1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * Some corrections by tytso.
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/ima.h>
31 #include <linux/syscalls.h>
32 #include <linux/mount.h>
33 #include <linux/audit.h>
34 #include <linux/capability.h>
35 #include <linux/file.h>
36 #include <linux/fcntl.h>
37 #include <linux/device_cgroup.h>
38 #include <linux/fs_struct.h>
39 #include <linux/posix_acl.h>
40 #include <linux/hash.h>
41 #include <linux/bitops.h>
42 #include <linux/init_task.h>
43 #include <linux/uaccess.h>
48 /* [Feb-1997 T. Schoebel-Theuer]
49 * Fundamental changes in the pathname lookup mechanisms (namei)
50 * were necessary because of omirr. The reason is that omirr needs
51 * to know the _real_ pathname, not the user-supplied one, in case
52 * of symlinks (and also when transname replacements occur).
54 * The new code replaces the old recursive symlink resolution with
55 * an iterative one (in case of non-nested symlink chains). It does
56 * this with calls to <fs>_follow_link().
57 * As a side effect, dir_namei(), _namei() and follow_link() are now
58 * replaced with a single function lookup_dentry() that can handle all
59 * the special cases of the former code.
61 * With the new dcache, the pathname is stored at each inode, at least as
62 * long as the refcount of the inode is positive. As a side effect, the
63 * size of the dcache depends on the inode cache and thus is dynamic.
65 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
66 * resolution to correspond with current state of the code.
68 * Note that the symlink resolution is not *completely* iterative.
69 * There is still a significant amount of tail- and mid- recursion in
70 * the algorithm. Also, note that <fs>_readlink() is not used in
71 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
72 * may return different results than <fs>_follow_link(). Many virtual
73 * filesystems (including /proc) exhibit this behavior.
76 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
77 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
78 * and the name already exists in form of a symlink, try to create the new
79 * name indicated by the symlink. The old code always complained that the
80 * name already exists, due to not following the symlink even if its target
81 * is nonexistent. The new semantics affects also mknod() and link() when
82 * the name is a symlink pointing to a non-existent name.
84 * I don't know which semantics is the right one, since I have no access
85 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
86 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
87 * "old" one. Personally, I think the new semantics is much more logical.
88 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
89 * file does succeed in both HP-UX and SunOs, but not in Solaris
90 * and in the old Linux semantics.
93 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
94 * semantics. See the comments in "open_namei" and "do_link" below.
96 * [10-Sep-98 Alan Modra] Another symlink change.
99 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
100 * inside the path - always follow.
101 * in the last component in creation/removal/renaming - never follow.
102 * if LOOKUP_FOLLOW passed - follow.
103 * if the pathname has trailing slashes - follow.
104 * otherwise - don't follow.
105 * (applied in that order).
107 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
108 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
109 * During the 2.4 we need to fix the userland stuff depending on it -
110 * hopefully we will be able to get rid of that wart in 2.5. So far only
111 * XEmacs seems to be relying on it...
114 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
115 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
116 * any extra contention...
119 /* In order to reduce some races, while at the same time doing additional
120 * checking and hopefully speeding things up, we copy filenames to the
121 * kernel data space before using them..
123 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
124 * PATH_MAX includes the nul terminator --RR.
127 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
130 getname_flags(const char __user *filename, int flags, int *empty)
132 struct filename *result;
136 result = audit_reusename(filename);
140 result = __getname();
141 if (unlikely(!result))
142 return ERR_PTR(-ENOMEM);
145 * First, try to embed the struct filename inside the names_cache
148 kname = (char *)result->iname;
149 result->name = kname;
151 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152 if (unlikely(len < 0)) {
158 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159 * separate struct filename so we can dedicate the entire
160 * names_cache allocation for the pathname, and re-do the copy from
163 if (unlikely(len == EMBEDDED_NAME_MAX)) {
164 const size_t size = offsetof(struct filename, iname[1]);
165 kname = (char *)result;
168 * size is chosen that way we to guarantee that
169 * result->iname[0] is within the same object and that
170 * kname can't be equal to result->iname, no matter what.
172 result = kzalloc(size, GFP_KERNEL);
173 if (unlikely(!result)) {
175 return ERR_PTR(-ENOMEM);
177 result->name = kname;
178 len = strncpy_from_user(kname, filename, PATH_MAX);
179 if (unlikely(len < 0)) {
184 if (unlikely(len == PATH_MAX)) {
187 return ERR_PTR(-ENAMETOOLONG);
192 /* The empty path is special. */
193 if (unlikely(!len)) {
196 if (!(flags & LOOKUP_EMPTY)) {
198 return ERR_PTR(-ENOENT);
202 result->uptr = filename;
203 result->aname = NULL;
204 audit_getname(result);
209 getname_uflags(const char __user *filename, int uflags)
211 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
213 return getname_flags(filename, flags, NULL);
217 getname(const char __user * filename)
219 return getname_flags(filename, 0, NULL);
223 getname_kernel(const char * filename)
225 struct filename *result;
226 int len = strlen(filename) + 1;
228 result = __getname();
229 if (unlikely(!result))
230 return ERR_PTR(-ENOMEM);
232 if (len <= EMBEDDED_NAME_MAX) {
233 result->name = (char *)result->iname;
234 } else if (len <= PATH_MAX) {
235 const size_t size = offsetof(struct filename, iname[1]);
236 struct filename *tmp;
238 tmp = kmalloc(size, GFP_KERNEL);
239 if (unlikely(!tmp)) {
241 return ERR_PTR(-ENOMEM);
243 tmp->name = (char *)result;
247 return ERR_PTR(-ENAMETOOLONG);
249 memcpy((char *)result->name, filename, len);
251 result->aname = NULL;
253 audit_getname(result);
257 EXPORT_SYMBOL(getname_kernel);
259 void putname(struct filename *name)
264 BUG_ON(name->refcnt <= 0);
266 if (--name->refcnt > 0)
269 if (name->name != name->iname) {
270 __putname(name->name);
275 EXPORT_SYMBOL(putname);
278 * check_acl - perform ACL permission checking
279 * @idmap: idmap of the mount the inode was found from
280 * @inode: inode to check permissions on
281 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
283 * This function performs the ACL permission checking. Since this function
284 * retrieve POSIX acls it needs to know whether it is called from a blocking or
285 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
287 * If the inode has been found through an idmapped mount the idmap of
288 * the vfsmount must be passed through @idmap. This function will then take
289 * care to map the inode according to @idmap before checking permissions.
290 * On non-idmapped mounts or if permission checking is to be performed on the
291 * raw inode simply passs @nop_mnt_idmap.
293 static int check_acl(struct mnt_idmap *idmap,
294 struct inode *inode, int mask)
296 #ifdef CONFIG_FS_POSIX_ACL
297 struct posix_acl *acl;
299 if (mask & MAY_NOT_BLOCK) {
300 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
303 /* no ->get_inode_acl() calls in RCU mode... */
304 if (is_uncached_acl(acl))
306 return posix_acl_permission(idmap, inode, acl, mask);
309 acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
313 int error = posix_acl_permission(idmap, inode, acl, mask);
314 posix_acl_release(acl);
323 * acl_permission_check - perform basic UNIX permission checking
324 * @idmap: idmap of the mount the inode was found from
325 * @inode: inode to check permissions on
326 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
328 * This function performs the basic UNIX permission checking. Since this
329 * function may retrieve POSIX acls it needs to know whether it is called from a
330 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
332 * If the inode has been found through an idmapped mount the idmap of
333 * the vfsmount must be passed through @idmap. This function will then take
334 * care to map the inode according to @idmap before checking permissions.
335 * On non-idmapped mounts or if permission checking is to be performed on the
336 * raw inode simply passs @nop_mnt_idmap.
338 static int acl_permission_check(struct mnt_idmap *idmap,
339 struct inode *inode, int mask)
341 unsigned int mode = inode->i_mode;
344 /* Are we the owner? If so, ACL's don't matter */
345 vfsuid = i_uid_into_vfsuid(idmap, inode);
346 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
349 return (mask & ~mode) ? -EACCES : 0;
352 /* Do we have ACL's? */
353 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
354 int error = check_acl(idmap, inode, mask);
355 if (error != -EAGAIN)
359 /* Only RWX matters for group/other mode bits */
363 * Are the group permissions different from
364 * the other permissions in the bits we care
365 * about? Need to check group ownership if so.
367 if (mask & (mode ^ (mode >> 3))) {
368 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
369 if (vfsgid_in_group_p(vfsgid))
373 /* Bits in 'mode' clear that we require? */
374 return (mask & ~mode) ? -EACCES : 0;
378 * generic_permission - check for access rights on a Posix-like filesystem
379 * @idmap: idmap of the mount the inode was found from
380 * @inode: inode to check access rights for
381 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
382 * %MAY_NOT_BLOCK ...)
384 * Used to check for read/write/execute permissions on a file.
385 * We use "fsuid" for this, letting us set arbitrary permissions
386 * for filesystem access without changing the "normal" uids which
387 * are used for other things.
389 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
390 * request cannot be satisfied (eg. requires blocking or too much complexity).
391 * It would then be called again in ref-walk mode.
393 * If the inode has been found through an idmapped mount the idmap of
394 * the vfsmount must be passed through @idmap. This function will then take
395 * care to map the inode according to @idmap before checking permissions.
396 * On non-idmapped mounts or if permission checking is to be performed on the
397 * raw inode simply passs @nop_mnt_idmap.
399 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
405 * Do the basic permission checks.
407 ret = acl_permission_check(idmap, inode, mask);
411 if (S_ISDIR(inode->i_mode)) {
412 /* DACs are overridable for directories */
413 if (!(mask & MAY_WRITE))
414 if (capable_wrt_inode_uidgid(idmap, inode,
415 CAP_DAC_READ_SEARCH))
417 if (capable_wrt_inode_uidgid(idmap, inode,
424 * Searching includes executable on directories, else just read.
426 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
427 if (mask == MAY_READ)
428 if (capable_wrt_inode_uidgid(idmap, inode,
429 CAP_DAC_READ_SEARCH))
432 * Read/write DACs are always overridable.
433 * Executable DACs are overridable when there is
434 * at least one exec bit set.
436 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
437 if (capable_wrt_inode_uidgid(idmap, inode,
443 EXPORT_SYMBOL(generic_permission);
446 * do_inode_permission - UNIX permission checking
447 * @idmap: idmap of the mount the inode was found from
448 * @inode: inode to check permissions on
449 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
451 * We _really_ want to just do "generic_permission()" without
452 * even looking at the inode->i_op values. So we keep a cache
453 * flag in inode->i_opflags, that says "this has not special
454 * permission function, use the fast case".
456 static inline int do_inode_permission(struct mnt_idmap *idmap,
457 struct inode *inode, int mask)
459 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
460 if (likely(inode->i_op->permission))
461 return inode->i_op->permission(idmap, inode, mask);
463 /* This gets set once for the inode lifetime */
464 spin_lock(&inode->i_lock);
465 inode->i_opflags |= IOP_FASTPERM;
466 spin_unlock(&inode->i_lock);
468 return generic_permission(idmap, inode, mask);
472 * sb_permission - Check superblock-level permissions
473 * @sb: Superblock of inode to check permission on
474 * @inode: Inode to check permission on
475 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
477 * Separate out file-system wide checks from inode-specific permission checks.
479 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
481 if (unlikely(mask & MAY_WRITE)) {
482 umode_t mode = inode->i_mode;
484 /* Nobody gets write access to a read-only fs. */
485 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
492 * inode_permission - Check for access rights to a given inode
493 * @idmap: idmap of the mount the inode was found from
494 * @inode: Inode to check permission on
495 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
497 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
498 * this, letting us set arbitrary permissions for filesystem access without
499 * changing the "normal" UIDs which are used for other things.
501 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
503 int inode_permission(struct mnt_idmap *idmap,
504 struct inode *inode, int mask)
508 retval = sb_permission(inode->i_sb, inode, mask);
512 if (unlikely(mask & MAY_WRITE)) {
514 * Nobody gets write access to an immutable file.
516 if (IS_IMMUTABLE(inode))
520 * Updating mtime will likely cause i_uid and i_gid to be
521 * written back improperly if their true value is unknown
524 if (HAS_UNMAPPED_ID(idmap, inode))
528 retval = do_inode_permission(idmap, inode, mask);
532 retval = devcgroup_inode_permission(inode, mask);
536 return security_inode_permission(inode, mask);
538 EXPORT_SYMBOL(inode_permission);
541 * path_get - get a reference to a path
542 * @path: path to get the reference to
544 * Given a path increment the reference count to the dentry and the vfsmount.
546 void path_get(const struct path *path)
551 EXPORT_SYMBOL(path_get);
554 * path_put - put a reference to a path
555 * @path: path to put the reference to
557 * Given a path decrement the reference count to the dentry and the vfsmount.
559 void path_put(const struct path *path)
564 EXPORT_SYMBOL(path_put);
566 #define EMBEDDED_LEVELS 2
571 struct inode *inode; /* path.dentry.d_inode */
572 unsigned int flags, state;
573 unsigned seq, next_seq, m_seq, r_seq;
576 int total_link_count;
579 struct delayed_call done;
582 } *stack, internal[EMBEDDED_LEVELS];
583 struct filename *name;
584 struct nameidata *saved;
589 } __randomize_layout;
591 #define ND_ROOT_PRESET 1
592 #define ND_ROOT_GRABBED 2
595 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
597 struct nameidata *old = current->nameidata;
598 p->stack = p->internal;
603 p->path.dentry = NULL;
604 p->total_link_count = old ? old->total_link_count : 0;
606 current->nameidata = p;
609 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
610 const struct path *root)
612 __set_nameidata(p, dfd, name);
614 if (unlikely(root)) {
615 p->state = ND_ROOT_PRESET;
620 static void restore_nameidata(void)
622 struct nameidata *now = current->nameidata, *old = now->saved;
624 current->nameidata = old;
626 old->total_link_count = now->total_link_count;
627 if (now->stack != now->internal)
631 static bool nd_alloc_stack(struct nameidata *nd)
635 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
636 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
639 memcpy(p, nd->internal, sizeof(nd->internal));
645 * path_connected - Verify that a dentry is below mnt.mnt_root
647 * Rename can sometimes move a file or directory outside of a bind
648 * mount, path_connected allows those cases to be detected.
650 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
652 struct super_block *sb = mnt->mnt_sb;
654 /* Bind mounts can have disconnected paths */
655 if (mnt->mnt_root == sb->s_root)
658 return is_subdir(dentry, mnt->mnt_root);
661 static void drop_links(struct nameidata *nd)
665 struct saved *last = nd->stack + i;
666 do_delayed_call(&last->done);
667 clear_delayed_call(&last->done);
671 static void leave_rcu(struct nameidata *nd)
673 nd->flags &= ~LOOKUP_RCU;
674 nd->seq = nd->next_seq = 0;
678 static void terminate_walk(struct nameidata *nd)
681 if (!(nd->flags & LOOKUP_RCU)) {
684 for (i = 0; i < nd->depth; i++)
685 path_put(&nd->stack[i].link);
686 if (nd->state & ND_ROOT_GRABBED) {
688 nd->state &= ~ND_ROOT_GRABBED;
695 nd->path.dentry = NULL;
698 /* path_put is needed afterwards regardless of success or failure */
699 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
701 int res = __legitimize_mnt(path->mnt, mseq);
708 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
712 return !read_seqcount_retry(&path->dentry->d_seq, seq);
715 static inline bool legitimize_path(struct nameidata *nd,
716 struct path *path, unsigned seq)
718 return __legitimize_path(path, seq, nd->m_seq);
721 static bool legitimize_links(struct nameidata *nd)
724 if (unlikely(nd->flags & LOOKUP_CACHED)) {
729 for (i = 0; i < nd->depth; i++) {
730 struct saved *last = nd->stack + i;
731 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
740 static bool legitimize_root(struct nameidata *nd)
742 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
743 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
745 nd->state |= ND_ROOT_GRABBED;
746 return legitimize_path(nd, &nd->root, nd->root_seq);
750 * Path walking has 2 modes, rcu-walk and ref-walk (see
751 * Documentation/filesystems/path-lookup.txt). In situations when we can't
752 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
753 * normal reference counts on dentries and vfsmounts to transition to ref-walk
754 * mode. Refcounts are grabbed at the last known good point before rcu-walk
755 * got stuck, so ref-walk may continue from there. If this is not successful
756 * (eg. a seqcount has changed), then failure is returned and it's up to caller
757 * to restart the path walk from the beginning in ref-walk mode.
761 * try_to_unlazy - try to switch to ref-walk mode.
762 * @nd: nameidata pathwalk data
763 * Returns: true on success, false on failure
765 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
767 * Must be called from rcu-walk context.
768 * Nothing should touch nameidata between try_to_unlazy() failure and
771 static bool try_to_unlazy(struct nameidata *nd)
773 struct dentry *parent = nd->path.dentry;
775 BUG_ON(!(nd->flags & LOOKUP_RCU));
777 if (unlikely(!legitimize_links(nd)))
779 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
781 if (unlikely(!legitimize_root(nd)))
784 BUG_ON(nd->inode != parent->d_inode);
789 nd->path.dentry = NULL;
796 * try_to_unlazy_next - try to switch to ref-walk mode.
797 * @nd: nameidata pathwalk data
798 * @dentry: next dentry to step into
799 * Returns: true on success, false on failure
801 * Similar to try_to_unlazy(), but here we have the next dentry already
802 * picked by rcu-walk and want to legitimize that in addition to the current
803 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
804 * Nothing should touch nameidata between try_to_unlazy_next() failure and
807 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
810 BUG_ON(!(nd->flags & LOOKUP_RCU));
812 if (unlikely(!legitimize_links(nd)))
814 res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
820 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
824 * We need to move both the parent and the dentry from the RCU domain
825 * to be properly refcounted. And the sequence number in the dentry
826 * validates *both* dentry counters, since we checked the sequence
827 * number of the parent after we got the child sequence number. So we
828 * know the parent must still be valid if the child sequence number is
830 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
832 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
835 * Sequence counts matched. Now make sure that the root is
836 * still valid and get it if required.
838 if (unlikely(!legitimize_root(nd)))
846 nd->path.dentry = NULL;
856 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
858 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
859 return dentry->d_op->d_revalidate(dentry, flags);
865 * complete_walk - successful completion of path walk
866 * @nd: pointer nameidata
868 * If we had been in RCU mode, drop out of it and legitimize nd->path.
869 * Revalidate the final result, unless we'd already done that during
870 * the path walk or the filesystem doesn't ask for it. Return 0 on
871 * success, -error on failure. In case of failure caller does not
872 * need to drop nd->path.
874 static int complete_walk(struct nameidata *nd)
876 struct dentry *dentry = nd->path.dentry;
879 if (nd->flags & LOOKUP_RCU) {
881 * We don't want to zero nd->root for scoped-lookups or
882 * externally-managed nd->root.
884 if (!(nd->state & ND_ROOT_PRESET))
885 if (!(nd->flags & LOOKUP_IS_SCOPED))
887 nd->flags &= ~LOOKUP_CACHED;
888 if (!try_to_unlazy(nd))
892 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
894 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
895 * ever step outside the root during lookup" and should already
896 * be guaranteed by the rest of namei, we want to avoid a namei
897 * BUG resulting in userspace being given a path that was not
898 * scoped within the root at some point during the lookup.
900 * So, do a final sanity-check to make sure that in the
901 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
902 * we won't silently return an fd completely outside of the
903 * requested root to userspace.
905 * Userspace could move the path outside the root after this
906 * check, but as discussed elsewhere this is not a concern (the
907 * resolved file was inside the root at some point).
909 if (!path_is_under(&nd->path, &nd->root))
913 if (likely(!(nd->state & ND_JUMPED)))
916 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
919 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
929 static int set_root(struct nameidata *nd)
931 struct fs_struct *fs = current->fs;
934 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
935 * still have to ensure it doesn't happen because it will cause a breakout
938 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
939 return -ENOTRECOVERABLE;
941 if (nd->flags & LOOKUP_RCU) {
945 seq = read_seqcount_begin(&fs->seq);
947 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
948 } while (read_seqcount_retry(&fs->seq, seq));
950 get_fs_root(fs, &nd->root);
951 nd->state |= ND_ROOT_GRABBED;
956 static int nd_jump_root(struct nameidata *nd)
958 if (unlikely(nd->flags & LOOKUP_BENEATH))
960 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
961 /* Absolute path arguments to path_init() are allowed. */
962 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
966 int error = set_root(nd);
970 if (nd->flags & LOOKUP_RCU) {
974 nd->inode = d->d_inode;
975 nd->seq = nd->root_seq;
976 if (read_seqcount_retry(&d->d_seq, nd->seq))
982 nd->inode = nd->path.dentry->d_inode;
984 nd->state |= ND_JUMPED;
989 * Helper to directly jump to a known parsed path from ->get_link,
990 * caller must have taken a reference to path beforehand.
992 int nd_jump_link(const struct path *path)
995 struct nameidata *nd = current->nameidata;
997 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1001 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1002 if (nd->path.mnt != path->mnt)
1005 /* Not currently safe for scoped-lookups. */
1006 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1009 path_put(&nd->path);
1011 nd->inode = nd->path.dentry->d_inode;
1012 nd->state |= ND_JUMPED;
1020 static inline void put_link(struct nameidata *nd)
1022 struct saved *last = nd->stack + --nd->depth;
1023 do_delayed_call(&last->done);
1024 if (!(nd->flags & LOOKUP_RCU))
1025 path_put(&last->link);
1028 static int sysctl_protected_symlinks __read_mostly;
1029 static int sysctl_protected_hardlinks __read_mostly;
1030 static int sysctl_protected_fifos __read_mostly;
1031 static int sysctl_protected_regular __read_mostly;
1033 #ifdef CONFIG_SYSCTL
1034 static struct ctl_table namei_sysctls[] = {
1036 .procname = "protected_symlinks",
1037 .data = &sysctl_protected_symlinks,
1038 .maxlen = sizeof(int),
1040 .proc_handler = proc_dointvec_minmax,
1041 .extra1 = SYSCTL_ZERO,
1042 .extra2 = SYSCTL_ONE,
1045 .procname = "protected_hardlinks",
1046 .data = &sysctl_protected_hardlinks,
1047 .maxlen = sizeof(int),
1049 .proc_handler = proc_dointvec_minmax,
1050 .extra1 = SYSCTL_ZERO,
1051 .extra2 = SYSCTL_ONE,
1054 .procname = "protected_fifos",
1055 .data = &sysctl_protected_fifos,
1056 .maxlen = sizeof(int),
1058 .proc_handler = proc_dointvec_minmax,
1059 .extra1 = SYSCTL_ZERO,
1060 .extra2 = SYSCTL_TWO,
1063 .procname = "protected_regular",
1064 .data = &sysctl_protected_regular,
1065 .maxlen = sizeof(int),
1067 .proc_handler = proc_dointvec_minmax,
1068 .extra1 = SYSCTL_ZERO,
1069 .extra2 = SYSCTL_TWO,
1074 static int __init init_fs_namei_sysctls(void)
1076 register_sysctl_init("fs", namei_sysctls);
1079 fs_initcall(init_fs_namei_sysctls);
1081 #endif /* CONFIG_SYSCTL */
1084 * may_follow_link - Check symlink following for unsafe situations
1085 * @nd: nameidata pathwalk data
1087 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1088 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1089 * in a sticky world-writable directory. This is to protect privileged
1090 * processes from failing races against path names that may change out
1091 * from under them by way of other users creating malicious symlinks.
1092 * It will permit symlinks to be followed only when outside a sticky
1093 * world-writable directory, or when the uid of the symlink and follower
1094 * match, or when the directory owner matches the symlink's owner.
1096 * Returns 0 if following the symlink is allowed, -ve on error.
1098 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1100 struct mnt_idmap *idmap;
1103 if (!sysctl_protected_symlinks)
1106 idmap = mnt_idmap(nd->path.mnt);
1107 vfsuid = i_uid_into_vfsuid(idmap, inode);
1108 /* Allowed if owner and follower match. */
1109 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1112 /* Allowed if parent directory not sticky and world-writable. */
1113 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1116 /* Allowed if parent directory and link owner match. */
1117 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1120 if (nd->flags & LOOKUP_RCU)
1123 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1124 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1129 * safe_hardlink_source - Check for safe hardlink conditions
1130 * @idmap: idmap of the mount the inode was found from
1131 * @inode: the source inode to hardlink from
1133 * Return false if at least one of the following conditions:
1134 * - inode is not a regular file
1136 * - inode is setgid and group-exec
1137 * - access failure for read and write
1139 * Otherwise returns true.
1141 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1142 struct inode *inode)
1144 umode_t mode = inode->i_mode;
1146 /* Special files should not get pinned to the filesystem. */
1150 /* Setuid files should not get pinned to the filesystem. */
1154 /* Executable setgid files should not get pinned to the filesystem. */
1155 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1158 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1159 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1166 * may_linkat - Check permissions for creating a hardlink
1167 * @idmap: idmap of the mount the inode was found from
1168 * @link: the source to hardlink from
1170 * Block hardlink when all of:
1171 * - sysctl_protected_hardlinks enabled
1172 * - fsuid does not match inode
1173 * - hardlink source is unsafe (see safe_hardlink_source() above)
1174 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1176 * If the inode has been found through an idmapped mount the idmap of
1177 * the vfsmount must be passed through @idmap. This function will then take
1178 * care to map the inode according to @idmap before checking permissions.
1179 * On non-idmapped mounts or if permission checking is to be performed on the
1180 * raw inode simply pass @nop_mnt_idmap.
1182 * Returns 0 if successful, -ve on error.
1184 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1186 struct inode *inode = link->dentry->d_inode;
1188 /* Inode writeback is not safe when the uid or gid are invalid. */
1189 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1190 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1193 if (!sysctl_protected_hardlinks)
1196 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1197 * otherwise, it must be a safe source.
1199 if (safe_hardlink_source(idmap, inode) ||
1200 inode_owner_or_capable(idmap, inode))
1203 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1208 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1209 * should be allowed, or not, on files that already
1211 * @idmap: idmap of the mount the inode was found from
1212 * @nd: nameidata pathwalk data
1213 * @inode: the inode of the file to open
1215 * Block an O_CREAT open of a FIFO (or a regular file) when:
1216 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1217 * - the file already exists
1218 * - we are in a sticky directory
1219 * - we don't own the file
1220 * - the owner of the directory doesn't own the file
1221 * - the directory is world writable
1222 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1223 * the directory doesn't have to be world writable: being group writable will
1226 * If the inode has been found through an idmapped mount the idmap of
1227 * the vfsmount must be passed through @idmap. This function will then take
1228 * care to map the inode according to @idmap before checking permissions.
1229 * On non-idmapped mounts or if permission checking is to be performed on the
1230 * raw inode simply pass @nop_mnt_idmap.
1232 * Returns 0 if the open is allowed, -ve on error.
1234 static int may_create_in_sticky(struct mnt_idmap *idmap,
1235 struct nameidata *nd, struct inode *const inode)
1237 umode_t dir_mode = nd->dir_mode;
1238 vfsuid_t dir_vfsuid = nd->dir_vfsuid;
1240 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1241 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1242 likely(!(dir_mode & S_ISVTX)) ||
1243 vfsuid_eq(i_uid_into_vfsuid(idmap, inode), dir_vfsuid) ||
1244 vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), current_fsuid()))
1247 if (likely(dir_mode & 0002) ||
1249 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1250 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1251 const char *operation = S_ISFIFO(inode->i_mode) ?
1252 "sticky_create_fifo" :
1253 "sticky_create_regular";
1254 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1261 * follow_up - Find the mountpoint of path's vfsmount
1263 * Given a path, find the mountpoint of its source file system.
1264 * Replace @path with the path of the mountpoint in the parent mount.
1267 * Return 1 if we went up a level and 0 if we were already at the
1270 int follow_up(struct path *path)
1272 struct mount *mnt = real_mount(path->mnt);
1273 struct mount *parent;
1274 struct dentry *mountpoint;
1276 read_seqlock_excl(&mount_lock);
1277 parent = mnt->mnt_parent;
1278 if (parent == mnt) {
1279 read_sequnlock_excl(&mount_lock);
1282 mntget(&parent->mnt);
1283 mountpoint = dget(mnt->mnt_mountpoint);
1284 read_sequnlock_excl(&mount_lock);
1286 path->dentry = mountpoint;
1288 path->mnt = &parent->mnt;
1291 EXPORT_SYMBOL(follow_up);
1293 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1294 struct path *path, unsigned *seqp)
1296 while (mnt_has_parent(m)) {
1297 struct dentry *mountpoint = m->mnt_mountpoint;
1300 if (unlikely(root->dentry == mountpoint &&
1301 root->mnt == &m->mnt))
1303 if (mountpoint != m->mnt.mnt_root) {
1304 path->mnt = &m->mnt;
1305 path->dentry = mountpoint;
1306 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1313 static bool choose_mountpoint(struct mount *m, const struct path *root,
1320 unsigned seq, mseq = read_seqbegin(&mount_lock);
1322 found = choose_mountpoint_rcu(m, root, path, &seq);
1323 if (unlikely(!found)) {
1324 if (!read_seqretry(&mount_lock, mseq))
1327 if (likely(__legitimize_path(path, seq, mseq)))
1339 * Perform an automount
1340 * - return -EISDIR to tell follow_managed() to stop and return the path we
1343 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1345 struct dentry *dentry = path->dentry;
1347 /* We don't want to mount if someone's just doing a stat -
1348 * unless they're stat'ing a directory and appended a '/' to
1351 * We do, however, want to mount if someone wants to open or
1352 * create a file of any type under the mountpoint, wants to
1353 * traverse through the mountpoint or wants to open the
1354 * mounted directory. Also, autofs may mark negative dentries
1355 * as being automount points. These will need the attentions
1356 * of the daemon to instantiate them before they can be used.
1358 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1359 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1363 if (count && (*count)++ >= MAXSYMLINKS)
1366 return finish_automount(dentry->d_op->d_automount(path), path);
1370 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1371 * dentries are pinned but not locked here, so negative dentry can go
1372 * positive right under us. Use of smp_load_acquire() provides a barrier
1373 * sufficient for ->d_inode and ->d_flags consistency.
1375 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1376 int *count, unsigned lookup_flags)
1378 struct vfsmount *mnt = path->mnt;
1379 bool need_mntput = false;
1382 while (flags & DCACHE_MANAGED_DENTRY) {
1383 /* Allow the filesystem to manage the transit without i_mutex
1385 if (flags & DCACHE_MANAGE_TRANSIT) {
1386 ret = path->dentry->d_op->d_manage(path, false);
1387 flags = smp_load_acquire(&path->dentry->d_flags);
1392 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1393 struct vfsmount *mounted = lookup_mnt(path);
1394 if (mounted) { // ... in our namespace
1398 path->mnt = mounted;
1399 path->dentry = dget(mounted->mnt_root);
1400 // here we know it's positive
1401 flags = path->dentry->d_flags;
1407 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1410 // uncovered automount point
1411 ret = follow_automount(path, count, lookup_flags);
1412 flags = smp_load_acquire(&path->dentry->d_flags);
1419 // possible if you race with several mount --move
1420 if (need_mntput && path->mnt == mnt)
1422 if (!ret && unlikely(d_flags_negative(flags)))
1424 *jumped = need_mntput;
1428 static inline int traverse_mounts(struct path *path, bool *jumped,
1429 int *count, unsigned lookup_flags)
1431 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1434 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1436 if (unlikely(d_flags_negative(flags)))
1440 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1443 int follow_down_one(struct path *path)
1445 struct vfsmount *mounted;
1447 mounted = lookup_mnt(path);
1451 path->mnt = mounted;
1452 path->dentry = dget(mounted->mnt_root);
1457 EXPORT_SYMBOL(follow_down_one);
1460 * Follow down to the covering mount currently visible to userspace. At each
1461 * point, the filesystem owning that dentry may be queried as to whether the
1462 * caller is permitted to proceed or not.
1464 int follow_down(struct path *path, unsigned int flags)
1466 struct vfsmount *mnt = path->mnt;
1468 int ret = traverse_mounts(path, &jumped, NULL, flags);
1470 if (path->mnt != mnt)
1474 EXPORT_SYMBOL(follow_down);
1477 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1478 * we meet a managed dentry that would need blocking.
1480 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1482 struct dentry *dentry = path->dentry;
1483 unsigned int flags = dentry->d_flags;
1485 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1488 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1493 * Don't forget we might have a non-mountpoint managed dentry
1494 * that wants to block transit.
1496 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1497 int res = dentry->d_op->d_manage(path, true);
1499 return res == -EISDIR;
1500 flags = dentry->d_flags;
1503 if (flags & DCACHE_MOUNTED) {
1504 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1506 path->mnt = &mounted->mnt;
1507 dentry = path->dentry = mounted->mnt.mnt_root;
1508 nd->state |= ND_JUMPED;
1509 nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1510 flags = dentry->d_flags;
1511 // makes sure that non-RCU pathwalk could reach
1513 if (read_seqretry(&mount_lock, nd->m_seq))
1517 if (read_seqretry(&mount_lock, nd->m_seq))
1520 return !(flags & DCACHE_NEED_AUTOMOUNT);
1524 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1530 path->mnt = nd->path.mnt;
1531 path->dentry = dentry;
1532 if (nd->flags & LOOKUP_RCU) {
1533 unsigned int seq = nd->next_seq;
1534 if (likely(__follow_mount_rcu(nd, path)))
1536 // *path and nd->next_seq might've been clobbered
1537 path->mnt = nd->path.mnt;
1538 path->dentry = dentry;
1540 if (!try_to_unlazy_next(nd, dentry))
1543 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1545 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1548 nd->state |= ND_JUMPED;
1550 if (unlikely(ret)) {
1552 if (path->mnt != nd->path.mnt)
1559 * This looks up the name in dcache and possibly revalidates the found dentry.
1560 * NULL is returned if the dentry does not exist in the cache.
1562 static struct dentry *lookup_dcache(const struct qstr *name,
1566 struct dentry *dentry = d_lookup(dir, name);
1568 int error = d_revalidate(dentry, flags);
1569 if (unlikely(error <= 0)) {
1571 d_invalidate(dentry);
1573 return ERR_PTR(error);
1580 * Parent directory has inode locked exclusive. This is one
1581 * and only case when ->lookup() gets called on non in-lookup
1582 * dentries - as the matter of fact, this only gets called
1583 * when directory is guaranteed to have no in-lookup children
1586 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1587 struct dentry *base,
1590 struct dentry *dentry = lookup_dcache(name, base, flags);
1592 struct inode *dir = base->d_inode;
1597 /* Don't create child dentry for a dead directory. */
1598 if (unlikely(IS_DEADDIR(dir)))
1599 return ERR_PTR(-ENOENT);
1601 dentry = d_alloc(base, name);
1602 if (unlikely(!dentry))
1603 return ERR_PTR(-ENOMEM);
1605 old = dir->i_op->lookup(dir, dentry, flags);
1606 if (unlikely(old)) {
1612 EXPORT_SYMBOL(lookup_one_qstr_excl);
1614 static struct dentry *lookup_fast(struct nameidata *nd)
1616 struct dentry *dentry, *parent = nd->path.dentry;
1620 * Rename seqlock is not required here because in the off chance
1621 * of a false negative due to a concurrent rename, the caller is
1622 * going to fall back to non-racy lookup.
1624 if (nd->flags & LOOKUP_RCU) {
1625 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1626 if (unlikely(!dentry)) {
1627 if (!try_to_unlazy(nd))
1628 return ERR_PTR(-ECHILD);
1633 * This sequence count validates that the parent had no
1634 * changes while we did the lookup of the dentry above.
1636 if (read_seqcount_retry(&parent->d_seq, nd->seq))
1637 return ERR_PTR(-ECHILD);
1639 status = d_revalidate(dentry, nd->flags);
1640 if (likely(status > 0))
1642 if (!try_to_unlazy_next(nd, dentry))
1643 return ERR_PTR(-ECHILD);
1644 if (status == -ECHILD)
1645 /* we'd been told to redo it in non-rcu mode */
1646 status = d_revalidate(dentry, nd->flags);
1648 dentry = __d_lookup(parent, &nd->last);
1649 if (unlikely(!dentry))
1651 status = d_revalidate(dentry, nd->flags);
1653 if (unlikely(status <= 0)) {
1655 d_invalidate(dentry);
1657 return ERR_PTR(status);
1662 /* Fast lookup failed, do it the slow way */
1663 static struct dentry *__lookup_slow(const struct qstr *name,
1667 struct dentry *dentry, *old;
1668 struct inode *inode = dir->d_inode;
1669 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1671 /* Don't go there if it's already dead */
1672 if (unlikely(IS_DEADDIR(inode)))
1673 return ERR_PTR(-ENOENT);
1675 dentry = d_alloc_parallel(dir, name, &wq);
1678 if (unlikely(!d_in_lookup(dentry))) {
1679 int error = d_revalidate(dentry, flags);
1680 if (unlikely(error <= 0)) {
1682 d_invalidate(dentry);
1687 dentry = ERR_PTR(error);
1690 old = inode->i_op->lookup(inode, dentry, flags);
1691 d_lookup_done(dentry);
1692 if (unlikely(old)) {
1700 static struct dentry *lookup_slow(const struct qstr *name,
1704 struct inode *inode = dir->d_inode;
1706 inode_lock_shared(inode);
1707 res = __lookup_slow(name, dir, flags);
1708 inode_unlock_shared(inode);
1712 static inline int may_lookup(struct mnt_idmap *idmap,
1713 struct nameidata *nd)
1715 if (nd->flags & LOOKUP_RCU) {
1716 int err = inode_permission(idmap, nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1717 if (err != -ECHILD || !try_to_unlazy(nd))
1720 return inode_permission(idmap, nd->inode, MAY_EXEC);
1723 static int reserve_stack(struct nameidata *nd, struct path *link)
1725 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1728 if (likely(nd->depth != EMBEDDED_LEVELS))
1730 if (likely(nd->stack != nd->internal))
1732 if (likely(nd_alloc_stack(nd)))
1735 if (nd->flags & LOOKUP_RCU) {
1736 // we need to grab link before we do unlazy. And we can't skip
1737 // unlazy even if we fail to grab the link - cleanup needs it
1738 bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1740 if (!try_to_unlazy(nd) || !grabbed_link)
1743 if (nd_alloc_stack(nd))
1749 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1751 static const char *pick_link(struct nameidata *nd, struct path *link,
1752 struct inode *inode, int flags)
1756 int error = reserve_stack(nd, link);
1758 if (unlikely(error)) {
1759 if (!(nd->flags & LOOKUP_RCU))
1761 return ERR_PTR(error);
1763 last = nd->stack + nd->depth++;
1765 clear_delayed_call(&last->done);
1766 last->seq = nd->next_seq;
1768 if (flags & WALK_TRAILING) {
1769 error = may_follow_link(nd, inode);
1770 if (unlikely(error))
1771 return ERR_PTR(error);
1774 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1775 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1776 return ERR_PTR(-ELOOP);
1778 if (!(nd->flags & LOOKUP_RCU)) {
1779 touch_atime(&last->link);
1781 } else if (atime_needs_update(&last->link, inode)) {
1782 if (!try_to_unlazy(nd))
1783 return ERR_PTR(-ECHILD);
1784 touch_atime(&last->link);
1787 error = security_inode_follow_link(link->dentry, inode,
1788 nd->flags & LOOKUP_RCU);
1789 if (unlikely(error))
1790 return ERR_PTR(error);
1792 res = READ_ONCE(inode->i_link);
1794 const char * (*get)(struct dentry *, struct inode *,
1795 struct delayed_call *);
1796 get = inode->i_op->get_link;
1797 if (nd->flags & LOOKUP_RCU) {
1798 res = get(NULL, inode, &last->done);
1799 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1800 res = get(link->dentry, inode, &last->done);
1802 res = get(link->dentry, inode, &last->done);
1810 error = nd_jump_root(nd);
1811 if (unlikely(error))
1812 return ERR_PTR(error);
1813 while (unlikely(*++res == '/'))
1818 all_done: // pure jump
1824 * Do we need to follow links? We _really_ want to be able
1825 * to do this check without having to look at inode->i_op,
1826 * so we keep a cache of "no, this doesn't need follow_link"
1827 * for the common case.
1829 * NOTE: dentry must be what nd->next_seq had been sampled from.
1831 static const char *step_into(struct nameidata *nd, int flags,
1832 struct dentry *dentry)
1835 struct inode *inode;
1836 int err = handle_mounts(nd, dentry, &path);
1839 return ERR_PTR(err);
1840 inode = path.dentry->d_inode;
1841 if (likely(!d_is_symlink(path.dentry)) ||
1842 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1843 (flags & WALK_NOFOLLOW)) {
1844 /* not a symlink or should not follow */
1845 if (nd->flags & LOOKUP_RCU) {
1846 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1847 return ERR_PTR(-ECHILD);
1848 if (unlikely(!inode))
1849 return ERR_PTR(-ENOENT);
1851 dput(nd->path.dentry);
1852 if (nd->path.mnt != path.mnt)
1853 mntput(nd->path.mnt);
1857 nd->seq = nd->next_seq;
1860 if (nd->flags & LOOKUP_RCU) {
1861 /* make sure that d_is_symlink above matches inode */
1862 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1863 return ERR_PTR(-ECHILD);
1865 if (path.mnt == nd->path.mnt)
1868 return pick_link(nd, &path, inode, flags);
1871 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
1873 struct dentry *parent, *old;
1875 if (path_equal(&nd->path, &nd->root))
1877 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1880 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
1881 &nd->root, &path, &seq))
1883 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1884 return ERR_PTR(-ECHILD);
1886 nd->inode = path.dentry->d_inode;
1888 // makes sure that non-RCU pathwalk could reach this state
1889 if (read_seqretry(&mount_lock, nd->m_seq))
1890 return ERR_PTR(-ECHILD);
1891 /* we know that mountpoint was pinned */
1893 old = nd->path.dentry;
1894 parent = old->d_parent;
1895 nd->next_seq = read_seqcount_begin(&parent->d_seq);
1896 // makes sure that non-RCU pathwalk could reach this state
1897 if (read_seqcount_retry(&old->d_seq, nd->seq))
1898 return ERR_PTR(-ECHILD);
1899 if (unlikely(!path_connected(nd->path.mnt, parent)))
1900 return ERR_PTR(-ECHILD);
1903 if (read_seqretry(&mount_lock, nd->m_seq))
1904 return ERR_PTR(-ECHILD);
1905 if (unlikely(nd->flags & LOOKUP_BENEATH))
1906 return ERR_PTR(-ECHILD);
1907 nd->next_seq = nd->seq;
1908 return nd->path.dentry;
1911 static struct dentry *follow_dotdot(struct nameidata *nd)
1913 struct dentry *parent;
1915 if (path_equal(&nd->path, &nd->root))
1917 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
1920 if (!choose_mountpoint(real_mount(nd->path.mnt),
1923 path_put(&nd->path);
1925 nd->inode = path.dentry->d_inode;
1926 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1927 return ERR_PTR(-EXDEV);
1929 /* rare case of legitimate dget_parent()... */
1930 parent = dget_parent(nd->path.dentry);
1931 if (unlikely(!path_connected(nd->path.mnt, parent))) {
1933 return ERR_PTR(-ENOENT);
1938 if (unlikely(nd->flags & LOOKUP_BENEATH))
1939 return ERR_PTR(-EXDEV);
1940 return dget(nd->path.dentry);
1943 static const char *handle_dots(struct nameidata *nd, int type)
1945 if (type == LAST_DOTDOT) {
1946 const char *error = NULL;
1947 struct dentry *parent;
1949 if (!nd->root.mnt) {
1950 error = ERR_PTR(set_root(nd));
1954 if (nd->flags & LOOKUP_RCU)
1955 parent = follow_dotdot_rcu(nd);
1957 parent = follow_dotdot(nd);
1959 return ERR_CAST(parent);
1960 error = step_into(nd, WALK_NOFOLLOW, parent);
1961 if (unlikely(error))
1964 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
1966 * If there was a racing rename or mount along our
1967 * path, then we can't be sure that ".." hasn't jumped
1968 * above nd->root (and so userspace should retry or use
1972 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
1973 return ERR_PTR(-EAGAIN);
1974 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
1975 return ERR_PTR(-EAGAIN);
1981 static const char *walk_component(struct nameidata *nd, int flags)
1983 struct dentry *dentry;
1985 * "." and ".." are special - ".." especially so because it has
1986 * to be able to know about the current root directory and
1987 * parent relationships.
1989 if (unlikely(nd->last_type != LAST_NORM)) {
1990 if (!(flags & WALK_MORE) && nd->depth)
1992 return handle_dots(nd, nd->last_type);
1994 dentry = lookup_fast(nd);
1996 return ERR_CAST(dentry);
1997 if (unlikely(!dentry)) {
1998 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2000 return ERR_CAST(dentry);
2002 if (!(flags & WALK_MORE) && nd->depth)
2004 return step_into(nd, flags, dentry);
2008 * We can do the critical dentry name comparison and hashing
2009 * operations one word at a time, but we are limited to:
2011 * - Architectures with fast unaligned word accesses. We could
2012 * do a "get_unaligned()" if this helps and is sufficiently
2015 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2016 * do not trap on the (extremely unlikely) case of a page
2017 * crossing operation.
2019 * - Furthermore, we need an efficient 64-bit compile for the
2020 * 64-bit case in order to generate the "number of bytes in
2021 * the final mask". Again, that could be replaced with a
2022 * efficient population count instruction or similar.
2024 #ifdef CONFIG_DCACHE_WORD_ACCESS
2026 #include <asm/word-at-a-time.h>
2030 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2032 #elif defined(CONFIG_64BIT)
2034 * Register pressure in the mixing function is an issue, particularly
2035 * on 32-bit x86, but almost any function requires one state value and
2036 * one temporary. Instead, use a function designed for two state values
2037 * and no temporaries.
2039 * This function cannot create a collision in only two iterations, so
2040 * we have two iterations to achieve avalanche. In those two iterations,
2041 * we have six layers of mixing, which is enough to spread one bit's
2042 * influence out to 2^6 = 64 state bits.
2044 * Rotate constants are scored by considering either 64 one-bit input
2045 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2046 * probability of that delta causing a change to each of the 128 output
2047 * bits, using a sample of random initial states.
2049 * The Shannon entropy of the computed probabilities is then summed
2050 * to produce a score. Ideally, any input change has a 50% chance of
2051 * toggling any given output bit.
2053 * Mixing scores (in bits) for (12,45):
2054 * Input delta: 1-bit 2-bit
2055 * 1 round: 713.3 42542.6
2056 * 2 rounds: 2753.7 140389.8
2057 * 3 rounds: 5954.1 233458.2
2058 * 4 rounds: 7862.6 256672.2
2059 * Perfect: 8192 258048
2060 * (64*128) (64*63/2 * 128)
2062 #define HASH_MIX(x, y, a) \
2064 y ^= x, x = rol64(x,12),\
2065 x += y, y = rol64(y,45),\
2069 * Fold two longs into one 32-bit hash value. This must be fast, but
2070 * latency isn't quite as critical, as there is a fair bit of additional
2071 * work done before the hash value is used.
2073 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2075 y ^= x * GOLDEN_RATIO_64;
2076 y *= GOLDEN_RATIO_64;
2080 #else /* 32-bit case */
2083 * Mixing scores (in bits) for (7,20):
2084 * Input delta: 1-bit 2-bit
2085 * 1 round: 330.3 9201.6
2086 * 2 rounds: 1246.4 25475.4
2087 * 3 rounds: 1907.1 31295.1
2088 * 4 rounds: 2042.3 31718.6
2089 * Perfect: 2048 31744
2090 * (32*64) (32*31/2 * 64)
2092 #define HASH_MIX(x, y, a) \
2094 y ^= x, x = rol32(x, 7),\
2095 x += y, y = rol32(y,20),\
2098 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2100 /* Use arch-optimized multiply if one exists */
2101 return __hash_32(y ^ __hash_32(x));
2107 * Return the hash of a string of known length. This is carfully
2108 * designed to match hash_name(), which is the more critical function.
2109 * In particular, we must end by hashing a final word containing 0..7
2110 * payload bytes, to match the way that hash_name() iterates until it
2111 * finds the delimiter after the name.
2113 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2115 unsigned long a, x = 0, y = (unsigned long)salt;
2120 a = load_unaligned_zeropad(name);
2121 if (len < sizeof(unsigned long))
2124 name += sizeof(unsigned long);
2125 len -= sizeof(unsigned long);
2127 x ^= a & bytemask_from_count(len);
2129 return fold_hash(x, y);
2131 EXPORT_SYMBOL(full_name_hash);
2133 /* Return the "hash_len" (hash and length) of a null-terminated string */
2134 u64 hashlen_string(const void *salt, const char *name)
2136 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2137 unsigned long adata, mask, len;
2138 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2145 len += sizeof(unsigned long);
2147 a = load_unaligned_zeropad(name+len);
2148 } while (!has_zero(a, &adata, &constants));
2150 adata = prep_zero_mask(a, adata, &constants);
2151 mask = create_zero_mask(adata);
2152 x ^= a & zero_bytemask(mask);
2154 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2156 EXPORT_SYMBOL(hashlen_string);
2159 * Calculate the length and hash of the path component, and
2160 * return the "hash_len" as the result.
2162 static inline u64 hash_name(const void *salt, const char *name)
2164 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
2165 unsigned long adata, bdata, mask, len;
2166 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2173 len += sizeof(unsigned long);
2175 a = load_unaligned_zeropad(name+len);
2176 b = a ^ REPEAT_BYTE('/');
2177 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2179 adata = prep_zero_mask(a, adata, &constants);
2180 bdata = prep_zero_mask(b, bdata, &constants);
2181 mask = create_zero_mask(adata | bdata);
2182 x ^= a & zero_bytemask(mask);
2184 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2187 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2189 /* Return the hash of a string of known length */
2190 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2192 unsigned long hash = init_name_hash(salt);
2194 hash = partial_name_hash((unsigned char)*name++, hash);
2195 return end_name_hash(hash);
2197 EXPORT_SYMBOL(full_name_hash);
2199 /* Return the "hash_len" (hash and length) of a null-terminated string */
2200 u64 hashlen_string(const void *salt, const char *name)
2202 unsigned long hash = init_name_hash(salt);
2203 unsigned long len = 0, c;
2205 c = (unsigned char)*name;
2208 hash = partial_name_hash(c, hash);
2209 c = (unsigned char)name[len];
2211 return hashlen_create(end_name_hash(hash), len);
2213 EXPORT_SYMBOL(hashlen_string);
2216 * We know there's a real path component here of at least
2219 static inline u64 hash_name(const void *salt, const char *name)
2221 unsigned long hash = init_name_hash(salt);
2222 unsigned long len = 0, c;
2224 c = (unsigned char)*name;
2227 hash = partial_name_hash(c, hash);
2228 c = (unsigned char)name[len];
2229 } while (c && c != '/');
2230 return hashlen_create(end_name_hash(hash), len);
2237 * This is the basic name resolution function, turning a pathname into
2238 * the final dentry. We expect 'base' to be positive and a directory.
2240 * Returns 0 and nd will have valid dentry and mnt on success.
2241 * Returns error and drops reference to input namei data on failure.
2243 static int link_path_walk(const char *name, struct nameidata *nd)
2245 int depth = 0; // depth <= nd->depth
2248 nd->last_type = LAST_ROOT;
2249 nd->flags |= LOOKUP_PARENT;
2251 return PTR_ERR(name);
2255 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2259 /* At this point we know we have a real path component. */
2261 struct mnt_idmap *idmap;
2266 idmap = mnt_idmap(nd->path.mnt);
2267 err = may_lookup(idmap, nd);
2271 hash_len = hash_name(nd->path.dentry, name);
2274 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2276 if (name[1] == '.') {
2278 nd->state |= ND_JUMPED;
2284 if (likely(type == LAST_NORM)) {
2285 struct dentry *parent = nd->path.dentry;
2286 nd->state &= ~ND_JUMPED;
2287 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2288 struct qstr this = { { .hash_len = hash_len }, .name = name };
2289 err = parent->d_op->d_hash(parent, &this);
2292 hash_len = this.hash_len;
2297 nd->last.hash_len = hash_len;
2298 nd->last.name = name;
2299 nd->last_type = type;
2301 name += hashlen_len(hash_len);
2305 * If it wasn't NUL, we know it was '/'. Skip that
2306 * slash, and continue until no more slashes.
2310 } while (unlikely(*name == '/'));
2311 if (unlikely(!*name)) {
2313 /* pathname or trailing symlink, done */
2315 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2316 nd->dir_mode = nd->inode->i_mode;
2317 nd->flags &= ~LOOKUP_PARENT;
2320 /* last component of nested symlink */
2321 name = nd->stack[--depth].name;
2322 link = walk_component(nd, 0);
2324 /* not the last component */
2325 link = walk_component(nd, WALK_MORE);
2327 if (unlikely(link)) {
2329 return PTR_ERR(link);
2330 /* a symlink to follow */
2331 nd->stack[depth++].name = name;
2335 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2336 if (nd->flags & LOOKUP_RCU) {
2337 if (!try_to_unlazy(nd))
2345 /* must be paired with terminate_walk() */
2346 static const char *path_init(struct nameidata *nd, unsigned flags)
2349 const char *s = nd->name->name;
2351 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2352 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2353 return ERR_PTR(-EAGAIN);
2356 flags &= ~LOOKUP_RCU;
2357 if (flags & LOOKUP_RCU)
2360 nd->seq = nd->next_seq = 0;
2363 nd->state |= ND_JUMPED;
2365 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2366 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2369 if (nd->state & ND_ROOT_PRESET) {
2370 struct dentry *root = nd->root.dentry;
2371 struct inode *inode = root->d_inode;
2372 if (*s && unlikely(!d_can_lookup(root)))
2373 return ERR_PTR(-ENOTDIR);
2374 nd->path = nd->root;
2376 if (flags & LOOKUP_RCU) {
2377 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2378 nd->root_seq = nd->seq;
2380 path_get(&nd->path);
2385 nd->root.mnt = NULL;
2387 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2388 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2389 error = nd_jump_root(nd);
2390 if (unlikely(error))
2391 return ERR_PTR(error);
2395 /* Relative pathname -- get the starting-point it is relative to. */
2396 if (nd->dfd == AT_FDCWD) {
2397 if (flags & LOOKUP_RCU) {
2398 struct fs_struct *fs = current->fs;
2402 seq = read_seqcount_begin(&fs->seq);
2404 nd->inode = nd->path.dentry->d_inode;
2405 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2406 } while (read_seqcount_retry(&fs->seq, seq));
2408 get_fs_pwd(current->fs, &nd->path);
2409 nd->inode = nd->path.dentry->d_inode;
2412 /* Caller must check execute permissions on the starting path component */
2413 struct fd f = fdget_raw(nd->dfd);
2414 struct dentry *dentry;
2417 return ERR_PTR(-EBADF);
2419 dentry = f.file->f_path.dentry;
2421 if (*s && unlikely(!d_can_lookup(dentry))) {
2423 return ERR_PTR(-ENOTDIR);
2426 nd->path = f.file->f_path;
2427 if (flags & LOOKUP_RCU) {
2428 nd->inode = nd->path.dentry->d_inode;
2429 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2431 path_get(&nd->path);
2432 nd->inode = nd->path.dentry->d_inode;
2437 /* For scoped-lookups we need to set the root to the dirfd as well. */
2438 if (flags & LOOKUP_IS_SCOPED) {
2439 nd->root = nd->path;
2440 if (flags & LOOKUP_RCU) {
2441 nd->root_seq = nd->seq;
2443 path_get(&nd->root);
2444 nd->state |= ND_ROOT_GRABBED;
2450 static inline const char *lookup_last(struct nameidata *nd)
2452 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2453 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2455 return walk_component(nd, WALK_TRAILING);
2458 static int handle_lookup_down(struct nameidata *nd)
2460 if (!(nd->flags & LOOKUP_RCU))
2461 dget(nd->path.dentry);
2462 nd->next_seq = nd->seq;
2463 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2466 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2467 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2469 const char *s = path_init(nd, flags);
2472 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2473 err = handle_lookup_down(nd);
2474 if (unlikely(err < 0))
2478 while (!(err = link_path_walk(s, nd)) &&
2479 (s = lookup_last(nd)) != NULL)
2481 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2482 err = handle_lookup_down(nd);
2483 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2486 err = complete_walk(nd);
2488 if (!err && nd->flags & LOOKUP_DIRECTORY)
2489 if (!d_can_lookup(nd->path.dentry))
2493 nd->path.mnt = NULL;
2494 nd->path.dentry = NULL;
2500 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2501 struct path *path, struct path *root)
2504 struct nameidata nd;
2506 return PTR_ERR(name);
2507 set_nameidata(&nd, dfd, name, root);
2508 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2509 if (unlikely(retval == -ECHILD))
2510 retval = path_lookupat(&nd, flags, path);
2511 if (unlikely(retval == -ESTALE))
2512 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2514 if (likely(!retval))
2515 audit_inode(name, path->dentry,
2516 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2517 restore_nameidata();
2521 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2522 static int path_parentat(struct nameidata *nd, unsigned flags,
2523 struct path *parent)
2525 const char *s = path_init(nd, flags);
2526 int err = link_path_walk(s, nd);
2528 err = complete_walk(nd);
2531 nd->path.mnt = NULL;
2532 nd->path.dentry = NULL;
2538 /* Note: this does not consume "name" */
2539 static int __filename_parentat(int dfd, struct filename *name,
2540 unsigned int flags, struct path *parent,
2541 struct qstr *last, int *type,
2542 const struct path *root)
2545 struct nameidata nd;
2548 return PTR_ERR(name);
2549 set_nameidata(&nd, dfd, name, root);
2550 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2551 if (unlikely(retval == -ECHILD))
2552 retval = path_parentat(&nd, flags, parent);
2553 if (unlikely(retval == -ESTALE))
2554 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2555 if (likely(!retval)) {
2557 *type = nd.last_type;
2558 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2560 restore_nameidata();
2564 static int filename_parentat(int dfd, struct filename *name,
2565 unsigned int flags, struct path *parent,
2566 struct qstr *last, int *type)
2568 return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2571 /* does lookup, returns the object with parent locked */
2572 static struct dentry *__kern_path_locked(struct filename *name, struct path *path)
2578 error = filename_parentat(AT_FDCWD, name, 0, path, &last, &type);
2580 return ERR_PTR(error);
2581 if (unlikely(type != LAST_NORM)) {
2583 return ERR_PTR(-EINVAL);
2585 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2586 d = lookup_one_qstr_excl(&last, path->dentry, 0);
2588 inode_unlock(path->dentry->d_inode);
2594 struct dentry *kern_path_locked(const char *name, struct path *path)
2596 struct filename *filename = getname_kernel(name);
2597 struct dentry *res = __kern_path_locked(filename, path);
2603 int kern_path(const char *name, unsigned int flags, struct path *path)
2605 struct filename *filename = getname_kernel(name);
2606 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2612 EXPORT_SYMBOL(kern_path);
2615 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2616 * @filename: filename structure
2617 * @flags: lookup flags
2618 * @parent: pointer to struct path to fill
2619 * @last: last component
2620 * @type: type of the last component
2621 * @root: pointer to struct path of the base directory
2623 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2624 struct path *parent, struct qstr *last, int *type,
2625 const struct path *root)
2627 return __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2630 EXPORT_SYMBOL(vfs_path_parent_lookup);
2633 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2634 * @dentry: pointer to dentry of the base directory
2635 * @mnt: pointer to vfs mount of the base directory
2636 * @name: pointer to file name
2637 * @flags: lookup flags
2638 * @path: pointer to struct path to fill
2640 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2641 const char *name, unsigned int flags,
2644 struct filename *filename;
2645 struct path root = {.mnt = mnt, .dentry = dentry};
2648 filename = getname_kernel(name);
2649 /* the first argument of filename_lookup() is ignored with root */
2650 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2654 EXPORT_SYMBOL(vfs_path_lookup);
2656 static int lookup_one_common(struct mnt_idmap *idmap,
2657 const char *name, struct dentry *base, int len,
2662 this->hash = full_name_hash(base, name, len);
2666 if (unlikely(name[0] == '.')) {
2667 if (len < 2 || (len == 2 && name[1] == '.'))
2672 unsigned int c = *(const unsigned char *)name++;
2673 if (c == '/' || c == '\0')
2677 * See if the low-level filesystem might want
2678 * to use its own hash..
2680 if (base->d_flags & DCACHE_OP_HASH) {
2681 int err = base->d_op->d_hash(base, this);
2686 return inode_permission(idmap, base->d_inode, MAY_EXEC);
2690 * try_lookup_one_len - filesystem helper to lookup single pathname component
2691 * @name: pathname component to lookup
2692 * @base: base directory to lookup from
2693 * @len: maximum length @len should be interpreted to
2695 * Look up a dentry by name in the dcache, returning NULL if it does not
2696 * currently exist. The function does not try to create a dentry.
2698 * Note that this routine is purely a helper for filesystem usage and should
2699 * not be called by generic code.
2701 * The caller must hold base->i_mutex.
2703 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2708 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2710 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2712 return ERR_PTR(err);
2714 return lookup_dcache(&this, base, 0);
2716 EXPORT_SYMBOL(try_lookup_one_len);
2719 * lookup_one_len - filesystem helper to lookup single pathname component
2720 * @name: pathname component to lookup
2721 * @base: base directory to lookup from
2722 * @len: maximum length @len should be interpreted to
2724 * Note that this routine is purely a helper for filesystem usage and should
2725 * not be called by generic code.
2727 * The caller must hold base->i_mutex.
2729 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2731 struct dentry *dentry;
2735 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2737 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2739 return ERR_PTR(err);
2741 dentry = lookup_dcache(&this, base, 0);
2742 return dentry ? dentry : __lookup_slow(&this, base, 0);
2744 EXPORT_SYMBOL(lookup_one_len);
2747 * lookup_one - filesystem helper to lookup single pathname component
2748 * @idmap: idmap of the mount the lookup is performed from
2749 * @name: pathname component to lookup
2750 * @base: base directory to lookup from
2751 * @len: maximum length @len should be interpreted to
2753 * Note that this routine is purely a helper for filesystem usage and should
2754 * not be called by generic code.
2756 * The caller must hold base->i_mutex.
2758 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2759 struct dentry *base, int len)
2761 struct dentry *dentry;
2765 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2767 err = lookup_one_common(idmap, name, base, len, &this);
2769 return ERR_PTR(err);
2771 dentry = lookup_dcache(&this, base, 0);
2772 return dentry ? dentry : __lookup_slow(&this, base, 0);
2774 EXPORT_SYMBOL(lookup_one);
2777 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2778 * @idmap: idmap of the mount the lookup is performed from
2779 * @name: pathname component to lookup
2780 * @base: base directory to lookup from
2781 * @len: maximum length @len should be interpreted to
2783 * Note that this routine is purely a helper for filesystem usage and should
2784 * not be called by generic code.
2786 * Unlike lookup_one_len, it should be called without the parent
2787 * i_mutex held, and will take the i_mutex itself if necessary.
2789 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
2790 const char *name, struct dentry *base,
2797 err = lookup_one_common(idmap, name, base, len, &this);
2799 return ERR_PTR(err);
2801 ret = lookup_dcache(&this, base, 0);
2803 ret = lookup_slow(&this, base, 0);
2806 EXPORT_SYMBOL(lookup_one_unlocked);
2809 * lookup_one_positive_unlocked - filesystem helper to lookup single
2810 * pathname component
2811 * @idmap: idmap of the mount the lookup is performed from
2812 * @name: pathname component to lookup
2813 * @base: base directory to lookup from
2814 * @len: maximum length @len should be interpreted to
2816 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
2817 * known positive or ERR_PTR(). This is what most of the users want.
2819 * Note that pinned negative with unlocked parent _can_ become positive at any
2820 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
2821 * positives have >d_inode stable, so this one avoids such problems.
2823 * Note that this routine is purely a helper for filesystem usage and should
2824 * not be called by generic code.
2826 * The helper should be called without i_mutex held.
2828 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
2830 struct dentry *base, int len)
2832 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
2834 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2836 ret = ERR_PTR(-ENOENT);
2840 EXPORT_SYMBOL(lookup_one_positive_unlocked);
2843 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2844 * @name: pathname component to lookup
2845 * @base: base directory to lookup from
2846 * @len: maximum length @len should be interpreted to
2848 * Note that this routine is purely a helper for filesystem usage and should
2849 * not be called by generic code.
2851 * Unlike lookup_one_len, it should be called without the parent
2852 * i_mutex held, and will take the i_mutex itself if necessary.
2854 struct dentry *lookup_one_len_unlocked(const char *name,
2855 struct dentry *base, int len)
2857 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
2859 EXPORT_SYMBOL(lookup_one_len_unlocked);
2862 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2863 * on negatives. Returns known positive or ERR_PTR(); that's what
2864 * most of the users want. Note that pinned negative with unlocked parent
2865 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2866 * need to be very careful; pinned positives have ->d_inode stable, so
2867 * this one avoids such problems.
2869 struct dentry *lookup_positive_unlocked(const char *name,
2870 struct dentry *base, int len)
2872 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
2874 EXPORT_SYMBOL(lookup_positive_unlocked);
2876 #ifdef CONFIG_UNIX98_PTYS
2877 int path_pts(struct path *path)
2879 /* Find something mounted on "pts" in the same directory as
2882 struct dentry *parent = dget_parent(path->dentry);
2883 struct dentry *child;
2884 struct qstr this = QSTR_INIT("pts", 3);
2886 if (unlikely(!path_connected(path->mnt, parent))) {
2891 path->dentry = parent;
2892 child = d_hash_and_lookup(parent, &this);
2896 path->dentry = child;
2898 follow_down(path, 0);
2903 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2904 struct path *path, int *empty)
2906 struct filename *filename = getname_flags(name, flags, empty);
2907 int ret = filename_lookup(dfd, filename, flags, path, NULL);
2912 EXPORT_SYMBOL(user_path_at_empty);
2914 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
2915 struct inode *inode)
2917 kuid_t fsuid = current_fsuid();
2919 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
2921 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
2923 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
2925 EXPORT_SYMBOL(__check_sticky);
2928 * Check whether we can remove a link victim from directory dir, check
2929 * whether the type of victim is right.
2930 * 1. We can't do it if dir is read-only (done in permission())
2931 * 2. We should have write and exec permissions on dir
2932 * 3. We can't remove anything from append-only dir
2933 * 4. We can't do anything with immutable dir (done in permission())
2934 * 5. If the sticky bit on dir is set we should either
2935 * a. be owner of dir, or
2936 * b. be owner of victim, or
2937 * c. have CAP_FOWNER capability
2938 * 6. If the victim is append-only or immutable we can't do antyhing with
2939 * links pointing to it.
2940 * 7. If the victim has an unknown uid or gid we can't change the inode.
2941 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2942 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2943 * 10. We can't remove a root or mountpoint.
2944 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2945 * nfs_async_unlink().
2947 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
2948 struct dentry *victim, bool isdir)
2950 struct inode *inode = d_backing_inode(victim);
2953 if (d_is_negative(victim))
2957 BUG_ON(victim->d_parent->d_inode != dir);
2959 /* Inode writeback is not safe when the uid or gid are invalid. */
2960 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
2961 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
2964 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2966 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
2972 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
2973 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
2974 HAS_UNMAPPED_ID(idmap, inode))
2977 if (!d_is_dir(victim))
2979 if (IS_ROOT(victim))
2981 } else if (d_is_dir(victim))
2983 if (IS_DEADDIR(dir))
2985 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2990 /* Check whether we can create an object with dentry child in directory
2992 * 1. We can't do it if child already exists (open has special treatment for
2993 * this case, but since we are inlined it's OK)
2994 * 2. We can't do it if dir is read-only (done in permission())
2995 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2996 * 4. We should have write and exec permissions on dir
2997 * 5. We can't do it if dir is immutable (done in permission())
2999 static inline int may_create(struct mnt_idmap *idmap,
3000 struct inode *dir, struct dentry *child)
3002 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3005 if (IS_DEADDIR(dir))
3007 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3010 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3013 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3017 p = d_ancestor(p2, p1);
3019 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3020 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
3024 p = d_ancestor(p1, p2);
3026 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3027 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
3031 lock_two_inodes(p1->d_inode, p2->d_inode,
3032 I_MUTEX_PARENT, I_MUTEX_PARENT2);
3037 * p1 and p2 should be directories on the same fs.
3039 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3042 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3046 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3047 return lock_two_directories(p1, p2);
3049 EXPORT_SYMBOL(lock_rename);
3052 * c1 and p2 should be on the same fs.
3054 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3056 if (READ_ONCE(c1->d_parent) == p2) {
3058 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3060 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3062 * now that p2 is locked, nobody can move in or out of it,
3063 * so the test below is safe.
3065 if (likely(c1->d_parent == p2))
3069 * c1 got moved out of p2 while we'd been taking locks;
3070 * unlock and fall back to slow case.
3072 inode_unlock(p2->d_inode);
3075 mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3077 * nobody can move out of any directories on this fs.
3079 if (likely(c1->d_parent != p2))
3080 return lock_two_directories(c1->d_parent, p2);
3083 * c1 got moved into p2 while we were taking locks;
3084 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3085 * for consistency with lock_rename().
3087 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3088 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3091 EXPORT_SYMBOL(lock_rename_child);
3093 void unlock_rename(struct dentry *p1, struct dentry *p2)
3095 inode_unlock(p1->d_inode);
3097 inode_unlock(p2->d_inode);
3098 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3101 EXPORT_SYMBOL(unlock_rename);
3104 * mode_strip_umask - handle vfs umask stripping
3105 * @dir: parent directory of the new inode
3106 * @mode: mode of the new inode to be created in @dir
3108 * Umask stripping depends on whether or not the filesystem supports POSIX
3109 * ACLs. If the filesystem doesn't support it umask stripping is done directly
3110 * in here. If the filesystem does support POSIX ACLs umask stripping is
3111 * deferred until the filesystem calls posix_acl_create().
3115 static inline umode_t mode_strip_umask(const struct inode *dir, umode_t mode)
3117 if (!IS_POSIXACL(dir))
3118 mode &= ~current_umask();
3123 * vfs_prepare_mode - prepare the mode to be used for a new inode
3124 * @idmap: idmap of the mount the inode was found from
3125 * @dir: parent directory of the new inode
3126 * @mode: mode of the new inode
3127 * @mask_perms: allowed permission by the vfs
3128 * @type: type of file to be created
3130 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3131 * object to be created.
3133 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3134 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3135 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3136 * POSIX ACL supporting filesystems.
3138 * Note that it's currently valid for @type to be 0 if a directory is created.
3139 * Filesystems raise that flag individually and we need to check whether each
3140 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3143 * Returns: mode to be passed to the filesystem
3145 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3146 const struct inode *dir, umode_t mode,
3147 umode_t mask_perms, umode_t type)
3149 mode = mode_strip_sgid(idmap, dir, mode);
3150 mode = mode_strip_umask(dir, mode);
3153 * Apply the vfs mandated allowed permission mask and set the type of
3154 * file to be created before we call into the filesystem.
3156 mode &= (mask_perms & ~S_IFMT);
3157 mode |= (type & S_IFMT);
3163 * vfs_create - create new file
3164 * @idmap: idmap of the mount the inode was found from
3165 * @dir: inode of @dentry
3166 * @dentry: pointer to dentry of the base directory
3167 * @mode: mode of the new file
3168 * @want_excl: whether the file must not yet exist
3170 * Create a new file.
3172 * If the inode has been found through an idmapped mount the idmap of
3173 * the vfsmount must be passed through @idmap. This function will then take
3174 * care to map the inode according to @idmap before checking permissions.
3175 * On non-idmapped mounts or if permission checking is to be performed on the
3176 * raw inode simply passs @nop_mnt_idmap.
3178 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3179 struct dentry *dentry, umode_t mode, bool want_excl)
3183 error = may_create(idmap, dir, dentry);
3187 if (!dir->i_op->create)
3188 return -EACCES; /* shouldn't it be ENOSYS? */
3190 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3191 error = security_inode_create(dir, dentry, mode);
3194 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3196 fsnotify_create(dir, dentry);
3199 EXPORT_SYMBOL(vfs_create);
3201 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3202 int (*f)(struct dentry *, umode_t, void *),
3205 struct inode *dir = dentry->d_parent->d_inode;
3206 int error = may_create(&nop_mnt_idmap, dir, dentry);
3212 error = security_inode_create(dir, dentry, mode);
3215 error = f(dentry, mode, arg);
3217 fsnotify_create(dir, dentry);
3220 EXPORT_SYMBOL(vfs_mkobj);
3222 bool may_open_dev(const struct path *path)
3224 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3225 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3228 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3229 int acc_mode, int flag)
3231 struct dentry *dentry = path->dentry;
3232 struct inode *inode = dentry->d_inode;
3238 switch (inode->i_mode & S_IFMT) {
3242 if (acc_mode & MAY_WRITE)
3244 if (acc_mode & MAY_EXEC)
3249 if (!may_open_dev(path))
3254 if (acc_mode & MAY_EXEC)
3259 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3264 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3269 * An append-only file must be opened in append mode for writing.
3271 if (IS_APPEND(inode)) {
3272 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3278 /* O_NOATIME can only be set by the owner or superuser */
3279 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3285 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3287 const struct path *path = &filp->f_path;
3288 struct inode *inode = path->dentry->d_inode;
3289 int error = get_write_access(inode);
3293 error = security_file_truncate(filp);
3295 error = do_truncate(idmap, path->dentry, 0,
3296 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3299 put_write_access(inode);
3303 static inline int open_to_namei_flags(int flag)
3305 if ((flag & O_ACCMODE) == 3)
3310 static int may_o_create(struct mnt_idmap *idmap,
3311 const struct path *dir, struct dentry *dentry,
3314 int error = security_path_mknod(dir, dentry, mode, 0);
3318 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3321 error = inode_permission(idmap, dir->dentry->d_inode,
3322 MAY_WRITE | MAY_EXEC);
3326 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3330 * Attempt to atomically look up, create and open a file from a negative
3333 * Returns 0 if successful. The file will have been created and attached to
3334 * @file by the filesystem calling finish_open().
3336 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3337 * be set. The caller will need to perform the open themselves. @path will
3338 * have been updated to point to the new dentry. This may be negative.
3340 * Returns an error code otherwise.
3342 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3344 int open_flag, umode_t mode)
3346 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3347 struct inode *dir = nd->path.dentry->d_inode;
3350 if (nd->flags & LOOKUP_DIRECTORY)
3351 open_flag |= O_DIRECTORY;
3353 file->f_path.dentry = DENTRY_NOT_SET;
3354 file->f_path.mnt = nd->path.mnt;
3355 error = dir->i_op->atomic_open(dir, dentry, file,
3356 open_to_namei_flags(open_flag), mode);
3357 d_lookup_done(dentry);
3359 if (file->f_mode & FMODE_OPENED) {
3360 if (unlikely(dentry != file->f_path.dentry)) {
3362 dentry = dget(file->f_path.dentry);
3364 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3367 if (file->f_path.dentry) {
3369 dentry = file->f_path.dentry;
3371 if (unlikely(d_is_negative(dentry)))
3377 dentry = ERR_PTR(error);
3383 * Look up and maybe create and open the last component.
3385 * Must be called with parent locked (exclusive in O_CREAT case).
3387 * Returns 0 on success, that is, if
3388 * the file was successfully atomically created (if necessary) and opened, or
3389 * the file was not completely opened at this time, though lookups and
3390 * creations were performed.
3391 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3392 * In the latter case dentry returned in @path might be negative if O_CREAT
3393 * hadn't been specified.
3395 * An error code is returned on failure.
3397 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3398 const struct open_flags *op,
3401 struct mnt_idmap *idmap;
3402 struct dentry *dir = nd->path.dentry;
3403 struct inode *dir_inode = dir->d_inode;
3404 int open_flag = op->open_flag;
3405 struct dentry *dentry;
3406 int error, create_error = 0;
3407 umode_t mode = op->mode;
3408 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3410 if (unlikely(IS_DEADDIR(dir_inode)))
3411 return ERR_PTR(-ENOENT);
3413 file->f_mode &= ~FMODE_CREATED;
3414 dentry = d_lookup(dir, &nd->last);
3417 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3421 if (d_in_lookup(dentry))
3424 error = d_revalidate(dentry, nd->flags);
3425 if (likely(error > 0))
3429 d_invalidate(dentry);
3433 if (dentry->d_inode) {
3434 /* Cached positive dentry: will open in f_op->open */
3439 * Checking write permission is tricky, bacuse we don't know if we are
3440 * going to actually need it: O_CREAT opens should work as long as the
3441 * file exists. But checking existence breaks atomicity. The trick is
3442 * to check access and if not granted clear O_CREAT from the flags.
3444 * Another problem is returing the "right" error value (e.g. for an
3445 * O_EXCL open we want to return EEXIST not EROFS).
3447 if (unlikely(!got_write))
3448 open_flag &= ~O_TRUNC;
3449 idmap = mnt_idmap(nd->path.mnt);
3450 if (open_flag & O_CREAT) {
3451 if (open_flag & O_EXCL)
3452 open_flag &= ~O_TRUNC;
3453 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3454 if (likely(got_write))
3455 create_error = may_o_create(idmap, &nd->path,
3458 create_error = -EROFS;
3461 open_flag &= ~O_CREAT;
3462 if (dir_inode->i_op->atomic_open) {
3463 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3464 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3465 dentry = ERR_PTR(create_error);
3469 if (d_in_lookup(dentry)) {
3470 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3472 d_lookup_done(dentry);
3473 if (unlikely(res)) {
3475 error = PTR_ERR(res);
3483 /* Negative dentry, just create the file */
3484 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3485 file->f_mode |= FMODE_CREATED;
3486 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3487 if (!dir_inode->i_op->create) {
3492 error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3493 mode, open_flag & O_EXCL);
3497 if (unlikely(create_error) && !dentry->d_inode) {
3498 error = create_error;
3505 return ERR_PTR(error);
3508 static const char *open_last_lookups(struct nameidata *nd,
3509 struct file *file, const struct open_flags *op)
3511 struct dentry *dir = nd->path.dentry;
3512 int open_flag = op->open_flag;
3513 bool got_write = false;
3514 struct dentry *dentry;
3517 nd->flags |= op->intent;
3519 if (nd->last_type != LAST_NORM) {
3522 return handle_dots(nd, nd->last_type);
3525 if (!(open_flag & O_CREAT)) {
3526 if (nd->last.name[nd->last.len])
3527 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3528 /* we _can_ be in RCU mode here */
3529 dentry = lookup_fast(nd);
3531 return ERR_CAST(dentry);
3535 BUG_ON(nd->flags & LOOKUP_RCU);
3537 /* create side of things */
3538 if (nd->flags & LOOKUP_RCU) {
3539 if (!try_to_unlazy(nd))
3540 return ERR_PTR(-ECHILD);
3542 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3543 /* trailing slashes? */
3544 if (unlikely(nd->last.name[nd->last.len]))
3545 return ERR_PTR(-EISDIR);
3548 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3549 got_write = !mnt_want_write(nd->path.mnt);
3551 * do _not_ fail yet - we might not need that or fail with
3552 * a different error; let lookup_open() decide; we'll be
3553 * dropping this one anyway.
3556 if (open_flag & O_CREAT)
3557 inode_lock(dir->d_inode);
3559 inode_lock_shared(dir->d_inode);
3560 dentry = lookup_open(nd, file, op, got_write);
3561 if (!IS_ERR(dentry) && (file->f_mode & FMODE_CREATED))
3562 fsnotify_create(dir->d_inode, dentry);
3563 if (open_flag & O_CREAT)
3564 inode_unlock(dir->d_inode);
3566 inode_unlock_shared(dir->d_inode);
3569 mnt_drop_write(nd->path.mnt);
3572 return ERR_CAST(dentry);
3574 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3575 dput(nd->path.dentry);
3576 nd->path.dentry = dentry;
3583 res = step_into(nd, WALK_TRAILING, dentry);
3585 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3590 * Handle the last step of open()
3592 static int do_open(struct nameidata *nd,
3593 struct file *file, const struct open_flags *op)
3595 struct mnt_idmap *idmap;
3596 int open_flag = op->open_flag;
3601 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3602 error = complete_walk(nd);
3606 if (!(file->f_mode & FMODE_CREATED))
3607 audit_inode(nd->name, nd->path.dentry, 0);
3608 idmap = mnt_idmap(nd->path.mnt);
3609 if (open_flag & O_CREAT) {
3610 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3612 if (d_is_dir(nd->path.dentry))
3614 error = may_create_in_sticky(idmap, nd,
3615 d_backing_inode(nd->path.dentry));
3616 if (unlikely(error))
3619 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3622 do_truncate = false;
3623 acc_mode = op->acc_mode;
3624 if (file->f_mode & FMODE_CREATED) {
3625 /* Don't check for write permission, don't truncate */
3626 open_flag &= ~O_TRUNC;
3628 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3629 error = mnt_want_write(nd->path.mnt);
3634 error = may_open(idmap, &nd->path, acc_mode, open_flag);
3635 if (!error && !(file->f_mode & FMODE_OPENED))
3636 error = vfs_open(&nd->path, file);
3638 error = ima_file_check(file, op->acc_mode);
3639 if (!error && do_truncate)
3640 error = handle_truncate(idmap, file);
3641 if (unlikely(error > 0)) {
3646 mnt_drop_write(nd->path.mnt);
3651 * vfs_tmpfile - create tmpfile
3652 * @idmap: idmap of the mount the inode was found from
3653 * @parentpath: pointer to the path of the base directory
3654 * @file: file descriptor of the new tmpfile
3655 * @mode: mode of the new tmpfile
3657 * Create a temporary file.
3659 * If the inode has been found through an idmapped mount the idmap of
3660 * the vfsmount must be passed through @idmap. This function will then take
3661 * care to map the inode according to @idmap before checking permissions.
3662 * On non-idmapped mounts or if permission checking is to be performed on the
3663 * raw inode simply passs @nop_mnt_idmap.
3665 static int vfs_tmpfile(struct mnt_idmap *idmap,
3666 const struct path *parentpath,
3667 struct file *file, umode_t mode)
3669 struct dentry *child;
3670 struct inode *dir = d_inode(parentpath->dentry);
3671 struct inode *inode;
3673 int open_flag = file->f_flags;
3675 /* we want directory to be writable */
3676 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3679 if (!dir->i_op->tmpfile)
3681 child = d_alloc(parentpath->dentry, &slash_name);
3682 if (unlikely(!child))
3684 file->f_path.mnt = parentpath->mnt;
3685 file->f_path.dentry = child;
3686 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3687 error = dir->i_op->tmpfile(idmap, dir, file, mode);
3691 /* Don't check for other permissions, the inode was just created */
3692 error = may_open(idmap, &file->f_path, 0, file->f_flags);
3695 inode = file_inode(file);
3696 if (!(open_flag & O_EXCL)) {
3697 spin_lock(&inode->i_lock);
3698 inode->i_state |= I_LINKABLE;
3699 spin_unlock(&inode->i_lock);
3701 ima_post_create_tmpfile(idmap, inode);
3706 * kernel_tmpfile_open - open a tmpfile for kernel internal use
3707 * @idmap: idmap of the mount the inode was found from
3708 * @parentpath: path of the base directory
3709 * @mode: mode of the new tmpfile
3711 * @cred: credentials for open
3713 * Create and open a temporary file. The file is not accounted in nr_files,
3714 * hence this is only for kernel internal use, and must not be installed into
3715 * file tables or such.
3717 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3718 const struct path *parentpath,
3719 umode_t mode, int open_flag,
3720 const struct cred *cred)
3725 file = alloc_empty_file_noaccount(open_flag, cred);
3729 error = vfs_tmpfile(idmap, parentpath, file, mode);
3732 file = ERR_PTR(error);
3736 EXPORT_SYMBOL(kernel_tmpfile_open);
3738 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3739 const struct open_flags *op,
3743 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3745 if (unlikely(error))
3747 error = mnt_want_write(path.mnt);
3748 if (unlikely(error))
3750 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3753 audit_inode(nd->name, file->f_path.dentry, 0);
3755 mnt_drop_write(path.mnt);
3761 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3764 int error = path_lookupat(nd, flags, &path);
3766 audit_inode(nd->name, path.dentry, 0);
3767 error = vfs_open(&path, file);
3773 static struct file *path_openat(struct nameidata *nd,
3774 const struct open_flags *op, unsigned flags)
3779 file = alloc_empty_file(op->open_flag, current_cred());
3783 if (unlikely(file->f_flags & __O_TMPFILE)) {
3784 error = do_tmpfile(nd, flags, op, file);
3785 } else if (unlikely(file->f_flags & O_PATH)) {
3786 error = do_o_path(nd, flags, file);
3788 const char *s = path_init(nd, flags);
3789 while (!(error = link_path_walk(s, nd)) &&
3790 (s = open_last_lookups(nd, file, op)) != NULL)
3793 error = do_open(nd, file, op);
3796 if (likely(!error)) {
3797 if (likely(file->f_mode & FMODE_OPENED))
3803 if (error == -EOPENSTALE) {
3804 if (flags & LOOKUP_RCU)
3809 return ERR_PTR(error);
3812 struct file *do_filp_open(int dfd, struct filename *pathname,
3813 const struct open_flags *op)
3815 struct nameidata nd;
3816 int flags = op->lookup_flags;
3819 set_nameidata(&nd, dfd, pathname, NULL);
3820 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3821 if (unlikely(filp == ERR_PTR(-ECHILD)))
3822 filp = path_openat(&nd, op, flags);
3823 if (unlikely(filp == ERR_PTR(-ESTALE)))
3824 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3825 restore_nameidata();
3829 struct file *do_file_open_root(const struct path *root,
3830 const char *name, const struct open_flags *op)
3832 struct nameidata nd;
3834 struct filename *filename;
3835 int flags = op->lookup_flags;
3837 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
3838 return ERR_PTR(-ELOOP);
3840 filename = getname_kernel(name);
3841 if (IS_ERR(filename))
3842 return ERR_CAST(filename);
3844 set_nameidata(&nd, -1, filename, root);
3845 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3846 if (unlikely(file == ERR_PTR(-ECHILD)))
3847 file = path_openat(&nd, op, flags);
3848 if (unlikely(file == ERR_PTR(-ESTALE)))
3849 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3850 restore_nameidata();
3855 static struct dentry *filename_create(int dfd, struct filename *name,
3856 struct path *path, unsigned int lookup_flags)
3858 struct dentry *dentry = ERR_PTR(-EEXIST);
3860 bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
3861 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
3862 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
3867 error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
3869 return ERR_PTR(error);
3872 * Yucky last component or no last component at all?
3873 * (foo/., foo/.., /////)
3875 if (unlikely(type != LAST_NORM))
3878 /* don't fail immediately if it's r/o, at least try to report other errors */
3879 err2 = mnt_want_write(path->mnt);
3881 * Do the final lookup. Suppress 'create' if there is a trailing
3882 * '/', and a directory wasn't requested.
3884 if (last.name[last.len] && !want_dir)
3886 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3887 dentry = lookup_one_qstr_excl(&last, path->dentry,
3888 reval_flag | create_flags);
3893 if (d_is_positive(dentry))
3897 * Special case - lookup gave negative, but... we had foo/bar/
3898 * From the vfs_mknod() POV we just have a negative dentry -
3899 * all is fine. Let's be bastards - you had / on the end, you've
3900 * been asking for (non-existent) directory. -ENOENT for you.
3902 if (unlikely(!create_flags)) {
3906 if (unlikely(err2)) {
3913 dentry = ERR_PTR(error);
3915 inode_unlock(path->dentry->d_inode);
3917 mnt_drop_write(path->mnt);
3923 struct dentry *kern_path_create(int dfd, const char *pathname,
3924 struct path *path, unsigned int lookup_flags)
3926 struct filename *filename = getname_kernel(pathname);
3927 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3932 EXPORT_SYMBOL(kern_path_create);
3934 void done_path_create(struct path *path, struct dentry *dentry)
3937 inode_unlock(path->dentry->d_inode);
3938 mnt_drop_write(path->mnt);
3941 EXPORT_SYMBOL(done_path_create);
3943 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3944 struct path *path, unsigned int lookup_flags)
3946 struct filename *filename = getname(pathname);
3947 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
3952 EXPORT_SYMBOL(user_path_create);
3955 * vfs_mknod - create device node or file
3956 * @idmap: idmap of the mount the inode was found from
3957 * @dir: inode of @dentry
3958 * @dentry: pointer to dentry of the base directory
3959 * @mode: mode of the new device node or file
3960 * @dev: device number of device to create
3962 * Create a device node or file.
3964 * If the inode has been found through an idmapped mount the idmap of
3965 * the vfsmount must be passed through @idmap. This function will then take
3966 * care to map the inode according to @idmap before checking permissions.
3967 * On non-idmapped mounts or if permission checking is to be performed on the
3968 * raw inode simply passs @nop_mnt_idmap.
3970 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
3971 struct dentry *dentry, umode_t mode, dev_t dev)
3973 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
3974 int error = may_create(idmap, dir, dentry);
3979 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
3980 !capable(CAP_MKNOD))
3983 if (!dir->i_op->mknod)
3986 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3987 error = devcgroup_inode_mknod(mode, dev);
3991 error = security_inode_mknod(dir, dentry, mode, dev);
3995 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
3997 fsnotify_create(dir, dentry);
4000 EXPORT_SYMBOL(vfs_mknod);
4002 static int may_mknod(umode_t mode)
4004 switch (mode & S_IFMT) {
4010 case 0: /* zero mode translates to S_IFREG */
4019 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4022 struct mnt_idmap *idmap;
4023 struct dentry *dentry;
4026 unsigned int lookup_flags = 0;
4028 error = may_mknod(mode);
4032 dentry = filename_create(dfd, name, &path, lookup_flags);
4033 error = PTR_ERR(dentry);
4037 error = security_path_mknod(&path, dentry,
4038 mode_strip_umask(path.dentry->d_inode, mode), dev);
4042 idmap = mnt_idmap(path.mnt);
4043 switch (mode & S_IFMT) {
4044 case 0: case S_IFREG:
4045 error = vfs_create(idmap, path.dentry->d_inode,
4046 dentry, mode, true);
4048 ima_post_path_mknod(idmap, dentry);
4050 case S_IFCHR: case S_IFBLK:
4051 error = vfs_mknod(idmap, path.dentry->d_inode,
4052 dentry, mode, new_decode_dev(dev));
4054 case S_IFIFO: case S_IFSOCK:
4055 error = vfs_mknod(idmap, path.dentry->d_inode,
4060 done_path_create(&path, dentry);
4061 if (retry_estale(error, lookup_flags)) {
4062 lookup_flags |= LOOKUP_REVAL;
4070 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4073 return do_mknodat(dfd, getname(filename), mode, dev);
4076 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4078 return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4082 * vfs_mkdir - create directory
4083 * @idmap: idmap of the mount the inode was found from
4084 * @dir: inode of @dentry
4085 * @dentry: pointer to dentry of the base directory
4086 * @mode: mode of the new directory
4088 * Create a directory.
4090 * If the inode has been found through an idmapped mount the idmap of
4091 * the vfsmount must be passed through @idmap. This function will then take
4092 * care to map the inode according to @idmap before checking permissions.
4093 * On non-idmapped mounts or if permission checking is to be performed on the
4094 * raw inode simply passs @nop_mnt_idmap.
4096 int vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4097 struct dentry *dentry, umode_t mode)
4100 unsigned max_links = dir->i_sb->s_max_links;
4102 error = may_create(idmap, dir, dentry);
4106 if (!dir->i_op->mkdir)
4109 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4110 error = security_inode_mkdir(dir, dentry, mode);
4114 if (max_links && dir->i_nlink >= max_links)
4117 error = dir->i_op->mkdir(idmap, dir, dentry, mode);
4119 fsnotify_mkdir(dir, dentry);
4122 EXPORT_SYMBOL(vfs_mkdir);
4124 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4126 struct dentry *dentry;
4129 unsigned int lookup_flags = LOOKUP_DIRECTORY;
4132 dentry = filename_create(dfd, name, &path, lookup_flags);
4133 error = PTR_ERR(dentry);
4137 error = security_path_mkdir(&path, dentry,
4138 mode_strip_umask(path.dentry->d_inode, mode));
4140 error = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4143 done_path_create(&path, dentry);
4144 if (retry_estale(error, lookup_flags)) {
4145 lookup_flags |= LOOKUP_REVAL;
4153 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4155 return do_mkdirat(dfd, getname(pathname), mode);
4158 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4160 return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4164 * vfs_rmdir - remove directory
4165 * @idmap: idmap of the mount the inode was found from
4166 * @dir: inode of @dentry
4167 * @dentry: pointer to dentry of the base directory
4169 * Remove a directory.
4171 * If the inode has been found through an idmapped mount the idmap of
4172 * the vfsmount must be passed through @idmap. This function will then take
4173 * care to map the inode according to @idmap before checking permissions.
4174 * On non-idmapped mounts or if permission checking is to be performed on the
4175 * raw inode simply passs @nop_mnt_idmap.
4177 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4178 struct dentry *dentry)
4180 int error = may_delete(idmap, dir, dentry, 1);
4185 if (!dir->i_op->rmdir)
4189 inode_lock(dentry->d_inode);
4192 if (is_local_mountpoint(dentry) ||
4193 (dentry->d_inode->i_flags & S_KERNEL_FILE))
4196 error = security_inode_rmdir(dir, dentry);
4200 error = dir->i_op->rmdir(dir, dentry);
4204 shrink_dcache_parent(dentry);
4205 dentry->d_inode->i_flags |= S_DEAD;
4207 detach_mounts(dentry);
4210 inode_unlock(dentry->d_inode);
4213 d_delete_notify(dir, dentry);
4216 EXPORT_SYMBOL(vfs_rmdir);
4218 int do_rmdir(int dfd, struct filename *name)
4221 struct dentry *dentry;
4225 unsigned int lookup_flags = 0;
4227 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4243 error = mnt_want_write(path.mnt);
4247 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4248 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4249 error = PTR_ERR(dentry);
4252 if (!dentry->d_inode) {
4256 error = security_path_rmdir(&path, dentry);
4259 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4263 inode_unlock(path.dentry->d_inode);
4264 mnt_drop_write(path.mnt);
4267 if (retry_estale(error, lookup_flags)) {
4268 lookup_flags |= LOOKUP_REVAL;
4276 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4278 return do_rmdir(AT_FDCWD, getname(pathname));
4282 * vfs_unlink - unlink a filesystem object
4283 * @idmap: idmap of the mount the inode was found from
4284 * @dir: parent directory
4286 * @delegated_inode: returns victim inode, if the inode is delegated.
4288 * The caller must hold dir->i_mutex.
4290 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4291 * return a reference to the inode in delegated_inode. The caller
4292 * should then break the delegation on that inode and retry. Because
4293 * breaking a delegation may take a long time, the caller should drop
4294 * dir->i_mutex before doing so.
4296 * Alternatively, a caller may pass NULL for delegated_inode. This may
4297 * be appropriate for callers that expect the underlying filesystem not
4298 * to be NFS exported.
4300 * If the inode has been found through an idmapped mount the idmap of
4301 * the vfsmount must be passed through @idmap. This function will then take
4302 * care to map the inode according to @idmap before checking permissions.
4303 * On non-idmapped mounts or if permission checking is to be performed on the
4304 * raw inode simply passs @nop_mnt_idmap.
4306 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4307 struct dentry *dentry, struct inode **delegated_inode)
4309 struct inode *target = dentry->d_inode;
4310 int error = may_delete(idmap, dir, dentry, 0);
4315 if (!dir->i_op->unlink)
4319 if (IS_SWAPFILE(target))
4321 else if (is_local_mountpoint(dentry))
4324 error = security_inode_unlink(dir, dentry);
4326 error = try_break_deleg(target, delegated_inode);
4329 error = dir->i_op->unlink(dir, dentry);
4332 detach_mounts(dentry);
4337 inode_unlock(target);
4339 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4340 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4341 fsnotify_unlink(dir, dentry);
4342 } else if (!error) {
4343 fsnotify_link_count(target);
4344 d_delete_notify(dir, dentry);
4349 EXPORT_SYMBOL(vfs_unlink);
4352 * Make sure that the actual truncation of the file will occur outside its
4353 * directory's i_mutex. Truncate can take a long time if there is a lot of
4354 * writeout happening, and we don't want to prevent access to the directory
4355 * while waiting on the I/O.
4357 int do_unlinkat(int dfd, struct filename *name)
4360 struct dentry *dentry;
4364 struct inode *inode = NULL;
4365 struct inode *delegated_inode = NULL;
4366 unsigned int lookup_flags = 0;
4368 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4373 if (type != LAST_NORM)
4376 error = mnt_want_write(path.mnt);
4380 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4381 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4382 error = PTR_ERR(dentry);
4383 if (!IS_ERR(dentry)) {
4385 /* Why not before? Because we want correct error value */
4386 if (last.name[last.len])
4388 inode = dentry->d_inode;
4389 if (d_is_negative(dentry))
4392 error = security_path_unlink(&path, dentry);
4395 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4396 dentry, &delegated_inode);
4400 inode_unlock(path.dentry->d_inode);
4402 iput(inode); /* truncate the inode here */
4404 if (delegated_inode) {
4405 error = break_deleg_wait(&delegated_inode);
4409 mnt_drop_write(path.mnt);
4412 if (retry_estale(error, lookup_flags)) {
4413 lookup_flags |= LOOKUP_REVAL;
4422 if (d_is_negative(dentry))
4424 else if (d_is_dir(dentry))
4431 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4433 if ((flag & ~AT_REMOVEDIR) != 0)
4436 if (flag & AT_REMOVEDIR)
4437 return do_rmdir(dfd, getname(pathname));
4438 return do_unlinkat(dfd, getname(pathname));
4441 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4443 return do_unlinkat(AT_FDCWD, getname(pathname));
4447 * vfs_symlink - create symlink
4448 * @idmap: idmap of the mount the inode was found from
4449 * @dir: inode of @dentry
4450 * @dentry: pointer to dentry of the base directory
4451 * @oldname: name of the file to link to
4455 * If the inode has been found through an idmapped mount the idmap of
4456 * the vfsmount must be passed through @idmap. This function will then take
4457 * care to map the inode according to @idmap before checking permissions.
4458 * On non-idmapped mounts or if permission checking is to be performed on the
4459 * raw inode simply passs @nop_mnt_idmap.
4461 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4462 struct dentry *dentry, const char *oldname)
4466 error = may_create(idmap, dir, dentry);
4470 if (!dir->i_op->symlink)
4473 error = security_inode_symlink(dir, dentry, oldname);
4477 error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4479 fsnotify_create(dir, dentry);
4482 EXPORT_SYMBOL(vfs_symlink);
4484 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4487 struct dentry *dentry;
4489 unsigned int lookup_flags = 0;
4492 error = PTR_ERR(from);
4496 dentry = filename_create(newdfd, to, &path, lookup_flags);
4497 error = PTR_ERR(dentry);
4501 error = security_path_symlink(&path, dentry, from->name);
4503 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4504 dentry, from->name);
4505 done_path_create(&path, dentry);
4506 if (retry_estale(error, lookup_flags)) {
4507 lookup_flags |= LOOKUP_REVAL;
4516 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4517 int, newdfd, const char __user *, newname)
4519 return do_symlinkat(getname(oldname), newdfd, getname(newname));
4522 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4524 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4528 * vfs_link - create a new link
4529 * @old_dentry: object to be linked
4530 * @idmap: idmap of the mount
4532 * @new_dentry: where to create the new link
4533 * @delegated_inode: returns inode needing a delegation break
4535 * The caller must hold dir->i_mutex
4537 * If vfs_link discovers a delegation on the to-be-linked file in need
4538 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4539 * inode in delegated_inode. The caller should then break the delegation
4540 * and retry. Because breaking a delegation may take a long time, the
4541 * caller should drop the i_mutex before doing so.
4543 * Alternatively, a caller may pass NULL for delegated_inode. This may
4544 * be appropriate for callers that expect the underlying filesystem not
4545 * to be NFS exported.
4547 * If the inode has been found through an idmapped mount the idmap of
4548 * the vfsmount must be passed through @idmap. This function will then take
4549 * care to map the inode according to @idmap before checking permissions.
4550 * On non-idmapped mounts or if permission checking is to be performed on the
4551 * raw inode simply passs @nop_mnt_idmap.
4553 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4554 struct inode *dir, struct dentry *new_dentry,
4555 struct inode **delegated_inode)
4557 struct inode *inode = old_dentry->d_inode;
4558 unsigned max_links = dir->i_sb->s_max_links;
4564 error = may_create(idmap, dir, new_dentry);
4568 if (dir->i_sb != inode->i_sb)
4572 * A link to an append-only or immutable file cannot be created.
4574 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4577 * Updating the link count will likely cause i_uid and i_gid to
4578 * be writen back improperly if their true value is unknown to
4581 if (HAS_UNMAPPED_ID(idmap, inode))
4583 if (!dir->i_op->link)
4585 if (S_ISDIR(inode->i_mode))
4588 error = security_inode_link(old_dentry, dir, new_dentry);
4593 /* Make sure we don't allow creating hardlink to an unlinked file */
4594 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4596 else if (max_links && inode->i_nlink >= max_links)
4599 error = try_break_deleg(inode, delegated_inode);
4601 error = dir->i_op->link(old_dentry, dir, new_dentry);
4604 if (!error && (inode->i_state & I_LINKABLE)) {
4605 spin_lock(&inode->i_lock);
4606 inode->i_state &= ~I_LINKABLE;
4607 spin_unlock(&inode->i_lock);
4609 inode_unlock(inode);
4611 fsnotify_link(dir, inode, new_dentry);
4614 EXPORT_SYMBOL(vfs_link);
4617 * Hardlinks are often used in delicate situations. We avoid
4618 * security-related surprises by not following symlinks on the
4621 * We don't follow them on the oldname either to be compatible
4622 * with linux 2.0, and to avoid hard-linking to directories
4623 * and other special files. --ADM
4625 int do_linkat(int olddfd, struct filename *old, int newdfd,
4626 struct filename *new, int flags)
4628 struct mnt_idmap *idmap;
4629 struct dentry *new_dentry;
4630 struct path old_path, new_path;
4631 struct inode *delegated_inode = NULL;
4635 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4640 * To use null names we require CAP_DAC_READ_SEARCH
4641 * This ensures that not everyone will be able to create
4642 * handlink using the passed filedescriptor.
4644 if (flags & AT_EMPTY_PATH && !capable(CAP_DAC_READ_SEARCH)) {
4649 if (flags & AT_SYMLINK_FOLLOW)
4650 how |= LOOKUP_FOLLOW;
4652 error = filename_lookup(olddfd, old, how, &old_path, NULL);
4656 new_dentry = filename_create(newdfd, new, &new_path,
4657 (how & LOOKUP_REVAL));
4658 error = PTR_ERR(new_dentry);
4659 if (IS_ERR(new_dentry))
4663 if (old_path.mnt != new_path.mnt)
4665 idmap = mnt_idmap(new_path.mnt);
4666 error = may_linkat(idmap, &old_path);
4667 if (unlikely(error))
4669 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4672 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4673 new_dentry, &delegated_inode);
4675 done_path_create(&new_path, new_dentry);
4676 if (delegated_inode) {
4677 error = break_deleg_wait(&delegated_inode);
4679 path_put(&old_path);
4683 if (retry_estale(error, how)) {
4684 path_put(&old_path);
4685 how |= LOOKUP_REVAL;
4689 path_put(&old_path);
4697 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4698 int, newdfd, const char __user *, newname, int, flags)
4700 return do_linkat(olddfd, getname_uflags(oldname, flags),
4701 newdfd, getname(newname), flags);
4704 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4706 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4710 * vfs_rename - rename a filesystem object
4711 * @rd: pointer to &struct renamedata info
4713 * The caller must hold multiple mutexes--see lock_rename()).
4715 * If vfs_rename discovers a delegation in need of breaking at either
4716 * the source or destination, it will return -EWOULDBLOCK and return a
4717 * reference to the inode in delegated_inode. The caller should then
4718 * break the delegation and retry. Because breaking a delegation may
4719 * take a long time, the caller should drop all locks before doing
4722 * Alternatively, a caller may pass NULL for delegated_inode. This may
4723 * be appropriate for callers that expect the underlying filesystem not
4724 * to be NFS exported.
4726 * The worst of all namespace operations - renaming directory. "Perverted"
4727 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4730 * a) we can get into loop creation.
4731 * b) race potential - two innocent renames can create a loop together.
4732 * That's where 4.4 screws up. Current fix: serialization on
4733 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4735 * c) we have to lock _four_ objects - parents and victim (if it exists),
4737 * And that - after we got ->i_mutex on parents (until then we don't know
4738 * whether the target exists). Solution: try to be smart with locking
4739 * order for inodes. We rely on the fact that tree topology may change
4740 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4741 * move will be locked. Thus we can rank directories by the tree
4742 * (ancestors first) and rank all non-directories after them.
4743 * That works since everybody except rename does "lock parent, lookup,
4744 * lock child" and rename is under ->s_vfs_rename_mutex.
4745 * HOWEVER, it relies on the assumption that any object with ->lookup()
4746 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4747 * we'd better make sure that there's no link(2) for them.
4748 * d) conversion from fhandle to dentry may come in the wrong moment - when
4749 * we are removing the target. Solution: we will have to grab ->i_mutex
4750 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4751 * ->i_mutex on parents, which works but leads to some truly excessive
4754 int vfs_rename(struct renamedata *rd)
4757 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
4758 struct dentry *old_dentry = rd->old_dentry;
4759 struct dentry *new_dentry = rd->new_dentry;
4760 struct inode **delegated_inode = rd->delegated_inode;
4761 unsigned int flags = rd->flags;
4762 bool is_dir = d_is_dir(old_dentry);
4763 struct inode *source = old_dentry->d_inode;
4764 struct inode *target = new_dentry->d_inode;
4765 bool new_is_dir = false;
4766 unsigned max_links = new_dir->i_sb->s_max_links;
4767 struct name_snapshot old_name;
4769 if (source == target)
4772 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
4777 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
4779 new_is_dir = d_is_dir(new_dentry);
4781 if (!(flags & RENAME_EXCHANGE))
4782 error = may_delete(rd->new_mnt_idmap, new_dir,
4783 new_dentry, is_dir);
4785 error = may_delete(rd->new_mnt_idmap, new_dir,
4786 new_dentry, new_is_dir);
4791 if (!old_dir->i_op->rename)
4795 * If we are going to change the parent - check write permissions,
4796 * we'll need to flip '..'.
4798 if (new_dir != old_dir) {
4800 error = inode_permission(rd->old_mnt_idmap, source,
4805 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4806 error = inode_permission(rd->new_mnt_idmap, target,
4813 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4818 take_dentry_name_snapshot(&old_name, old_dentry);
4821 * Lock all moved children. Moved directories may need to change parent
4822 * pointer so they need the lock to prevent against concurrent
4823 * directory changes moving parent pointer. For regular files we've
4824 * historically always done this. The lockdep locking subclasses are
4825 * somewhat arbitrary but RENAME_EXCHANGE in particular can swap
4826 * regular files and directories so it's difficult to tell which
4827 * subclasses to use.
4829 lock_two_inodes(source, target, I_MUTEX_NORMAL, I_MUTEX_NONDIR2);
4832 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
4836 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4839 if (max_links && new_dir != old_dir) {
4841 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4843 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4844 old_dir->i_nlink >= max_links)
4848 error = try_break_deleg(source, delegated_inode);
4852 if (target && !new_is_dir) {
4853 error = try_break_deleg(target, delegated_inode);
4857 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
4858 new_dir, new_dentry, flags);
4862 if (!(flags & RENAME_EXCHANGE) && target) {
4864 shrink_dcache_parent(new_dentry);
4865 target->i_flags |= S_DEAD;
4867 dont_mount(new_dentry);
4868 detach_mounts(new_dentry);
4870 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4871 if (!(flags & RENAME_EXCHANGE))
4872 d_move(old_dentry, new_dentry);
4874 d_exchange(old_dentry, new_dentry);
4877 inode_unlock(source);
4879 inode_unlock(target);
4882 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4883 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4884 if (flags & RENAME_EXCHANGE) {
4885 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4886 new_is_dir, NULL, new_dentry);
4889 release_dentry_name_snapshot(&old_name);
4893 EXPORT_SYMBOL(vfs_rename);
4895 int do_renameat2(int olddfd, struct filename *from, int newdfd,
4896 struct filename *to, unsigned int flags)
4898 struct renamedata rd;
4899 struct dentry *old_dentry, *new_dentry;
4900 struct dentry *trap;
4901 struct path old_path, new_path;
4902 struct qstr old_last, new_last;
4903 int old_type, new_type;
4904 struct inode *delegated_inode = NULL;
4905 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4906 bool should_retry = false;
4907 int error = -EINVAL;
4909 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4912 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4913 (flags & RENAME_EXCHANGE))
4916 if (flags & RENAME_EXCHANGE)
4920 error = filename_parentat(olddfd, from, lookup_flags, &old_path,
4921 &old_last, &old_type);
4925 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
4931 if (old_path.mnt != new_path.mnt)
4935 if (old_type != LAST_NORM)
4938 if (flags & RENAME_NOREPLACE)
4940 if (new_type != LAST_NORM)
4943 error = mnt_want_write(old_path.mnt);
4948 trap = lock_rename(new_path.dentry, old_path.dentry);
4950 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
4952 error = PTR_ERR(old_dentry);
4953 if (IS_ERR(old_dentry))
4955 /* source must exist */
4957 if (d_is_negative(old_dentry))
4959 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
4960 lookup_flags | target_flags);
4961 error = PTR_ERR(new_dentry);
4962 if (IS_ERR(new_dentry))
4965 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4967 if (flags & RENAME_EXCHANGE) {
4969 if (d_is_negative(new_dentry))
4972 if (!d_is_dir(new_dentry)) {
4974 if (new_last.name[new_last.len])
4978 /* unless the source is a directory trailing slashes give -ENOTDIR */
4979 if (!d_is_dir(old_dentry)) {
4981 if (old_last.name[old_last.len])
4983 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4986 /* source should not be ancestor of target */
4988 if (old_dentry == trap)
4990 /* target should not be an ancestor of source */
4991 if (!(flags & RENAME_EXCHANGE))
4993 if (new_dentry == trap)
4996 error = security_path_rename(&old_path, old_dentry,
4997 &new_path, new_dentry, flags);
5001 rd.old_dir = old_path.dentry->d_inode;
5002 rd.old_dentry = old_dentry;
5003 rd.old_mnt_idmap = mnt_idmap(old_path.mnt);
5004 rd.new_dir = new_path.dentry->d_inode;
5005 rd.new_dentry = new_dentry;
5006 rd.new_mnt_idmap = mnt_idmap(new_path.mnt);
5007 rd.delegated_inode = &delegated_inode;
5009 error = vfs_rename(&rd);
5015 unlock_rename(new_path.dentry, old_path.dentry);
5016 if (delegated_inode) {
5017 error = break_deleg_wait(&delegated_inode);
5021 mnt_drop_write(old_path.mnt);
5023 if (retry_estale(error, lookup_flags))
5024 should_retry = true;
5025 path_put(&new_path);
5027 path_put(&old_path);
5029 should_retry = false;
5030 lookup_flags |= LOOKUP_REVAL;
5039 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5040 int, newdfd, const char __user *, newname, unsigned int, flags)
5042 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5046 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5047 int, newdfd, const char __user *, newname)
5049 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5053 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5055 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5056 getname(newname), 0);
5059 int readlink_copy(char __user *buffer, int buflen, const char *link)
5061 int len = PTR_ERR(link);
5066 if (len > (unsigned) buflen)
5068 if (copy_to_user(buffer, link, len))
5075 * vfs_readlink - copy symlink body into userspace buffer
5076 * @dentry: dentry on which to get symbolic link
5077 * @buffer: user memory pointer
5078 * @buflen: size of buffer
5080 * Does not touch atime. That's up to the caller if necessary
5082 * Does not call security hook.
5084 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5086 struct inode *inode = d_inode(dentry);
5087 DEFINE_DELAYED_CALL(done);
5091 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5092 if (unlikely(inode->i_op->readlink))
5093 return inode->i_op->readlink(dentry, buffer, buflen);
5095 if (!d_is_symlink(dentry))
5098 spin_lock(&inode->i_lock);
5099 inode->i_opflags |= IOP_DEFAULT_READLINK;
5100 spin_unlock(&inode->i_lock);
5103 link = READ_ONCE(inode->i_link);
5105 link = inode->i_op->get_link(dentry, inode, &done);
5107 return PTR_ERR(link);
5109 res = readlink_copy(buffer, buflen, link);
5110 do_delayed_call(&done);
5113 EXPORT_SYMBOL(vfs_readlink);
5116 * vfs_get_link - get symlink body
5117 * @dentry: dentry on which to get symbolic link
5118 * @done: caller needs to free returned data with this
5120 * Calls security hook and i_op->get_link() on the supplied inode.
5122 * It does not touch atime. That's up to the caller if necessary.
5124 * Does not work on "special" symlinks like /proc/$$/fd/N
5126 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5128 const char *res = ERR_PTR(-EINVAL);
5129 struct inode *inode = d_inode(dentry);
5131 if (d_is_symlink(dentry)) {
5132 res = ERR_PTR(security_inode_readlink(dentry));
5134 res = inode->i_op->get_link(dentry, inode, done);
5138 EXPORT_SYMBOL(vfs_get_link);
5140 /* get the link contents into pagecache */
5141 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5142 struct delayed_call *callback)
5146 struct address_space *mapping = inode->i_mapping;
5149 page = find_get_page(mapping, 0);
5151 return ERR_PTR(-ECHILD);
5152 if (!PageUptodate(page)) {
5154 return ERR_PTR(-ECHILD);
5157 page = read_mapping_page(mapping, 0, NULL);
5161 set_delayed_call(callback, page_put_link, page);
5162 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5163 kaddr = page_address(page);
5164 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5168 EXPORT_SYMBOL(page_get_link);
5170 void page_put_link(void *arg)
5174 EXPORT_SYMBOL(page_put_link);
5176 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5178 DEFINE_DELAYED_CALL(done);
5179 int res = readlink_copy(buffer, buflen,
5180 page_get_link(dentry, d_inode(dentry),
5182 do_delayed_call(&done);
5185 EXPORT_SYMBOL(page_readlink);
5187 int page_symlink(struct inode *inode, const char *symname, int len)
5189 struct address_space *mapping = inode->i_mapping;
5190 const struct address_space_operations *aops = mapping->a_ops;
5191 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5193 void *fsdata = NULL;
5199 flags = memalloc_nofs_save();
5200 err = aops->write_begin(NULL, mapping, 0, len-1, &page, &fsdata);
5202 memalloc_nofs_restore(flags);
5206 memcpy(page_address(page), symname, len-1);
5208 err = aops->write_end(NULL, mapping, 0, len-1, len-1,
5215 mark_inode_dirty(inode);
5220 EXPORT_SYMBOL(page_symlink);
5222 const struct inode_operations page_symlink_inode_operations = {
5223 .get_link = page_get_link,
5225 EXPORT_SYMBOL(page_symlink_inode_operations);