4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * Some corrections by tytso.
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <linux/init_task.h>
40 #include <linux/uaccess.h>
45 /* [Feb-1997 T. Schoebel-Theuer]
46 * Fundamental changes in the pathname lookup mechanisms (namei)
47 * were necessary because of omirr. The reason is that omirr needs
48 * to know the _real_ pathname, not the user-supplied one, in case
49 * of symlinks (and also when transname replacements occur).
51 * The new code replaces the old recursive symlink resolution with
52 * an iterative one (in case of non-nested symlink chains). It does
53 * this with calls to <fs>_follow_link().
54 * As a side effect, dir_namei(), _namei() and follow_link() are now
55 * replaced with a single function lookup_dentry() that can handle all
56 * the special cases of the former code.
58 * With the new dcache, the pathname is stored at each inode, at least as
59 * long as the refcount of the inode is positive. As a side effect, the
60 * size of the dcache depends on the inode cache and thus is dynamic.
62 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
63 * resolution to correspond with current state of the code.
65 * Note that the symlink resolution is not *completely* iterative.
66 * There is still a significant amount of tail- and mid- recursion in
67 * the algorithm. Also, note that <fs>_readlink() is not used in
68 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
69 * may return different results than <fs>_follow_link(). Many virtual
70 * filesystems (including /proc) exhibit this behavior.
73 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
74 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
75 * and the name already exists in form of a symlink, try to create the new
76 * name indicated by the symlink. The old code always complained that the
77 * name already exists, due to not following the symlink even if its target
78 * is nonexistent. The new semantics affects also mknod() and link() when
79 * the name is a symlink pointing to a non-existent name.
81 * I don't know which semantics is the right one, since I have no access
82 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
83 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
84 * "old" one. Personally, I think the new semantics is much more logical.
85 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
86 * file does succeed in both HP-UX and SunOs, but not in Solaris
87 * and in the old Linux semantics.
90 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
91 * semantics. See the comments in "open_namei" and "do_link" below.
93 * [10-Sep-98 Alan Modra] Another symlink change.
96 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
97 * inside the path - always follow.
98 * in the last component in creation/removal/renaming - never follow.
99 * if LOOKUP_FOLLOW passed - follow.
100 * if the pathname has trailing slashes - follow.
101 * otherwise - don't follow.
102 * (applied in that order).
104 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
105 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
106 * During the 2.4 we need to fix the userland stuff depending on it -
107 * hopefully we will be able to get rid of that wart in 2.5. So far only
108 * XEmacs seems to be relying on it...
111 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
112 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
113 * any extra contention...
116 /* In order to reduce some races, while at the same time doing additional
117 * checking and hopefully speeding things up, we copy filenames to the
118 * kernel data space before using them..
120 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
121 * PATH_MAX includes the nul terminator --RR.
124 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
127 getname_flags(const char __user *filename, int flags, int *empty)
129 struct filename *result;
133 result = audit_reusename(filename);
137 result = __getname();
138 if (unlikely(!result))
139 return ERR_PTR(-ENOMEM);
142 * First, try to embed the struct filename inside the names_cache
145 kname = (char *)result->iname;
146 result->name = kname;
148 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
149 if (unlikely(len < 0)) {
155 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
156 * separate struct filename so we can dedicate the entire
157 * names_cache allocation for the pathname, and re-do the copy from
160 if (unlikely(len == EMBEDDED_NAME_MAX)) {
161 const size_t size = offsetof(struct filename, iname[1]);
162 kname = (char *)result;
165 * size is chosen that way we to guarantee that
166 * result->iname[0] is within the same object and that
167 * kname can't be equal to result->iname, no matter what.
169 result = kzalloc(size, GFP_KERNEL);
170 if (unlikely(!result)) {
172 return ERR_PTR(-ENOMEM);
174 result->name = kname;
175 len = strncpy_from_user(kname, filename, PATH_MAX);
176 if (unlikely(len < 0)) {
181 if (unlikely(len == PATH_MAX)) {
184 return ERR_PTR(-ENAMETOOLONG);
189 /* The empty path is special. */
190 if (unlikely(!len)) {
193 if (!(flags & LOOKUP_EMPTY)) {
195 return ERR_PTR(-ENOENT);
199 result->uptr = filename;
200 result->aname = NULL;
201 audit_getname(result);
206 getname(const char __user * filename)
208 return getname_flags(filename, 0, NULL);
212 getname_kernel(const char * filename)
214 struct filename *result;
215 int len = strlen(filename) + 1;
217 result = __getname();
218 if (unlikely(!result))
219 return ERR_PTR(-ENOMEM);
221 if (len <= EMBEDDED_NAME_MAX) {
222 result->name = (char *)result->iname;
223 } else if (len <= PATH_MAX) {
224 struct filename *tmp;
226 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
227 if (unlikely(!tmp)) {
229 return ERR_PTR(-ENOMEM);
231 tmp->name = (char *)result;
235 return ERR_PTR(-ENAMETOOLONG);
237 memcpy((char *)result->name, filename, len);
239 result->aname = NULL;
241 audit_getname(result);
246 void putname(struct filename *name)
248 BUG_ON(name->refcnt <= 0);
250 if (--name->refcnt > 0)
253 if (name->name != name->iname) {
254 __putname(name->name);
260 static int check_acl(struct inode *inode, int mask)
262 #ifdef CONFIG_FS_POSIX_ACL
263 struct posix_acl *acl;
265 if (mask & MAY_NOT_BLOCK) {
266 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 /* no ->get_acl() calls in RCU mode... */
270 if (is_uncached_acl(acl))
272 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
275 acl = get_acl(inode, ACL_TYPE_ACCESS);
279 int error = posix_acl_permission(inode, acl, mask);
280 posix_acl_release(acl);
289 * This does the basic permission checking
291 static int acl_permission_check(struct inode *inode, int mask)
293 unsigned int mode = inode->i_mode;
295 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
298 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
299 int error = check_acl(inode, mask);
300 if (error != -EAGAIN)
304 if (in_group_p(inode->i_gid))
309 * If the DACs are ok we don't need any capability check.
311 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
317 * generic_permission - check for access rights on a Posix-like filesystem
318 * @inode: inode to check access rights for
319 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
321 * Used to check for read/write/execute permissions on a file.
322 * We use "fsuid" for this, letting us set arbitrary permissions
323 * for filesystem access without changing the "normal" uids which
324 * are used for other things.
326 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
327 * request cannot be satisfied (eg. requires blocking or too much complexity).
328 * It would then be called again in ref-walk mode.
330 int generic_permission(struct inode *inode, int mask)
335 * Do the basic permission checks.
337 ret = acl_permission_check(inode, mask);
341 if (S_ISDIR(inode->i_mode)) {
342 /* DACs are overridable for directories */
343 if (!(mask & MAY_WRITE))
344 if (capable_wrt_inode_uidgid(inode,
345 CAP_DAC_READ_SEARCH))
347 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
353 * Searching includes executable on directories, else just read.
355 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
356 if (mask == MAY_READ)
357 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
360 * Read/write DACs are always overridable.
361 * Executable DACs are overridable when there is
362 * at least one exec bit set.
364 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
365 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
370 EXPORT_SYMBOL(generic_permission);
373 * We _really_ want to just do "generic_permission()" without
374 * even looking at the inode->i_op values. So we keep a cache
375 * flag in inode->i_opflags, that says "this has not special
376 * permission function, use the fast case".
378 static inline int do_inode_permission(struct inode *inode, int mask)
380 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
381 if (likely(inode->i_op->permission))
382 return inode->i_op->permission(inode, mask);
384 /* This gets set once for the inode lifetime */
385 spin_lock(&inode->i_lock);
386 inode->i_opflags |= IOP_FASTPERM;
387 spin_unlock(&inode->i_lock);
389 return generic_permission(inode, mask);
393 * __inode_permission - Check for access rights to a given inode
394 * @inode: Inode to check permission on
395 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
397 * Check for read/write/execute permissions on an inode.
399 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
401 * This does not check for a read-only file system. You probably want
402 * inode_permission().
404 int __inode_permission(struct inode *inode, int mask)
408 if (unlikely(mask & MAY_WRITE)) {
410 * Nobody gets write access to an immutable file.
412 if (IS_IMMUTABLE(inode))
416 * Updating mtime will likely cause i_uid and i_gid to be
417 * written back improperly if their true value is unknown
420 if (HAS_UNMAPPED_ID(inode))
424 retval = do_inode_permission(inode, mask);
428 retval = devcgroup_inode_permission(inode, mask);
432 return security_inode_permission(inode, mask);
434 EXPORT_SYMBOL(__inode_permission);
437 * sb_permission - Check superblock-level permissions
438 * @sb: Superblock of inode to check permission on
439 * @inode: Inode to check permission on
440 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
442 * Separate out file-system wide checks from inode-specific permission checks.
444 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
446 if (unlikely(mask & MAY_WRITE)) {
447 umode_t mode = inode->i_mode;
449 /* Nobody gets write access to a read-only fs. */
450 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
457 * inode_permission - Check for access rights to a given inode
458 * @inode: Inode to check permission on
459 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
461 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
462 * this, letting us set arbitrary permissions for filesystem access without
463 * changing the "normal" UIDs which are used for other things.
465 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
467 int inode_permission(struct inode *inode, int mask)
471 retval = sb_permission(inode->i_sb, inode, mask);
474 return __inode_permission(inode, mask);
476 EXPORT_SYMBOL(inode_permission);
479 * path_get - get a reference to a path
480 * @path: path to get the reference to
482 * Given a path increment the reference count to the dentry and the vfsmount.
484 void path_get(const struct path *path)
489 EXPORT_SYMBOL(path_get);
492 * path_put - put a reference to a path
493 * @path: path to put the reference to
495 * Given a path decrement the reference count to the dentry and the vfsmount.
497 void path_put(const struct path *path)
502 EXPORT_SYMBOL(path_put);
504 #define EMBEDDED_LEVELS 2
509 struct inode *inode; /* path.dentry.d_inode */
514 int total_link_count;
517 struct delayed_call done;
520 } *stack, internal[EMBEDDED_LEVELS];
521 struct filename *name;
522 struct nameidata *saved;
523 struct inode *link_inode;
526 } __randomize_layout;
528 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
530 struct nameidata *old = current->nameidata;
531 p->stack = p->internal;
534 p->total_link_count = old ? old->total_link_count : 0;
536 current->nameidata = p;
539 static void restore_nameidata(void)
541 struct nameidata *now = current->nameidata, *old = now->saved;
543 current->nameidata = old;
545 old->total_link_count = now->total_link_count;
546 if (now->stack != now->internal)
550 static int __nd_alloc_stack(struct nameidata *nd)
554 if (nd->flags & LOOKUP_RCU) {
555 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
560 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
565 memcpy(p, nd->internal, sizeof(nd->internal));
571 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
572 * @path: nameidate to verify
574 * Rename can sometimes move a file or directory outside of a bind
575 * mount, path_connected allows those cases to be detected.
577 static bool path_connected(const struct path *path)
579 struct vfsmount *mnt = path->mnt;
581 /* Only bind mounts can have disconnected paths */
582 if (mnt->mnt_root == mnt->mnt_sb->s_root)
585 return is_subdir(path->dentry, mnt->mnt_root);
588 static inline int nd_alloc_stack(struct nameidata *nd)
590 if (likely(nd->depth != EMBEDDED_LEVELS))
592 if (likely(nd->stack != nd->internal))
594 return __nd_alloc_stack(nd);
597 static void drop_links(struct nameidata *nd)
601 struct saved *last = nd->stack + i;
602 do_delayed_call(&last->done);
603 clear_delayed_call(&last->done);
607 static void terminate_walk(struct nameidata *nd)
610 if (!(nd->flags & LOOKUP_RCU)) {
613 for (i = 0; i < nd->depth; i++)
614 path_put(&nd->stack[i].link);
615 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
620 nd->flags &= ~LOOKUP_RCU;
621 if (!(nd->flags & LOOKUP_ROOT))
628 /* path_put is needed afterwards regardless of success or failure */
629 static bool legitimize_path(struct nameidata *nd,
630 struct path *path, unsigned seq)
632 int res = __legitimize_mnt(path->mnt, nd->m_seq);
639 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
643 return !read_seqcount_retry(&path->dentry->d_seq, seq);
646 static bool legitimize_links(struct nameidata *nd)
649 for (i = 0; i < nd->depth; i++) {
650 struct saved *last = nd->stack + i;
651 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
661 * Path walking has 2 modes, rcu-walk and ref-walk (see
662 * Documentation/filesystems/path-lookup.txt). In situations when we can't
663 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
664 * normal reference counts on dentries and vfsmounts to transition to ref-walk
665 * mode. Refcounts are grabbed at the last known good point before rcu-walk
666 * got stuck, so ref-walk may continue from there. If this is not successful
667 * (eg. a seqcount has changed), then failure is returned and it's up to caller
668 * to restart the path walk from the beginning in ref-walk mode.
672 * unlazy_walk - try to switch to ref-walk mode.
673 * @nd: nameidata pathwalk data
674 * Returns: 0 on success, -ECHILD on failure
676 * unlazy_walk attempts to legitimize the current nd->path and nd->root
678 * Must be called from rcu-walk context.
679 * Nothing should touch nameidata between unlazy_walk() failure and
682 static int unlazy_walk(struct nameidata *nd)
684 struct dentry *parent = nd->path.dentry;
686 BUG_ON(!(nd->flags & LOOKUP_RCU));
688 nd->flags &= ~LOOKUP_RCU;
689 if (unlikely(!legitimize_links(nd)))
691 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
693 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
694 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
698 BUG_ON(nd->inode != parent->d_inode);
703 nd->path.dentry = NULL;
705 if (!(nd->flags & LOOKUP_ROOT))
713 * unlazy_child - try to switch to ref-walk mode.
714 * @nd: nameidata pathwalk data
715 * @dentry: child of nd->path.dentry
716 * @seq: seq number to check dentry against
717 * Returns: 0 on success, -ECHILD on failure
719 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
720 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
721 * @nd. Must be called from rcu-walk context.
722 * Nothing should touch nameidata between unlazy_child() failure and
725 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
727 BUG_ON(!(nd->flags & LOOKUP_RCU));
729 nd->flags &= ~LOOKUP_RCU;
730 if (unlikely(!legitimize_links(nd)))
732 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
734 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
738 * We need to move both the parent and the dentry from the RCU domain
739 * to be properly refcounted. And the sequence number in the dentry
740 * validates *both* dentry counters, since we checked the sequence
741 * number of the parent after we got the child sequence number. So we
742 * know the parent must still be valid if the child sequence number is
744 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
746 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
752 * Sequence counts matched. Now make sure that the root is
753 * still valid and get it if required.
755 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
756 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
769 nd->path.dentry = NULL;
773 if (!(nd->flags & LOOKUP_ROOT))
778 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
780 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
781 return dentry->d_op->d_revalidate(dentry, flags);
787 * complete_walk - successful completion of path walk
788 * @nd: pointer nameidata
790 * If we had been in RCU mode, drop out of it and legitimize nd->path.
791 * Revalidate the final result, unless we'd already done that during
792 * the path walk or the filesystem doesn't ask for it. Return 0 on
793 * success, -error on failure. In case of failure caller does not
794 * need to drop nd->path.
796 static int complete_walk(struct nameidata *nd)
798 struct dentry *dentry = nd->path.dentry;
801 if (nd->flags & LOOKUP_RCU) {
802 if (!(nd->flags & LOOKUP_ROOT))
804 if (unlikely(unlazy_walk(nd)))
808 if (likely(!(nd->flags & LOOKUP_JUMPED)))
811 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
814 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
824 static void set_root(struct nameidata *nd)
826 struct fs_struct *fs = current->fs;
828 if (nd->flags & LOOKUP_RCU) {
832 seq = read_seqcount_begin(&fs->seq);
834 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
835 } while (read_seqcount_retry(&fs->seq, seq));
837 get_fs_root(fs, &nd->root);
841 static void path_put_conditional(struct path *path, struct nameidata *nd)
844 if (path->mnt != nd->path.mnt)
848 static inline void path_to_nameidata(const struct path *path,
849 struct nameidata *nd)
851 if (!(nd->flags & LOOKUP_RCU)) {
852 dput(nd->path.dentry);
853 if (nd->path.mnt != path->mnt)
854 mntput(nd->path.mnt);
856 nd->path.mnt = path->mnt;
857 nd->path.dentry = path->dentry;
860 static int nd_jump_root(struct nameidata *nd)
862 if (nd->flags & LOOKUP_RCU) {
866 nd->inode = d->d_inode;
867 nd->seq = nd->root_seq;
868 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
874 nd->inode = nd->path.dentry->d_inode;
876 nd->flags |= LOOKUP_JUMPED;
881 * Helper to directly jump to a known parsed path from ->get_link,
882 * caller must have taken a reference to path beforehand.
884 void nd_jump_link(struct path *path)
886 struct nameidata *nd = current->nameidata;
890 nd->inode = nd->path.dentry->d_inode;
891 nd->flags |= LOOKUP_JUMPED;
894 static inline void put_link(struct nameidata *nd)
896 struct saved *last = nd->stack + --nd->depth;
897 do_delayed_call(&last->done);
898 if (!(nd->flags & LOOKUP_RCU))
899 path_put(&last->link);
902 int sysctl_protected_symlinks __read_mostly = 0;
903 int sysctl_protected_hardlinks __read_mostly = 0;
906 * may_follow_link - Check symlink following for unsafe situations
907 * @nd: nameidata pathwalk data
909 * In the case of the sysctl_protected_symlinks sysctl being enabled,
910 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
911 * in a sticky world-writable directory. This is to protect privileged
912 * processes from failing races against path names that may change out
913 * from under them by way of other users creating malicious symlinks.
914 * It will permit symlinks to be followed only when outside a sticky
915 * world-writable directory, or when the uid of the symlink and follower
916 * match, or when the directory owner matches the symlink's owner.
918 * Returns 0 if following the symlink is allowed, -ve on error.
920 static inline int may_follow_link(struct nameidata *nd)
922 const struct inode *inode;
923 const struct inode *parent;
926 if (!sysctl_protected_symlinks)
929 /* Allowed if owner and follower match. */
930 inode = nd->link_inode;
931 if (uid_eq(current_cred()->fsuid, inode->i_uid))
934 /* Allowed if parent directory not sticky and world-writable. */
936 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
939 /* Allowed if parent directory and link owner match. */
940 puid = parent->i_uid;
941 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
944 if (nd->flags & LOOKUP_RCU)
947 audit_log_link_denied("follow_link", &nd->stack[0].link);
952 * safe_hardlink_source - Check for safe hardlink conditions
953 * @inode: the source inode to hardlink from
955 * Return false if at least one of the following conditions:
956 * - inode is not a regular file
958 * - inode is setgid and group-exec
959 * - access failure for read and write
961 * Otherwise returns true.
963 static bool safe_hardlink_source(struct inode *inode)
965 umode_t mode = inode->i_mode;
967 /* Special files should not get pinned to the filesystem. */
971 /* Setuid files should not get pinned to the filesystem. */
975 /* Executable setgid files should not get pinned to the filesystem. */
976 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
979 /* Hardlinking to unreadable or unwritable sources is dangerous. */
980 if (inode_permission(inode, MAY_READ | MAY_WRITE))
987 * may_linkat - Check permissions for creating a hardlink
988 * @link: the source to hardlink from
990 * Block hardlink when all of:
991 * - sysctl_protected_hardlinks enabled
992 * - fsuid does not match inode
993 * - hardlink source is unsafe (see safe_hardlink_source() above)
994 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
996 * Returns 0 if successful, -ve on error.
998 static int may_linkat(struct path *link)
1000 struct inode *inode;
1002 if (!sysctl_protected_hardlinks)
1005 inode = link->dentry->d_inode;
1007 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1008 * otherwise, it must be a safe source.
1010 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1013 audit_log_link_denied("linkat", link);
1017 static __always_inline
1018 const char *get_link(struct nameidata *nd)
1020 struct saved *last = nd->stack + nd->depth - 1;
1021 struct dentry *dentry = last->link.dentry;
1022 struct inode *inode = nd->link_inode;
1026 if (!(nd->flags & LOOKUP_RCU)) {
1027 touch_atime(&last->link);
1029 } else if (atime_needs_update_rcu(&last->link, inode)) {
1030 if (unlikely(unlazy_walk(nd)))
1031 return ERR_PTR(-ECHILD);
1032 touch_atime(&last->link);
1035 error = security_inode_follow_link(dentry, inode,
1036 nd->flags & LOOKUP_RCU);
1037 if (unlikely(error))
1038 return ERR_PTR(error);
1040 nd->last_type = LAST_BIND;
1041 res = inode->i_link;
1043 const char * (*get)(struct dentry *, struct inode *,
1044 struct delayed_call *);
1045 get = inode->i_op->get_link;
1046 if (nd->flags & LOOKUP_RCU) {
1047 res = get(NULL, inode, &last->done);
1048 if (res == ERR_PTR(-ECHILD)) {
1049 if (unlikely(unlazy_walk(nd)))
1050 return ERR_PTR(-ECHILD);
1051 res = get(dentry, inode, &last->done);
1054 res = get(dentry, inode, &last->done);
1056 if (IS_ERR_OR_NULL(res))
1062 if (unlikely(nd_jump_root(nd)))
1063 return ERR_PTR(-ECHILD);
1064 while (unlikely(*++res == '/'))
1073 * follow_up - Find the mountpoint of path's vfsmount
1075 * Given a path, find the mountpoint of its source file system.
1076 * Replace @path with the path of the mountpoint in the parent mount.
1079 * Return 1 if we went up a level and 0 if we were already at the
1082 int follow_up(struct path *path)
1084 struct mount *mnt = real_mount(path->mnt);
1085 struct mount *parent;
1086 struct dentry *mountpoint;
1088 read_seqlock_excl(&mount_lock);
1089 parent = mnt->mnt_parent;
1090 if (parent == mnt) {
1091 read_sequnlock_excl(&mount_lock);
1094 mntget(&parent->mnt);
1095 mountpoint = dget(mnt->mnt_mountpoint);
1096 read_sequnlock_excl(&mount_lock);
1098 path->dentry = mountpoint;
1100 path->mnt = &parent->mnt;
1103 EXPORT_SYMBOL(follow_up);
1106 * Perform an automount
1107 * - return -EISDIR to tell follow_managed() to stop and return the path we
1110 static int follow_automount(struct path *path, struct nameidata *nd,
1113 struct vfsmount *mnt;
1116 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1119 /* We don't want to mount if someone's just doing a stat -
1120 * unless they're stat'ing a directory and appended a '/' to
1123 * We do, however, want to mount if someone wants to open or
1124 * create a file of any type under the mountpoint, wants to
1125 * traverse through the mountpoint or wants to open the
1126 * mounted directory. Also, autofs may mark negative dentries
1127 * as being automount points. These will need the attentions
1128 * of the daemon to instantiate them before they can be used.
1130 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1131 LOOKUP_OPEN | LOOKUP_CREATE |
1132 LOOKUP_AUTOMOUNT))) {
1133 /* Positive dentry that isn't meant to trigger an
1134 * automount, EISDIR will allow it to be used,
1135 * otherwise there's no mount here "now" so return
1138 if (path->dentry->d_inode)
1144 if (path->dentry->d_sb->s_user_ns != &init_user_ns)
1147 nd->total_link_count++;
1148 if (nd->total_link_count >= 40)
1151 mnt = path->dentry->d_op->d_automount(path);
1154 * The filesystem is allowed to return -EISDIR here to indicate
1155 * it doesn't want to automount. For instance, autofs would do
1156 * this so that its userspace daemon can mount on this dentry.
1158 * However, we can only permit this if it's a terminal point in
1159 * the path being looked up; if it wasn't then the remainder of
1160 * the path is inaccessible and we should say so.
1162 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1164 return PTR_ERR(mnt);
1167 if (!mnt) /* mount collision */
1170 if (!*need_mntput) {
1171 /* lock_mount() may release path->mnt on error */
1173 *need_mntput = true;
1175 err = finish_automount(mnt, path);
1179 /* Someone else made a mount here whilst we were busy */
1184 path->dentry = dget(mnt->mnt_root);
1193 * Handle a dentry that is managed in some way.
1194 * - Flagged for transit management (autofs)
1195 * - Flagged as mountpoint
1196 * - Flagged as automount point
1198 * This may only be called in refwalk mode.
1200 * Serialization is taken care of in namespace.c
1202 static int follow_managed(struct path *path, struct nameidata *nd)
1204 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1206 bool need_mntput = false;
1209 /* Given that we're not holding a lock here, we retain the value in a
1210 * local variable for each dentry as we look at it so that we don't see
1211 * the components of that value change under us */
1212 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1213 managed &= DCACHE_MANAGED_DENTRY,
1214 unlikely(managed != 0)) {
1215 /* Allow the filesystem to manage the transit without i_mutex
1217 if (managed & DCACHE_MANAGE_TRANSIT) {
1218 BUG_ON(!path->dentry->d_op);
1219 BUG_ON(!path->dentry->d_op->d_manage);
1220 ret = path->dentry->d_op->d_manage(path, false);
1225 /* Transit to a mounted filesystem. */
1226 if (managed & DCACHE_MOUNTED) {
1227 struct vfsmount *mounted = lookup_mnt(path);
1232 path->mnt = mounted;
1233 path->dentry = dget(mounted->mnt_root);
1238 /* Something is mounted on this dentry in another
1239 * namespace and/or whatever was mounted there in this
1240 * namespace got unmounted before lookup_mnt() could
1244 /* Handle an automount point */
1245 if (managed & DCACHE_NEED_AUTOMOUNT) {
1246 ret = follow_automount(path, nd, &need_mntput);
1252 /* We didn't change the current path point */
1256 if (need_mntput && path->mnt == mnt)
1258 if (ret == -EISDIR || !ret)
1261 nd->flags |= LOOKUP_JUMPED;
1262 if (unlikely(ret < 0))
1263 path_put_conditional(path, nd);
1267 int follow_down_one(struct path *path)
1269 struct vfsmount *mounted;
1271 mounted = lookup_mnt(path);
1275 path->mnt = mounted;
1276 path->dentry = dget(mounted->mnt_root);
1281 EXPORT_SYMBOL(follow_down_one);
1283 static inline int managed_dentry_rcu(const struct path *path)
1285 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1286 path->dentry->d_op->d_manage(path, true) : 0;
1290 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1291 * we meet a managed dentry that would need blocking.
1293 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1294 struct inode **inode, unsigned *seqp)
1297 struct mount *mounted;
1299 * Don't forget we might have a non-mountpoint managed dentry
1300 * that wants to block transit.
1302 switch (managed_dentry_rcu(path)) {
1312 if (!d_mountpoint(path->dentry))
1313 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1315 mounted = __lookup_mnt(path->mnt, path->dentry);
1318 path->mnt = &mounted->mnt;
1319 path->dentry = mounted->mnt.mnt_root;
1320 nd->flags |= LOOKUP_JUMPED;
1321 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1323 * Update the inode too. We don't need to re-check the
1324 * dentry sequence number here after this d_inode read,
1325 * because a mount-point is always pinned.
1327 *inode = path->dentry->d_inode;
1329 return !read_seqretry(&mount_lock, nd->m_seq) &&
1330 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1333 static int follow_dotdot_rcu(struct nameidata *nd)
1335 struct inode *inode = nd->inode;
1338 if (path_equal(&nd->path, &nd->root))
1340 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1341 struct dentry *old = nd->path.dentry;
1342 struct dentry *parent = old->d_parent;
1345 inode = parent->d_inode;
1346 seq = read_seqcount_begin(&parent->d_seq);
1347 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1349 nd->path.dentry = parent;
1351 if (unlikely(!path_connected(&nd->path)))
1355 struct mount *mnt = real_mount(nd->path.mnt);
1356 struct mount *mparent = mnt->mnt_parent;
1357 struct dentry *mountpoint = mnt->mnt_mountpoint;
1358 struct inode *inode2 = mountpoint->d_inode;
1359 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1360 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1362 if (&mparent->mnt == nd->path.mnt)
1364 /* we know that mountpoint was pinned */
1365 nd->path.dentry = mountpoint;
1366 nd->path.mnt = &mparent->mnt;
1371 while (unlikely(d_mountpoint(nd->path.dentry))) {
1372 struct mount *mounted;
1373 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1374 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1378 nd->path.mnt = &mounted->mnt;
1379 nd->path.dentry = mounted->mnt.mnt_root;
1380 inode = nd->path.dentry->d_inode;
1381 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1388 * Follow down to the covering mount currently visible to userspace. At each
1389 * point, the filesystem owning that dentry may be queried as to whether the
1390 * caller is permitted to proceed or not.
1392 int follow_down(struct path *path)
1397 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1398 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1399 /* Allow the filesystem to manage the transit without i_mutex
1402 * We indicate to the filesystem if someone is trying to mount
1403 * something here. This gives autofs the chance to deny anyone
1404 * other than its daemon the right to mount on its
1407 * The filesystem may sleep at this point.
1409 if (managed & DCACHE_MANAGE_TRANSIT) {
1410 BUG_ON(!path->dentry->d_op);
1411 BUG_ON(!path->dentry->d_op->d_manage);
1412 ret = path->dentry->d_op->d_manage(path, false);
1414 return ret == -EISDIR ? 0 : ret;
1417 /* Transit to a mounted filesystem. */
1418 if (managed & DCACHE_MOUNTED) {
1419 struct vfsmount *mounted = lookup_mnt(path);
1424 path->mnt = mounted;
1425 path->dentry = dget(mounted->mnt_root);
1429 /* Don't handle automount points here */
1434 EXPORT_SYMBOL(follow_down);
1437 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1439 static void follow_mount(struct path *path)
1441 while (d_mountpoint(path->dentry)) {
1442 struct vfsmount *mounted = lookup_mnt(path);
1447 path->mnt = mounted;
1448 path->dentry = dget(mounted->mnt_root);
1452 static int path_parent_directory(struct path *path)
1454 struct dentry *old = path->dentry;
1455 /* rare case of legitimate dget_parent()... */
1456 path->dentry = dget_parent(path->dentry);
1458 if (unlikely(!path_connected(path)))
1463 static int follow_dotdot(struct nameidata *nd)
1466 if (nd->path.dentry == nd->root.dentry &&
1467 nd->path.mnt == nd->root.mnt) {
1470 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1471 int ret = path_parent_directory(&nd->path);
1476 if (!follow_up(&nd->path))
1479 follow_mount(&nd->path);
1480 nd->inode = nd->path.dentry->d_inode;
1485 * This looks up the name in dcache and possibly revalidates the found dentry.
1486 * NULL is returned if the dentry does not exist in the cache.
1488 static struct dentry *lookup_dcache(const struct qstr *name,
1492 struct dentry *dentry = d_lookup(dir, name);
1494 int error = d_revalidate(dentry, flags);
1495 if (unlikely(error <= 0)) {
1497 d_invalidate(dentry);
1499 return ERR_PTR(error);
1506 * Call i_op->lookup on the dentry. The dentry must be negative and
1509 * dir->d_inode->i_mutex must be held
1511 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1516 /* Don't create child dentry for a dead directory. */
1517 if (unlikely(IS_DEADDIR(dir))) {
1519 return ERR_PTR(-ENOENT);
1522 old = dir->i_op->lookup(dir, dentry, flags);
1523 if (unlikely(old)) {
1530 static struct dentry *__lookup_hash(const struct qstr *name,
1531 struct dentry *base, unsigned int flags)
1533 struct dentry *dentry = lookup_dcache(name, base, flags);
1538 dentry = d_alloc(base, name);
1539 if (unlikely(!dentry))
1540 return ERR_PTR(-ENOMEM);
1542 return lookup_real(base->d_inode, dentry, flags);
1545 static int lookup_fast(struct nameidata *nd,
1546 struct path *path, struct inode **inode,
1549 struct vfsmount *mnt = nd->path.mnt;
1550 struct dentry *dentry, *parent = nd->path.dentry;
1555 * Rename seqlock is not required here because in the off chance
1556 * of a false negative due to a concurrent rename, the caller is
1557 * going to fall back to non-racy lookup.
1559 if (nd->flags & LOOKUP_RCU) {
1562 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1563 if (unlikely(!dentry)) {
1564 if (unlazy_walk(nd))
1570 * This sequence count validates that the inode matches
1571 * the dentry name information from lookup.
1573 *inode = d_backing_inode(dentry);
1574 negative = d_is_negative(dentry);
1575 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1579 * This sequence count validates that the parent had no
1580 * changes while we did the lookup of the dentry above.
1582 * The memory barrier in read_seqcount_begin of child is
1583 * enough, we can use __read_seqcount_retry here.
1585 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1589 status = d_revalidate(dentry, nd->flags);
1590 if (likely(status > 0)) {
1592 * Note: do negative dentry check after revalidation in
1593 * case that drops it.
1595 if (unlikely(negative))
1598 path->dentry = dentry;
1599 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1602 if (unlazy_child(nd, dentry, seq))
1604 if (unlikely(status == -ECHILD))
1605 /* we'd been told to redo it in non-rcu mode */
1606 status = d_revalidate(dentry, nd->flags);
1608 dentry = __d_lookup(parent, &nd->last);
1609 if (unlikely(!dentry))
1611 status = d_revalidate(dentry, nd->flags);
1613 if (unlikely(status <= 0)) {
1615 d_invalidate(dentry);
1619 if (unlikely(d_is_negative(dentry))) {
1625 path->dentry = dentry;
1626 err = follow_managed(path, nd);
1627 if (likely(err > 0))
1628 *inode = d_backing_inode(path->dentry);
1632 /* Fast lookup failed, do it the slow way */
1633 static struct dentry *lookup_slow(const struct qstr *name,
1637 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1638 struct inode *inode = dir->d_inode;
1639 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1641 inode_lock_shared(inode);
1642 /* Don't go there if it's already dead */
1643 if (unlikely(IS_DEADDIR(inode)))
1646 dentry = d_alloc_parallel(dir, name, &wq);
1649 if (unlikely(!d_in_lookup(dentry))) {
1650 if (!(flags & LOOKUP_NO_REVAL)) {
1651 int error = d_revalidate(dentry, flags);
1652 if (unlikely(error <= 0)) {
1654 d_invalidate(dentry);
1659 dentry = ERR_PTR(error);
1663 old = inode->i_op->lookup(inode, dentry, flags);
1664 d_lookup_done(dentry);
1665 if (unlikely(old)) {
1671 inode_unlock_shared(inode);
1675 static inline int may_lookup(struct nameidata *nd)
1677 if (nd->flags & LOOKUP_RCU) {
1678 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1681 if (unlazy_walk(nd))
1684 return inode_permission(nd->inode, MAY_EXEC);
1687 static inline int handle_dots(struct nameidata *nd, int type)
1689 if (type == LAST_DOTDOT) {
1692 if (nd->flags & LOOKUP_RCU) {
1693 return follow_dotdot_rcu(nd);
1695 return follow_dotdot(nd);
1700 static int pick_link(struct nameidata *nd, struct path *link,
1701 struct inode *inode, unsigned seq)
1705 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1706 path_to_nameidata(link, nd);
1709 if (!(nd->flags & LOOKUP_RCU)) {
1710 if (link->mnt == nd->path.mnt)
1713 error = nd_alloc_stack(nd);
1714 if (unlikely(error)) {
1715 if (error == -ECHILD) {
1716 if (unlikely(!legitimize_path(nd, link, seq))) {
1719 nd->flags &= ~LOOKUP_RCU;
1720 nd->path.mnt = NULL;
1721 nd->path.dentry = NULL;
1722 if (!(nd->flags & LOOKUP_ROOT))
1723 nd->root.mnt = NULL;
1725 } else if (likely(unlazy_walk(nd)) == 0)
1726 error = nd_alloc_stack(nd);
1734 last = nd->stack + nd->depth++;
1736 clear_delayed_call(&last->done);
1737 nd->link_inode = inode;
1742 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1745 * Do we need to follow links? We _really_ want to be able
1746 * to do this check without having to look at inode->i_op,
1747 * so we keep a cache of "no, this doesn't need follow_link"
1748 * for the common case.
1750 static inline int step_into(struct nameidata *nd, struct path *path,
1751 int flags, struct inode *inode, unsigned seq)
1753 if (!(flags & WALK_MORE) && nd->depth)
1755 if (likely(!d_is_symlink(path->dentry)) ||
1756 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1757 /* not a symlink or should not follow */
1758 path_to_nameidata(path, nd);
1763 /* make sure that d_is_symlink above matches inode */
1764 if (nd->flags & LOOKUP_RCU) {
1765 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1768 return pick_link(nd, path, inode, seq);
1771 static int walk_component(struct nameidata *nd, int flags)
1774 struct inode *inode;
1778 * "." and ".." are special - ".." especially so because it has
1779 * to be able to know about the current root directory and
1780 * parent relationships.
1782 if (unlikely(nd->last_type != LAST_NORM)) {
1783 err = handle_dots(nd, nd->last_type);
1784 if (!(flags & WALK_MORE) && nd->depth)
1788 err = lookup_fast(nd, &path, &inode, &seq);
1789 if (unlikely(err <= 0)) {
1792 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1794 if (IS_ERR(path.dentry))
1795 return PTR_ERR(path.dentry);
1797 path.mnt = nd->path.mnt;
1798 err = follow_managed(&path, nd);
1799 if (unlikely(err < 0))
1802 if (unlikely(d_is_negative(path.dentry))) {
1803 path_to_nameidata(&path, nd);
1807 seq = 0; /* we are already out of RCU mode */
1808 inode = d_backing_inode(path.dentry);
1811 return step_into(nd, &path, flags, inode, seq);
1815 * We can do the critical dentry name comparison and hashing
1816 * operations one word at a time, but we are limited to:
1818 * - Architectures with fast unaligned word accesses. We could
1819 * do a "get_unaligned()" if this helps and is sufficiently
1822 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1823 * do not trap on the (extremely unlikely) case of a page
1824 * crossing operation.
1826 * - Furthermore, we need an efficient 64-bit compile for the
1827 * 64-bit case in order to generate the "number of bytes in
1828 * the final mask". Again, that could be replaced with a
1829 * efficient population count instruction or similar.
1831 #ifdef CONFIG_DCACHE_WORD_ACCESS
1833 #include <asm/word-at-a-time.h>
1837 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1839 #elif defined(CONFIG_64BIT)
1841 * Register pressure in the mixing function is an issue, particularly
1842 * on 32-bit x86, but almost any function requires one state value and
1843 * one temporary. Instead, use a function designed for two state values
1844 * and no temporaries.
1846 * This function cannot create a collision in only two iterations, so
1847 * we have two iterations to achieve avalanche. In those two iterations,
1848 * we have six layers of mixing, which is enough to spread one bit's
1849 * influence out to 2^6 = 64 state bits.
1851 * Rotate constants are scored by considering either 64 one-bit input
1852 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1853 * probability of that delta causing a change to each of the 128 output
1854 * bits, using a sample of random initial states.
1856 * The Shannon entropy of the computed probabilities is then summed
1857 * to produce a score. Ideally, any input change has a 50% chance of
1858 * toggling any given output bit.
1860 * Mixing scores (in bits) for (12,45):
1861 * Input delta: 1-bit 2-bit
1862 * 1 round: 713.3 42542.6
1863 * 2 rounds: 2753.7 140389.8
1864 * 3 rounds: 5954.1 233458.2
1865 * 4 rounds: 7862.6 256672.2
1866 * Perfect: 8192 258048
1867 * (64*128) (64*63/2 * 128)
1869 #define HASH_MIX(x, y, a) \
1871 y ^= x, x = rol64(x,12),\
1872 x += y, y = rol64(y,45),\
1876 * Fold two longs into one 32-bit hash value. This must be fast, but
1877 * latency isn't quite as critical, as there is a fair bit of additional
1878 * work done before the hash value is used.
1880 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1882 y ^= x * GOLDEN_RATIO_64;
1883 y *= GOLDEN_RATIO_64;
1887 #else /* 32-bit case */
1890 * Mixing scores (in bits) for (7,20):
1891 * Input delta: 1-bit 2-bit
1892 * 1 round: 330.3 9201.6
1893 * 2 rounds: 1246.4 25475.4
1894 * 3 rounds: 1907.1 31295.1
1895 * 4 rounds: 2042.3 31718.6
1896 * Perfect: 2048 31744
1897 * (32*64) (32*31/2 * 64)
1899 #define HASH_MIX(x, y, a) \
1901 y ^= x, x = rol32(x, 7),\
1902 x += y, y = rol32(y,20),\
1905 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1907 /* Use arch-optimized multiply if one exists */
1908 return __hash_32(y ^ __hash_32(x));
1914 * Return the hash of a string of known length. This is carfully
1915 * designed to match hash_name(), which is the more critical function.
1916 * In particular, we must end by hashing a final word containing 0..7
1917 * payload bytes, to match the way that hash_name() iterates until it
1918 * finds the delimiter after the name.
1920 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1922 unsigned long a, x = 0, y = (unsigned long)salt;
1927 a = load_unaligned_zeropad(name);
1928 if (len < sizeof(unsigned long))
1931 name += sizeof(unsigned long);
1932 len -= sizeof(unsigned long);
1934 x ^= a & bytemask_from_count(len);
1936 return fold_hash(x, y);
1938 EXPORT_SYMBOL(full_name_hash);
1940 /* Return the "hash_len" (hash and length) of a null-terminated string */
1941 u64 hashlen_string(const void *salt, const char *name)
1943 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1944 unsigned long adata, mask, len;
1945 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1952 len += sizeof(unsigned long);
1954 a = load_unaligned_zeropad(name+len);
1955 } while (!has_zero(a, &adata, &constants));
1957 adata = prep_zero_mask(a, adata, &constants);
1958 mask = create_zero_mask(adata);
1959 x ^= a & zero_bytemask(mask);
1961 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1963 EXPORT_SYMBOL(hashlen_string);
1966 * Calculate the length and hash of the path component, and
1967 * return the "hash_len" as the result.
1969 static inline u64 hash_name(const void *salt, const char *name)
1971 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1972 unsigned long adata, bdata, mask, len;
1973 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1980 len += sizeof(unsigned long);
1982 a = load_unaligned_zeropad(name+len);
1983 b = a ^ REPEAT_BYTE('/');
1984 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1986 adata = prep_zero_mask(a, adata, &constants);
1987 bdata = prep_zero_mask(b, bdata, &constants);
1988 mask = create_zero_mask(adata | bdata);
1989 x ^= a & zero_bytemask(mask);
1991 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1994 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
1996 /* Return the hash of a string of known length */
1997 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1999 unsigned long hash = init_name_hash(salt);
2001 hash = partial_name_hash((unsigned char)*name++, hash);
2002 return end_name_hash(hash);
2004 EXPORT_SYMBOL(full_name_hash);
2006 /* Return the "hash_len" (hash and length) of a null-terminated string */
2007 u64 hashlen_string(const void *salt, const char *name)
2009 unsigned long hash = init_name_hash(salt);
2010 unsigned long len = 0, c;
2012 c = (unsigned char)*name;
2015 hash = partial_name_hash(c, hash);
2016 c = (unsigned char)name[len];
2018 return hashlen_create(end_name_hash(hash), len);
2020 EXPORT_SYMBOL(hashlen_string);
2023 * We know there's a real path component here of at least
2026 static inline u64 hash_name(const void *salt, const char *name)
2028 unsigned long hash = init_name_hash(salt);
2029 unsigned long len = 0, c;
2031 c = (unsigned char)*name;
2034 hash = partial_name_hash(c, hash);
2035 c = (unsigned char)name[len];
2036 } while (c && c != '/');
2037 return hashlen_create(end_name_hash(hash), len);
2044 * This is the basic name resolution function, turning a pathname into
2045 * the final dentry. We expect 'base' to be positive and a directory.
2047 * Returns 0 and nd will have valid dentry and mnt on success.
2048 * Returns error and drops reference to input namei data on failure.
2050 static int link_path_walk(const char *name, struct nameidata *nd)
2059 /* At this point we know we have a real path component. */
2064 err = may_lookup(nd);
2068 hash_len = hash_name(nd->path.dentry, name);
2071 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2073 if (name[1] == '.') {
2075 nd->flags |= LOOKUP_JUMPED;
2081 if (likely(type == LAST_NORM)) {
2082 struct dentry *parent = nd->path.dentry;
2083 nd->flags &= ~LOOKUP_JUMPED;
2084 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2085 struct qstr this = { { .hash_len = hash_len }, .name = name };
2086 err = parent->d_op->d_hash(parent, &this);
2089 hash_len = this.hash_len;
2094 nd->last.hash_len = hash_len;
2095 nd->last.name = name;
2096 nd->last_type = type;
2098 name += hashlen_len(hash_len);
2102 * If it wasn't NUL, we know it was '/'. Skip that
2103 * slash, and continue until no more slashes.
2107 } while (unlikely(*name == '/'));
2108 if (unlikely(!*name)) {
2110 /* pathname body, done */
2113 name = nd->stack[nd->depth - 1].name;
2114 /* trailing symlink, done */
2117 /* last component of nested symlink */
2118 err = walk_component(nd, WALK_FOLLOW);
2120 /* not the last component */
2121 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2127 const char *s = get_link(nd);
2136 nd->stack[nd->depth - 1].name = name;
2141 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2142 if (nd->flags & LOOKUP_RCU) {
2143 if (unlazy_walk(nd))
2151 static const char *path_init(struct nameidata *nd, unsigned flags)
2153 const char *s = nd->name->name;
2156 flags &= ~LOOKUP_RCU;
2158 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2159 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2161 if (flags & LOOKUP_ROOT) {
2162 struct dentry *root = nd->root.dentry;
2163 struct inode *inode = root->d_inode;
2164 if (*s && unlikely(!d_can_lookup(root)))
2165 return ERR_PTR(-ENOTDIR);
2166 nd->path = nd->root;
2168 if (flags & LOOKUP_RCU) {
2170 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2171 nd->root_seq = nd->seq;
2172 nd->m_seq = read_seqbegin(&mount_lock);
2174 path_get(&nd->path);
2179 nd->root.mnt = NULL;
2180 nd->path.mnt = NULL;
2181 nd->path.dentry = NULL;
2183 nd->m_seq = read_seqbegin(&mount_lock);
2185 if (flags & LOOKUP_RCU)
2188 if (likely(!nd_jump_root(nd)))
2190 nd->root.mnt = NULL;
2192 return ERR_PTR(-ECHILD);
2193 } else if (nd->dfd == AT_FDCWD) {
2194 if (flags & LOOKUP_RCU) {
2195 struct fs_struct *fs = current->fs;
2201 seq = read_seqcount_begin(&fs->seq);
2203 nd->inode = nd->path.dentry->d_inode;
2204 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2205 } while (read_seqcount_retry(&fs->seq, seq));
2207 get_fs_pwd(current->fs, &nd->path);
2208 nd->inode = nd->path.dentry->d_inode;
2212 /* Caller must check execute permissions on the starting path component */
2213 struct fd f = fdget_raw(nd->dfd);
2214 struct dentry *dentry;
2217 return ERR_PTR(-EBADF);
2219 dentry = f.file->f_path.dentry;
2222 if (!d_can_lookup(dentry)) {
2224 return ERR_PTR(-ENOTDIR);
2228 nd->path = f.file->f_path;
2229 if (flags & LOOKUP_RCU) {
2231 nd->inode = nd->path.dentry->d_inode;
2232 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2234 path_get(&nd->path);
2235 nd->inode = nd->path.dentry->d_inode;
2242 static const char *trailing_symlink(struct nameidata *nd)
2245 int error = may_follow_link(nd);
2246 if (unlikely(error))
2247 return ERR_PTR(error);
2248 nd->flags |= LOOKUP_PARENT;
2249 nd->stack[0].name = NULL;
2254 static inline int lookup_last(struct nameidata *nd)
2256 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2257 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2259 nd->flags &= ~LOOKUP_PARENT;
2260 return walk_component(nd, 0);
2263 static int handle_lookup_down(struct nameidata *nd)
2265 struct path path = nd->path;
2266 struct inode *inode = nd->inode;
2267 unsigned seq = nd->seq;
2270 if (nd->flags & LOOKUP_RCU) {
2272 * don't bother with unlazy_walk on failure - we are
2273 * at the very beginning of walk, so we lose nothing
2274 * if we simply redo everything in non-RCU mode
2276 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2280 err = follow_managed(&path, nd);
2281 if (unlikely(err < 0))
2283 inode = d_backing_inode(path.dentry);
2286 path_to_nameidata(&path, nd);
2292 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2293 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2295 const char *s = path_init(nd, flags);
2301 if (unlikely(flags & LOOKUP_DOWN)) {
2302 err = handle_lookup_down(nd);
2303 if (unlikely(err < 0)) {
2309 while (!(err = link_path_walk(s, nd))
2310 && ((err = lookup_last(nd)) > 0)) {
2311 s = trailing_symlink(nd);
2318 err = complete_walk(nd);
2320 if (!err && nd->flags & LOOKUP_DIRECTORY)
2321 if (!d_can_lookup(nd->path.dentry))
2325 nd->path.mnt = NULL;
2326 nd->path.dentry = NULL;
2332 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2333 struct path *path, struct path *root)
2336 struct nameidata nd;
2338 return PTR_ERR(name);
2339 if (unlikely(root)) {
2341 flags |= LOOKUP_ROOT;
2343 set_nameidata(&nd, dfd, name);
2344 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2345 if (unlikely(retval == -ECHILD))
2346 retval = path_lookupat(&nd, flags, path);
2347 if (unlikely(retval == -ESTALE))
2348 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2350 if (likely(!retval))
2351 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2352 restore_nameidata();
2357 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2358 static int path_parentat(struct nameidata *nd, unsigned flags,
2359 struct path *parent)
2361 const char *s = path_init(nd, flags);
2365 err = link_path_walk(s, nd);
2367 err = complete_walk(nd);
2370 nd->path.mnt = NULL;
2371 nd->path.dentry = NULL;
2377 static struct filename *filename_parentat(int dfd, struct filename *name,
2378 unsigned int flags, struct path *parent,
2379 struct qstr *last, int *type)
2382 struct nameidata nd;
2386 set_nameidata(&nd, dfd, name);
2387 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2388 if (unlikely(retval == -ECHILD))
2389 retval = path_parentat(&nd, flags, parent);
2390 if (unlikely(retval == -ESTALE))
2391 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2392 if (likely(!retval)) {
2394 *type = nd.last_type;
2395 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2398 name = ERR_PTR(retval);
2400 restore_nameidata();
2404 /* does lookup, returns the object with parent locked */
2405 struct dentry *kern_path_locked(const char *name, struct path *path)
2407 struct filename *filename;
2412 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2414 if (IS_ERR(filename))
2415 return ERR_CAST(filename);
2416 if (unlikely(type != LAST_NORM)) {
2419 return ERR_PTR(-EINVAL);
2421 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2422 d = __lookup_hash(&last, path->dentry, 0);
2424 inode_unlock(path->dentry->d_inode);
2431 int kern_path(const char *name, unsigned int flags, struct path *path)
2433 return filename_lookup(AT_FDCWD, getname_kernel(name),
2436 EXPORT_SYMBOL(kern_path);
2439 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2440 * @dentry: pointer to dentry of the base directory
2441 * @mnt: pointer to vfs mount of the base directory
2442 * @name: pointer to file name
2443 * @flags: lookup flags
2444 * @path: pointer to struct path to fill
2446 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2447 const char *name, unsigned int flags,
2450 struct path root = {.mnt = mnt, .dentry = dentry};
2451 /* the first argument of filename_lookup() is ignored with root */
2452 return filename_lookup(AT_FDCWD, getname_kernel(name),
2453 flags , path, &root);
2455 EXPORT_SYMBOL(vfs_path_lookup);
2458 * lookup_one_len - filesystem helper to lookup single pathname component
2459 * @name: pathname component to lookup
2460 * @base: base directory to lookup from
2461 * @len: maximum length @len should be interpreted to
2463 * Note that this routine is purely a helper for filesystem usage and should
2464 * not be called by generic code.
2466 * The caller must hold base->i_mutex.
2468 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2474 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2478 this.hash = full_name_hash(base, name, len);
2480 return ERR_PTR(-EACCES);
2482 if (unlikely(name[0] == '.')) {
2483 if (len < 2 || (len == 2 && name[1] == '.'))
2484 return ERR_PTR(-EACCES);
2488 c = *(const unsigned char *)name++;
2489 if (c == '/' || c == '\0')
2490 return ERR_PTR(-EACCES);
2493 * See if the low-level filesystem might want
2494 * to use its own hash..
2496 if (base->d_flags & DCACHE_OP_HASH) {
2497 int err = base->d_op->d_hash(base, &this);
2499 return ERR_PTR(err);
2502 err = inode_permission(base->d_inode, MAY_EXEC);
2504 return ERR_PTR(err);
2506 return __lookup_hash(&this, base, 0);
2508 EXPORT_SYMBOL(lookup_one_len);
2511 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2512 * @name: pathname component to lookup
2513 * @base: base directory to lookup from
2514 * @len: maximum length @len should be interpreted to
2516 * Note that this routine is purely a helper for filesystem usage and should
2517 * not be called by generic code.
2519 * Unlike lookup_one_len, it should be called without the parent
2520 * i_mutex held, and will take the i_mutex itself if necessary.
2522 struct dentry *lookup_one_len_unlocked(const char *name,
2523 struct dentry *base, int len)
2532 this.hash = full_name_hash(base, name, len);
2534 return ERR_PTR(-EACCES);
2536 if (unlikely(name[0] == '.')) {
2537 if (len < 2 || (len == 2 && name[1] == '.'))
2538 return ERR_PTR(-EACCES);
2542 c = *(const unsigned char *)name++;
2543 if (c == '/' || c == '\0')
2544 return ERR_PTR(-EACCES);
2547 * See if the low-level filesystem might want
2548 * to use its own hash..
2550 if (base->d_flags & DCACHE_OP_HASH) {
2551 int err = base->d_op->d_hash(base, &this);
2553 return ERR_PTR(err);
2556 err = inode_permission(base->d_inode, MAY_EXEC);
2558 return ERR_PTR(err);
2560 ret = lookup_dcache(&this, base, 0);
2562 ret = lookup_slow(&this, base, 0);
2565 EXPORT_SYMBOL(lookup_one_len_unlocked);
2567 #ifdef CONFIG_UNIX98_PTYS
2568 int path_pts(struct path *path)
2570 /* Find something mounted on "pts" in the same directory as
2573 struct dentry *child, *parent;
2577 ret = path_parent_directory(path);
2581 parent = path->dentry;
2584 child = d_hash_and_lookup(parent, &this);
2588 path->dentry = child;
2595 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2596 struct path *path, int *empty)
2598 return filename_lookup(dfd, getname_flags(name, flags, empty),
2601 EXPORT_SYMBOL(user_path_at_empty);
2604 * mountpoint_last - look up last component for umount
2605 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2607 * This is a special lookup_last function just for umount. In this case, we
2608 * need to resolve the path without doing any revalidation.
2610 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2611 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2612 * in almost all cases, this lookup will be served out of the dcache. The only
2613 * cases where it won't are if nd->last refers to a symlink or the path is
2614 * bogus and it doesn't exist.
2617 * -error: if there was an error during lookup. This includes -ENOENT if the
2618 * lookup found a negative dentry.
2620 * 0: if we successfully resolved nd->last and found it to not to be a
2621 * symlink that needs to be followed.
2623 * 1: if we successfully resolved nd->last and found it to be a symlink
2624 * that needs to be followed.
2627 mountpoint_last(struct nameidata *nd)
2630 struct dentry *dir = nd->path.dentry;
2633 /* If we're in rcuwalk, drop out of it to handle last component */
2634 if (nd->flags & LOOKUP_RCU) {
2635 if (unlazy_walk(nd))
2639 nd->flags &= ~LOOKUP_PARENT;
2641 if (unlikely(nd->last_type != LAST_NORM)) {
2642 error = handle_dots(nd, nd->last_type);
2645 path.dentry = dget(nd->path.dentry);
2647 path.dentry = d_lookup(dir, &nd->last);
2650 * No cached dentry. Mounted dentries are pinned in the
2651 * cache, so that means that this dentry is probably
2652 * a symlink or the path doesn't actually point
2653 * to a mounted dentry.
2655 path.dentry = lookup_slow(&nd->last, dir,
2656 nd->flags | LOOKUP_NO_REVAL);
2657 if (IS_ERR(path.dentry))
2658 return PTR_ERR(path.dentry);
2661 if (d_is_negative(path.dentry)) {
2665 path.mnt = nd->path.mnt;
2666 return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2670 * path_mountpoint - look up a path to be umounted
2671 * @nd: lookup context
2672 * @flags: lookup flags
2673 * @path: pointer to container for result
2675 * Look up the given name, but don't attempt to revalidate the last component.
2676 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2679 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2681 const char *s = path_init(nd, flags);
2685 while (!(err = link_path_walk(s, nd)) &&
2686 (err = mountpoint_last(nd)) > 0) {
2687 s = trailing_symlink(nd);
2695 nd->path.mnt = NULL;
2696 nd->path.dentry = NULL;
2704 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2707 struct nameidata nd;
2710 return PTR_ERR(name);
2711 set_nameidata(&nd, dfd, name);
2712 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2713 if (unlikely(error == -ECHILD))
2714 error = path_mountpoint(&nd, flags, path);
2715 if (unlikely(error == -ESTALE))
2716 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2718 audit_inode(name, path->dentry, 0);
2719 restore_nameidata();
2725 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2726 * @dfd: directory file descriptor
2727 * @name: pathname from userland
2728 * @flags: lookup flags
2729 * @path: pointer to container to hold result
2731 * A umount is a special case for path walking. We're not actually interested
2732 * in the inode in this situation, and ESTALE errors can be a problem. We
2733 * simply want track down the dentry and vfsmount attached at the mountpoint
2734 * and avoid revalidating the last component.
2736 * Returns 0 and populates "path" on success.
2739 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2742 return filename_mountpoint(dfd, getname(name), path, flags);
2746 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2749 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2751 EXPORT_SYMBOL(kern_path_mountpoint);
2753 int __check_sticky(struct inode *dir, struct inode *inode)
2755 kuid_t fsuid = current_fsuid();
2757 if (uid_eq(inode->i_uid, fsuid))
2759 if (uid_eq(dir->i_uid, fsuid))
2761 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2763 EXPORT_SYMBOL(__check_sticky);
2766 * Check whether we can remove a link victim from directory dir, check
2767 * whether the type of victim is right.
2768 * 1. We can't do it if dir is read-only (done in permission())
2769 * 2. We should have write and exec permissions on dir
2770 * 3. We can't remove anything from append-only dir
2771 * 4. We can't do anything with immutable dir (done in permission())
2772 * 5. If the sticky bit on dir is set we should either
2773 * a. be owner of dir, or
2774 * b. be owner of victim, or
2775 * c. have CAP_FOWNER capability
2776 * 6. If the victim is append-only or immutable we can't do antyhing with
2777 * links pointing to it.
2778 * 7. If the victim has an unknown uid or gid we can't change the inode.
2779 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2780 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2781 * 10. We can't remove a root or mountpoint.
2782 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2783 * nfs_async_unlink().
2785 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2787 struct inode *inode = d_backing_inode(victim);
2790 if (d_is_negative(victim))
2794 BUG_ON(victim->d_parent->d_inode != dir);
2795 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2797 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2803 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2804 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2807 if (!d_is_dir(victim))
2809 if (IS_ROOT(victim))
2811 } else if (d_is_dir(victim))
2813 if (IS_DEADDIR(dir))
2815 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2820 /* Check whether we can create an object with dentry child in directory
2822 * 1. We can't do it if child already exists (open has special treatment for
2823 * this case, but since we are inlined it's OK)
2824 * 2. We can't do it if dir is read-only (done in permission())
2825 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2826 * 4. We should have write and exec permissions on dir
2827 * 5. We can't do it if dir is immutable (done in permission())
2829 static inline int may_create(struct inode *dir, struct dentry *child)
2831 struct user_namespace *s_user_ns;
2832 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2835 if (IS_DEADDIR(dir))
2837 s_user_ns = dir->i_sb->s_user_ns;
2838 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2839 !kgid_has_mapping(s_user_ns, current_fsgid()))
2841 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2845 * p1 and p2 should be directories on the same fs.
2847 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2852 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2856 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2858 p = d_ancestor(p2, p1);
2860 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2861 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2865 p = d_ancestor(p1, p2);
2867 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2868 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2872 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2873 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2876 EXPORT_SYMBOL(lock_rename);
2878 void unlock_rename(struct dentry *p1, struct dentry *p2)
2880 inode_unlock(p1->d_inode);
2882 inode_unlock(p2->d_inode);
2883 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2886 EXPORT_SYMBOL(unlock_rename);
2888 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2891 int error = may_create(dir, dentry);
2895 if (!dir->i_op->create)
2896 return -EACCES; /* shouldn't it be ENOSYS? */
2899 error = security_inode_create(dir, dentry, mode);
2902 error = dir->i_op->create(dir, dentry, mode, want_excl);
2904 fsnotify_create(dir, dentry);
2907 EXPORT_SYMBOL(vfs_create);
2909 bool may_open_dev(const struct path *path)
2911 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2912 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2915 static int may_open(const struct path *path, int acc_mode, int flag)
2917 struct dentry *dentry = path->dentry;
2918 struct inode *inode = dentry->d_inode;
2924 switch (inode->i_mode & S_IFMT) {
2928 if (acc_mode & MAY_WRITE)
2933 if (!may_open_dev(path))
2942 error = inode_permission(inode, MAY_OPEN | acc_mode);
2947 * An append-only file must be opened in append mode for writing.
2949 if (IS_APPEND(inode)) {
2950 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2956 /* O_NOATIME can only be set by the owner or superuser */
2957 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2963 static int handle_truncate(struct file *filp)
2965 const struct path *path = &filp->f_path;
2966 struct inode *inode = path->dentry->d_inode;
2967 int error = get_write_access(inode);
2971 * Refuse to truncate files with mandatory locks held on them.
2973 error = locks_verify_locked(filp);
2975 error = security_path_truncate(path);
2977 error = do_truncate(path->dentry, 0,
2978 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2981 put_write_access(inode);
2985 static inline int open_to_namei_flags(int flag)
2987 if ((flag & O_ACCMODE) == 3)
2992 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2994 struct user_namespace *s_user_ns;
2995 int error = security_path_mknod(dir, dentry, mode, 0);
2999 s_user_ns = dir->dentry->d_sb->s_user_ns;
3000 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3001 !kgid_has_mapping(s_user_ns, current_fsgid()))
3004 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3008 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3012 * Attempt to atomically look up, create and open a file from a negative
3015 * Returns 0 if successful. The file will have been created and attached to
3016 * @file by the filesystem calling finish_open().
3018 * Returns 1 if the file was looked up only or didn't need creating. The
3019 * caller will need to perform the open themselves. @path will have been
3020 * updated to point to the new dentry. This may be negative.
3022 * Returns an error code otherwise.
3024 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3025 struct path *path, struct file *file,
3026 const struct open_flags *op,
3027 int open_flag, umode_t mode,
3030 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3031 struct inode *dir = nd->path.dentry->d_inode;
3034 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3035 open_flag &= ~O_TRUNC;
3037 if (nd->flags & LOOKUP_DIRECTORY)
3038 open_flag |= O_DIRECTORY;
3040 file->f_path.dentry = DENTRY_NOT_SET;
3041 file->f_path.mnt = nd->path.mnt;
3042 error = dir->i_op->atomic_open(dir, dentry, file,
3043 open_to_namei_flags(open_flag),
3045 d_lookup_done(dentry);
3048 * We didn't have the inode before the open, so check open
3051 int acc_mode = op->acc_mode;
3052 if (*opened & FILE_CREATED) {
3053 WARN_ON(!(open_flag & O_CREAT));
3054 fsnotify_create(dir, dentry);
3057 error = may_open(&file->f_path, acc_mode, open_flag);
3058 if (WARN_ON(error > 0))
3060 } else if (error > 0) {
3061 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3064 if (file->f_path.dentry) {
3066 dentry = file->f_path.dentry;
3068 if (*opened & FILE_CREATED)
3069 fsnotify_create(dir, dentry);
3070 if (unlikely(d_is_negative(dentry))) {
3073 path->dentry = dentry;
3074 path->mnt = nd->path.mnt;
3084 * Look up and maybe create and open the last component.
3086 * Must be called with i_mutex held on parent.
3088 * Returns 0 if the file was successfully atomically created (if necessary) and
3089 * opened. In this case the file will be returned attached to @file.
3091 * Returns 1 if the file was not completely opened at this time, though lookups
3092 * and creations will have been performed and the dentry returned in @path will
3093 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3094 * specified then a negative dentry may be returned.
3096 * An error code is returned otherwise.
3098 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3099 * cleared otherwise prior to returning.
3101 static int lookup_open(struct nameidata *nd, struct path *path,
3103 const struct open_flags *op,
3104 bool got_write, int *opened)
3106 struct dentry *dir = nd->path.dentry;
3107 struct inode *dir_inode = dir->d_inode;
3108 int open_flag = op->open_flag;
3109 struct dentry *dentry;
3110 int error, create_error = 0;
3111 umode_t mode = op->mode;
3112 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3114 if (unlikely(IS_DEADDIR(dir_inode)))
3117 *opened &= ~FILE_CREATED;
3118 dentry = d_lookup(dir, &nd->last);
3121 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3123 return PTR_ERR(dentry);
3125 if (d_in_lookup(dentry))
3128 error = d_revalidate(dentry, nd->flags);
3129 if (likely(error > 0))
3133 d_invalidate(dentry);
3137 if (dentry->d_inode) {
3138 /* Cached positive dentry: will open in f_op->open */
3143 * Checking write permission is tricky, bacuse we don't know if we are
3144 * going to actually need it: O_CREAT opens should work as long as the
3145 * file exists. But checking existence breaks atomicity. The trick is
3146 * to check access and if not granted clear O_CREAT from the flags.
3148 * Another problem is returing the "right" error value (e.g. for an
3149 * O_EXCL open we want to return EEXIST not EROFS).
3151 if (open_flag & O_CREAT) {
3152 if (!IS_POSIXACL(dir->d_inode))
3153 mode &= ~current_umask();
3154 if (unlikely(!got_write)) {
3155 create_error = -EROFS;
3156 open_flag &= ~O_CREAT;
3157 if (open_flag & (O_EXCL | O_TRUNC))
3159 /* No side effects, safe to clear O_CREAT */
3161 create_error = may_o_create(&nd->path, dentry, mode);
3163 open_flag &= ~O_CREAT;
3164 if (open_flag & O_EXCL)
3168 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3169 unlikely(!got_write)) {
3171 * No O_CREATE -> atomicity not a requirement -> fall
3172 * back to lookup + open
3177 if (dir_inode->i_op->atomic_open) {
3178 error = atomic_open(nd, dentry, path, file, op, open_flag,
3180 if (unlikely(error == -ENOENT) && create_error)
3181 error = create_error;
3186 if (d_in_lookup(dentry)) {
3187 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3189 d_lookup_done(dentry);
3190 if (unlikely(res)) {
3192 error = PTR_ERR(res);
3200 /* Negative dentry, just create the file */
3201 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3202 *opened |= FILE_CREATED;
3203 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3204 if (!dir_inode->i_op->create) {
3208 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3209 open_flag & O_EXCL);
3212 fsnotify_create(dir_inode, dentry);
3214 if (unlikely(create_error) && !dentry->d_inode) {
3215 error = create_error;
3219 path->dentry = dentry;
3220 path->mnt = nd->path.mnt;
3229 * Handle the last step of open()
3231 static int do_last(struct nameidata *nd,
3232 struct file *file, const struct open_flags *op,
3235 struct dentry *dir = nd->path.dentry;
3236 int open_flag = op->open_flag;
3237 bool will_truncate = (open_flag & O_TRUNC) != 0;
3238 bool got_write = false;
3239 int acc_mode = op->acc_mode;
3241 struct inode *inode;
3245 nd->flags &= ~LOOKUP_PARENT;
3246 nd->flags |= op->intent;
3248 if (nd->last_type != LAST_NORM) {
3249 error = handle_dots(nd, nd->last_type);
3250 if (unlikely(error))
3255 if (!(open_flag & O_CREAT)) {
3256 if (nd->last.name[nd->last.len])
3257 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3258 /* we _can_ be in RCU mode here */
3259 error = lookup_fast(nd, &path, &inode, &seq);
3260 if (likely(error > 0))
3266 BUG_ON(nd->inode != dir->d_inode);
3267 BUG_ON(nd->flags & LOOKUP_RCU);
3269 /* create side of things */
3271 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3272 * has been cleared when we got to the last component we are
3275 error = complete_walk(nd);
3279 audit_inode(nd->name, dir, LOOKUP_PARENT);
3280 /* trailing slashes? */
3281 if (unlikely(nd->last.name[nd->last.len]))
3285 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3286 error = mnt_want_write(nd->path.mnt);
3290 * do _not_ fail yet - we might not need that or fail with
3291 * a different error; let lookup_open() decide; we'll be
3292 * dropping this one anyway.
3295 if (open_flag & O_CREAT)
3296 inode_lock(dir->d_inode);
3298 inode_lock_shared(dir->d_inode);
3299 error = lookup_open(nd, &path, file, op, got_write, opened);
3300 if (open_flag & O_CREAT)
3301 inode_unlock(dir->d_inode);
3303 inode_unlock_shared(dir->d_inode);
3309 if ((*opened & FILE_CREATED) ||
3310 !S_ISREG(file_inode(file)->i_mode))
3311 will_truncate = false;
3313 audit_inode(nd->name, file->f_path.dentry, 0);
3317 if (*opened & FILE_CREATED) {
3318 /* Don't check for write permission, don't truncate */
3319 open_flag &= ~O_TRUNC;
3320 will_truncate = false;
3322 path_to_nameidata(&path, nd);
3323 goto finish_open_created;
3327 * If atomic_open() acquired write access it is dropped now due to
3328 * possible mount and symlink following (this might be optimized away if
3332 mnt_drop_write(nd->path.mnt);
3336 error = follow_managed(&path, nd);
3337 if (unlikely(error < 0))
3340 if (unlikely(d_is_negative(path.dentry))) {
3341 path_to_nameidata(&path, nd);
3346 * create/update audit record if it already exists.
3348 audit_inode(nd->name, path.dentry, 0);
3350 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3351 path_to_nameidata(&path, nd);
3355 seq = 0; /* out of RCU mode, so the value doesn't matter */
3356 inode = d_backing_inode(path.dentry);
3358 error = step_into(nd, &path, 0, inode, seq);
3359 if (unlikely(error))
3362 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3363 error = complete_walk(nd);
3366 audit_inode(nd->name, nd->path.dentry, 0);
3368 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3371 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3373 if (!d_is_reg(nd->path.dentry))
3374 will_truncate = false;
3376 if (will_truncate) {
3377 error = mnt_want_write(nd->path.mnt);
3382 finish_open_created:
3383 error = may_open(&nd->path, acc_mode, open_flag);
3386 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3387 error = vfs_open(&nd->path, file, current_cred());
3390 *opened |= FILE_OPENED;
3392 error = open_check_o_direct(file);
3394 error = ima_file_check(file, op->acc_mode, *opened);
3395 if (!error && will_truncate)
3396 error = handle_truncate(file);
3398 if (unlikely(error) && (*opened & FILE_OPENED))
3400 if (unlikely(error > 0)) {
3405 mnt_drop_write(nd->path.mnt);
3409 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3411 struct dentry *child = NULL;
3412 struct inode *dir = dentry->d_inode;
3413 struct inode *inode;
3416 /* we want directory to be writable */
3417 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3420 error = -EOPNOTSUPP;
3421 if (!dir->i_op->tmpfile)
3424 child = d_alloc(dentry, &slash_name);
3425 if (unlikely(!child))
3427 error = dir->i_op->tmpfile(dir, child, mode);
3431 inode = child->d_inode;
3432 if (unlikely(!inode))
3434 if (!(open_flag & O_EXCL)) {
3435 spin_lock(&inode->i_lock);
3436 inode->i_state |= I_LINKABLE;
3437 spin_unlock(&inode->i_lock);
3443 return ERR_PTR(error);
3445 EXPORT_SYMBOL(vfs_tmpfile);
3447 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3448 const struct open_flags *op,
3449 struct file *file, int *opened)
3451 struct dentry *child;
3453 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3454 if (unlikely(error))
3456 error = mnt_want_write(path.mnt);
3457 if (unlikely(error))
3459 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3460 error = PTR_ERR(child);
3461 if (unlikely(IS_ERR(child)))
3464 path.dentry = child;
3465 audit_inode(nd->name, child, 0);
3466 /* Don't check for other permissions, the inode was just created */
3467 error = may_open(&path, 0, op->open_flag);
3470 file->f_path.mnt = path.mnt;
3471 error = finish_open(file, child, NULL, opened);
3474 error = open_check_o_direct(file);
3478 mnt_drop_write(path.mnt);
3484 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3487 int error = path_lookupat(nd, flags, &path);
3489 audit_inode(nd->name, path.dentry, 0);
3490 error = vfs_open(&path, file, current_cred());
3496 static struct file *path_openat(struct nameidata *nd,
3497 const struct open_flags *op, unsigned flags)
3504 file = get_empty_filp();
3508 file->f_flags = op->open_flag;
3510 if (unlikely(file->f_flags & __O_TMPFILE)) {
3511 error = do_tmpfile(nd, flags, op, file, &opened);
3515 if (unlikely(file->f_flags & O_PATH)) {
3516 error = do_o_path(nd, flags, file);
3518 opened |= FILE_OPENED;
3522 s = path_init(nd, flags);
3527 while (!(error = link_path_walk(s, nd)) &&
3528 (error = do_last(nd, file, op, &opened)) > 0) {
3529 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3530 s = trailing_symlink(nd);
3538 if (!(opened & FILE_OPENED)) {
3542 if (unlikely(error)) {
3543 if (error == -EOPENSTALE) {
3544 if (flags & LOOKUP_RCU)
3549 file = ERR_PTR(error);
3554 struct file *do_filp_open(int dfd, struct filename *pathname,
3555 const struct open_flags *op)
3557 struct nameidata nd;
3558 int flags = op->lookup_flags;
3561 set_nameidata(&nd, dfd, pathname);
3562 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3563 if (unlikely(filp == ERR_PTR(-ECHILD)))
3564 filp = path_openat(&nd, op, flags);
3565 if (unlikely(filp == ERR_PTR(-ESTALE)))
3566 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3567 restore_nameidata();
3571 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3572 const char *name, const struct open_flags *op)
3574 struct nameidata nd;
3576 struct filename *filename;
3577 int flags = op->lookup_flags | LOOKUP_ROOT;
3580 nd.root.dentry = dentry;
3582 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3583 return ERR_PTR(-ELOOP);
3585 filename = getname_kernel(name);
3586 if (IS_ERR(filename))
3587 return ERR_CAST(filename);
3589 set_nameidata(&nd, -1, filename);
3590 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3591 if (unlikely(file == ERR_PTR(-ECHILD)))
3592 file = path_openat(&nd, op, flags);
3593 if (unlikely(file == ERR_PTR(-ESTALE)))
3594 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3595 restore_nameidata();
3600 static struct dentry *filename_create(int dfd, struct filename *name,
3601 struct path *path, unsigned int lookup_flags)
3603 struct dentry *dentry = ERR_PTR(-EEXIST);
3608 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3611 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3612 * other flags passed in are ignored!
3614 lookup_flags &= LOOKUP_REVAL;
3616 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3618 return ERR_CAST(name);
3621 * Yucky last component or no last component at all?
3622 * (foo/., foo/.., /////)
3624 if (unlikely(type != LAST_NORM))
3627 /* don't fail immediately if it's r/o, at least try to report other errors */
3628 err2 = mnt_want_write(path->mnt);
3630 * Do the final lookup.
3632 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3633 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3634 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3639 if (d_is_positive(dentry))
3643 * Special case - lookup gave negative, but... we had foo/bar/
3644 * From the vfs_mknod() POV we just have a negative dentry -
3645 * all is fine. Let's be bastards - you had / on the end, you've
3646 * been asking for (non-existent) directory. -ENOENT for you.
3648 if (unlikely(!is_dir && last.name[last.len])) {
3652 if (unlikely(err2)) {
3660 dentry = ERR_PTR(error);
3662 inode_unlock(path->dentry->d_inode);
3664 mnt_drop_write(path->mnt);
3671 struct dentry *kern_path_create(int dfd, const char *pathname,
3672 struct path *path, unsigned int lookup_flags)
3674 return filename_create(dfd, getname_kernel(pathname),
3675 path, lookup_flags);
3677 EXPORT_SYMBOL(kern_path_create);
3679 void done_path_create(struct path *path, struct dentry *dentry)
3682 inode_unlock(path->dentry->d_inode);
3683 mnt_drop_write(path->mnt);
3686 EXPORT_SYMBOL(done_path_create);
3688 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3689 struct path *path, unsigned int lookup_flags)
3691 return filename_create(dfd, getname(pathname), path, lookup_flags);
3693 EXPORT_SYMBOL(user_path_create);
3695 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3697 int error = may_create(dir, dentry);
3702 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3705 if (!dir->i_op->mknod)
3708 error = devcgroup_inode_mknod(mode, dev);
3712 error = security_inode_mknod(dir, dentry, mode, dev);
3716 error = dir->i_op->mknod(dir, dentry, mode, dev);
3718 fsnotify_create(dir, dentry);
3721 EXPORT_SYMBOL(vfs_mknod);
3723 static int may_mknod(umode_t mode)
3725 switch (mode & S_IFMT) {
3731 case 0: /* zero mode translates to S_IFREG */
3740 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3743 struct dentry *dentry;
3746 unsigned int lookup_flags = 0;
3748 error = may_mknod(mode);
3752 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3754 return PTR_ERR(dentry);
3756 if (!IS_POSIXACL(path.dentry->d_inode))
3757 mode &= ~current_umask();
3758 error = security_path_mknod(&path, dentry, mode, dev);
3761 switch (mode & S_IFMT) {
3762 case 0: case S_IFREG:
3763 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3765 ima_post_path_mknod(dentry);
3767 case S_IFCHR: case S_IFBLK:
3768 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3769 new_decode_dev(dev));
3771 case S_IFIFO: case S_IFSOCK:
3772 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3776 done_path_create(&path, dentry);
3777 if (retry_estale(error, lookup_flags)) {
3778 lookup_flags |= LOOKUP_REVAL;
3784 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3786 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3789 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3791 int error = may_create(dir, dentry);
3792 unsigned max_links = dir->i_sb->s_max_links;
3797 if (!dir->i_op->mkdir)
3800 mode &= (S_IRWXUGO|S_ISVTX);
3801 error = security_inode_mkdir(dir, dentry, mode);
3805 if (max_links && dir->i_nlink >= max_links)
3808 error = dir->i_op->mkdir(dir, dentry, mode);
3810 fsnotify_mkdir(dir, dentry);
3813 EXPORT_SYMBOL(vfs_mkdir);
3815 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3817 struct dentry *dentry;
3820 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3823 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3825 return PTR_ERR(dentry);
3827 if (!IS_POSIXACL(path.dentry->d_inode))
3828 mode &= ~current_umask();
3829 error = security_path_mkdir(&path, dentry, mode);
3831 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3832 done_path_create(&path, dentry);
3833 if (retry_estale(error, lookup_flags)) {
3834 lookup_flags |= LOOKUP_REVAL;
3840 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3842 return sys_mkdirat(AT_FDCWD, pathname, mode);
3845 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3847 int error = may_delete(dir, dentry, 1);
3852 if (!dir->i_op->rmdir)
3856 inode_lock(dentry->d_inode);
3859 if (is_local_mountpoint(dentry))
3862 error = security_inode_rmdir(dir, dentry);
3866 shrink_dcache_parent(dentry);
3867 error = dir->i_op->rmdir(dir, dentry);
3871 dentry->d_inode->i_flags |= S_DEAD;
3873 detach_mounts(dentry);
3876 inode_unlock(dentry->d_inode);
3882 EXPORT_SYMBOL(vfs_rmdir);
3884 static long do_rmdir(int dfd, const char __user *pathname)
3887 struct filename *name;
3888 struct dentry *dentry;
3892 unsigned int lookup_flags = 0;
3894 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3895 &path, &last, &type);
3897 return PTR_ERR(name);
3911 error = mnt_want_write(path.mnt);
3915 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3916 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3917 error = PTR_ERR(dentry);
3920 if (!dentry->d_inode) {
3924 error = security_path_rmdir(&path, dentry);
3927 error = vfs_rmdir(path.dentry->d_inode, dentry);
3931 inode_unlock(path.dentry->d_inode);
3932 mnt_drop_write(path.mnt);
3936 if (retry_estale(error, lookup_flags)) {
3937 lookup_flags |= LOOKUP_REVAL;
3943 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3945 return do_rmdir(AT_FDCWD, pathname);
3949 * vfs_unlink - unlink a filesystem object
3950 * @dir: parent directory
3952 * @delegated_inode: returns victim inode, if the inode is delegated.
3954 * The caller must hold dir->i_mutex.
3956 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3957 * return a reference to the inode in delegated_inode. The caller
3958 * should then break the delegation on that inode and retry. Because
3959 * breaking a delegation may take a long time, the caller should drop
3960 * dir->i_mutex before doing so.
3962 * Alternatively, a caller may pass NULL for delegated_inode. This may
3963 * be appropriate for callers that expect the underlying filesystem not
3964 * to be NFS exported.
3966 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3968 struct inode *target = dentry->d_inode;
3969 int error = may_delete(dir, dentry, 0);
3974 if (!dir->i_op->unlink)
3978 if (is_local_mountpoint(dentry))
3981 error = security_inode_unlink(dir, dentry);
3983 error = try_break_deleg(target, delegated_inode);
3986 error = dir->i_op->unlink(dir, dentry);
3989 detach_mounts(dentry);
3994 inode_unlock(target);
3996 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3997 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3998 fsnotify_link_count(target);
4004 EXPORT_SYMBOL(vfs_unlink);
4007 * Make sure that the actual truncation of the file will occur outside its
4008 * directory's i_mutex. Truncate can take a long time if there is a lot of
4009 * writeout happening, and we don't want to prevent access to the directory
4010 * while waiting on the I/O.
4012 static long do_unlinkat(int dfd, const char __user *pathname)
4015 struct filename *name;
4016 struct dentry *dentry;
4020 struct inode *inode = NULL;
4021 struct inode *delegated_inode = NULL;
4022 unsigned int lookup_flags = 0;
4024 name = filename_parentat(dfd, getname(pathname), lookup_flags,
4025 &path, &last, &type);
4027 return PTR_ERR(name);
4030 if (type != LAST_NORM)
4033 error = mnt_want_write(path.mnt);
4037 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4038 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4039 error = PTR_ERR(dentry);
4040 if (!IS_ERR(dentry)) {
4041 /* Why not before? Because we want correct error value */
4042 if (last.name[last.len])
4044 inode = dentry->d_inode;
4045 if (d_is_negative(dentry))
4048 error = security_path_unlink(&path, dentry);
4051 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4055 inode_unlock(path.dentry->d_inode);
4057 iput(inode); /* truncate the inode here */
4059 if (delegated_inode) {
4060 error = break_deleg_wait(&delegated_inode);
4064 mnt_drop_write(path.mnt);
4068 if (retry_estale(error, lookup_flags)) {
4069 lookup_flags |= LOOKUP_REVAL;
4076 if (d_is_negative(dentry))
4078 else if (d_is_dir(dentry))
4085 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4087 if ((flag & ~AT_REMOVEDIR) != 0)
4090 if (flag & AT_REMOVEDIR)
4091 return do_rmdir(dfd, pathname);
4093 return do_unlinkat(dfd, pathname);
4096 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4098 return do_unlinkat(AT_FDCWD, pathname);
4101 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4103 int error = may_create(dir, dentry);
4108 if (!dir->i_op->symlink)
4111 error = security_inode_symlink(dir, dentry, oldname);
4115 error = dir->i_op->symlink(dir, dentry, oldname);
4117 fsnotify_create(dir, dentry);
4120 EXPORT_SYMBOL(vfs_symlink);
4122 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4123 int, newdfd, const char __user *, newname)
4126 struct filename *from;
4127 struct dentry *dentry;
4129 unsigned int lookup_flags = 0;
4131 from = getname(oldname);
4133 return PTR_ERR(from);
4135 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4136 error = PTR_ERR(dentry);
4140 error = security_path_symlink(&path, dentry, from->name);
4142 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4143 done_path_create(&path, dentry);
4144 if (retry_estale(error, lookup_flags)) {
4145 lookup_flags |= LOOKUP_REVAL;
4153 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4155 return sys_symlinkat(oldname, AT_FDCWD, newname);
4159 * vfs_link - create a new link
4160 * @old_dentry: object to be linked
4162 * @new_dentry: where to create the new link
4163 * @delegated_inode: returns inode needing a delegation break
4165 * The caller must hold dir->i_mutex
4167 * If vfs_link discovers a delegation on the to-be-linked file in need
4168 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4169 * inode in delegated_inode. The caller should then break the delegation
4170 * and retry. Because breaking a delegation may take a long time, the
4171 * caller should drop the i_mutex before doing so.
4173 * Alternatively, a caller may pass NULL for delegated_inode. This may
4174 * be appropriate for callers that expect the underlying filesystem not
4175 * to be NFS exported.
4177 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4179 struct inode *inode = old_dentry->d_inode;
4180 unsigned max_links = dir->i_sb->s_max_links;
4186 error = may_create(dir, new_dentry);
4190 if (dir->i_sb != inode->i_sb)
4194 * A link to an append-only or immutable file cannot be created.
4196 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4199 * Updating the link count will likely cause i_uid and i_gid to
4200 * be writen back improperly if their true value is unknown to
4203 if (HAS_UNMAPPED_ID(inode))
4205 if (!dir->i_op->link)
4207 if (S_ISDIR(inode->i_mode))
4210 error = security_inode_link(old_dentry, dir, new_dentry);
4215 /* Make sure we don't allow creating hardlink to an unlinked file */
4216 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4218 else if (max_links && inode->i_nlink >= max_links)
4221 error = try_break_deleg(inode, delegated_inode);
4223 error = dir->i_op->link(old_dentry, dir, new_dentry);
4226 if (!error && (inode->i_state & I_LINKABLE)) {
4227 spin_lock(&inode->i_lock);
4228 inode->i_state &= ~I_LINKABLE;
4229 spin_unlock(&inode->i_lock);
4231 inode_unlock(inode);
4233 fsnotify_link(dir, inode, new_dentry);
4236 EXPORT_SYMBOL(vfs_link);
4239 * Hardlinks are often used in delicate situations. We avoid
4240 * security-related surprises by not following symlinks on the
4243 * We don't follow them on the oldname either to be compatible
4244 * with linux 2.0, and to avoid hard-linking to directories
4245 * and other special files. --ADM
4247 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4248 int, newdfd, const char __user *, newname, int, flags)
4250 struct dentry *new_dentry;
4251 struct path old_path, new_path;
4252 struct inode *delegated_inode = NULL;
4256 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4259 * To use null names we require CAP_DAC_READ_SEARCH
4260 * This ensures that not everyone will be able to create
4261 * handlink using the passed filedescriptor.
4263 if (flags & AT_EMPTY_PATH) {
4264 if (!capable(CAP_DAC_READ_SEARCH))
4269 if (flags & AT_SYMLINK_FOLLOW)
4270 how |= LOOKUP_FOLLOW;
4272 error = user_path_at(olddfd, oldname, how, &old_path);
4276 new_dentry = user_path_create(newdfd, newname, &new_path,
4277 (how & LOOKUP_REVAL));
4278 error = PTR_ERR(new_dentry);
4279 if (IS_ERR(new_dentry))
4283 if (old_path.mnt != new_path.mnt)
4285 error = may_linkat(&old_path);
4286 if (unlikely(error))
4288 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4291 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4293 done_path_create(&new_path, new_dentry);
4294 if (delegated_inode) {
4295 error = break_deleg_wait(&delegated_inode);
4297 path_put(&old_path);
4301 if (retry_estale(error, how)) {
4302 path_put(&old_path);
4303 how |= LOOKUP_REVAL;
4307 path_put(&old_path);
4312 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4314 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4318 * vfs_rename - rename a filesystem object
4319 * @old_dir: parent of source
4320 * @old_dentry: source
4321 * @new_dir: parent of destination
4322 * @new_dentry: destination
4323 * @delegated_inode: returns an inode needing a delegation break
4324 * @flags: rename flags
4326 * The caller must hold multiple mutexes--see lock_rename()).
4328 * If vfs_rename discovers a delegation in need of breaking at either
4329 * the source or destination, it will return -EWOULDBLOCK and return a
4330 * reference to the inode in delegated_inode. The caller should then
4331 * break the delegation and retry. Because breaking a delegation may
4332 * take a long time, the caller should drop all locks before doing
4335 * Alternatively, a caller may pass NULL for delegated_inode. This may
4336 * be appropriate for callers that expect the underlying filesystem not
4337 * to be NFS exported.
4339 * The worst of all namespace operations - renaming directory. "Perverted"
4340 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4343 * a) we can get into loop creation.
4344 * b) race potential - two innocent renames can create a loop together.
4345 * That's where 4.4 screws up. Current fix: serialization on
4346 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4348 * c) we have to lock _four_ objects - parents and victim (if it exists),
4349 * and source (if it is not a directory).
4350 * And that - after we got ->i_mutex on parents (until then we don't know
4351 * whether the target exists). Solution: try to be smart with locking
4352 * order for inodes. We rely on the fact that tree topology may change
4353 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4354 * move will be locked. Thus we can rank directories by the tree
4355 * (ancestors first) and rank all non-directories after them.
4356 * That works since everybody except rename does "lock parent, lookup,
4357 * lock child" and rename is under ->s_vfs_rename_mutex.
4358 * HOWEVER, it relies on the assumption that any object with ->lookup()
4359 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4360 * we'd better make sure that there's no link(2) for them.
4361 * d) conversion from fhandle to dentry may come in the wrong moment - when
4362 * we are removing the target. Solution: we will have to grab ->i_mutex
4363 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4364 * ->i_mutex on parents, which works but leads to some truly excessive
4367 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4368 struct inode *new_dir, struct dentry *new_dentry,
4369 struct inode **delegated_inode, unsigned int flags)
4372 bool is_dir = d_is_dir(old_dentry);
4373 struct inode *source = old_dentry->d_inode;
4374 struct inode *target = new_dentry->d_inode;
4375 bool new_is_dir = false;
4376 unsigned max_links = new_dir->i_sb->s_max_links;
4377 struct name_snapshot old_name;
4379 if (source == target)
4382 error = may_delete(old_dir, old_dentry, is_dir);
4387 error = may_create(new_dir, new_dentry);
4389 new_is_dir = d_is_dir(new_dentry);
4391 if (!(flags & RENAME_EXCHANGE))
4392 error = may_delete(new_dir, new_dentry, is_dir);
4394 error = may_delete(new_dir, new_dentry, new_is_dir);
4399 if (!old_dir->i_op->rename)
4403 * If we are going to change the parent - check write permissions,
4404 * we'll need to flip '..'.
4406 if (new_dir != old_dir) {
4408 error = inode_permission(source, MAY_WRITE);
4412 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4413 error = inode_permission(target, MAY_WRITE);
4419 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4424 take_dentry_name_snapshot(&old_name, old_dentry);
4426 if (!is_dir || (flags & RENAME_EXCHANGE))
4427 lock_two_nondirectories(source, target);
4432 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4435 if (max_links && new_dir != old_dir) {
4437 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4439 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4440 old_dir->i_nlink >= max_links)
4443 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4444 shrink_dcache_parent(new_dentry);
4446 error = try_break_deleg(source, delegated_inode);
4450 if (target && !new_is_dir) {
4451 error = try_break_deleg(target, delegated_inode);
4455 error = old_dir->i_op->rename(old_dir, old_dentry,
4456 new_dir, new_dentry, flags);
4460 if (!(flags & RENAME_EXCHANGE) && target) {
4462 target->i_flags |= S_DEAD;
4463 dont_mount(new_dentry);
4464 detach_mounts(new_dentry);
4466 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4467 if (!(flags & RENAME_EXCHANGE))
4468 d_move(old_dentry, new_dentry);
4470 d_exchange(old_dentry, new_dentry);
4473 if (!is_dir || (flags & RENAME_EXCHANGE))
4474 unlock_two_nondirectories(source, target);
4476 inode_unlock(target);
4479 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4480 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4481 if (flags & RENAME_EXCHANGE) {
4482 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4483 new_is_dir, NULL, new_dentry);
4486 release_dentry_name_snapshot(&old_name);
4490 EXPORT_SYMBOL(vfs_rename);
4492 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4493 int, newdfd, const char __user *, newname, unsigned int, flags)
4495 struct dentry *old_dentry, *new_dentry;
4496 struct dentry *trap;
4497 struct path old_path, new_path;
4498 struct qstr old_last, new_last;
4499 int old_type, new_type;
4500 struct inode *delegated_inode = NULL;
4501 struct filename *from;
4502 struct filename *to;
4503 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4504 bool should_retry = false;
4507 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4510 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4511 (flags & RENAME_EXCHANGE))
4514 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4517 if (flags & RENAME_EXCHANGE)
4521 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4522 &old_path, &old_last, &old_type);
4524 error = PTR_ERR(from);
4528 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4529 &new_path, &new_last, &new_type);
4531 error = PTR_ERR(to);
4536 if (old_path.mnt != new_path.mnt)
4540 if (old_type != LAST_NORM)
4543 if (flags & RENAME_NOREPLACE)
4545 if (new_type != LAST_NORM)
4548 error = mnt_want_write(old_path.mnt);
4553 trap = lock_rename(new_path.dentry, old_path.dentry);
4555 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4556 error = PTR_ERR(old_dentry);
4557 if (IS_ERR(old_dentry))
4559 /* source must exist */
4561 if (d_is_negative(old_dentry))
4563 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4564 error = PTR_ERR(new_dentry);
4565 if (IS_ERR(new_dentry))
4568 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4570 if (flags & RENAME_EXCHANGE) {
4572 if (d_is_negative(new_dentry))
4575 if (!d_is_dir(new_dentry)) {
4577 if (new_last.name[new_last.len])
4581 /* unless the source is a directory trailing slashes give -ENOTDIR */
4582 if (!d_is_dir(old_dentry)) {
4584 if (old_last.name[old_last.len])
4586 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4589 /* source should not be ancestor of target */
4591 if (old_dentry == trap)
4593 /* target should not be an ancestor of source */
4594 if (!(flags & RENAME_EXCHANGE))
4596 if (new_dentry == trap)
4599 error = security_path_rename(&old_path, old_dentry,
4600 &new_path, new_dentry, flags);
4603 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4604 new_path.dentry->d_inode, new_dentry,
4605 &delegated_inode, flags);
4611 unlock_rename(new_path.dentry, old_path.dentry);
4612 if (delegated_inode) {
4613 error = break_deleg_wait(&delegated_inode);
4617 mnt_drop_write(old_path.mnt);
4619 if (retry_estale(error, lookup_flags))
4620 should_retry = true;
4621 path_put(&new_path);
4624 path_put(&old_path);
4627 should_retry = false;
4628 lookup_flags |= LOOKUP_REVAL;
4635 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4636 int, newdfd, const char __user *, newname)
4638 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4641 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4643 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4646 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4648 int error = may_create(dir, dentry);
4652 if (!dir->i_op->mknod)
4655 return dir->i_op->mknod(dir, dentry,
4656 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4658 EXPORT_SYMBOL(vfs_whiteout);
4660 int readlink_copy(char __user *buffer, int buflen, const char *link)
4662 int len = PTR_ERR(link);
4667 if (len > (unsigned) buflen)
4669 if (copy_to_user(buffer, link, len))
4676 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4677 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4678 * for any given inode is up to filesystem.
4680 static int generic_readlink(struct dentry *dentry, char __user *buffer,
4683 DEFINE_DELAYED_CALL(done);
4684 struct inode *inode = d_inode(dentry);
4685 const char *link = inode->i_link;
4689 link = inode->i_op->get_link(dentry, inode, &done);
4691 return PTR_ERR(link);
4693 res = readlink_copy(buffer, buflen, link);
4694 do_delayed_call(&done);
4699 * vfs_readlink - copy symlink body into userspace buffer
4700 * @dentry: dentry on which to get symbolic link
4701 * @buffer: user memory pointer
4702 * @buflen: size of buffer
4704 * Does not touch atime. That's up to the caller if necessary
4706 * Does not call security hook.
4708 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4710 struct inode *inode = d_inode(dentry);
4712 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4713 if (unlikely(inode->i_op->readlink))
4714 return inode->i_op->readlink(dentry, buffer, buflen);
4716 if (!d_is_symlink(dentry))
4719 spin_lock(&inode->i_lock);
4720 inode->i_opflags |= IOP_DEFAULT_READLINK;
4721 spin_unlock(&inode->i_lock);
4724 return generic_readlink(dentry, buffer, buflen);
4726 EXPORT_SYMBOL(vfs_readlink);
4729 * vfs_get_link - get symlink body
4730 * @dentry: dentry on which to get symbolic link
4731 * @done: caller needs to free returned data with this
4733 * Calls security hook and i_op->get_link() on the supplied inode.
4735 * It does not touch atime. That's up to the caller if necessary.
4737 * Does not work on "special" symlinks like /proc/$$/fd/N
4739 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4741 const char *res = ERR_PTR(-EINVAL);
4742 struct inode *inode = d_inode(dentry);
4744 if (d_is_symlink(dentry)) {
4745 res = ERR_PTR(security_inode_readlink(dentry));
4747 res = inode->i_op->get_link(dentry, inode, done);
4751 EXPORT_SYMBOL(vfs_get_link);
4753 /* get the link contents into pagecache */
4754 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4755 struct delayed_call *callback)
4759 struct address_space *mapping = inode->i_mapping;
4762 page = find_get_page(mapping, 0);
4764 return ERR_PTR(-ECHILD);
4765 if (!PageUptodate(page)) {
4767 return ERR_PTR(-ECHILD);
4770 page = read_mapping_page(mapping, 0, NULL);
4774 set_delayed_call(callback, page_put_link, page);
4775 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4776 kaddr = page_address(page);
4777 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4781 EXPORT_SYMBOL(page_get_link);
4783 void page_put_link(void *arg)
4787 EXPORT_SYMBOL(page_put_link);
4789 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4791 DEFINE_DELAYED_CALL(done);
4792 int res = readlink_copy(buffer, buflen,
4793 page_get_link(dentry, d_inode(dentry),
4795 do_delayed_call(&done);
4798 EXPORT_SYMBOL(page_readlink);
4801 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4803 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4805 struct address_space *mapping = inode->i_mapping;
4809 unsigned int flags = 0;
4811 flags |= AOP_FLAG_NOFS;
4814 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4815 flags, &page, &fsdata);
4819 memcpy(page_address(page), symname, len-1);
4821 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4828 mark_inode_dirty(inode);
4833 EXPORT_SYMBOL(__page_symlink);
4835 int page_symlink(struct inode *inode, const char *symname, int len)
4837 return __page_symlink(inode, symname, len,
4838 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4840 EXPORT_SYMBOL(page_symlink);
4842 const struct inode_operations page_symlink_inode_operations = {
4843 .get_link = page_get_link,
4845 EXPORT_SYMBOL(page_symlink_inode_operations);