags(filename, 0, NULL);
210 }
211
212 struct filename *
213 getname_kernel(const char * filename)
214 {
215         struct filename *result;
216         int len = strlen(filename) + 1;
217
218         result = __getname();
219         if (unlikely(!result))
220                 return ERR_PTR(-ENOMEM);
221
222         if (len <= EMBEDDED_NAME_MAX) {
223                 result->name = (char *)result->iname;
224         } else if (len <= PATH_MAX) {
225                 struct filename *tmp;
226
227                 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
228                 if (unlikely(!tmp)) {
229                         __putname(result);
230                         return ERR_PTR(-ENOMEM);
231                 }
232                 tmp->name = (char *)result;
233                 result = tmp;
234         } else {
235                 __putname(result);
236                 return ERR_PTR(-ENAMETOOLONG);
237         }
238         memcpy((char *)result->name, filename, len);
239         result->uptr = NULL;
240         result->aname = NULL;
241         result->refcnt = 1;
242         audit_getname(result);
243
244         return result;
245 }
246
247 void putname(struct filename *name)
248 {
249         BUG_ON(name->refcnt <= 0);
250
251         if (--name->refcnt > 0)
252                 return;
253
254         if (name->name != name->iname) {
255                 __putname(name->name);
256                 kfree(name);
257         } else
258                 __putname(name);
259 }
260
261 static int check_acl(struct inode *inode, int mask)
262 {
263 #ifdef CONFIG_FS_POSIX_ACL
264         struct posix_acl *acl;
265
266         if (mask & MAY_NOT_BLOCK) {
267                 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
268                 if (!acl)
269                         return -EAGAIN;
270                 /* no ->get_acl() calls in RCU mode... */
271                 if (is_uncached_acl(acl))
272                         return -ECHILD;
273                 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
274         }
275
276         acl = get_acl(inode, ACL_TYPE_ACCESS);
277         if (IS_ERR(acl))
278                 return PTR_ERR(acl);
279         if (acl) {
280                 int error = posix_acl_permission(inode, acl, mask);
281                 posix_acl_release(acl);
282                 return error;
283         }
284 #endif
285
286         return -EAGAIN;
287 }
288
289 /*
290  * This does the basic permission checking
291  */
292 static int acl_permission_check(struct inode *inode, int mask)
293 {
294         unsigned int mode = inode->i_mode;
295
296         if (likely(uid_eq(current_fsuid(), inode->i_uid)))
297                 mode >>= 6;
298         else {
299                 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
300                         int error = check_acl(inode, mask);
301                         if (error != -EAGAIN)
302                                 return error;
303                 }
304
305                 if (in_group_p(inode->i_gid))
306                         mode >>= 3;
307         }
308
309         /*
310          * If the DACs are ok we don't need any capability check.
311          */
312         if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
313                 return 0;
314         return -EACCES;
315 }
316
317 /**
318  * generic_permission -  check for access rights on a Posix-like filesystem
319  * @inode:      inode to check access rights for
320  * @mask:       right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
321  *
322  * Used to check for read/write/execute permissions on a file.
323  * We use "fsuid" for this, letting us set arbitrary permissions
324  * for filesystem access without changing the "normal" uids which
325  * are used for other things.
326  *
327  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
328  * request cannot be satisfied (eg. requires blocking or too much complexity).
329  * It would then be called again in ref-walk mode.
330  */
331 int generic_permission(struct inode *inode, int mask)
332 {
333         int ret;
334
335         /*
336          * Do the basic permission checks.
337          */
338         ret = acl_permission_check(inode, mask);
339         if (ret != -EACCES)
340                 return ret;
341
342         if (S_ISDIR(inode->i_mode)) {
343                 /* DACs are overridable for directories */
344                 if (!(mask & MAY_WRITE))
345                         if (capable_wrt_inode_uidgid(inode,
346                                                      CAP_DAC_READ_SEARCH))
347                                 return 0;
348                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
349                         return 0;
350                 return -EACCES;
351         }
352
353         /*
354          * Searching includes executable on directories, else just read.
355          */
356         mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
357         if (mask == MAY_READ)
358                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
359                         return 0;
360         /*
361          * Read/write DACs are always overridable.
362          * Executable DACs are overridable when there is
363          * at least one exec bit set.
364          */
365         if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
366                 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
367                         return 0;
368
369         return -EACCES;
370 }
371 EXPORT_SYMBOL(generic_permission);
372
373 /*
374  * We _really_ want to just do "generic_permission()" without
375  * even looking at the inode->i_op values. So we keep a cache
376  * flag in inode->i_opflags, that says "this has not special
377  * permission function, use the fast case".
378  */
379 static inline int do_inode_permission(struct inode *inode, int mask)
380 {
381         if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
382                 if (likely(inode->i_op->permission))
383                         return inode->i_op->permission(inode, mask);
384
385                 /* This gets set once for the inode lifetime */
386                 spin_lock(&inode->i_lock);
387                 inode->i_opflags |= IOP_FASTPERM;
388                 spin_unlock(&inode->i_lock);
389         }
390         return generic_permission(inode, mask);
391 }
392
393 /**
394  * __inode_permission - Check for access rights to a given inode
395  * @inode: Inode to check permission on
396  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
397  *
398  * Check for read/write/execute permissions on an inode.
399  *
400  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
401  *
402  * This does not check for a read-only file system.  You probably want
403  * inode_permission().
404  */
405 int __inode_permission(struct inode *inode, int mask)
406 {
407         int retval;
408
409         if (unlikely(mask & MAY_WRITE)) {
410                 /*
411                  * Nobody gets write access to an immutable file.
412                  */
413                 if (IS_IMMUTABLE(inode))
414                         return -EPERM;
415
416                 /*
417                  * Updating mtime will likely cause i_uid and i_gid to be
418                  * written back improperly if their true value is unknown
419                  * to the vfs.
420                  */
421                 if (HAS_UNMAPPED_ID(inode))
422                         return -EACCES;
423         }
424
425         retval = do_inode_permission(inode, mask);
426         if (retval)
427                 return retval;
428
429         retval = devcgroup_inode_permission(inode, mask);
430         if (retval)
431                 return retval;
432
433         return security_inode_permission(inode, mask);
434 }
435 EXPORT_SYMBOL(__inode_permission);
436
437 /**
438  * sb_permission - Check superblock-level permissions
439  * @sb: Superblock of inode to check permission on
440  * @inode: Inode to check permission on
441  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
442  *
443  * Separate out file-system wide checks from inode-specific permission checks.
444  */
445 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
446 {
447         if (unlikely(mask & MAY_WRITE)) {
448                 umode_t mode = inode->i_mode;
449
450                 /* Nobody gets write access to a read-only fs. */
451                 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
452                         return -EROFS;
453         }
454         return 0;
455 }
456
457 /**
458  * inode_permission - Check for access rights to a given inode
459  * @inode: Inode to check permission on
460  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461  *
462  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
463  * this, letting us set arbitrary permissions for filesystem access without
464  * changing the "normal" UIDs which are used for other things.
465  *
466  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
467  */
468 int inode_permission(struct inode *inode, int mask)
469 {
470         int retval;
471
472         retval = sb_permission(inode->i_sb, inode, mask);
473         if (retval)
474                 return retval;
475         return __inode_permission(inode, mask);
476 }
477 EXPORT_SYMBOL(inode_permission);
478
479 /**
480  * path_get - get a reference to a path
481  * @path: path to get the reference to
482  *
483  * Given a path increment the reference count to the dentry and the vfsmount.
484  */
485 void path_get(const struct path *path)
486 {
487         mntget(path->mnt);
488         dget(path->dentry);
489 }
490 EXPORT_SYMBOL(path_get);
491
492 /**
493  * path_put - put a reference to a path
494  * @path: path to put the reference to
495  *
496  * Given a path decrement the reference count to the dentry and the vfsmount.
497  */
498 void path_put(const struct path *path)
499 {
500         dput(path->dentry);
501         mntput(path->mnt);
502 }
503 EXPORT_SYMBOL(path_put);
504
505 #define EMBEDDED_LEVELS 2
506 struct nameidata {
507         struct path     path;
508         struct qstr     last;
509         struct path     root;
510         struct inode    *inode; /* path.dentry.d_inode */
511         unsigned int    flags;
512         unsigned        seq, m_seq;
513         int             last_type;
514         unsigned        depth;
515         int             total_link_count;
516         struct saved {
517                 struct path link;
518                 struct delayed_call done;
519                 const char *name;
520                 unsigned seq;
521         } *stack, internal[EMBEDDED_LEVELS];
522         struct filename *name;
523         struct nameidata *saved;
524         struct inode    *link_inode;
525         unsigned        root_seq;
526         int             dfd;
527 } __randomize_layout;
528
529 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
530 {
531         struct nameidata *old = current->nameidata;
532         p->stack = p->internal;
533         p->dfd = dfd;
534         p->name = name;
535         p->total_link_count = old ? old->total_link_count : 0;
536         p->saved = old;
537         current->nameidata = p;
538 }
539
540 static void restore_nameidata(void)
541 {
542         struct nameidata *now = current->nameidata, *old = now->saved;
543
544         current->nameidata = old;
545         if (old)
546                 old->total_link_count = now->total_link_count;
547         if (now->stack != now->internal)
548                 kfree(now->stack);
549 }
550
551 static int __nd_alloc_stack(struct nameidata *nd)
552 {
553         struct saved *p;
554
555         if (nd->flags & LOOKUP_RCU) {
556                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
557                                   GFP_ATOMIC);
558                 if (unlikely(!p))
559                         return -ECHILD;
560         } else {
561                 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
562                                   GFP_KERNEL);
563                 if (unlikely(!p))
564                         return -ENOMEM;
565         }
566         memcpy(p, nd->internal, sizeof(nd->internal));
567         nd->stack = p;
568         return 0;
569 }
570
571 /**
572  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
573  * @path: nameidate to verify
574  *
575  * Rename can sometimes move a file or directory outside of a bind
576  * mount, path_connected allows those cases to be detected.
577  */
578 static bool path_connected(const struct path *path)
579 {
580         struct vfsmount *mnt = path->mnt;
581         struct super_block *sb = mnt->mnt_sb;
582
583         /* Bind mounts and multi-root filesystems can have disconnected paths */
584         if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
585                 return true;
586
587         return is_subdir(path->dentry, mnt->mnt_root);
588 }
589
590 static inline int nd_alloc_stack(struct nameidata *nd)
591 {
592         if (likely(nd->depth != EMBEDDED_LEVELS))
593                 return 0;
594         if (likely(nd->stack != nd->internal))
595                 return 0;
596         return __nd_alloc_stack(nd);
597 }
598
599 static void drop_links(struct nameidata *nd)
600 {
601         int i = nd->depth;
602         while (i--) {
603                 struct saved *last = nd->stack + i;
604                 do_delayed_call(&last->done);
605                 clear_delayed_call(&last->done);
606         }
607 }
608
609 static void terminate_walk(struct nameidata *nd)
610 {
611         drop_links(nd);
612         if (!(nd->flags & LOOKUP_RCU)) {
613                 int i;
614                 path_put(&nd->path);
615                 for (i = 0; i < nd->depth; i++)
616                         path_put(&nd->stack[i].link);
617                 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
618                         path_put(&nd->root);
619                         nd->root.mnt = NULL;
620                 }
621         } else {
622                 nd->flags &= ~LOOKUP_RCU;
623                 if (!(nd->flags & LOOKUP_ROOT))
624                         nd->root.mnt = NULL;
625                 rcu_read_unlock();
626         }
627         nd->depth = 0;
628 }
629
630 /* path_put is needed afterwards regardless of success or failure */
631 static bool legitimize_path(struct nameidata *nd,
632                             struct path *path, unsigned seq)
633 {
634         int res = __legitimize_mnt(path->mnt, nd->m_seq);
635         if (unlikely(res)) {
636                 if (res > 0)
637                         path->mnt = NULL;
638                 path->dentry = NULL;
639                 return false;
640         }
641         if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
642                 path->dentry = NULL;
643                 return false;
644         }
645         return !read_seqcount_retry(&path->dentry->d_seq, seq);
646 }
647
648 static bool legitimize_links(struct nameidata *nd)
649 {
650         int i;
651         for (i = 0; i < nd->depth; i++) {
652                 struct saved *last = nd->stack + i;
653                 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
654                         drop_links(nd);
655                         nd->depth = i + 1;
656                         return false;
657                 }
658         }
659         return true;
660 }
661
662 /*
663  * Path walking has 2 modes, rcu-walk and ref-walk (see
664  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
665  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
666  * normal reference counts on dentries and vfsmounts to transition to ref-walk
667  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
668  * got stuck, so ref-walk may continue from there. If this is not successful
669  * (eg. a seqcount has changed), then failure is returned and it's up to caller
670  * to restart the path walk from the beginning in ref-walk mode.
671  */
672
673 /**
674  * unlazy_walk - try to switch to ref-walk mode.
675  * @nd: nameidata pathwalk data
676  * Returns: 0 on success, -ECHILD on failure
677  *
678  * unlazy_walk attempts to legitimize the current nd->path and nd->root
679  * for ref-walk mode.
680  * Must be called from rcu-walk context.
681  * Nothing should touch nameidata between unlazy_walk() failure and
682  * terminate_walk().
683  */
684 static int unlazy_walk(struct nameidata *nd)
685 {
686         struct dentry *parent = nd->path.dentry;
687
688         BUG_ON(!(nd->flags & LOOKUP_RCU));
689
690         nd->flags &= ~LOOKUP_RCU;
691         if (unlikely(!legitimize_links(nd)))
692                 goto out2;
693         if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
694                 goto out1;
695         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
696                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
697                         goto out;
698         }
699         rcu_read_unlock();
700         BUG_ON(nd->inode != parent->d_inode);
701         return 0;
702
703 out2:
704         nd->path.mnt = NULL;
705         nd->path.dentry = NULL;
706 out1:
707         if (!(nd->flags & LOOKUP_ROOT))
708                 nd->root.mnt = NULL;
709 out:
710         rcu_read_unlock();
711         return -ECHILD;
712 }
713
714 /**
715  * unlazy_child - try to switch to ref-walk mode.
716  * @nd: nameidata pathwalk data
717  * @dentry: child of nd->path.dentry
718  * @seq: seq number to check dentry against
719  * Returns: 0 on success, -ECHILD on failure
720  *
721  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
722  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
723  * @nd.  Must be called from rcu-walk context.
724  * Nothing should touch nameidata between unlazy_child() failure and
725  * terminate_walk().
726  */
727 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
728 {
729         BUG_ON(!(nd->flags & LOOKUP_RCU));
730
731         nd->flags &= ~LOOKUP_RCU;
732         if (unlikely(!legitimize_links(nd)))
733                 goto out2;
734         if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
735                 goto out2;
736         if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
737                 goto out1;
738
739         /*
740          * We need to move both the parent and the dentry from the RCU domain
741          * to be properly refcounted. And the sequence number in the dentry
742          * validates *both* dentry counters, since we checked the sequence
743          * number of the parent after we got the child sequence number. So we
744          * know the parent must still be valid if the child sequence number is
745          */
746         if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
747                 goto out;
748         if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
749                 rcu_read_unlock();
750                 dput(dentry);
751                 goto drop_root_mnt;
752         }
753         /*
754          * Sequence counts matched. Now make sure that the root is
755          * still valid and get it if required.
756          */
757         if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
758                 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
759                         rcu_read_unlock();
760                         dput(dentry);
761                         return -ECHILD;
762                 }
763         }
764
765         rcu_read_unlock();
766         return 0;
767
768 out2:
769         nd->path.mnt = NULL;
770 out1:
771         nd->path.dentry = NULL;
772 out:
773         rcu_read_unlock();
774 drop_root_mnt:
775         if (!(nd->flags & LOOKUP_ROOT))
776                 nd->root.mnt = NULL;
777         return -ECHILD;
778 }
779
780 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
781 {
782         if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
783                 return dentry->d_op->d_revalidate(dentry, flags);
784         else
785                 return 1;
786 }
787
788 /**
789  * complete_walk - successful completion of path walk
790  * @nd:  pointer nameidata
791  *
792  * If we had been in RCU mode, drop out of it and legitimize nd->path.
793  * Revalidate the final result, unless we'd already done that during
794  * the path walk or the filesystem doesn't ask for it.  Return 0 on
795  * success, -error on failure.  In case of failure caller does not
796  * need to drop nd->path.
797  */
798 static int complete_walk(struct nameidata *nd)
799 {
800         struct dentry *dentry = nd->path.dentry;
801         int status;
802
803         if (nd->flags & LOOKUP_RCU) {
804                 if (!(nd->flags & LOOKUP_ROOT))
805                         nd->root.mnt = NULL;
806                 if (unlikely(unlazy_walk(nd)))
807                         return -ECHILD;
808         }
809
810         if (likely(!(nd->flags & LOOKUP_JUMPED)))
811                 return 0;
812
813         if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
814                 return 0;
815
816         status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
817         if (status > 0)
818                 return 0;
819
820         if (!status)
821                 status = -ESTALE;
822
823         return status;
824 }
825
826 static void set_root(struct nameidata *nd)
827 {
828         struct fs_struct *fs = current->fs;
829
830         if (nd->flags & LOOKUP_RCU) {
831                 unsigned seq;
832
833                 do {
834                         seq = read_seqcount_begin(&fs->seq);
835                         nd->root = fs->root;
836                         nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
837                 } while (read_seqcount_retry(&fs->seq, seq));
838         } else {
839                 get_fs_root(fs, &nd->root);
840         }
841 }
842
843 static void path_put_conditional(struct path *path, struct nameidata *nd)
844 {
845         dput(path->dentry);
846         if (path->mnt != nd->path.mnt)
847                 mntput(path->mnt);
848 }
849
850 static inline void path_to_nameidata(const struct path *path,
851                                         struct nameidata *nd)
852 {
853         if (!(nd->flags & LOOKUP_RCU)) {
854                 dput(nd->path.dentry);
855                 if (nd->path.mnt != path->mnt)
856                         mntput(nd->path.mnt);
857         }
858         nd->path.mnt = path->mnt;
859         nd->path.dentry = path->dentry;
860 }
861
862 static int nd_jump_root(struct nameidata *nd)
863 {
864         if (nd->flags & LOOKUP_RCU) {
865                 struct dentry *d;
866                 nd->path = nd->root;
867                 d = nd->path.dentry;
868                 nd->inode = d->d_inode;
869                 nd->seq = nd->root_seq;
870                 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
871                         return -ECHILD;
872         } else {
873                 path_put(&nd->path);
874                 nd->path = nd->root;
875                 path_get(&nd->path);
876                 nd->inode = nd->path.dentry->d_inode;
877         }
878         nd->flags |= LOOKUP_JUMPED;
879         return 0;
880 }
881
882 /*
883  * Helper to directly jump to a known parsed path from ->get_link,
884  * caller must have taken a reference to path beforehand.
885  */
886 void nd_jump_link(struct path *path)
887 {
888         struct nameidata *nd = current->nameidata;
889         path_put(&nd->path);
890
891         nd->path = *path;
892         nd->inode = nd->path.dentry->d_inode;
893         nd->flags |= LOOKUP_JUMPED;
894 }
895
896 static inline void put_link(struct nameidata *nd)
897 {
898         struct saved *last = nd->stack + --nd->depth;
899         do_delayed_call(&last->done);
900         if (!(nd->flags & LOOKUP_RCU))
901                 path_put(&last->link);
902 }
903
904 int sysctl_protected_symlinks __read_mostly = 0;
905 int sysctl_protected_hardlinks __read_mostly = 0;
906
907 /**
908  * may_follow_link - Check symlink following for unsafe situations
909  * @nd: nameidata pathwalk data
910  *
911  * In the case of the sysctl_protected_symlinks sysctl being enabled,
912  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
913  * in a sticky world-writable directory. This is to protect privileged
914  * processes from failing races against path names that may change out
915  * from under them by way of other users creating malicious symlinks.
916  * It will permit symlinks to be followed only when outside a sticky
917  * world-writable directory, or when the uid of the symlink and follower
918  * match, or when the directory owner matches the symlink's owner.
919  *
920  * Returns 0 if following the symlink is allowed, -ve on error.
921  */
922 static inline int may_follow_link(struct nameidata *nd)
923 {
924         const struct inode *inode;
925         const struct inode *parent;
926         kuid_t puid;
927
928         if (!sysctl_protected_symlinks)
929                 return 0;
930
931         /* Allowed if owner and follower match. */
932         inode = nd->link_inode;
933         if (uid_eq(current_cred()->fsuid, inode->i_uid))
934                 return 0;
935
936         /* Allowed if parent directory not sticky and world-writable. */
937         parent = nd->inode;
938         if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
939                 return 0;
940
941         /* Allowed if parent directory and link owner match. */
942         puid = parent->i_uid;
943         if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
944                 return 0;
945
946         if (nd->flags & LOOKUP_RCU)
947                 return -ECHILD;
948
949         audit_log_link_denied("follow_link", &nd->stack[0].link);
950         return -EACCES;
951 }
952
953 /**
954  * safe_hardlink_source - Check for safe hardlink conditions
955  * @inode: the source inode to hardlink from
956  *
957  * Return false if at least one of the following conditions:
958  *    - inode is not a regular file
959  *    - inode is setuid
960  *    - inode is setgid and group-exec
961  *    - access failure for read and write
962  *
963  * Otherwise returns true.
964  */
965 static bool safe_hardlink_source(struct inode *inode)
966 {
967         umode_t mode = inode->i_mode;
968
969         /* Special files should not get pinned to the filesystem. */
970         if (!S_ISREG(mode))
971                 return false;
972
973         /* Setuid files should not get pinned to the filesystem. */
974         if (mode & S_ISUID)
975                 return false;
976
977         /* Executable setgid files should not get pinned to the filesystem. */
978         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
979                 return false;
980
981         /* Hardlinking to unreadable or unwritable sources is dangerous. */
982         if (inode_permission(inode, MAY_READ | MAY_WRITE))
983                 return false;
984
985         return true;
986 }
987
988 /**
989  * may_linkat - Check permissions for creating a hardlink
990  * @link: the source to hardlink from
991  *
992  * Block hardlink when all of:
993  *  - sysctl_protected_hardlinks enabled
994  *  - fsuid does not match inode
995  *  - hardlink source is unsafe (see safe_hardlink_source() above)
996  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
997  *
998  * Returns 0 if successful, -ve on error.
999  */
1000 static int may_linkat(struct path *link)
1001 {
1002         struct inode *inode;
1003
1004         if (!sysctl_protected_hardlinks)
1005                 return 0;
1006
1007         inode = link->dentry->d_inode;
1008
1009         /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1010          * otherwise, it must be a safe source.
1011          */
1012         if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1013                 return 0;
1014
1015         audit_log_link_denied("linkat", link);
1016         return -EPERM;
1017 }
1018
1019 static __always_inline
1020 const char *get_link(struct nameidata *nd)
1021 {
1022         struct saved *last = nd->stack + nd->depth - 1;
1023         struct dentry *dentry = last->link.dentry;
1024         struct inode *inode = nd->link_inode;
1025         int error;
1026         const char *res;
1027
1028         if (!(nd->flags & LOOKUP_RCU)) {
1029                 touch_atime(&last->link);
1030                 cond_resched();
1031         } else if (atime_needs_update_rcu(&last->link, inode)) {
1032                 if (unlikely(unlazy_walk(nd)))
1033                         return ERR_PTR(-ECHILD);
1034                 touch_atime(&last->link);
1035         }
1036
1037         error = security_inode_follow_link(dentry, inode,
1038                                            nd->flags & LOOKUP_RCU);
1039         if (unlikely(error))
1040                 return ERR_PTR(error);
1041
1042         nd->last_type = LAST_BIND;
1043         res = inode->i_link;
1044         if (!res) {
1045                 const char * (*get)(struct dentry *, struct inode *,
1046                                 struct delayed_call *);
1047                 get = inode->i_op->get_link;
1048                 if (nd->flags & LOOKUP_RCU) {
1049                         res = get(NULL, inode, &last->done);
1050                         if (res == ERR_PTR(-ECHILD)) {
1051                                 if (unlikely(unlazy_walk(nd)))
1052                                         return ERR_PTR(-ECHILD);
1053                                 res = get(dentry, inode, &last->done);
1054                         }
1055                 } else {
1056                         res = get(dentry, inode, &last->done);
1057                 }
1058                 if (IS_ERR_OR_NULL(res))
1059                         return res;
1060         }
1061         if (*res == '/') {
1062                 if (!nd->root.mnt)
1063                         set_root(nd);
1064                 if (unlikely(nd_jump_root(nd)))
1065                         return ERR_PTR(-ECHILD);
1066                 while (unlikely(*++res == '/'))
1067                         ;
1068         }
1069         if (!*res)
1070                 res = NULL;
1071         return res;
1072 }
1073
1074 /*
1075  * follow_up - Find the mountpoint of path's vfsmount
1076  *
1077  * Given a path, find the mountpoint of its source file system.
1078  * Replace @path with the path of the mountpoint in the parent mount.
1079  * Up is towards /.
1080  *
1081  * Return 1 if we went up a level and 0 if we were already at the
1082  * root.
1083  */
1084 int follow_up(struct path *path)
1085 {
1086         struct mount *mnt = real_mount(path->mnt);
1087         struct mount *parent;
1088         struct dentry *mountpoint;
1089
1090         read_seqlock_excl(&mount_lock);
1091         parent = mnt->mnt_parent;
1092         if (parent == mnt) {
1093                 read_sequnlock_excl(&mount_lock);
1094                 return 0;
1095         }
1096         mntget(&parent->mnt);
1097         mountpoint = dget(mnt->mnt_mountpoint);
1098         read_sequnlock_excl(&mount_lock);
1099         dput(path->dentry);
1100         path->dentry = mountpoint;
1101         mntput(path->mnt);
1102         path->mnt = &parent->mnt;
1103         return 1;
1104 }
1105 EXPORT_SYMBOL(follow_up);
1106
1107 /*
1108  * Perform an automount
1109  * - return -EISDIR to tell follow_managed() to stop and return the path we
1110  *   were called with.
1111  */
1112 static int follow_automount(struct path *path, struct nameidata *nd,
1113                             bool *need_mntput)
1114 {
1115         struct vfsmount *mnt;
1116         int err;
1117
1118         if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1119                 return -EREMOTE;
1120
1121         /* We don't want to mount if someone's just doing a stat -
1122          * unless they're stat'ing a directory and appended a '/' to
1123          * the name.
1124          *
1125          * We do, however, want to mount if someone wants to open or
1126          * create a file of any type under the mountpoint, wants to
1127          * traverse through the mountpoint or wants to open the
1128          * mounted directory.  Also, autofs may mark negative dentries
1129          * as being automount points.  These will need the attentions
1130          * of the daemon to instantiate them before they can be used.
1131          */
1132         if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1133                            LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1134             path->dentry->d_inode)
1135                 return -EISDIR;
1136
1137         nd->total_link_count++;
1138         if (nd->total_link_count >= 40)
1139                 return -ELOOP;
1140
1141         mnt = path->dentry->d_op->d_automount(path);
1142         if (IS_ERR(mnt)) {
1143                 /*
1144                  * The filesystem is allowed to return -EISDIR here to indicate
1145                  * it doesn't want to automount.  For instance, autofs would do
1146                  * this so that its userspace daemon can mount on this dentry.
1147                  *
1148                  * However, we can only permit this if it's a terminal point in
1149                  * the path being looked up; if it wasn't then the remainder of
1150                  * the path is inaccessible and we should say so.
1151                  */
1152                 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1153                         return -EREMOTE;
1154                 return PTR_ERR(mnt);
1155         }
1156
1157         if (!mnt) /* mount collision */
1158                 return 0;
1159
1160         if (!*need_mntput) {
1161                 /* lock_mount() may release path->mnt on error */
1162                 mntget(path->mnt);
1163                 *need_mntput = true;
1164         }
1165         err = finish_automount(mnt, path);
1166
1167         switch (err) {
1168         case -EBUSY:
1169                 /* Someone else made a mount here whilst we were busy */
1170                 return 0;
1171         case 0:
1172                 path_put(path);
1173                 path->mnt = mnt;
1174                 path->dentry = dget(mnt->mnt_root);
1175                 return 0;
1176         default:
1177                 return err;
1178         }
1179
1180 }
1181
1182 /*
1183  * Handle a dentry that is managed in some way.
1184  * - Flagged for transit management (autofs)
1185  * - Flagged as mountpoint
1186  * - Flagged as automount point
1187  *
1188  * This may only be called in refwalk mode.
1189  *
1190  * Serialization is taken care of in namespace.c
1191  */
1192 static int follow_managed(struct path *path, struct nameidata *nd)
1193 {
1194         struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1195         unsigned managed;
1196         bool need_mntput = false;
1197         int ret = 0;
1198
1199         /* Given that we're not holding a lock here, we retain the value in a
1200          * local variable for each dentry as we look at it so that we don't see
1201          * the components of that value change under us */
1202         while (managed = ACCESS_ONCE(path->dentry->d_flags),
1203                managed &= DCACHE_MANAGED_DENTRY,
1204                unlikely(managed != 0)) {
1205                 /* Allow the filesystem to manage the transit without i_mutex
1206                  * being held. */
1207                 if (managed & DCACHE_MANAGE_TRANSIT) {
1208                         BUG_ON(!path->dentry->d_op);
1209                         BUG_ON(!path->dentry->d_op->d_manage);
1210                         ret = path->dentry->d_op->d_manage(path, false);
1211                         if (ret < 0)
1212                                 break;
1213                 }
1214
1215                 /* Transit to a mounted filesystem. */
1216                 if (managed & DCACHE_MOUNTED) {
1217                         struct vfsmount *mounted = lookup_mnt(path);
1218                         if (mounted) {
1219                                 dput(path->dentry);
1220                                 if (need_mntput)
1221                                         mntput(path->mnt);
1222                                 path->mnt = mounted;
1223                                 path->dentry = dget(mounted->mnt_root);
1224                                 need_mntput = true;
1225                                 continue;
1226                         }
1227
1228                         /* Something is mounted on this dentry in another
1229                          * namespace and/or whatever was mounted there in this
1230                          * namespace got unmounted before lookup_mnt() could
1231                          * get it */
1232                 }
1233
1234                 /* Handle an automount point */
1235                 if (managed & DCACHE_NEED_AUTOMOUNT) {
1236                         ret = follow_automount(path, nd, &need_mntput);
1237                         if (ret < 0)
1238                                 break;
1239                         continue;
1240                 }
1241
1242                 /* We didn't change the current path point */
1243                 break;
1244         }
1245
1246         if (need_mntput && path->mnt == mnt)
1247                 mntput(path->mnt);
1248         if (ret == -EISDIR || !ret)
1249                 ret = 1;
1250         if (need_mntput)
1251                 nd->flags |= LOOKUP_JUMPED;
1252         if (unlikely(ret < 0))
1253                 path_put_conditional(path, nd);
1254         return ret;
1255 }
1256
1257 int follow_down_one(struct path *path)
1258 {
1259         struct vfsmount *mounted;
1260
1261         mounted = lookup_mnt(path);
1262         if (mounted) {
1263                 dput(path->dentry);
1264                 mntput(path->mnt);
1265                 path->mnt = mounted;
1266                 path->dentry = dget(mounted->mnt_root);
1267                 return 1;
1268         }
1269         return 0;
1270 }
1271 EXPORT_SYMBOL(follow_down_one);
1272
1273 static inline int managed_dentry_rcu(const struct path *path)
1274 {
1275         return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1276                 path->dentry->d_op->d_manage(path, true) : 0;
1277 }
1278
1279 /*
1280  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1281  * we meet a managed dentry that would need blocking.
1282  */
1283 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1284                                struct inode **inode, unsigned *seqp)
1285 {
1286         for (;;) {
1287                 struct mount *mounted;
1288                 /*
1289                  * Don't forget we might have a non-mountpoint managed dentry
1290                  * that wants to block transit.
1291                  */
1292                 switch (managed_dentry_rcu(path)) {
1293                 case -ECHILD:
1294                 default:
1295                         return false;
1296                 case -EISDIR:
1297                         return true;
1298                 case 0:
1299                         break;
1300                 }
1301
1302                 if (!d_mountpoint(path->dentry))
1303                         return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1304
1305                 mounted = __lookup_mnt(path->mnt, path->dentry);
1306                 if (!mounted)
1307                         break;
1308                 path->mnt = &mounted->mnt;
1309                 path->dentry = mounted->mnt.mnt_root;
1310                 nd->flags |= LOOKUP_JUMPED;
1311                 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1312                 /*
1313                  * Update the inode too. We don't need to re-check the
1314                  * dentry sequence number here after this d_inode read,
1315                  * because a mount-point is always pinned.
1316                  */
1317                 *inode = path->dentry->d_inode;
1318         }
1319         return !read_seqretry(&mount_lock, nd->m_seq) &&
1320                 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1321 }
1322
1323 static int follow_dotdot_rcu(struct nameidata *nd)
1324 {
1325         struct inode *inode = nd->inode;
1326
1327         while (1) {
1328                 if (path_equal(&nd->path, &nd->root))
1329                         break;
1330                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1331                         struct dentry *old = nd->path.dentry;
1332                         struct dentry *parent = old->d_parent;
1333                         unsigned seq;
1334
1335                         inode = parent->d_inode;
1336                         seq = read_seqcount_begin(&parent->d_seq);
1337                         if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1338                                 return -ECHILD;
1339                         nd->path.dentry = parent;
1340                         nd->seq = seq;
1341                         if (unlikely(!path_connected(&nd->path)))
1342                                 return -ENOENT;
1343                         break;
1344                 } else {
1345                         struct mount *mnt = real_mount(nd->path.mnt);
1346                         struct mount *mparent = mnt->mnt_parent;
1347                         struct dentry *mountpoint = mnt->mnt_mountpoint;
1348                         struct inode *inode2 = mountpoint->d_inode;
1349                         unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1350                         if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1351                                 return -ECHILD;
1352                         if (&mparent->mnt == nd->path.mnt)
1353                                 break;
1354                         /* we know that mountpoint was pinned */
1355                         nd->path.dentry = mountpoint;
1356                         nd->path.mnt = &mparent->mnt;
1357                         inode = inode2;
1358                         nd->seq = seq;
1359                 }
1360         }
1361         while (unlikely(d_mountpoint(nd->path.dentry))) {
1362                 struct mount *mounted;
1363                 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1364                 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1365                         return -ECHILD;
1366                 if (!mounted)
1367                         break;
1368                 nd->path.mnt = &mounted->mnt;
1369                 nd->path.dentry = mounted->mnt.mnt_root;
1370                 inode = nd->path.dentry->d_inode;
1371                 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1372         }
1373         nd->inode = inode;
1374         return 0;
1375 }
1376
1377 /*
1378  * Follow down to the covering mount currently visible to userspace.  At each
1379  * point, the filesystem owning that dentry may be queried as to whether the
1380  * caller is permitted to proceed or not.
1381  */
1382 int follow_down(struct path *path)
1383 {
1384         unsigned managed;
1385         int ret;
1386
1387         while (managed = ACCESS_ONCE(path->dentry->d_flags),
1388                unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1389                 /* Allow the filesystem to manage the transit without i_mutex
1390                  * being held.
1391                  *
1392                  * We indicate to the filesystem if someone is trying to mount
1393                  * something here.  This gives autofs the chance to deny anyone
1394                  * other than its daemon the right to mount on its
1395                  * superstructure.
1396                  *
1397                  * The filesystem may sleep at this point.
1398                  */
1399                 if (managed & DCACHE_MANAGE_TRANSIT) {
1400                         BUG_ON(!path->dentry->d_op);
1401                         BUG_ON(!path->dentry->d_op->d_manage);
1402                         ret = path->dentry->d_op->d_manage(path, false);
1403                         if (ret < 0)
1404                                 return ret == -EISDIR ? 0 : ret;
1405                 }
1406
1407                 /* Transit to a mounted filesystem. */
1408                 if (managed & DCACHE_MOUNTED) {
1409                         struct vfsmount *mounted = lookup_mnt(path);
1410                         if (!mounted)
1411                                 break;
1412                         dput(path->dentry);
1413                         mntput(path->mnt);
1414                         path->mnt = mounted;
1415                         path->dentry = dget(mounted->mnt_root);
1416                         continue;
1417                 }
1418
1419                 /* Don't handle automount points here */
1420                 break;
1421         }
1422         return 0;
1423 }
1424 EXPORT_SYMBOL(follow_down);
1425
1426 /*
1427  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1428  */
1429 static void follow_mount(struct path *path)
1430 {
1431         while (d_mountpoint(path->dentry)) {
1432                 struct vfsmount *mounted = lookup_mnt(path);
1433                 if (!mounted)
1434                         break;
1435                 dput(path->dentry);
1436                 mntput(path->mnt);
1437                 path->mnt = mounted;
1438                 path->dentry = dget(mounted->mnt_root);
1439         }
1440 }
1441
1442 static int path_parent_directory(struct path *path)
1443 {
1444         struct dentry *old = path->dentry;
1445         /* rare case of legitimate dget_parent()... */
1446         path->dentry = dget_parent(path->dentry);
1447         dput(old);
1448         if (unlikely(!path_connected(path)))
1449                 return -ENOENT;
1450         return 0;
1451 }
1452
1453 static int follow_dotdot(struct nameidata *nd)
1454 {
1455         while(1) {
1456                 if (nd->path.dentry == nd->root.dentry &&
1457                     nd->path.mnt == nd->root.mnt) {
1458                         break;
1459                 }
1460                 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1461                         int ret = path_parent_directory(&nd->path);
1462                         if (ret)
1463                                 return ret;
1464                         break;
1465                 }
1466                 if (!follow_up(&nd->path))
1467                         break;
1468         }
1469         follow_mount(&nd->path);
1470         nd->inode = nd->path.dentry->d_inode;
1471         return 0;
1472 }
1473
1474 /*
1475  * This looks up the name in dcache and possibly revalidates the found dentry.
1476  * NULL is returned if the dentry does not exist in the cache.
1477  */
1478 static struct dentry *lookup_dcache(const struct qstr *name,
1479                                     struct dentry *dir,
1480                                     unsigned int flags)
1481 {
1482         struct dentry *dentry = d_lookup(dir, name);
1483         if (dentry) {
1484                 int error = d_revalidate(dentry, flags);
1485                 if (unlikely(error <= 0)) {
1486                         if (!error)
1487                                 d_invalidate(dentry);
1488                         dput(dentry);
1489                         return ERR_PTR(error);
1490                 }
1491         }
1492         return dentry;
1493 }
1494
1495 /*
1496  * Call i_op->lookup on the dentry.  The dentry must be negative and
1497  * unhashed.
1498  *
1499  * dir->d_inode->i_mutex must be held
1500  */
1501 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1502                                   unsigned int flags)
1503 {
1504         struct dentry *old;
1505
1506         /* Don't create child dentry for a dead directory. */
1507         if (unlikely(IS_DEADDIR(dir))) {
1508                 dput(dentry);
1509                 return ERR_PTR(-ENOENT);
1510         }
1511
1512         old = dir->i_op->lookup(dir, dentry, flags);
1513         if (unlikely(old)) {
1514                 dput(dentry);
1515                 dentry = old;
1516         }
1517         return dentry;
1518 }
1519
1520 static struct dentry *__lookup_hash(const struct qstr *name,
1521                 struct dentry *base, unsigned int flags)
1522 {
1523         struct dentry *dentry = lookup_dcache(name, base, flags);
1524
1525         if (dentry)
1526                 return dentry;
1527
1528         dentry = d_alloc(base, name);
1529         if (unlikely(!dentry))
1530                 return ERR_PTR(-ENOMEM);
1531
1532         return lookup_real(base->d_inode, dentry, flags);
1533 }
1534
1535 static int lookup_fast(struct nameidata *nd,
1536                        struct path *path, struct inode **inode,
1537                        unsigned *seqp)
1538 {
1539         struct vfsmount *mnt = nd->path.mnt;
1540         struct dentry *dentry, *parent = nd->path.dentry;
1541         int status = 1;
1542         int err;
1543
1544         /*
1545          * Rename seqlock is not required here because in the off chance
1546          * of a false negative due to a concurrent rename, the caller is
1547          * going to fall back to non-racy lookup.
1548          */
1549         if (nd->flags & LOOKUP_RCU) {
1550                 unsigned seq;
1551                 bool negative;
1552                 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1553                 if (unlikely(!dentry)) {
1554                         if (unlazy_walk(nd))
1555                                 return -ECHILD;
1556                         return 0;
1557                 }
1558
1559                 /*
1560                  * This sequence count validates that the inode matches
1561                  * the dentry name information from lookup.
1562                  */
1563                 *inode = d_backing_inode(dentry);
1564                 negative = d_is_negative(dentry);
1565                 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1566                         return -ECHILD;
1567
1568                 /*
1569                  * This sequence count validates that the parent had no
1570                  * changes while we did the lookup of the dentry above.
1571                  *
1572                  * The memory barrier in read_seqcount_begin of child is
1573                  *  enough, we can use __read_seqcount_retry here.
1574                  */
1575                 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1576                         return -ECHILD;
1577
1578                 *seqp = seq;
1579                 status = d_revalidate(dentry, nd->flags);
1580                 if (likely(status > 0)) {
1581                         /*
1582                          * Note: do negative dentry check after revalidation in
1583                          * case that drops it.
1584                          */
1585                         if (unlikely(negative))
1586                                 return -ENOENT;
1587                         path->mnt = mnt;
1588                         path->dentry = dentry;
1589                         if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1590                                 return 1;
1591                 }
1592                 if (unlazy_child(nd, dentry, seq))
1593                         return -ECHILD;
1594                 if (unlikely(status == -ECHILD))
1595                         /* we'd been told to redo it in non-rcu mode */
1596                         status = d_revalidate(dentry, nd->flags);
1597         } else {
1598                 dentry = __d_lookup(parent, &nd->last);
1599                 if (unlikely(!dentry))
1600                         return 0;
1601                 status = d_revalidate(dentry, nd->flags);
1602         }
1603         if (unlikely(status <= 0)) {
1604                 if (!status)
1605                         d_invalidate(dentry);
1606                 dput(dentry);
1607                 return status;
1608         }
1609         if (unlikely(d_is_negative(dentry))) {
1610                 dput(dentry);
1611                 return -ENOENT;
1612         }
1613
1614         path->mnt = mnt;
1615         path->dentry = dentry;
1616         err = follow_managed(path, nd);
1617         if (likely(err > 0))
1618                 *inode = d_backing_inode(path->dentry);
1619         return err;
1620 }
1621
1622 /* Fast lookup failed, do it the slow way */
1623 static struct dentry *lookup_slow(const struct qstr *name,
1624                                   struct dentry *dir,
1625                                   unsigned int flags)
1626 {
1627         struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1628         struct inode *inode = dir->d_inode;
1629         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1630
1631         inode_lock_shared(inode);
1632         /* Don't go there if it's already dead */
1633         if (unlikely(IS_DEADDIR(inode)))
1634                 goto out;
1635 again:
1636         dentry = d_alloc_parallel(dir, name, &wq);
1637         if (IS_ERR(dentry))
1638                 goto out;
1639         if (unlikely(!d_in_lookup(dentry))) {
1640                 if (!(flags & LOOKUP_NO_REVAL)) {
1641                         int error = d_revalidate(dentry, flags);
1642                         if (unlikely(error <= 0)) {
1643                                 if (!error) {
1644                                         d_invalidate(dentry);
1645                                         dput(dentry);
1646                                         goto again;
1647                                 }
1648                                 dput(dentry);
1649                                 dentry = ERR_PTR(error);
1650                         }
1651                 }
1652         } else {
1653                 old = inode->i_op->lookup(inode, dentry, flags);
1654                 d_lookup_done(dentry);
1655                 if (unlikely(old)) {
1656                         dput(dentry);
1657                         dentry = old;
1658                 }
1659         }
1660 out:
1661         inode_unlock_shared(inode);
1662         return dentry;
1663 }
1664
1665 static inline int may_lookup(struct nameidata *nd)
1666 {
1667         if (nd->flags & LOOKUP_RCU) {
1668                 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1669                 if (err != -ECHILD)
1670                         return err;
1671                 if (unlazy_walk(nd))
1672                         return -ECHILD;
1673         }
1674         return inode_permission(nd->inode, MAY_EXEC);
1675 }
1676
1677 static inline int handle_dots(struct nameidata *nd, int type)
1678 {
1679         if (type == LAST_DOTDOT) {
1680                 if (!nd->root.mnt)
1681                         set_root(nd);
1682                 if (nd->flags & LOOKUP_RCU) {
1683                         return follow_dotdot_rcu(nd);
1684                 } else
1685                         return follow_dotdot(nd);
1686         }
1687         return 0;
1688 }
1689
1690 static int pick_link(struct nameidata *nd, struct path *link,
1691                      struct inode *inode, unsigned seq)
1692 {
1693         int error;
1694         struct saved *last;
1695         if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1696                 path_to_nameidata(link, nd);
1697                 return -ELOOP;
1698         }
1699         if (!(nd->flags & LOOKUP_RCU)) {
1700                 if (link->mnt == nd->path.mnt)
1701                         mntget(link->mnt);
1702         }
1703         error = nd_alloc_stack(nd);
1704         if (unlikely(error)) {
1705                 if (error == -ECHILD) {
1706                         if (unlikely(!legitimize_path(nd, link, seq))) {
1707                                 drop_links(nd);
1708                                 nd->depth = 0;
1709                                 nd->flags &= ~LOOKUP_RCU;
1710                                 nd->path.mnt = NULL;
1711                                 nd->path.dentry = NULL;
1712                                 if (!(nd->flags & LOOKUP_ROOT))
1713                                         nd->root.mnt = NULL;
1714                                 rcu_read_unlock();
1715                         } else if (likely(unlazy_walk(nd)) == 0)
1716                                 error = nd_alloc_stack(nd);
1717                 }
1718                 if (error) {
1719                         path_put(link);
1720                         return error;
1721                 }
1722         }
1723
1724         last = nd->stack + nd->depth++;
1725         last->link = *link;
1726         clear_delayed_call(&last->done);
1727         nd->link_inode = inode;
1728         last->seq = seq;
1729         return 1;
1730 }
1731
1732 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1733
1734 /*
1735  * Do we need to follow links? We _really_ want to be able
1736  * to do this check without having to look at inode->i_op,
1737  * so we keep a cache of "no, this doesn't need follow_link"
1738  * for the common case.
1739  */
1740 static inline int step_into(struct nameidata *nd, struct path *path,
1741                             int flags, struct inode *inode, unsigned seq)
1742 {
1743         if (!(flags & WALK_MORE) && nd->depth)
1744                 put_link(nd);
1745         if (likely(!d_is_symlink(path->dentry)) ||
1746            !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1747                 /* not a symlink or should not follow */
1748                 path_to_nameidata(path, nd);
1749                 nd->inode = inode;
1750                 nd->seq = seq;
1751                 return 0;
1752         }
1753         /* make sure that d_is_symlink above matches inode */
1754         if (nd->flags & LOOKUP_RCU) {
1755                 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1756                         return -ECHILD;
1757         }
1758         return pick_link(nd, path, inode, seq);
1759 }
1760
1761 static int walk_component(struct nameidata *nd, int flags)
1762 {
1763         struct path path;
1764         struct inode *inode;
1765         unsigned seq;
1766         int err;
1767         /*
1768          * "." and ".." are special - ".." especially so because it has
1769          * to be able to know about the current root directory and
1770          * parent relationships.
1771          */
1772         if (unlikely(nd->last_type != LAST_NORM)) {
1773                 err = handle_dots(nd, nd->last_type);
1774                 if (!(flags & WALK_MORE) && nd->depth)
1775                         put_link(nd);
1776                 return err;
1777         }
1778         err = lookup_fast(nd, &path, &inode, &seq);
1779         if (unlikely(err <= 0)) {
1780                 if (err < 0)
1781                         return err;
1782                 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1783                                           nd->flags);
1784                 if (IS_ERR(path.dentry))
1785                         return PTR_ERR(path.dentry);
1786
1787                 path.mnt = nd->path.mnt;
1788                 err = follow_managed(&path, nd);
1789                 if (unlikely(err < 0))
1790                         return err;
1791
1792                 if (unlikely(d_is_negative(path.dentry))) {
1793                         path_to_nameidata(&path, nd);
1794                         return -ENOENT;
1795                 }
1796
1797                 seq = 0;        /* we are already out of RCU mode */
1798                 inode = d_backing_inode(path.dentry);
1799         }
1800
1801         return step_into(nd, &path, flags, inode, seq);
1802 }
1803
1804 /*
1805  * We can do the critical dentry name comparison and hashing
1806  * operations one word at a time, but we are limited to:
1807  *
1808  * - Architectures with fast unaligned word accesses. We could
1809  *   do a "get_unaligned()" if this helps and is sufficiently
1810  *   fast.
1811  *
1812  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1813  *   do not trap on the (extremely unlikely) case of a page
1814  *   crossing operation.
1815  *
1816  * - Furthermore, we need an efficient 64-bit compile for the
1817  *   64-bit case in order to generate the "number of bytes in
1818  *   the final mask". Again, that could be replaced with a
1819  *   efficient population count instruction or similar.
1820  */
1821 #ifdef CONFIG_DCACHE_WORD_ACCESS
1822
1823 #include <asm/word-at-a-time.h>
1824
1825 #ifdef HASH_MIX
1826
1827 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1828
1829 #elif defined(CONFIG_64BIT)
1830 /*
1831  * Register pressure in the mixing function is an issue, particularly
1832  * on 32-bit x86, but almost any function requires one state value and
1833  * one temporary.  Instead, use a function designed for two state values
1834  * and no temporaries.
1835  *
1836  * This function cannot create a collision in only two iterations, so
1837  * we have two iterations to achieve avalanche.  In those two iterations,
1838  * we have six layers of mixing, which is enough to spread one bit's
1839  * influence out to 2^6 = 64 state bits.
1840  *
1841  * Rotate constants are scored by considering either 64 one-bit input
1842  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1843  * probability of that delta causing a change to each of the 128 output
1844  * bits, using a sample of random initial states.
1845  *
1846  * The Shannon entropy of the computed probabilities is then summed
1847  * to produce a score.  Ideally, any input change has a 50% chance of
1848  * toggling any given output bit.
1849  *
1850  * Mixing scores (in bits) for (12,45):
1851  * Input delta: 1-bit      2-bit
1852  * 1 round:     713.3    42542.6
1853  * 2 rounds:   2753.7   140389.8
1854  * 3 rounds:   5954.1   233458.2
1855  * 4 rounds:   7862.6   256672.2
1856  * Perfect:    8192     258048
1857  *            (64*128) (64*63/2 * 128)
1858  */
1859 #define HASH_MIX(x, y, a)       \
1860         (       x ^= (a),       \
1861         y ^= x, x = rol64(x,12),\
1862         x += y, y = rol64(y,45),\
1863         y *= 9                  )
1864
1865 /*
1866  * Fold two longs into one 32-bit hash value.  This must be fast, but
1867  * latency isn't quite as critical, as there is a fair bit of additional
1868  * work done before the hash value is used.
1869  */
1870 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1871 {
1872         y ^= x * GOLDEN_RATIO_64;
1873         y *= GOLDEN_RATIO_64;
1874         return y >> 32;
1875 }
1876
1877 #else   /* 32-bit case */
1878
1879 /*
1880  * Mixing scores (in bits) for (7,20):
1881  * Input delta: 1-bit      2-bit
1882  * 1 round:     330.3     9201.6
1883  * 2 rounds:   1246.4    25475.4
1884  * 3 rounds:   1907.1    31295.1
1885  * 4 rounds:   2042.3    31718.6
1886  * Perfect:    2048      31744
1887  *            (32*64)   (32*31/2 * 64)
1888  */
1889 #define HASH_MIX(x, y, a)       \
1890         (       x ^= (a),       \
1891         y ^= x, x = rol32(x, 7),\
1892         x += y, y = rol32(y,20),\
1893         y *= 9                  )
1894
1895 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1896 {
1897         /* Use arch-optimized multiply if one exists */
1898         return __hash_32(y ^ __hash_32(x));
1899 }
1900
1901 #endif
1902
1903 /*
1904  * Return the hash of a string of known length.  This is carfully
1905  * designed to match hash_name(), which is the more critical function.
1906  * In particular, we must end by hashing a final word containing 0..7
1907  * payload bytes, to match the way that hash_name() iterates until it
1908  * finds the delimiter after the name.
1909  */
1910 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1911 {
1912         unsigned long a, x = 0, y = (unsigned long)salt;
1913
1914         for (;;) {
1915                 if (!len)
1916                         goto done;
1917                 a = load_unaligned_zeropad(name);
1918                 if (len < sizeof(unsigned long))
1919                         break;
1920                 HASH_MIX(x, y, a);
1921                 name += sizeof(unsigned long);
1922                 len -= sizeof(unsigned long);
1923         }
1924         x ^= a & bytemask_from_count(len);
1925 done:
1926         return fold_hash(x, y);
1927 }
1928 EXPORT_SYMBOL(full_name_hash);
1929
1930 /* Return the "hash_len" (hash and length) of a null-terminated string */
1931 u64 hashlen_string(const void *salt, const char *name)
1932 {
1933         unsigned long a = 0, x = 0, y = (unsigned long)salt;
1934         unsigned long adata, mask, len;
1935         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1936
1937         len = 0;
1938         goto inside;
1939
1940         do {
1941                 HASH_MIX(x, y, a);
1942                 len += sizeof(unsigned long);
1943 inside:
1944                 a = load_unaligned_zeropad(name+len);
1945         } while (!has_zero(a, &adata, &constants));
1946
1947         adata = prep_zero_mask(a, adata, &constants);
1948         mask = create_zero_mask(adata);
1949         x ^= a & zero_bytemask(mask);
1950
1951         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1952 }
1953 EXPORT_SYMBOL(hashlen_string);
1954
1955 /*
1956  * Calculate the length and hash of the path component, and
1957  * return the "hash_len" as the result.
1958  */
1959 static inline u64 hash_name(const void *salt, const char *name)
1960 {
1961         unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1962         unsigned long adata, bdata, mask, len;
1963         const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1964
1965         len = 0;
1966         goto inside;
1967
1968         do {
1969                 HASH_MIX(x, y, a);
1970                 len += sizeof(unsigned long);
1971 inside:
1972                 a = load_unaligned_zeropad(name+len);
1973                 b = a ^ REPEAT_BYTE('/');
1974         } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1975
1976         adata = prep_zero_mask(a, adata, &constants);
1977         bdata = prep_zero_mask(b, bdata, &constants);
1978         mask = create_zero_mask(adata | bdata);
1979         x ^= a & zero_bytemask(mask);
1980
1981         return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1982 }
1983
1984 #else   /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1985
1986 /* Return the hash of a string of known length */
1987 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1988 {
1989         unsigned long hash = init_name_hash(salt);
1990         while (len--)
1991                 hash = partial_name_hash((unsigned char)*name++, hash);
1992         return end_name_hash(hash);
1993 }
1994 EXPORT_SYMBOL(full_name_hash);
1995
1996 /* Return the "hash_len" (hash and length) of a null-terminated string */
1997 u64 hashlen_string(const void *salt, const char *name)
1998 {
1999         unsigned long hash = init_name_hash(salt);
2000         unsigned long len = 0, c;
2001
2002         c = (unsigned char)*name;
2003         while (c) {
2004                 len++;
2005                 hash = partial_name_hash(c, hash);
2006                 c = (unsigned char)name[len];
2007         }
2008         return hashlen_create(end_name_hash(hash), len);
2009 }
2010 EXPORT_SYMBOL(hashlen_string);
2011
2012 /*
2013  * We know there's a real path component here of at least
2014  * one character.
2015  */
2016 static inline u64 hash_name(const void *salt, const char *name)
2017 {
2018         unsigned long hash = init_name_hash(salt);
2019         unsigned long len = 0, c;
2020
2021         c = (unsigned char)*name;
2022         do {
2023                 len++;
2024                 hash = partial_name_hash(c, hash);
2025                 c = (unsigned char)name[len];
2026         } while (c && c != '/');
2027         return hashlen_create(end_name_hash(hash), len);
2028 }
2029
2030 #endif
2031
2032 /*
2033  * Name resolution.
2034  * This is the basic name resolution function, turning a pathname into
2035  * the final dentry. We expect 'base' to be positive and a directory.
2036  *
2037  * Returns 0 and nd will have valid dentry and mnt on success.
2038  * Returns error and drops reference to input namei data on failure.
2039  */
2040 static int link_path_walk(const char *name, struct nameidata *nd)
2041 {
2042         int err;
2043
2044         while (*name=='/')
2045                 name++;
2046         if (!*name)
2047                 return 0;
2048
2049         /* At this point we know we have a real path component. */
2050         for(;;) {
2051                 u64 hash_len;
2052                 int type;
2053
2054                 err = may_lookup(nd);
2055                 if (err)
2056                         return err;
2057
2058                 hash_len = hash_name(nd->path.dentry, name);
2059
2060                 type = LAST_NORM;
2061                 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2062                         case 2:
2063                                 if (name[1] == '.') {
2064                                         type = LAST_DOTDOT;
2065                                         nd->flags |= LOOKUP_JUMPED;
2066                                 }
2067                                 break;
2068                         case 1:
2069                                 type = LAST_DOT;
2070                 }
2071                 if (likely(type == LAST_NORM)) {
2072                         struct dentry *parent = nd->path.dentry;
2073                         nd->flags &= ~LOOKUP_JUMPED;
2074                         if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2075                                 struct qstr this = { { .hash_len = hash_len }, .name = name };
2076                                 err = parent->d_op->d_hash(parent, &this);
2077                                 if (err < 0)
2078                                         return err;
2079                                 hash_len = this.hash_len;
2080                                 name = this.name;
2081                         }
2082                 }
2083
2084                 nd->last.hash_len = hash_len;
2085                 nd->last.name = name;
2086                 nd->last_type = type;
2087
2088                 name += hashlen_len(hash_len);
2089                 if (!*name)
2090                         goto OK;
2091                 /*
2092                  * If it wasn't NUL, we know it was '/'. Skip that
2093                  * slash, and continue until no more slashes.
2094                  */
2095                 do {
2096                         name++;
2097                 } while (unlikely(*name == '/'));
2098                 if (unlikely(!*name)) {
2099 OK:
2100                         /* pathname body, done */
2101                         if (!nd->depth)
2102                                 return 0;
2103                         name = nd->stack[nd->depth - 1].name;
2104                         /* trailing symlink, done */
2105                         if (!name)
2106                                 return 0;
2107                         /* last component of nested symlink */
2108                         err = walk_component(nd, WALK_FOLLOW);
2109                 } else {
2110                         /* not the last component */
2111                         err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2112                 }
2113                 if (err < 0)
2114                         return err;
2115
2116                 if (err) {
2117                         const char *s = get_link(nd);
2118
2119                         if (IS_ERR(s))
2120                                 return PTR_ERR(s);
2121                         err = 0;
2122                         if (unlikely(!s)) {
2123                                 /* jumped */
2124                                 put_link(nd);
2125                         } else {
2126                                 nd->stack[nd->depth - 1].name = name;
2127                                 name = s;
2128                                 continue;
2129                         }
2130                 }
2131                 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2132                         if (nd->flags & LOOKUP_RCU) {
2133                                 if (unlazy_walk(nd))
2134                                         return -ECHILD;
2135                         }
2136                         return -ENOTDIR;
2137                 }
2138         }
2139 }
2140
2141 static const char *path_init(struct nameidata *nd, unsigned flags)
2142 {
2143         const char *s = nd->name->name;
2144
2145         if (!*s)
2146                 flags &= ~LOOKUP_RCU;
2147
2148         nd->last_type = LAST_ROOT; /* if there are only slashes... */
2149         nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2150         nd->depth = 0;
2151         if (flags & LOOKUP_ROOT) {
2152                 struct dentry *root = nd->root.dentry;
2153                 struct inode *inode = root->d_inode;
2154                 if (*s && unlikely(!d_can_lookup(root)))
2155                         return ERR_PTR(-ENOTDIR);
2156                 nd->path = nd->root;
2157                 nd->inode = inode;
2158                 if (flags & LOOKUP_RCU) {
2159                         rcu_read_lock();
2160                         nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2161                         nd->root_seq = nd->seq;
2162                         nd->m_seq = read_seqbegin(&mount_lock);
2163                 } else {
2164                         path_get(&nd->path);
2165                 }
2166                 return s;
2167         }
2168
2169         nd->root.mnt = NULL;
2170         nd->path.mnt = NULL;
2171         nd->path.dentry = NULL;
2172
2173         nd->m_seq = read_seqbegin(&mount_lock);
2174         if (*s == '/') {
2175                 if (flags & LOOKUP_RCU)
2176                         rcu_read_lock();
2177                 set_root(nd);
2178                 if (likely(!nd_jump_root(nd)))
2179                         return s;
2180                 nd->root.mnt = NULL;
2181                 rcu_read_unlock();
2182                 return ERR_PTR(-ECHILD);
2183         } else if (nd->dfd == AT_FDCWD) {
2184                 if (flags & LOOKUP_RCU) {
2185                         struct fs_struct *fs = current->fs;
2186                         unsigned seq;
2187
2188                         rcu_read_lock();
2189
2190                         do {
2191                                 seq = read_seqcount_begin(&fs->seq);
2192                                 nd->path = fs->pwd;
2193                                 nd->inode = nd->path.dentry->d_inode;
2194                                 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2195                         } while (read_seqcount_retry(&fs->seq, seq));
2196                 } else {
2197                         get_fs_pwd(current->fs, &nd->path);
2198                         nd->inode = nd->path.dentry->d_inode;
2199                 }
2200                 return s;
2201         } else {
2202                 /* Caller must check execute permissions on the starting path component */
2203                 struct fd f = fdget_raw(nd->dfd);
2204                 struct dentry *dentry;
2205
2206                 if (!f.file)
2207                         return ERR_PTR(-EBADF);
2208
2209                 dentry = f.file->f_path.dentry;
2210
2211                 if (*s) {
2212                         if (!d_can_lookup(dentry)) {
2213                                 fdput(f);
2214                                 return ERR_PTR(-ENOTDIR);
2215                         }
2216                 }
2217
2218                 nd->path = f.file->f_path;
2219                 if (flags & LOOKUP_RCU) {
2220                         rcu_read_lock();
2221                         nd->inode = nd->path.dentry->d_inode;
2222                         nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2223                 } else {
2224                         path_get(&nd->path);
2225                         nd->inode = nd->path.dentry->d_inode;
2226                 }
2227                 fdput(f);
2228                 return s;
2229         }
2230 }
2231
2232 static const char *trailing_symlink(struct nameidata *nd)
2233 {
2234         const char *s;
2235         int error = may_follow_link(nd);
2236         if (unlikely(error))
2237                 return ERR_PTR(error);
2238         nd->flags |= LOOKUP_PARENT;
2239         nd->stack[0].name = NULL;
2240         s = get_link(nd);
2241         return s ? s : "";
2242 }
2243
2244 static inline int lookup_last(struct nameidata *nd)
2245 {
2246         if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2247                 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2248
2249         nd->flags &= ~LOOKUP_PARENT;
2250         return walk_component(nd, 0);
2251 }
2252
2253 static int handle_lookup_down(struct nameidata *nd)
2254 {
2255         struct path path = nd->path;
2256         struct inode *inode = nd->inode;
2257         unsigned seq = nd->seq;
2258         int err;
2259
2260         if (nd->flags & LOOKUP_RCU) {
2261                 /*
2262                  * don't bother with unlazy_walk on failure - we are
2263                  * at the very beginning of walk, so we lose nothing
2264                  * if we simply redo everything in non-RCU mode
2265                  */
2266                 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2267                         return -ECHILD;
2268         } else {
2269                 dget(path.dentry);
2270                 err = follow_managed(&path, nd);
2271                 if (unlikely(err < 0))
2272                         return err;
2273                 inode = d_backing_inode(path.dentry);
2274                 seq = 0;
2275         }
2276         path_to_nameidata(&path, nd);
2277         nd->inode = inode;
2278         nd->seq = seq;
2279         return 0;
2280 }
2281
2282 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2283 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2284 {
2285         const char *s = path_init(nd, flags);
2286         int err;
2287
2288         if (IS_ERR(s))
2289                 return PTR_ERR(s);
2290
2291         if (unlikely(flags & LOOKUP_DOWN)) {
2292                 err = handle_lookup_down(nd);
2293                 if (unlikely(err < 0)) {
2294                         terminate_walk(nd);
2295                         return err;
2296                 }
2297         }
2298
2299         while (!(err = link_path_walk(s, nd))
2300                 && ((err = lookup_last(nd)) > 0)) {
2301                 s = trailing_symlink(nd);
2302                 if (IS_ERR(s)) {
2303                         err = PTR_ERR(s);
2304                         break;
2305                 }
2306         }
2307         if (!err)
2308                 err = complete_walk(nd);
2309
2310         if (!err && nd->flags & LOOKUP_DIRECTORY)
2311                 if (!d_can_lookup(nd->path.dentry))
2312                         err = -ENOTDIR;
2313         if (!err) {
2314                 *path = nd->path;
2315                 nd->path.mnt = NULL;
2316                 nd->path.dentry = NULL;
2317         }
2318         terminate_walk(nd);
2319         return err;
2320 }
2321
2322 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2323                            struct path *path, struct path *root)
2324 {
2325         int retval;
2326         struct nameidata nd;
2327         if (IS_ERR(name))
2328                 return PTR_ERR(name);
2329         if (unlikely(root)) {
2330                 nd.root = *root;
2331                 flags |= LOOKUP_ROOT;
2332         }
2333         set_nameidata(&nd, dfd, name);
2334         retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2335         if (unlikely(retval == -ECHILD))
2336                 retval = path_lookupat(&nd, flags, path);
2337         if (unlikely(retval == -ESTALE))
2338                 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2339
2340         if (likely(!retval))
2341                 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2342         restore_nameidata();
2343         putname(name);
2344         return retval;
2345 }
2346
2347 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2348 static int path_parentat(struct nameidata *nd, unsigned flags,
2349                                 struct path *parent)
2350 {
2351         const char *s = path_init(nd, flags);
2352         int err;
2353         if (IS_ERR(s))
2354                 return PTR_ERR(s);
2355         err = link_path_walk(s, nd);
2356         if (!err)
2357                 err = complete_walk(nd);
2358         if (!err) {
2359                 *parent = nd->path;
2360                 nd->path.mnt = NULL;
2361                 nd->path.dentry = NULL;
2362         }
2363         terminate_walk(nd);
2364         return err;
2365 }
2366
2367 static struct filename *filename_parentat(int dfd, struct filename *name,
2368                                 unsigned int flags, struct path *parent,
2369                                 struct qstr *last, int *type)
2370 {
2371         int retval;
2372         struct nameidata nd;
2373
2374         if (IS_ERR(name))
2375                 return name;
2376         set_nameidata(&nd, dfd, name);
2377         retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2378         if (unlikely(retval == -ECHILD))
2379                 retval = path_parentat(&nd, flags, parent);
2380         if (unlikely(retval == -ESTALE))
2381                 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2382         if (likely(!retval)) {
2383                 *last = nd.last;
2384                 *type = nd.last_type;
2385                 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2386         } else {
2387                 putname(name);
2388                 name = ERR_PTR(retval);
2389         }
2390         restore_nameidata();
2391         return name;
2392 }
2393
2394 /* does lookup, returns the object with parent locked */
2395 struct dentry *kern_path_locked(const char *name, struct path *path)
2396 {
2397         struct filename *filename;
2398         struct dentry *d;
2399         struct qstr last;
2400         int type;
2401
2402         filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2403                                     &last, &type);
2404         if (IS_ERR(filename))
2405                 return ERR_CAST(filename);
2406         if (unlikely(type != LAST_NORM)) {
2407                 path_put(path);
2408                 putname(filename);
2409                 return ERR_PTR(-EINVAL);
2410         }
2411         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2412         d = __lookup_hash(&last, path->dentry, 0);
2413         if (IS_ERR(d)) {
2414                 inode_unlock(path->dentry->d_inode);
2415                 path_put(path);
2416         }
2417         putname(filename);
2418         return d;
2419 }
2420
2421 int kern_path(const char *name, unsigned int flags, struct path *path)
2422 {
2423         return filename_lookup(AT_FDCWD, getname_kernel(name),
2424                                flags, path, NULL);
2425 }
2426 EXPORT_SYMBOL(kern_path);
2427
2428 /**
2429  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2430  * @dentry:  pointer to dentry of the base directory
2431  * @mnt: pointer to vfs mount of the base directory
2432  * @name: pointer to file name
2433  * @flags: lookup flags
2434  * @path: pointer to struct path to fill
2435  */
2436 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2437                     const char *name, unsigned int flags,
2438                     struct path *path)
2439 {
2440         struct path root = {.mnt = mnt, .dentry = dentry};
2441         /* the first argument of filename_lookup() is ignored with root */
2442         return filename_lookup(AT_FDCWD, getname_kernel(name),
2443                                flags , path, &root);
2444 }
2445 EXPORT_SYMBOL(vfs_path_lookup);
2446
2447 /**
2448  * lookup_one_len - filesystem helper to lookup single pathname component
2449  * @name:       pathname component to lookup
2450  * @base:       base directory to lookup from
2451  * @len:        maximum length @len should be interpreted to
2452  *
2453  * Note that this routine is purely a helper for filesystem usage and should
2454  * not be called by generic code.
2455  *
2456  * The caller must hold base->i_mutex.
2457  */
2458 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2459 {
2460         struct qstr this;
2461         unsigned int c;
2462         int err;
2463
2464         WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2465
2466         this.name = name;
2467         this.len = len;
2468         this.hash = full_name_hash(base, name, len);
2469         if (!len)
2470                 return ERR_PTR(-EACCES);
2471
2472         if (unlikely(name[0] == '.')) {
2473                 if (len < 2 || (len == 2 && name[1] == '.'))
2474                         return ERR_PTR(-EACCES);
2475         }
2476
2477         while (len--) {
2478                 c = *(const unsigned char *)name++;
2479                 if (c == '/' || c == '\0')
2480                         return ERR_PTR(-EACCES);
2481         }
2482         /*
2483          * See if the low-level filesystem might want
2484          * to use its own hash..
2485          */
2486         if (base->d_flags & DCACHE_OP_HASH) {
2487                 int err = base->d_op->d_hash(base, &this);
2488                 if (err < 0)
2489                         return ERR_PTR(err);
2490         }
2491
2492         err = inode_permission(base->d_inode, MAY_EXEC);
2493         if (err)
2494                 return ERR_PTR(err);
2495
2496         return __lookup_hash(&this, base, 0);
2497 }
2498 EXPORT_SYMBOL(lookup_one_len);
2499
2500 /**
2501  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2502  * @name:       pathname component to lookup
2503  * @base:       base directory to lookup from
2504  * @len:        maximum length @len should be interpreted to
2505  *
2506  * Note that this routine is purely a helper for filesystem usage and should
2507  * not be called by generic code.
2508  *
2509  * Unlike lookup_one_len, it should be called without the parent
2510  * i_mutex held, and will take the i_mutex itself if necessary.
2511  */
2512 struct dentry *lookup_one_len_unlocked(const char *name,
2513                                        struct dentry *base, int len)
2514 {
2515         struct qstr this;
2516         unsigned int c;
2517         int err;
2518         struct dentry *ret;
2519
2520         this.name = name;
2521         this.len = len;
2522         this.hash = full_name_hash(base, name, len);
2523         if (!len)
2524                 return ERR_PTR(-EACCES);
2525
2526         if (unlikely(name[0] == '.')) {
2527                 if (len < 2 || (len == 2 && name[1] == '.'))
2528                         return ERR_PTR(-EACCES);
2529         }
2530
2531         while (len--) {
2532                 c = *(const unsigned char *)name++;
2533                 if (c == '/' || c == '\0')
2534                         return ERR_PTR(-EACCES);
2535         }
2536         /*
2537          * See if the low-level filesystem might want
2538          * to use its own hash..
2539          */
2540         if (base->d_flags & DCACHE_OP_HASH) {
2541                 int err = base->d_op->d_hash(base, &this);
2542                 if (err < 0)
2543                         return ERR_PTR(err);
2544         }
2545
2546         err = inode_permission(base->d_inode, MAY_EXEC);
2547         if (err)
2548                 return ERR_PTR(err);
2549
2550         ret = lookup_dcache(&this, base, 0);
2551         if (!ret)
2552                 ret = lookup_slow(&this, base, 0);
2553         return ret;
2554 }
2555 EXPORT_SYMBOL(lookup_one_len_unlocked);
2556
2557 #ifdef CONFIG_UNIX98_PTYS
2558 int path_pts(struct path *path)
2559 {
2560         /* Find something mounted on "pts" in the same directory as
2561          * the input path.
2562          */
2563         struct dentry *child, *parent;
2564         struct qstr this;
2565         int ret;
2566
2567         ret = path_parent_directory(path);
2568         if (ret)
2569                 return ret;
2570
2571         parent = path->dentry;
2572         this.name = "pts";
2573         this.len = 3;
2574         child = d_hash_and_lookup(parent, &this);
2575         if (!child)
2576                 return -ENOENT;
2577
2578         path->dentry = child;
2579         dput(parent);
2580         follow_mount(path);
2581         return 0;
2582 }
2583 #endif
2584
2585 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2586                  struct path *path, int *empty)
2587 {
2588         return filename_lookup(dfd, getname_flags(name, flags, empty),
2589                                flags, path, NULL);
2590 }
2591 EXPORT_SYMBOL(user_path_at_empty);
2592
2593 /**
2594  * mountpoint_last - look up last component for umount
2595  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2596  *
2597  * This is a special lookup_last function just for umount. In this case, we
2598  * need to resolve the path without doing any revalidation.
2599  *
2600  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2601  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2602  * in almost all cases, this lookup will be served out of the dcache. The only
2603  * cases where it won't are if nd->last refers to a symlink or the path is
2604  * bogus and it doesn't exist.
2605  *
2606  * Returns:
2607  * -error: if there was an error during lookup. This includes -ENOENT if the
2608  *         lookup found a negative dentry.
2609  *
2610  * 0:      if we successfully resolved nd->last and found it to not to be a
2611  *         symlink that needs to be followed.
2612  *
2613  * 1:      if we successfully resolved nd->last and found it to be a symlink
2614  *         that needs to be followed.
2615  */
2616 static int
2617 mountpoint_last(struct nameidata *nd)
2618 {
2619         int error = 0;
2620         struct dentry *dir = nd->path.dentry;
2621         struct path path;
2622
2623         /* If we're in rcuwalk, drop out of it to handle last component */
2624         if (nd->flags & LOOKUP_RCU) {
2625                 if (unlazy_walk(nd))
2626                         return -ECHILD;
2627         }
2628
2629         nd->flags &= ~LOOKUP_PARENT;
2630
2631         if (unlikely(nd->last_type != LAST_NORM)) {
2632                 error = handle_dots(nd, nd->last_type);
2633                 if (error)
2634                         return error;
2635                 path.dentry = dget(nd->path.dentry);
2636         } else {
2637                 path.dentry = d_lookup(dir, &nd->last);
2638                 if (!path.dentry) {
2639                         /*
2640                          * No cached dentry. Mounted dentries are pinned in the
2641                          * cache, so that means that this dentry is probably
2642                          * a symlink or the path doesn't actually point
2643                          * to a mounted dentry.
2644                          */
2645                         path.dentry = lookup_slow(&nd->last, dir,
2646                                              nd->flags | LOOKUP_NO_REVAL);
2647                         if (IS_ERR(path.dentry))
2648                                 return PTR_ERR(path.dentry);
2649                 }
2650         }
2651         if (d_is_negative(path.dentry)) {
2652                 dput(path.dentry);
2653                 return -ENOENT;
2654         }
2655         path.mnt = nd->path.mnt;
2656         return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2657 }
2658
2659 /**
2660  * path_mountpoint - look up a path to be umounted
2661  * @nd:         lookup context
2662  * @flags:      lookup flags
2663  * @path:       pointer to container for result
2664  *
2665  * Look up the given name, but don't attempt to revalidate the last component.
2666  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2667  */
2668 static int
2669 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2670 {
2671         const char *s = path_init(nd, flags);
2672         int err;
2673         if (IS_ERR(s))
2674                 return PTR_ERR(s);
2675         while (!(err = link_path_walk(s, nd)) &&
2676                 (err = mountpoint_last(nd)) > 0) {
2677                 s = trailing_symlink(nd);
2678                 if (IS_ERR(s)) {
2679                         err = PTR_ERR(s);
2680                         break;
2681                 }
2682         }
2683         if (!err) {
2684                 *path = nd->path;
2685                 nd->path.mnt = NULL;
2686                 nd->path.dentry = NULL;
2687                 follow_mount(path);
2688         }
2689         terminate_walk(nd);
2690         return err;
2691 }
2692
2693 static int
2694 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2695                         unsigned int flags)
2696 {
2697         struct nameidata nd;
2698         int error;
2699         if (IS_ERR(name))
2700                 return PTR_ERR(name);
2701         set_nameidata(&nd, dfd, name);
2702         error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2703         if (unlikely(error == -ECHILD))
2704                 error = path_mountpoint(&nd, flags, path);
2705         if (unlikely(error == -ESTALE))
2706                 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2707         if (likely(!error))
2708                 audit_inode(name, path->dentry, 0);
2709         restore_nameidata();
2710         putname(name);
2711         return error;
2712 }
2713
2714 /**
2715  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2716  * @dfd:        directory file descriptor
2717  * @name:       pathname from userland
2718  * @flags:      lookup flags
2719  * @path:       pointer to container to hold result
2720  *
2721  * A umount is a special case for path walking. We're not actually interested
2722  * in the inode in this situation, and ESTALE errors can be a problem. We
2723  * simply want track down the dentry and vfsmount attached at the mountpoint
2724  * and avoid revalidating the last component.
2725  *
2726  * Returns 0 and populates "path" on success.
2727  */
2728 int
2729 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2730                         struct path *path)
2731 {
2732         return filename_mountpoint(dfd, getname(name), path, flags);
2733 }
2734
2735 int
2736 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2737                         unsigned int flags)
2738 {
2739         return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2740 }
2741 EXPORT_SYMBOL(kern_path_mountpoint);
2742
2743 int __check_sticky(struct inode *dir, struct inode *inode)
2744 {
2745         kuid_t fsuid = current_fsuid();
2746
2747         if (uid_eq(inode->i_uid, fsuid))
2748                 return 0;
2749         if (uid_eq(dir->i_uid, fsuid))
2750                 return 0;
2751         return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2752 }
2753 EXPORT_SYMBOL(__check_sticky);
2754
2755 /*
2756  *      Check whether we can remove a link victim from directory dir, check
2757  *  whether the type of victim is right.
2758  *  1. We can't do it if dir is read-only (done in permission())
2759  *  2. We should have write and exec permissions on dir
2760  *  3. We can't remove anything from append-only dir
2761  *  4. We can't do anything with immutable dir (done in permission())
2762  *  5. If the sticky bit on dir is set we should either
2763  *      a. be owner of dir, or
2764  *      b. be owner of victim, or
2765  *      c. have CAP_FOWNER capability
2766  *  6. If the victim is append-only or immutable we can't do antyhing with
2767  *     links pointing to it.
2768  *  7. If the victim has an unknown uid or gid we can't change the inode.
2769  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2770  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2771  * 10. We can't remove a root or mountpoint.
2772  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2773  *     nfs_async_unlink().
2774  */
2775 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2776 {
2777         struct inode *inode = d_backing_inode(victim);
2778         int error;
2779
2780         if (d_is_negative(victim))
2781                 return -ENOENT;
2782         BUG_ON(!inode);
2783
2784         BUG_ON(victim->d_parent->d_inode != dir);
2785         audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2786
2787         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2788         if (error)
2789                 return error;
2790         if (IS_APPEND(dir))
2791                 return -EPERM;
2792
2793         if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2794             IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2795                 return -EPERM;
2796         if (isdir) {
2797                 if (!d_is_dir(victim))
2798                         return -ENOTDIR;
2799                 if (IS_ROOT(victim))
2800                         return -EBUSY;
2801         } else if (d_is_dir(victim))
2802                 return -EISDIR;
2803         if (IS_DEADDIR(dir))
2804                 return -ENOENT;
2805         if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2806                 return -EBUSY;
2807         return 0;
2808 }
2809
2810 /*      Check whether we can create an object with dentry child in directory
2811  *  dir.
2812  *  1. We can't do it if child already exists (open has special treatment for
2813  *     this case, but since we are inlined it's OK)
2814  *  2. We can't do it if dir is read-only (done in permission())
2815  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2816  *  4. We should have write and exec permissions on dir
2817  *  5. We can't do it if dir is immutable (done in permission())
2818  */
2819 static inline int may_create(struct inode *dir, struct dentry *child)
2820 {
2821         struct user_namespace *s_user_ns;
2822         audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2823         if (child->d_inode)
2824                 return -EEXIST;
2825         if (IS_DEADDIR(dir))
2826                 return -ENOENT;
2827         s_user_ns = dir->i_sb->s_user_ns;
2828         if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2829             !kgid_has_mapping(s_user_ns, current_fsgid()))
2830                 return -EOVERFLOW;
2831         return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2832 }
2833
2834 /*
2835  * p1 and p2 should be directories on the same fs.
2836  */
2837 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2838 {
2839         struct dentry *p;
2840
2841         if (p1 == p2) {
2842                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2843                 return NULL;
2844         }
2845
2846         mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2847
2848         p = d_ancestor(p2, p1);
2849         if (p) {
2850                 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2851                 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2852                 return p;
2853         }
2854
2855         p = d_ancestor(p1, p2);
2856         if (p) {
2857                 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2858                 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2859                 return p;
2860         }
2861
2862         inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2863         inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2864         return NULL;
2865 }
2866 EXPORT_SYMBOL(lock_rename);
2867
2868 void unlock_rename(struct dentry *p1, struct dentry *p2)
2869 {
2870         inode_unlock(p1->d_inode);
2871         if (p1 != p2) {
2872                 inode_unlock(p2->d_inode);
2873                 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2874         }
2875 }
2876 EXPORT_SYMBOL(unlock_rename);
2877
2878 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2879                 bool want_excl)
2880 {
2881         int error = may_create(dir, dentry);
2882         if (error)
2883                 return error;
2884
2885         if (!dir->i_op->create)
2886                 return -EACCES; /* shouldn't it be ENOSYS? */
2887         mode &= S_IALLUGO;
2888         mode |= S_IFREG;
2889         error = security_inode_create(dir, dentry, mode);
2890         if (error)
2891                 return error;
2892         error = dir->i_op->create(dir, dentry, mode, want_excl);
2893         if (!error)
2894                 fsnotify_create(dir, dentry);
2895         return error;
2896 }
2897 EXPORT_SYMBOL(vfs_create);
2898
2899 bool may_open_dev(const struct path *path)
2900 {
2901         return !(path->mnt->mnt_flags & MNT_NODEV) &&
2902                 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2903 }
2904
2905 static int may_open(const struct path *path, int acc_mode, int flag)
2906 {
2907         struct dentry *dentry = path->dentry;
2908         struct inode *inode = dentry->d_inode;
2909         int error;
2910
2911         if (!inode)
2912                 return -ENOENT;
2913
2914         switch (inode->i_mode & S_IFMT) {
2915         case S_IFLNK:
2916                 return -ELOOP;
2917         case S_IFDIR:
2918                 if (acc_mode & MAY_WRITE)
2919                         return -EISDIR;
2920                 break;
2921         case S_IFBLK:
2922         case S_IFCHR:
2923                 if (!may_open_dev(path))
2924                         return -EACCES;
2925                 /*FALLTHRU*/
2926         case S_IFIFO:
2927         case S_IFSOCK:
2928                 flag &= ~O_TRUNC;
2929                 break;
2930         }
2931
2932         error = inode_permission(inode, MAY_OPEN | acc_mode);
2933         if (error)
2934                 return error;
2935
2936         /*
2937          * An append-only file must be opened in append mode for writing.
2938          */
2939         if (IS_APPEND(inode)) {
2940                 if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2941                         return -EPERM;
2942                 if (flag & O_TRUNC)
2943                         return -EPERM;
2944         }
2945
2946         /* O_NOATIME can only be set by the owner or superuser */
2947         if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2948                 return -EPERM;
2949
2950         return 0;
2951 }
2952
2953 static int handle_truncate(struct file *filp)
2954 {
2955         const struct path *path = &filp->f_path;
2956         struct inode *inode = path->dentry->d_inode;
2957         int error = get_write_access(inode);
2958         if (error)
2959                 return error;
2960         /*
2961          * Refuse to truncate files with mandatory locks held on them.
2962          */
2963         error = locks_verify_locked(filp);
2964         if (!error)
2965                 error = security_path_truncate(path);
2966         if (!error) {
2967                 error = do_truncate(path->dentry, 0,
2968                                     ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2969                                     filp);
2970         }
2971         put_write_access(inode);
2972         return error;
2973 }
2974
2975 static inline int open_to_namei_flags(int flag)
2976 {
2977         if ((flag & O_ACCMODE) == 3)
2978                 flag--;
2979         return flag;
2980 }
2981
2982 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2983 {
2984         struct user_namespace *s_user_ns;
2985         int error = security_path_mknod(dir, dentry, mode, 0);
2986         if (error)
2987                 return error;
2988
2989         s_user_ns = dir->dentry->d_sb->s_user_ns;
2990         if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2991             !kgid_has_mapping(s_user_ns, current_fsgid()))
2992                 return -EOVERFLOW;
2993
2994         error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2995         if (error)
2996                 return error;
2997
2998         return security_inode_create(dir->dentry->d_inode, dentry, mode);
2999 }
3000
3001 /*
3002  * Attempt to atomically look up, create and open a file from a negative
3003  * dentry.
3004  *
3005  * Returns 0 if successful.  The file will have been created and attached to
3006  * @file by the filesystem calling finish_open().
3007  *
3008  * Returns 1 if the file was looked up only or didn't need creating.  The
3009  * caller will need to perform the open themselves.  @path will have been
3010  * updated to point to the new dentry.  This may be negative.
3011  *
3012  * Returns an error code otherwise.
3013  */
3014 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3015                         struct path *path, struct file *file,
3016                         const struct open_flags *op,
3017                         int open_flag, umode_t mode,
3018                         int *opened)
3019 {
3020         struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3021         struct inode *dir =  nd->path.dentry->d_inode;
3022         int error;
3023
3024         if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3025                 open_flag &= ~O_TRUNC;
3026
3027         if (nd->flags & LOOKUP_DIRECTORY)
3028                 open_flag |= O_DIRECTORY;
3029
3030         file->f_path.dentry = DENTRY_NOT_SET;
3031         file->f_path.mnt = nd->path.mnt;
3032         error = dir->i_op->atomic_open(dir, dentry, file,
3033                                        open_to_namei_flags(open_flag),
3034                                        mode, opened);
3035         d_lookup_done(dentry);
3036         if (!error) {
3037                 /*
3038                  * We didn't have the inode before the open, so check open
3039                  * permission here.
3040                  */
3041                 int acc_mode = op->acc_mode;
3042                 if (*opened & FILE_CREATED) {
3043                         WARN_ON(!(open_flag & O_CREAT));
3044                         fsnotify_create(dir, dentry);
3045                         acc_mode = 0;
3046                 }
3047                 error = may_open(&file->f_path, acc_mode, open_flag);
3048                 if (WARN_ON(error > 0))
3049                         error = -EINVAL;
3050         } else if (error > 0) {
3051                 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3052                         error = -EIO;
3053                 } else {
3054                         if (file->f_path.dentry) {
3055                                 dput(dentry);
3056                                 dentry = file->f_path.dentry;
3057                         }
3058                         if (*opened & FILE_CREATED)
3059                                 fsnotify_create(dir, dentry);
3060                         if (unlikely(d_is_negative(dentry))) {
3061                                 error = -ENOENT;
3062                         } else {
3063                                 path->dentry = dentry;
3064                                 path->mnt = nd->path.mnt;
3065                                 return 1;
3066                         }
3067                 }
3068         }
3069         dput(dentry);
3070         return error;
3071 }
3072
3073 /*
3074  * Look up and maybe create and open the last component.
3075  *
3076  * Must be called with i_mutex held on parent.
3077  *
3078  * Returns 0 if the file was successfully atomically created (if necessary) and
3079  * opened.  In this case the file will be returned attached to @file.
3080  *
3081  * Returns 1 if the file was not completely opened at this time, though lookups
3082  * and creations will have been performed and the dentry returned in @path will
3083  * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
3084  * specified then a negative dentry may be returned.
3085  *
3086  * An error code is returned otherwise.
3087  *
3088  * FILE_CREATE will be set in @*opened if the dentry was created and will be
3089  * cleared otherwise prior to returning.
3090  */
3091 static int lookup_open(struct nameidata *nd, struct path *path,
3092                         struct file *file,
3093                         const struct open_flags *op,
3094                         bool got_write, int *opened)
3095 {
3096         struct dentry *dir = nd->path.dentry;
3097         struct inode *dir_inode = dir->d_inode;
3098         int open_flag = op->open_flag;
3099         struct dentry *dentry;
3100         int error, create_error = 0;
3101         umode_t mode = op->mode;
3102         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3103
3104         if (unlikely(IS_DEADDIR(dir_inode)))
3105                 return -ENOENT;
3106
3107         *opened &= ~FILE_CREATED;
3108         dentry = d_lookup(dir, &nd->last);
3109         for (;;) {
3110                 if (!dentry) {
3111                         dentry = d_alloc_parallel(dir, &nd->last, &wq);
3112                         if (IS_ERR(dentry))
3113                                 return PTR_ERR(dentry);
3114                 }
3115                 if (d_in_lookup(dentry))
3116                         break;
3117
3118                 error = d_revalidate(dentry, nd->flags);
3119                 if (likely(error > 0))
3120                         break;
3121                 if (error)
3122                         goto out_dput;
3123                 d_invalidate(dentry);
3124                 dput(dentry);
3125                 dentry = NULL;
3126         }
3127         if (dentry->d_inode) {
3128                 /* Cached positive dentry: will open in f_op->open */
3129                 goto out_no_open;
3130         }
3131
3132         /*
3133          * Checking write permission is tricky, bacuse we don't know if we are
3134          * going to actually need it: O_CREAT opens should work as long as the
3135          * file exists.  But checking existence breaks atomicity.  The trick is
3136          * to check access and if not granted clear O_CREAT from the flags.
3137          *
3138          * Another problem is returing the "right" error value (e.g. for an
3139          * O_EXCL open we want to return EEXIST not EROFS).
3140          */
3141         if (open_flag & O_CREAT) {
3142                 if (!IS_POSIXACL(dir->d_inode))
3143                         mode &= ~current_umask();
3144                 if (unlikely(!got_write)) {
3145                         create_error = -EROFS;
3146                         open_flag &= ~O_CREAT;
3147                         if (open_flag & (O_EXCL | O_TRUNC))
3148                                 goto no_open;
3149                         /* No side effects, safe to clear O_CREAT */
3150                 } else {
3151                         create_error = may_o_create(&nd->path, dentry, mode);
3152                         if (create_error) {
3153                                 open_flag &= ~O_CREAT;
3154                                 if (open_flag & O_EXCL)
3155                                         goto no_open;
3156                         }
3157                 }
3158         } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3159                    unlikely(!got_write)) {
3160                 /*
3161                  * No O_CREATE -> atomicity not a requirement -> fall
3162                  * back to lookup + open
3163                  */
3164                 goto no_open;
3165         }
3166
3167         if (dir_inode->i_op->atomic_open) {
3168                 error = atomic_open(nd, dentry, path, file, op, open_flag,
3169                                     mode, opened);
3170                 if (unlikely(error == -ENOENT) && create_error)
3171                         error = create_error;
3172                 return error;
3173         }
3174
3175 no_open:
3176         if (d_in_lookup(dentry)) {
3177                 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3178                                                              nd->flags);
3179                 d_lookup_done(dentry);
3180                 if (unlikely(res)) {
3181                         if (IS_ERR(res)) {
3182                                 error = PTR_ERR(res);
3183                                 goto out_dput;
3184                         }
3185                         dput(dentry);
3186                         dentry = res;
3187                 }
3188         }
3189
3190         /* Negative dentry, just create the file */
3191         if (!dentry->d_inode && (open_flag & O_CREAT)) {
3192                 *opened |= FILE_CREATED;
3193                 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3194                 if (!dir_inode->i_op->create) {
3195                         error = -EACCES;
3196                         goto out_dput;
3197                 }
3198                 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3199                                                 open_flag & O_EXCL);
3200                 if (error)
3201                         goto out_dput;
3202                 fsnotify_create(dir_inode, dentry);
3203         }
3204         if (unlikely(create_error) && !dentry->d_inode) {
3205                 error = create_error;
3206                 goto out_dput;
3207         }
3208 out_no_open:
3209         path->dentry = dentry;
3210         path->mnt = nd->path.mnt;
3211         return 1;
3212
3213 out_dput:
3214         dput(dentry);
3215         return error;
3216 }
3217
3218 /*
3219  * Handle the last step of open()
3220  */
3221 static int do_last(struct nameidata *nd,
3222                    struct file *file, const struct open_flags *op,
3223                    int *opened)
3224 {
3225         struct dentry *dir = nd->path.dentry;
3226         int open_flag = op->open_flag;
3227         bool will_truncate = (open_flag & O_TRUNC) != 0;
3228         bool got_write = false;
3229         int acc_mode = op->acc_mode;
3230         unsigned seq;
3231         struct inode *inode;
3232         struct path path;
3233         int error;
3234
3235         nd->flags &= ~LOOKUP_PARENT;
3236         nd->flags |= op->intent;
3237
3238         if (nd->last_type != LAST_NORM) {
3239                 error = handle_dots(nd, nd->last_type);
3240                 if (unlikely(error))
3241                         return error;
3242                 goto finish_open;
3243         }
3244
3245         if (!(open_flag & O_CREAT)) {
3246                 if (nd->last.name[nd->last.len])
3247                         nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3248                 /* we _can_ be in RCU mode here */
3249                 error = lookup_fast(nd, &path, &inode, &seq);
3250                 if (likely(error > 0))
3251                         goto finish_lookup;
3252
3253                 if (error < 0)
3254                         return error;
3255
3256                 BUG_ON(nd->inode != dir->d_inode);
3257                 BUG_ON(nd->flags & LOOKUP_RCU);
3258         } else {
3259                 /* create side of things */
3260                 /*
3261                  * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3262                  * has been cleared when we got to the last component we are
3263                  * about to look up
3264                  */
3265                 error = complete_walk(nd);
3266                 if (error)
3267                         return error;
3268
3269                 audit_inode(nd->name, dir, LOOKUP_PARENT);
3270                 /* trailing slashes? */
3271                 if (unlikely(nd->last.name[nd->last.len]))
3272                         return -EISDIR;
3273         }
3274
3275         if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3276                 error = mnt_want_write(nd->path.mnt);
3277                 if (!error)
3278                         got_write = true;
3279                 /*
3280                  * do _not_ fail yet - we might not need that or fail with
3281                  * a different error; let lookup_open() decide; we'll be
3282                  * dropping this one anyway.
3283                  */
3284         }
3285         if (open_flag & O_CREAT)
3286                 inode_lock(dir->d_inode);
3287         else
3288                 inode_lock_shared(dir->d_inode);
3289         error = lookup_open(nd, &path, file, op, got_write, opened);
3290         if (open_flag & O_CREAT)
3291                 inode_unlock(dir->d_inode);
3292         else
3293                 inode_unlock_shared(dir->d_inode);
3294
3295         if (error <= 0) {
3296                 if (error)
3297                         goto out;
3298
3299                 if ((*opened & FILE_CREATED) ||
3300                     !S_ISREG(file_inode(file)->i_mode))
3301                         will_truncate = false;
3302
3303                 audit_inode(nd->name, file->f_path.dentry, 0);
3304                 goto opened;
3305         }
3306
3307         if (*opened & FILE_CREATED) {
3308                 /* Don't check for write permission, don't truncate */
3309                 open_flag &= ~O_TRUNC;
3310                 will_truncate = false;
3311                 acc_mode = 0;
3312                 path_to_nameidata(&path, nd);
3313                 goto finish_open_created;
3314         }
3315
3316         /*
3317          * If atomic_open() acquired write access it is dropped now due to
3318          * possible mount and symlink following (this might be optimized away if
3319          * necessary...)
3320          */
3321         if (got_write) {
3322                 mnt_drop_write(nd->path.mnt);
3323                 got_write = false;
3324         }
3325
3326         error = follow_managed(&path, nd);
3327         if (unlikely(error < 0))
3328                 return error;
3329
3330         if (unlikely(d_is_negative(path.dentry))) {
3331                 path_to_nameidata(&path, nd);
3332                 return -ENOENT;
3333         }
3334
3335         /*
3336          * create/update audit record if it already exists.
3337          */
3338         audit_inode(nd->name, path.dentry, 0);
3339
3340         if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3341                 path_to_nameidata(&path, nd);
3342                 return -EEXIST;
3343         }
3344
3345         seq = 0;        /* out of RCU mode, so the value doesn't matter */
3346         inode = d_backing_inode(path.dentry);
3347 finish_lookup:
3348         error = step_into(nd, &path, 0, inode, seq);
3349         if (unlikely(error))
3350                 return error;
3351 finish_open:
3352         /* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3353         error = complete_walk(nd);
3354         if (error)
3355                 return error;
3356         audit_inode(nd->name, nd->path.dentry, 0);
3357         error = -EISDIR;
3358         if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3359                 goto out;
3360         error = -ENOTDIR;
3361         if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3362                 goto out;
3363         if (!d_is_reg(nd->path.dentry))
3364                 will_truncate = false;
3365
3366         if (will_truncate) {
3367                 error = mnt_want_write(nd->path.mnt);
3368                 if (error)
3369                         goto out;
3370                 got_write = true;
3371         }
3372 finish_open_created:
3373         error = may_open(&nd->path, acc_mode, open_flag);
3374         if (error)
3375                 goto out;
3376         BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3377         error = vfs_open(&nd->path, file, current_cred());
3378         if (error)
3379                 goto out;
3380         *opened |= FILE_OPENED;
3381 opened:
3382         error = open_check_o_direct(file);
3383         if (!error)
3384                 error = ima_file_check(file, op->acc_mode, *opened);
3385         if (!error && will_truncate)
3386                 error = handle_truncate(file);
3387 out:
3388         if (unlikely(error) && (*opened & FILE_OPENED))
3389                 fput(file);
3390         if (unlikely(error > 0)) {
3391                 WARN_ON(1);
3392                 error = -EINVAL;
3393         }
3394         if (got_write)
3395                 mnt_drop_write(nd->path.mnt);
3396         return error;
3397 }
3398
3399 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3400 {
3401         struct dentry *child = NULL;
3402         struct inode *dir = dentry->d_inode;
3403         struct inode *inode;
3404         int error;
3405
3406         /* we want directory to be writable */
3407         error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3408         if (error)
3409                 goto out_err;
3410         error = -EOPNOTSUPP;
3411         if (!dir->i_op->tmpfile)
3412                 goto out_err;
3413         error = -ENOMEM;
3414         child = d_alloc(dentry, &slash_name);
3415         if (unlikely(!child))
3416                 goto out_err;
3417         error = dir->i_op->tmpfile(dir, child, mode);
3418         if (error)
3419                 goto out_err;
3420         error = -ENOENT;
3421         inode = child->d_inode;
3422         if (unlikely(!inode))
3423                 goto out_err;
3424         if (!(open_flag & O_EXCL)) {
3425                 spin_lock(&inode->i_lock);
3426                 inode->i_state |= I_LINKABLE;
3427                 spin_unlock(&inode->i_lock);
3428         }
3429         return child;
3430
3431 out_err:
3432         dput(child);
3433         return ERR_PTR(error);
3434 }
3435 EXPORT_SYMBOL(vfs_tmpfile);
3436
3437 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3438                 const struct open_flags *op,
3439                 struct file *file, int *opened)
3440 {
3441         struct dentry *child;
3442         struct path path;
3443         int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3444         if (unlikely(error))
3445                 return error;
3446         error = mnt_want_write(path.mnt);
3447         if (unlikely(error))
3448                 goto out;
3449         child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3450         error = PTR_ERR(child);
3451         if (unlikely(IS_ERR(child)))
3452                 goto out2;
3453         dput(path.dentry);
3454         path.dentry = child;
3455         audit_inode(nd->name, child, 0);
3456         /* Don't check for other permissions, the inode was just created */
3457         error = may_open(&path, 0, op->open_flag);
3458         if (error)
3459                 goto out2;
3460         file->f_path.mnt = path.mnt;
3461         error = finish_open(file, child, NULL, opened);
3462         if (error)
3463                 goto out2;
3464         error = open_check_o_direct(file);
3465         if (error)
3466                 fput(file);
3467 out2:
3468         mnt_drop_write(path.mnt);
3469 out:
3470         path_put(&path);
3471         return error;
3472 }
3473
3474 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3475 {
3476         struct path path;
3477         int error = path_lookupat(nd, flags, &path);
3478         if (!error) {
3479                 audit_inode(nd->name, path.dentry, 0);
3480                 error = vfs_open(&path, file, current_cred());
3481                 path_put(&path);
3482         }
3483         return error;
3484 }
3485
3486 static struct file *path_openat(struct nameidata *nd,
3487                         const struct open_flags *op, unsigned flags)
3488 {
3489         const char *s;
3490         struct file *file;
3491         int opened = 0;
3492         int error;
3493
3494         file = get_empty_filp();
3495         if (IS_ERR(file))
3496                 return file;
3497
3498         file->f_flags = op->open_flag;
3499
3500         if (unlikely(file->f_flags & __O_TMPFILE)) {
3501                 error = do_tmpfile(nd, flags, op, file, &opened);
3502                 goto out2;
3503         }
3504
3505         if (unlikely(file->f_flags & O_PATH)) {
3506                 error = do_o_path(nd, flags, file);
3507                 if (!error)
3508                         opened |= FILE_OPENED;
3509                 goto out2;
3510         }
3511
3512         s = path_init(nd, flags);
3513         if (IS_ERR(s)) {
3514                 put_filp(file);
3515                 return ERR_CAST(s);
3516         }
3517         while (!(error = link_path_walk(s, nd)) &&
3518                 (error = do_last(nd, file, op, &opened)) > 0) {
3519                 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3520                 s = trailing_symlink(nd);
3521                 if (IS_ERR(s)) {
3522                         error = PTR_ERR(s);
3523                         break;
3524                 }
3525         }
3526         terminate_walk(nd);
3527 out2:
3528         if (!(opened & FILE_OPENED)) {
3529                 BUG_ON(!error);
3530                 put_filp(file);
3531         }
3532         if (unlikely(error)) {
3533                 if (error == -EOPENSTALE) {
3534                         if (flags & LOOKUP_RCU)
3535                                 error = -ECHILD;
3536                         else
3537                                 error = -ESTALE;
3538                 }
3539                 file = ERR_PTR(error);
3540         }
3541         return file;
3542 }
3543
3544 struct file *do_filp_open(int dfd, struct filename *pathname,
3545                 const struct open_flags *op)
3546 {
3547         struct nameidata nd;
3548         int flags = op->lookup_flags;
3549         struct file *filp;
3550
3551         set_nameidata(&nd, dfd, pathname);
3552         filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3553         if (unlikely(filp == ERR_PTR(-ECHILD)))
3554                 filp = path_openat(&nd, op, flags);
3555         if (unlikely(filp == ERR_PTR(-ESTALE)))
3556                 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3557         restore_nameidata();
3558         return filp;
3559 }
3560
3561 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3562                 const char *name, const struct open_flags *op)
3563 {
3564         struct nameidata nd;
3565         struct file *file;
3566         struct filename *filename;
3567         int flags = op->lookup_flags | LOOKUP_ROOT;
3568
3569         nd.root.mnt = mnt;
3570         nd.root.dentry = dentry;
3571
3572         if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3573                 return ERR_PTR(-ELOOP);
3574
3575         filename = getname_kernel(name);
3576         if (IS_ERR(filename))
3577                 return ERR_CAST(filename);
3578
3579         set_nameidata(&nd, -1, filename);
3580         file = path_openat(&nd, op, flags | LOOKUP_RCU);
3581         if (unlikely(file == ERR_PTR(-ECHILD)))
3582                 file = path_openat(&nd, op, flags);
3583         if (unlikely(file == ERR_PTR(-ESTALE)))
3584                 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3585         restore_nameidata();
3586         putname(filename);
3587         return file;
3588 }
3589
3590 static struct dentry *filename_create(int dfd, struct filename *name,
3591                                 struct path *path, unsigned int lookup_flags)
3592 {
3593         struct dentry *dentry = ERR_PTR(-EEXIST);
3594         struct qstr last;
3595         int type;
3596         int err2;
3597         int error;
3598         bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3599
3600         /*
3601          * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3602          * other flags passed in are ignored!
3603          */
3604         lookup_flags &= LOOKUP_REVAL;
3605
3606         name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3607         if (IS_ERR(name))
3608                 return ERR_CAST(name);
3609
3610         /*
3611          * Yucky last component or no last component at all?
3612          * (foo/., foo/.., /////)
3613          */
3614         if (unlikely(type != LAST_NORM))
3615                 goto out;
3616
3617         /* don't fail immediately if it's r/o, at least try to report other errors */
3618         err2 = mnt_want_write(path->mnt);
3619         /*
3620          * Do the final lookup.
3621          */
3622         lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3623         inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3624         dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3625         if (IS_ERR(dentry))
3626                 goto unlock;
3627
3628         error = -EEXIST;
3629         if (d_is_positive(dentry))
3630                 goto fail;
3631
3632         /*
3633          * Special case - lookup gave negative, but... we had foo/bar/
3634          * From the vfs_mknod() POV we just have a negative dentry -
3635          * all is fine. Let's be bastards - you had / on the end, you've
3636          * been asking for (non-existent) directory. -ENOENT for you.
3637          */
3638         if (unlikely(!is_dir && last.name[last.len])) {
3639                 error = -ENOENT;
3640                 goto fail;
3641         }
3642         if (unlikely(err2)) {
3643                 error = err2;
3644                 goto fail;
3645         }
3646         putname(name);
3647         return dentry;
3648 fail:
3649         dput(dentry);
3650         dentry = ERR_PTR(error);
3651 unlock:
3652         inode_unlock(path->dentry->d_inode);
3653         if (!err2)
3654                 mnt_drop_write(path->mnt);
3655 out:
3656         path_put(path);
3657         putname(name);
3658         return dentry;
3659 }
3660
3661 struct dentry *kern_path_create(int dfd, const char *pathname,
3662                                 struct path *path, unsigned int lookup_flags)
3663 {
3664         return filename_create(dfd, getname_kernel(pathname),
3665                                 path, lookup_flags);
3666 }
3667 EXPORT_SYMBOL(kern_path_create);
3668
3669 void done_path_create(struct path *path, struct dentry *dentry)
3670 {
3671         dput(dentry);
3672         inode_unlock(path->dentry->d_inode);
3673         mnt_drop_write(path->mnt);
3674         path_put(path);
3675 }
3676 EXPORT_SYMBOL(done_path_create);
3677
3678 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3679                                 struct path *path, unsigned int lookup_flags)
3680 {
3681         return filename_create(dfd, getname(pathname), path, lookup_flags);
3682 }
3683 EXPORT_SYMBOL(user_path_create);
3684
3685 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3686 {
3687         int error = may_create(dir, dentry);
3688
3689         if (error)
3690                 return error;
3691
3692         if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3693                 return -EPERM;
3694
3695         if (!dir->i_op->mknod)
3696                 return -EPERM;
3697
3698         error = devcgroup_inode_mknod(mode, dev);
3699         if (error)
3700                 return error;
3701
3702         error = security_inode_mknod(dir, dentry, mode, dev);
3703         if (error)
3704                 return error;
3705
3706         error = dir->i_op->mknod(dir, dentry, mode, dev);
3707         if (!error)
3708                 fsnotify_create(dir, dentry);
3709         return error;
3710 }
3711 EXPORT_SYMBOL(vfs_mknod);
3712
3713 static int may_mknod(umode_t mode)
3714 {
3715         switch (mode & S_IFMT) {
3716         case S_IFREG:
3717         case S_IFCHR:
3718         case S_IFBLK:
3719         case S_IFIFO:
3720         case S_IFSOCK:
3721         case 0: /* zero mode translates to S_IFREG */
3722                 return 0;
3723         case S_IFDIR:
3724                 return -EPERM;
3725         default:
3726                 return -EINVAL;
3727         }
3728 }
3729
3730 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3731                 unsigned, dev)
3732 {
3733         struct dentry *dentry;
3734         struct path path;
3735         int error;
3736         unsigned int lookup_flags = 0;
3737
3738         error = may_mknod(mode);
3739         if (error)
3740                 return error;
3741 retry:
3742         dentry = user_path_create(dfd, filename, &path, lookup_flags);
3743         if (IS_ERR(dentry))
3744                 return PTR_ERR(dentry);
3745
3746         if (!IS_POSIXACL(path.dentry->d_inode))
3747                 mode &= ~current_umask();
3748         error = security_path_mknod(&path, dentry, mode, dev);
3749         if (error)
3750                 goto out;
3751         switch (mode & S_IFMT) {
3752                 case 0: case S_IFREG:
3753                         error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3754                         if (!error)
3755                                 ima_post_path_mknod(dentry);
3756                         break;
3757                 case S_IFCHR: case S_IFBLK:
3758                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3759                                         new_decode_dev(dev));
3760                         break;
3761                 case S_IFIFO: case S_IFSOCK:
3762                         error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3763                         break;
3764         }
3765 out:
3766         done_path_create(&path, dentry);
3767         if (retry_estale(error, lookup_flags)) {
3768                 lookup_flags |= LOOKUP_REVAL;
3769                 goto retry;
3770         }
3771         return error;
3772 }
3773
3774 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3775 {
3776         return sys_mknodat(AT_FDCWD, filename, mode, dev);
3777 }
3778
3779 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3780 {
3781         int error = may_create(dir, dentry);
3782         unsigned max_links = dir->i_sb->s_max_links;
3783
3784         if (error)
3785                 return error;
3786
3787         if (!dir->i_op->mkdir)
3788                 return -EPERM;
3789
3790         mode &= (S_IRWXUGO|S_ISVTX);
3791         error = security_inode_mkdir(dir, dentry, mode);
3792         if (error)
3793                 return error;
3794
3795         if (max_links && dir->i_nlink >= max_links)
3796                 return -EMLINK;
3797
3798         error = dir->i_op->mkdir(dir, dentry, mode);
3799         if (!error)
3800                 fsnotify_mkdir(dir, dentry);
3801         return error;
3802 }
3803 EXPORT_SYMBOL(vfs_mkdir);
3804
3805 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3806 {
3807         struct dentry *dentry;
3808         struct path path;
3809         int error;
3810         unsigned int lookup_flags = LOOKUP_DIRECTORY;
3811
3812 retry:
3813         dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3814         if (IS_ERR(dentry))
3815                 return PTR_ERR(dentry);
3816
3817         if (!IS_POSIXACL(path.dentry->d_inode))
3818                 mode &= ~current_umask();
3819         error = security_path_mkdir(&path, dentry, mode);
3820         if (!error)
3821                 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3822         done_path_create(&path, dentry);
3823         if (retry_estale(error, lookup_flags)) {
3824                 lookup_flags |= LOOKUP_REVAL;
3825                 goto retry;
3826         }
3827         return error;
3828 }
3829
3830 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3831 {
3832         return sys_mkdirat(AT_FDCWD, pathname, mode);
3833 }
3834
3835 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3836 {
3837         int error = may_delete(dir, dentry, 1);
3838
3839         if (error)
3840                 return error;
3841
3842         if (!dir->i_op->rmdir)
3843                 return -EPERM;
3844
3845         dget(dentry);
3846         inode_lock(dentry->d_inode);
3847
3848         error = -EBUSY;
3849         if (is_local_mountpoint(dentry))
3850                 goto out;
3851
3852         error = security_inode_rmdir(dir, dentry);
3853         if (error)
3854                 goto out;
3855
3856         shrink_dcache_parent(dentry);
3857         error = dir->i_op->rmdir(dir, dentry);
3858         if (error)
3859                 goto out;
3860
3861         dentry->d_inode->i_flags |= S_DEAD;
3862         dont_mount(dentry);
3863         detach_mounts(dentry);
3864
3865 out:
3866         inode_unlock(dentry->d_inode);
3867         dput(dentry);
3868         if (!error)
3869                 d_delete(dentry);
3870         return error;
3871 }
3872 EXPORT_SYMBOL(vfs_rmdir);
3873
3874 static long do_rmdir(int dfd, const char __user *pathname)
3875 {
3876         int error = 0;
3877         struct filename *name;
3878         struct dentry *dentry;
3879         struct path path;
3880         struct qstr last;
3881         int type;
3882         unsigned int lookup_flags = 0;
3883 retry:
3884         name = filename_parentat(dfd, getname(pathname), lookup_flags,
3885                                 &path, &last, &type);
3886         if (IS_ERR(name))
3887                 return PTR_ERR(name);
3888
3889         switch (type) {
3890         case LAST_DOTDOT:
3891                 error = -ENOTEMPTY;
3892                 goto exit1;
3893         case LAST_DOT:
3894                 error = -EINVAL;
3895                 goto exit1;
3896         case LAST_ROOT:
3897                 error = -EBUSY;
3898                 goto exit1;
3899         }
3900
3901         error = mnt_want_write(path.mnt);
3902         if (error)
3903                 goto exit1;
3904
3905         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3906         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3907         error = PTR_ERR(dentry);
3908         if (IS_ERR(dentry))
3909                 goto exit2;
3910         if (!dentry->d_inode) {
3911                 error = -ENOENT;
3912                 goto exit3;
3913         }
3914         error = security_path_rmdir(&path, dentry);
3915         if (error)
3916                 goto exit3;
3917         error = vfs_rmdir(path.dentry->d_inode, dentry);
3918 exit3:
3919         dput(dentry);
3920 exit2:
3921         inode_unlock(path.dentry->d_inode);
3922         mnt_drop_write(path.mnt);
3923 exit1:
3924         path_put(&path);
3925         putname(name);
3926         if (retry_estale(error, lookup_flags)) {
3927                 lookup_flags |= LOOKUP_REVAL;
3928                 goto retry;
3929         }
3930         return error;
3931 }
3932
3933 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3934 {
3935         return do_rmdir(AT_FDCWD, pathname);
3936 }
3937
3938 /**
3939  * vfs_unlink - unlink a filesystem object
3940  * @dir:        parent directory
3941  * @dentry:     victim
3942  * @delegated_inode: returns victim inode, if the inode is delegated.
3943  *
3944  * The caller must hold dir->i_mutex.
3945  *
3946  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3947  * return a reference to the inode in delegated_inode.  The caller
3948  * should then break the delegation on that inode and retry.  Because
3949  * breaking a delegation may take a long time, the caller should drop
3950  * dir->i_mutex before doing so.
3951  *
3952  * Alternatively, a caller may pass NULL for delegated_inode.  This may
3953  * be appropriate for callers that expect the underlying filesystem not
3954  * to be NFS exported.
3955  */
3956 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3957 {
3958         struct inode *target = dentry->d_inode;
3959         int error = may_delete(dir, dentry, 0);
3960
3961         if (error)
3962                 return error;
3963
3964         if (!dir->i_op->unlink)
3965                 return -EPERM;
3966
3967         inode_lock(target);
3968         if (is_local_mountpoint(dentry))
3969                 error = -EBUSY;
3970         else {
3971                 error = security_inode_unlink(dir, dentry);
3972                 if (!error) {
3973                         error = try_break_deleg(target, delegated_inode);
3974                         if (error)
3975                                 goto out;
3976                         error = dir->i_op->unlink(dir, dentry);
3977                         if (!error) {
3978                                 dont_mount(dentry);
3979                                 detach_mounts(dentry);
3980                         }
3981                 }
3982         }
3983 out:
3984         inode_unlock(target);
3985
3986         /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3987         if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3988                 fsnotify_link_count(target);
3989                 d_delete(dentry);
3990         }
3991
3992         return error;
3993 }
3994 EXPORT_SYMBOL(vfs_unlink);
3995
3996 /*
3997  * Make sure that the actual truncation of the file will occur outside its
3998  * directory's i_mutex.  Truncate can take a long time if there is a lot of
3999  * writeout happening, and we don't want to prevent access to the directory
4000  * while waiting on the I/O.
4001  */
4002 static long do_unlinkat(int dfd, const char __user *pathname)
4003 {
4004         int error;
4005         struct filename *name;
4006         struct dentry *dentry;
4007         struct path path;
4008         struct qstr last;
4009         int type;
4010         struct inode *inode = NULL;
4011         struct inode *delegated_inode = NULL;
4012         unsigned int lookup_flags = 0;
4013 retry:
4014         name = filename_parentat(dfd, getname(pathname), lookup_flags,
4015                                 &path, &last, &type);
4016         if (IS_ERR(name))
4017                 return PTR_ERR(name);
4018
4019         error = -EISDIR;
4020         if (type != LAST_NORM)
4021                 goto exit1;
4022
4023         error = mnt_want_write(path.mnt);
4024         if (error)
4025                 goto exit1;
4026 retry_deleg:
4027         inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4028         dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4029         error = PTR_ERR(dentry);
4030         if (!IS_ERR(dentry)) {
4031                 /* Why not before? Because we want correct error value */
4032                 if (last.name[last.len])
4033                         goto slashes;
4034                 inode = dentry->d_inode;
4035                 if (d_is_negative(dentry))
4036                         goto slashes;
4037                 ihold(inode);
4038                 error = security_path_unlink(&path, dentry);
4039                 if (error)
4040                         goto exit2;
4041                 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4042 exit2:
4043                 dput(dentry);
4044         }
4045         inode_unlock(path.dentry->d_inode);
4046         if (inode)
4047                 iput(inode);    /* truncate the inode here */
4048         inode = NULL;
4049         if (delegated_inode) {
4050                 error = break_deleg_wait(&delegated_inode);
4051                 if (!error)
4052                         goto retry_deleg;
4053         }
4054         mnt_drop_write(path.mnt);
4055 exit1:
4056         path_put(&path);
4057         putname(name);
4058         if (retry_estale(error, lookup_flags)) {
4059                 lookup_flags |= LOOKUP_REVAL;
4060                 inode = NULL;
4061                 goto retry;
4062         }
4063         return error;
4064
4065 slashes:
4066         if (d_is_negative(dentry))
4067                 error = -ENOENT;
4068         else if (d_is_dir(dentry))
4069                 error = -EISDIR;
4070         else
4071                 error = -ENOTDIR;
4072         goto exit2;
4073 }
4074
4075 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4076 {
4077         if ((flag & ~AT_REMOVEDIR) != 0)
4078                 return -EINVAL;
4079
4080         if (flag & AT_REMOVEDIR)
4081                 return do_rmdir(dfd, pathname);
4082
4083         return do_unlinkat(dfd, pathname);
4084 }
4085
4086 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4087 {
4088         return do_unlinkat(AT_FDCWD, pathname);
4089 }
4090
4091 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4092 {
4093         int error = may_create(dir, dentry);
4094
4095         if (error)
4096                 return error;
4097
4098         if (!dir->i_op->symlink)
4099                 return -EPERM;
4100
4101         error = security_inode_symlink(dir, dentry, oldname);
4102         if (error)
4103                 return error;
4104
4105         error = dir->i_op->symlink(dir, dentry, oldname);
4106         if (!error)
4107                 fsnotify_create(dir, dentry);
4108         return error;
4109 }
4110 EXPORT_SYMBOL(vfs_symlink);
4111
4112 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4113                 int, newdfd, const char __user *, newname)
4114 {
4115         int error;
4116         struct filename *from;
4117         struct dentry *dentry;
4118         struct path path;
4119         unsigned int lookup_flags = 0;
4120
4121         from = getname(oldname);
4122         if (IS_ERR(from))
4123                 return PTR_ERR(from);
4124 retry:
4125         dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4126         error = PTR_ERR(dentry);
4127         if (IS_ERR(dentry))
4128                 goto out_putname;
4129
4130         error = security_path_symlink(&path, dentry, from->name);
4131         if (!error)
4132                 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4133         done_path_create(&path, dentry);
4134         if (retry_estale(error, lookup_flags)) {
4135                 lookup_flags |= LOOKUP_REVAL;
4136                 goto retry;
4137         }
4138 out_putname:
4139         putname(from);
4140         return error;
4141 }
4142
4143 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4144 {
4145         return sys_symlinkat(oldname, AT_FDCWD, newname);
4146 }
4147
4148 /**
4149  * vfs_link - create a new link
4150  * @old_dentry: object to be linked
4151  * @dir:        new parent
4152  * @new_dentry: where to create the new link
4153  * @delegated_inode: returns inode needing a delegation break
4154  *
4155  * The caller must hold dir->i_mutex
4156  *
4157  * If vfs_link discovers a delegation on the to-be-linked file in need
4158  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4159  * inode in delegated_inode.  The caller should then break the delegation
4160  * and retry.  Because breaking a delegation may take a long time, the
4161  * caller should drop the i_mutex before doing so.
4162  *
4163  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4164  * be appropriate for callers that expect the underlying filesystem not
4165  * to be NFS exported.
4166  */
4167 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4168 {
4169         struct inode *inode = old_dentry->d_inode;
4170         unsigned max_links = dir->i_sb->s_max_links;
4171         int error;
4172
4173         if (!inode)
4174                 return -ENOENT;
4175
4176         error = may_create(dir, new_dentry);
4177         if (error)
4178                 return error;
4179
4180         if (dir->i_sb != inode->i_sb)
4181                 return -EXDEV;
4182
4183         /*
4184          * A link to an append-only or immutable file cannot be created.
4185          */
4186         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4187                 return -EPERM;
4188         /*
4189          * Updating the link count will likely cause i_uid and i_gid to
4190          * be writen back improperly if their true value is unknown to
4191          * the vfs.
4192          */
4193         if (HAS_UNMAPPED_ID(inode))
4194                 return -EPERM;
4195         if (!dir->i_op->link)
4196                 return -EPERM;
4197         if (S_ISDIR(inode->i_mode))
4198                 return -EPERM;
4199
4200         error = security_inode_link(old_dentry, dir, new_dentry);
4201         if (error)
4202                 return error;
4203
4204         inode_lock(inode);
4205         /* Make sure we don't allow creating hardlink to an unlinked file */
4206         if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4207                 error =  -ENOENT;
4208         else if (max_links && inode->i_nlink >= max_links)
4209                 error = -EMLINK;
4210         else {
4211                 error = try_break_deleg(inode, delegated_inode);
4212                 if (!error)
4213                         error = dir->i_op->link(old_dentry, dir, new_dentry);
4214         }
4215
4216         if (!error && (inode->i_state & I_LINKABLE)) {
4217                 spin_lock(&inode->i_lock);
4218                 inode->i_state &= ~I_LINKABLE;
4219                 spin_unlock(&inode->i_lock);
4220         }
4221         inode_unlock(inode);
4222         if (!error)
4223                 fsnotify_link(dir, inode, new_dentry);
4224         return error;
4225 }
4226 EXPORT_SYMBOL(vfs_link);
4227
4228 /*
4229  * Hardlinks are often used in delicate situations.  We avoid
4230  * security-related surprises by not following symlinks on the
4231  * newname.  --KAB
4232  *
4233  * We don't follow them on the oldname either to be compatible
4234  * with linux 2.0, and to avoid hard-linking to directories
4235  * and other special files.  --ADM
4236  */
4237 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4238                 int, newdfd, const char __user *, newname, int, flags)
4239 {
4240         struct dentry *new_dentry;
4241         struct path old_path, new_path;
4242         struct inode *delegated_inode = NULL;
4243         int how = 0;
4244         int error;
4245
4246         if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4247                 return -EINVAL;
4248         /*
4249          * To use null names we require CAP_DAC_READ_SEARCH
4250          * This ensures that not everyone will be able to create
4251          * handlink using the passed filedescriptor.
4252          */
4253         if (flags & AT_EMPTY_PATH) {
4254                 if (!capable(CAP_DAC_READ_SEARCH))
4255                         return -ENOENT;
4256                 how = LOOKUP_EMPTY;
4257         }
4258
4259         if (flags & AT_SYMLINK_FOLLOW)
4260                 how |= LOOKUP_FOLLOW;
4261 retry:
4262         error = user_path_at(olddfd, oldname, how, &old_path);
4263         if (error)
4264                 return error;
4265
4266         new_dentry = user_path_create(newdfd, newname, &new_path,
4267                                         (how & LOOKUP_REVAL));
4268         error = PTR_ERR(new_dentry);
4269         if (IS_ERR(new_dentry))
4270                 goto out;
4271
4272         error = -EXDEV;
4273         if (old_path.mnt != new_path.mnt)
4274                 goto out_dput;
4275         error = may_linkat(&old_path);
4276         if (unlikely(error))
4277                 goto out_dput;
4278         error = security_path_link(old_path.dentry, &new_path, new_dentry);
4279         if (error)
4280                 goto out_dput;
4281         error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4282 out_dput:
4283         done_path_create(&new_path, new_dentry);
4284         if (delegated_inode) {
4285                 error = break_deleg_wait(&delegated_inode);
4286                 if (!error) {
4287                         path_put(&old_path);
4288                         goto retry;
4289                 }
4290         }
4291         if (retry_estale(error, how)) {
4292                 path_put(&old_path);
4293                 how |= LOOKUP_REVAL;
4294                 goto retry;
4295         }
4296 out:
4297         path_put(&old_path);
4298
4299         return error;
4300 }
4301
4302 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4303 {
4304         return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4305 }
4306
4307 /**
4308  * vfs_rename - rename a filesystem object
4309  * @old_dir:    parent of source
4310  * @old_dentry: source
4311  * @new_dir:    parent of destination
4312  * @new_dentry: destination
4313  * @delegated_inode: returns an inode needing a delegation break
4314  * @flags:      rename flags
4315  *
4316  * The caller must hold multiple mutexes--see lock_rename()).
4317  *
4318  * If vfs_rename discovers a delegation in need of breaking at either
4319  * the source or destination, it will return -EWOULDBLOCK and return a
4320  * reference to the inode in delegated_inode.  The caller should then
4321  * break the delegation and retry.  Because breaking a delegation may
4322  * take a long time, the caller should drop all locks before doing
4323  * so.
4324  *
4325  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4326  * be appropriate for callers that expect the underlying filesystem not
4327  * to be NFS exported.
4328  *
4329  * The worst of all namespace operations - renaming directory. "Perverted"
4330  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4331  * Problems:
4332  *
4333  *      a) we can get into loop creation.
4334  *      b) race potential - two innocent renames can create a loop together.
4335  *         That's where 4.4 screws up. Current fix: serialization on
4336  *         sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4337  *         story.
4338  *      c) we have to lock _four_ objects - parents and victim (if it exists),
4339  *         and source (if it is not a directory).
4340  *         And that - after we got ->i_mutex on parents (until then we don't know
4341  *         whether the target exists).  Solution: try to be smart with locking
4342  *         order for inodes.  We rely on the fact that tree topology may change
4343  *         only under ->s_vfs_rename_mutex _and_ that parent of the object we
4344  *         move will be locked.  Thus we can rank directories by the tree
4345  *         (ancestors first) and rank all non-directories after them.
4346  *         That works since everybody except rename does "lock parent, lookup,
4347  *         lock child" and rename is under ->s_vfs_rename_mutex.
4348  *         HOWEVER, it relies on the assumption that any object with ->lookup()
4349  *         has no more than 1 dentry.  If "hybrid" objects will ever appear,
4350  *         we'd better make sure that there's no link(2) for them.
4351  *      d) conversion from fhandle to dentry may come in the wrong moment - when
4352  *         we are removing the target. Solution: we will have to grab ->i_mutex
4353  *         in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4354  *         ->i_mutex on parents, which works but leads to some truly excessive
4355  *         locking].
4356  */
4357 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4358                struct inode *new_dir, struct dentry *new_dentry,
4359                struct inode **delegated_inode, unsigned int flags)
4360 {
4361         int error;
4362         bool is_dir = d_is_dir(old_dentry);
4363         struct inode *source = old_dentry->d_inode;
4364         struct inode *target = new_dentry->d_inode;
4365         bool new_is_dir = false;
4366         unsigned max_links = new_dir->i_sb->s_max_links;
4367         struct name_snapshot old_name;
4368
4369         if (source == target)
4370                 return 0;
4371
4372         error = may_delete(old_dir, old_dentry, is_dir);
4373         if (error)
4374                 return error;
4375
4376         if (!target) {
4377                 error = may_create(new_dir, new_dentry);
4378         } else {
4379                 new_is_dir = d_is_dir(new_dentry);
4380
4381                 if (!(flags & RENAME_EXCHANGE))
4382                         error = may_delete(new_dir, new_dentry, is_dir);
4383                 else
4384                         error = may_delete(new_dir, new_dentry, new_is_dir);
4385         }
4386         if (error)
4387                 return error;
4388
4389         if (!old_dir->i_op->rename)
4390                 return -EPERM;
4391
4392         /*
4393          * If we are going to change the parent - check write permissions,
4394          * we'll need to flip '..'.
4395          */
4396         if (new_dir != old_dir) {
4397                 if (is_dir) {
4398                         error = inode_permission(source, MAY_WRITE);
4399                         if (error)
4400                                 return error;
4401                 }
4402                 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4403                         error = inode_permission(target, MAY_WRITE);
4404                         if (error)
4405                                 return error;
4406                 }
4407         }
4408
4409         error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4410                                       flags);
4411         if (error)
4412                 return error;
4413
4414         take_dentry_name_snapshot(&old_name, old_dentry);
4415         dget(new_dentry);
4416         if (!is_dir || (flags & RENAME_EXCHANGE))
4417                 lock_two_nondirectories(source, target);
4418         else if (target)
4419                 inode_lock(target);
4420
4421         error = -EBUSY;
4422         if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4423                 goto out;
4424
4425         if (max_links && new_dir != old_dir) {
4426                 error = -EMLINK;
4427                 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4428                         goto out;
4429                 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4430                     old_dir->i_nlink >= max_links)
4431                         goto out;
4432         }
4433         if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4434                 shrink_dcache_parent(new_dentry);
4435         if (!is_dir) {
4436                 error = try_break_deleg(source, delegated_inode);
4437                 if (error)
4438                         goto out;
4439         }
4440         if (target && !new_is_dir) {
4441                 error = try_break_deleg(target, delegated_inode);
4442                 if (error)
4443                         goto out;
4444         }
4445         error = old_dir->i_op->rename(old_dir, old_dentry,
4446                                        new_dir, new_dentry, flags);
4447         if (error)
4448                 goto out;
4449
4450         if (!(flags & RENAME_EXCHANGE) && target) {
4451                 if (is_dir)
4452                         target->i_flags |= S_DEAD;
4453                 dont_mount(new_dentry);
4454                 detach_mounts(new_dentry);
4455         }
4456         if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4457                 if (!(flags & RENAME_EXCHANGE))
4458                         d_move(old_dentry, new_dentry);
4459                 else
4460                         d_exchange(old_dentry, new_dentry);
4461         }
4462 out:
4463         if (!is_dir || (flags & RENAME_EXCHANGE))
4464                 unlock_two_nondirectories(source, target);
4465         else if (target)
4466                 inode_unlock(target);
4467         dput(new_dentry);
4468         if (!error) {
4469                 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4470                               !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4471                 if (flags & RENAME_EXCHANGE) {
4472                         fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4473                                       new_is_dir, NULL, new_dentry);
4474                 }
4475         }
4476         release_dentry_name_snapshot(&old_name);
4477
4478         return error;
4479 }
4480 EXPORT_SYMBOL(vfs_rename);
4481
4482 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4483                 int, newdfd, const char __user *, newname, unsigned int, flags)
4484 {
4485         struct dentry *old_dentry, *new_dentry;
4486         struct dentry *trap;
4487         struct path old_path, new_path;
4488         struct qstr old_last, new_last;
4489         int old_type, new_type;
4490         struct inode *delegated_inode = NULL;
4491         struct filename *from;
4492         struct filename *to;
4493         unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4494         bool should_retry = false;
4495         int error;
4496
4497         if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4498                 return -EINVAL;
4499
4500         if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4501             (flags & RENAME_EXCHANGE))
4502                 return -EINVAL;
4503
4504         if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4505                 return -EPERM;
4506
4507         if (flags & RENAME_EXCHANGE)
4508                 target_flags = 0;
4509
4510 retry:
4511         from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4512                                 &old_path, &old_last, &old_type);
4513         if (IS_ERR(from)) {
4514                 error = PTR_ERR(from);
4515                 goto exit;
4516         }
4517
4518         to = filename_parentat(newdfd, getname(newname), lookup_flags,
4519                                 &new_path, &new_last, &new_type);
4520         if (IS_ERR(to)) {
4521                 error = PTR_ERR(to);
4522                 goto exit1;
4523         }
4524
4525         error = -EXDEV;
4526         if (old_path.mnt != new_path.mnt)
4527                 goto exit2;
4528
4529         error = -EBUSY;
4530         if (old_type != LAST_NORM)
4531                 goto exit2;
4532
4533         if (flags & RENAME_NOREPLACE)
4534                 error = -EEXIST;
4535         if (new_type != LAST_NORM)
4536                 goto exit2;
4537
4538         error = mnt_want_write(old_path.mnt);
4539         if (error)
4540                 goto exit2;
4541
4542 retry_deleg:
4543         trap = lock_rename(new_path.dentry, old_path.dentry);
4544
4545         old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4546         error = PTR_ERR(old_dentry);
4547         if (IS_ERR(old_dentry))
4548                 goto exit3;
4549         /* source must exist */
4550         error = -ENOENT;
4551         if (d_is_negative(old_dentry))
4552                 goto exit4;
4553         new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4554         error = PTR_ERR(new_dentry);
4555         if (IS_ERR(new_dentry))
4556                 goto exit4;
4557         error = -EEXIST;
4558         if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4559                 goto exit5;
4560         if (flags & RENAME_EXCHANGE) {
4561                 error = -ENOENT;
4562                 if (d_is_negative(new_dentry))
4563                         goto exit5;
4564
4565                 if (!d_is_dir(new_dentry)) {
4566                         error = -ENOTDIR;
4567                         if (new_last.name[new_last.len])
4568                                 goto exit5;
4569                 }
4570         }
4571         /* unless the source is a directory trailing slashes give -ENOTDIR */
4572         if (!d_is_dir(old_dentry)) {
4573                 error = -ENOTDIR;
4574                 if (old_last.name[old_last.len])
4575                         goto exit5;
4576                 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4577                         goto exit5;
4578         }
4579         /* source should not be ancestor of target */
4580         error = -EINVAL;
4581         if (old_dentry == trap)
4582                 goto exit5;
4583         /* target should not be an ancestor of source */
4584         if (!(flags & RENAME_EXCHANGE))
4585                 error = -ENOTEMPTY;
4586         if (new_dentry == trap)
4587                 goto exit5;
4588
4589         error = security_path_rename(&old_path, old_dentry,
4590                                      &new_path, new_dentry, flags);
4591         if (error)
4592                 goto exit5;
4593         error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4594                            new_path.dentry->d_inode, new_dentry,
4595                            &delegated_inode, flags);
4596 exit5:
4597         dput(new_dentry);
4598 exit4:
4599         dput(old_dentry);
4600 exit3:
4601         unlock_rename(new_path.dentry, old_path.dentry);
4602         if (delegated_inode) {
4603                 error = break_deleg_wait(&delegated_inode);
4604                 if (!error)
4605                         goto retry_deleg;
4606         }
4607         mnt_drop_write(old_path.mnt);
4608 exit2:
4609         if (retry_estale(error, lookup_flags))
4610                 should_retry = true;
4611         path_put(&new_path);
4612         putname(to);
4613 exit1:
4614         path_put(&old_path);
4615         putname(from);
4616         if (should_retry) {
4617                 should_retry = false;
4618                 lookup_flags |= LOOKUP_REVAL;
4619                 goto retry;
4620         }
4621 exit:
4622         return error;
4623 }
4624
4625 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4626                 int, newdfd, const char __user *, newname)
4627 {
4628         return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4629 }
4630
4631 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4632 {
4633         return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4634 }
4635
4636 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4637 {
4638         int error = may_create(dir, dentry);
4639         if (error)
4640                 return error;
4641
4642         if (!dir->i_op->mknod)
4643                 return -EPERM;
4644
4645         return dir->i_op->mknod(dir, dentry,
4646                                 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4647 }
4648 EXPORT_SYMBOL(vfs_whiteout);
4649
4650 int readlink_copy(char __user *buffer, int buflen, const char *link)
4651 {
4652         int len = PTR_ERR(link);
4653         if (IS_ERR(link))
4654                 goto out;
4655
4656         len = strlen(link);
4657         if (len > (unsigned) buflen)
4658                 len = buflen;
4659         if (copy_to_user(buffer, link, len))
4660                 len = -EFAULT;
4661 out:
4662         return len;
4663 }
4664
4665 /*
4666  * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4667  * have ->get_link() not calling nd_jump_link().  Using (or not using) it
4668  * for any given inode is up to filesystem.
4669  */
4670 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4671                             int buflen)
4672 {
4673         DEFINE_DELAYED_CALL(done);
4674         struct inode *inode = d_inode(dentry);
4675         const char *link = inode->i_link;
4676         int res;
4677
4678         if (!link) {
4679                 link = inode->i_op->get_link(dentry, inode, &done);
4680                 if (IS_ERR(link))
4681                         return PTR_ERR(link);
4682         }
4683         res = readlink_copy(buffer, buflen, link);
4684         do_delayed_call(&done);
4685         return res;
4686 }
4687
4688 /**
4689  * vfs_readlink - copy symlink body into userspace buffer
4690  * @dentry: dentry on which to get symbolic link
4691  * @buffer: user memory pointer
4692  * @buflen: size of buffer
4693  *
4694  * Does not touch atime.  That's up to the caller if necessary
4695  *
4696  * Does not call security hook.
4697  */
4698 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4699 {
4700         struct inode *inode = d_inode(dentry);
4701
4702         if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4703                 if (unlikely(inode->i_op->readlink))
4704                         return inode->i_op->readlink(dentry, buffer, buflen);
4705
4706                 if (!d_is_symlink(dentry))
4707                         return -EINVAL;
4708
4709                 spin_lock(&inode->i_lock);
4710                 inode->i_opflags |= IOP_DEFAULT_READLINK;
4711                 spin_unlock(&inode->i_lock);
4712         }
4713
4714         return generic_readlink(dentry, buffer, buflen);
4715 }
4716 EXPORT_SYMBOL(vfs_readlink);
4717
4718 /**
4719  * vfs_get_link - get symlink body
4720  * @dentry: dentry on which to get symbolic link
4721  * @done: caller needs to free returned data with this
4722  *
4723  * Calls security hook and i_op->get_link() on the supplied inode.
4724  *
4725  * It does not touch atime.  That's up to the caller if necessary.
4726  *
4727  * Does not work on "special" symlinks like /proc/$$/fd/N
4728  */
4729 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4730 {
4731         const char *res = ERR_PTR(-EINVAL);
4732         struct inode *inode = d_inode(dentry);
4733
4734         if (d_is_symlink(dentry)) {
4735                 res = ERR_PTR(security_inode_readlink(dentry));
4736                 if (!res)
4737                         res = inode->i_op->get_link(dentry, inode, done);
4738         }
4739         return res;
4740 }
4741 EXPORT_SYMBOL(vfs_get_link);
4742
4743 /* get the link contents into pagecache */
4744 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4745                           struct delayed_call *callback)
4746 {
4747         char *kaddr;
4748         struct page *page;
4749         struct address_space *mapping = inode->i_mapping;
4750
4751         if (!dentry) {
4752                 page = find_get_page(mapping, 0);
4753                 if (!page)
4754                         return ERR_PTR(-ECHILD);
4755                 if (!PageUptodate(page)) {
4756                         put_page(page);
4757                         return ERR_PTR(-ECHILD);
4758                 }
4759         } else {
4760                 page = read_mapping_page(mapping, 0, NULL);
4761                 if (IS_ERR(page))
4762                         return (char*)page;
4763         }
4764         set_delayed_call(callback, page_put_link, page);
4765         BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4766         kaddr = page_address(page);
4767         nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4768         return kaddr;
4769 }
4770
4771 EXPORT_SYMBOL(page_get_link);
4772
4773 void page_put_link(void *arg)
4774 {
4775         put_page(arg);
4776 }
4777 EXPORT_SYMBOL(page_put_link);
4778
4779 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4780 {
4781         DEFINE_DELAYED_CALL(done);
4782         int res = readlink_copy(buffer, buflen,
4783                                 page_get_link(dentry, d_inode(dentry),
4784                                               &done));
4785         do_delayed_call(&done);
4786         return res;
4787 }
4788 EXPORT_SYMBOL(page_readlink);
4789
4790 /*
4791  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4792  */
4793 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4794 {
4795         struct address_space *mapping = inode->i_mapping;
4796         struct page *page;
4797         void *fsdata;
4798         int err;
4799         unsigned int flags = 0;
4800         if (nofs)
4801                 flags |= AOP_FLAG_NOFS;
4802
4803 retry:
4804         err = pagecache_write_begin(NULL, mapping, 0, len-1,
4805                                 flags, &page, &fsdata);
4806         if (err)
4807                 goto fail;
4808
4809         memcpy(page_address(page), symname, len-1);
4810
4811         err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4812                                                         page, fsdata);
4813         if (err < 0)
4814                 goto fail;
4815         if (err < len-1)
4816                 goto retry;
4817
4818         mark_inode_dirty(inode);
4819         return 0;
4820 fail:
4821         return err;
4822 }
4823 EXPORT_SYMBOL(__page_symlink);
4824
4825 int page_symlink(struct inode *inode, const char *symname, int len)
4826 {
4827         return __page_symlink(inode, symname, len,
4828                         !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4829 }
4830 EXPORT_SYMBOL(page_symlink);
4831
4832 const struct inode_operations page_symlink_inode_operations = {
4833         .get_link       = page_get_link,
4834 };
4835 EXPORT_SYMBOL(page_symlink_inode_operations);