4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * Some corrections by tytso.
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <asm/uaccess.h>
42 /* [Feb-1997 T. Schoebel-Theuer]
43 * Fundamental changes in the pathname lookup mechanisms (namei)
44 * were necessary because of omirr. The reason is that omirr needs
45 * to know the _real_ pathname, not the user-supplied one, in case
46 * of symlinks (and also when transname replacements occur).
48 * The new code replaces the old recursive symlink resolution with
49 * an iterative one (in case of non-nested symlink chains). It does
50 * this with calls to <fs>_follow_link().
51 * As a side effect, dir_namei(), _namei() and follow_link() are now
52 * replaced with a single function lookup_dentry() that can handle all
53 * the special cases of the former code.
55 * With the new dcache, the pathname is stored at each inode, at least as
56 * long as the refcount of the inode is positive. As a side effect, the
57 * size of the dcache depends on the inode cache and thus is dynamic.
59 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
60 * resolution to correspond with current state of the code.
62 * Note that the symlink resolution is not *completely* iterative.
63 * There is still a significant amount of tail- and mid- recursion in
64 * the algorithm. Also, note that <fs>_readlink() is not used in
65 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
66 * may return different results than <fs>_follow_link(). Many virtual
67 * filesystems (including /proc) exhibit this behavior.
70 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
71 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
72 * and the name already exists in form of a symlink, try to create the new
73 * name indicated by the symlink. The old code always complained that the
74 * name already exists, due to not following the symlink even if its target
75 * is nonexistent. The new semantics affects also mknod() and link() when
76 * the name is a symlink pointing to a non-existent name.
78 * I don't know which semantics is the right one, since I have no access
79 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
80 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
81 * "old" one. Personally, I think the new semantics is much more logical.
82 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
83 * file does succeed in both HP-UX and SunOs, but not in Solaris
84 * and in the old Linux semantics.
87 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
88 * semantics. See the comments in "open_namei" and "do_link" below.
90 * [10-Sep-98 Alan Modra] Another symlink change.
93 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
94 * inside the path - always follow.
95 * in the last component in creation/removal/renaming - never follow.
96 * if LOOKUP_FOLLOW passed - follow.
97 * if the pathname has trailing slashes - follow.
98 * otherwise - don't follow.
99 * (applied in that order).
101 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
102 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
103 * During the 2.4 we need to fix the userland stuff depending on it -
104 * hopefully we will be able to get rid of that wart in 2.5. So far only
105 * XEmacs seems to be relying on it...
108 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
109 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
110 * any extra contention...
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
120 void final_putname(struct filename *name)
122 if (name->separate) {
123 __putname(name->name);
130 #define EMBEDDED_NAME_MAX (PATH_MAX - sizeof(struct filename))
132 static struct filename *
133 getname_flags(const char __user *filename, int flags, int *empty)
135 struct filename *result, *err;
140 result = audit_reusename(filename);
144 result = __getname();
145 if (unlikely(!result))
146 return ERR_PTR(-ENOMEM);
149 * First, try to embed the struct filename inside the names_cache
152 kname = (char *)result + sizeof(*result);
153 result->name = kname;
154 result->separate = false;
155 max = EMBEDDED_NAME_MAX;
158 len = strncpy_from_user(kname, filename, max);
159 if (unlikely(len < 0)) {
165 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
166 * separate struct filename so we can dedicate the entire
167 * names_cache allocation for the pathname, and re-do the copy from
170 if (len == EMBEDDED_NAME_MAX && max == EMBEDDED_NAME_MAX) {
171 kname = (char *)result;
173 result = kzalloc(sizeof(*result), GFP_KERNEL);
175 err = ERR_PTR(-ENOMEM);
176 result = (struct filename *)kname;
179 result->name = kname;
180 result->separate = true;
185 /* The empty path is special. */
186 if (unlikely(!len)) {
189 err = ERR_PTR(-ENOENT);
190 if (!(flags & LOOKUP_EMPTY))
194 err = ERR_PTR(-ENAMETOOLONG);
195 if (unlikely(len >= PATH_MAX))
198 result->uptr = filename;
199 result->aname = NULL;
200 audit_getname(result);
204 final_putname(result);
209 getname(const char __user * filename)
211 return getname_flags(filename, 0, NULL);
215 * The "getname_kernel()" interface doesn't do pathnames longer
216 * than EMBEDDED_NAME_MAX. Deal with it - you're a kernel user.
219 getname_kernel(const char * filename)
221 struct filename *result;
225 len = strlen(filename);
226 if (len >= EMBEDDED_NAME_MAX)
227 return ERR_PTR(-ENAMETOOLONG);
229 result = __getname();
230 if (unlikely(!result))
231 return ERR_PTR(-ENOMEM);
233 kname = (char *)result + sizeof(*result);
234 result->name = kname;
236 result->aname = NULL;
237 result->separate = false;
239 strlcpy(kname, filename, EMBEDDED_NAME_MAX);
243 #ifdef CONFIG_AUDITSYSCALL
244 void putname(struct filename *name)
246 if (unlikely(!audit_dummy_context()))
247 return audit_putname(name);
252 static int check_acl(struct inode *inode, int mask)
254 #ifdef CONFIG_FS_POSIX_ACL
255 struct posix_acl *acl;
257 if (mask & MAY_NOT_BLOCK) {
258 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
261 /* no ->get_acl() calls in RCU mode... */
262 if (acl == ACL_NOT_CACHED)
264 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
267 acl = get_acl(inode, ACL_TYPE_ACCESS);
271 int error = posix_acl_permission(inode, acl, mask);
272 posix_acl_release(acl);
281 * This does the basic permission checking
283 static int acl_permission_check(struct inode *inode, int mask)
285 unsigned int mode = inode->i_mode;
287 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
290 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
291 int error = check_acl(inode, mask);
292 if (error != -EAGAIN)
296 if (in_group_p(inode->i_gid))
301 * If the DACs are ok we don't need any capability check.
303 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
309 * generic_permission - check for access rights on a Posix-like filesystem
310 * @inode: inode to check access rights for
311 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
313 * Used to check for read/write/execute permissions on a file.
314 * We use "fsuid" for this, letting us set arbitrary permissions
315 * for filesystem access without changing the "normal" uids which
316 * are used for other things.
318 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
319 * request cannot be satisfied (eg. requires blocking or too much complexity).
320 * It would then be called again in ref-walk mode.
322 int generic_permission(struct inode *inode, int mask)
327 * Do the basic permission checks.
329 ret = acl_permission_check(inode, mask);
333 if (S_ISDIR(inode->i_mode)) {
334 /* DACs are overridable for directories */
335 if (inode_capable(inode, CAP_DAC_OVERRIDE))
337 if (!(mask & MAY_WRITE))
338 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
343 * Read/write DACs are always overridable.
344 * Executable DACs are overridable when there is
345 * at least one exec bit set.
347 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
348 if (inode_capable(inode, CAP_DAC_OVERRIDE))
352 * Searching includes executable on directories, else just read.
354 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
355 if (mask == MAY_READ)
356 if (inode_capable(inode, CAP_DAC_READ_SEARCH))
363 * We _really_ want to just do "generic_permission()" without
364 * even looking at the inode->i_op values. So we keep a cache
365 * flag in inode->i_opflags, that says "this has not special
366 * permission function, use the fast case".
368 static inline int do_inode_permission(struct inode *inode, int mask)
370 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
371 if (likely(inode->i_op->permission))
372 return inode->i_op->permission(inode, mask);
374 /* This gets set once for the inode lifetime */
375 spin_lock(&inode->i_lock);
376 inode->i_opflags |= IOP_FASTPERM;
377 spin_unlock(&inode->i_lock);
379 return generic_permission(inode, mask);
383 * __inode_permission - Check for access rights to a given inode
384 * @inode: Inode to check permission on
385 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
387 * Check for read/write/execute permissions on an inode.
389 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
391 * This does not check for a read-only file system. You probably want
392 * inode_permission().
394 int __inode_permission(struct inode *inode, int mask)
398 if (unlikely(mask & MAY_WRITE)) {
400 * Nobody gets write access to an immutable file.
402 if (IS_IMMUTABLE(inode))
406 retval = do_inode_permission(inode, mask);
410 retval = devcgroup_inode_permission(inode, mask);
414 return security_inode_permission(inode, mask);
418 * sb_permission - Check superblock-level permissions
419 * @sb: Superblock of inode to check permission on
420 * @inode: Inode to check permission on
421 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
423 * Separate out file-system wide checks from inode-specific permission checks.
425 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
427 if (unlikely(mask & MAY_WRITE)) {
428 umode_t mode = inode->i_mode;
430 /* Nobody gets write access to a read-only fs. */
431 if ((sb->s_flags & MS_RDONLY) &&
432 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
439 * inode_permission - Check for access rights to a given inode
440 * @inode: Inode to check permission on
441 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
443 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
444 * this, letting us set arbitrary permissions for filesystem access without
445 * changing the "normal" UIDs which are used for other things.
447 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
449 int inode_permission(struct inode *inode, int mask)
453 retval = sb_permission(inode->i_sb, inode, mask);
456 return __inode_permission(inode, mask);
460 * path_get - get a reference to a path
461 * @path: path to get the reference to
463 * Given a path increment the reference count to the dentry and the vfsmount.
465 void path_get(const struct path *path)
470 EXPORT_SYMBOL(path_get);
473 * path_put - put a reference to a path
474 * @path: path to put the reference to
476 * Given a path decrement the reference count to the dentry and the vfsmount.
478 void path_put(const struct path *path)
483 EXPORT_SYMBOL(path_put);
486 * Path walking has 2 modes, rcu-walk and ref-walk (see
487 * Documentation/filesystems/path-lookup.txt). In situations when we can't
488 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
489 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
490 * mode. Refcounts are grabbed at the last known good point before rcu-walk
491 * got stuck, so ref-walk may continue from there. If this is not successful
492 * (eg. a seqcount has changed), then failure is returned and it's up to caller
493 * to restart the path walk from the beginning in ref-walk mode.
497 * unlazy_walk - try to switch to ref-walk mode.
498 * @nd: nameidata pathwalk data
499 * @dentry: child of nd->path.dentry or NULL
500 * Returns: 0 on success, -ECHILD on failure
502 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
503 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
504 * @nd or NULL. Must be called from rcu-walk context.
506 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
508 struct fs_struct *fs = current->fs;
509 struct dentry *parent = nd->path.dentry;
511 BUG_ON(!(nd->flags & LOOKUP_RCU));
514 * After legitimizing the bastards, terminate_walk()
515 * will do the right thing for non-RCU mode, and all our
516 * subsequent exit cases should rcu_read_unlock()
517 * before returning. Do vfsmount first; if dentry
518 * can't be legitimized, just set nd->path.dentry to NULL
519 * and rely on dput(NULL) being a no-op.
521 if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
523 nd->flags &= ~LOOKUP_RCU;
525 if (!lockref_get_not_dead(&parent->d_lockref)) {
526 nd->path.dentry = NULL;
531 * For a negative lookup, the lookup sequence point is the parents
532 * sequence point, and it only needs to revalidate the parent dentry.
534 * For a positive lookup, we need to move both the parent and the
535 * dentry from the RCU domain to be properly refcounted. And the
536 * sequence number in the dentry validates *both* dentry counters,
537 * since we checked the sequence number of the parent after we got
538 * the child sequence number. So we know the parent must still
539 * be valid if the child sequence number is still valid.
542 if (read_seqcount_retry(&parent->d_seq, nd->seq))
544 BUG_ON(nd->inode != parent->d_inode);
546 if (!lockref_get_not_dead(&dentry->d_lockref))
548 if (read_seqcount_retry(&dentry->d_seq, nd->seq))
553 * Sequence counts matched. Now make sure that the root is
554 * still valid and get it if required.
556 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
557 spin_lock(&fs->lock);
558 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
559 goto unlock_and_drop_dentry;
561 spin_unlock(&fs->lock);
567 unlock_and_drop_dentry:
568 spin_unlock(&fs->lock);
576 if (!(nd->flags & LOOKUP_ROOT))
581 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
583 return dentry->d_op->d_revalidate(dentry, flags);
587 * complete_walk - successful completion of path walk
588 * @nd: pointer nameidata
590 * If we had been in RCU mode, drop out of it and legitimize nd->path.
591 * Revalidate the final result, unless we'd already done that during
592 * the path walk or the filesystem doesn't ask for it. Return 0 on
593 * success, -error on failure. In case of failure caller does not
594 * need to drop nd->path.
596 static int complete_walk(struct nameidata *nd)
598 struct dentry *dentry = nd->path.dentry;
601 if (nd->flags & LOOKUP_RCU) {
602 nd->flags &= ~LOOKUP_RCU;
603 if (!(nd->flags & LOOKUP_ROOT))
606 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
610 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
612 mntput(nd->path.mnt);
615 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
618 mntput(nd->path.mnt);
624 if (likely(!(nd->flags & LOOKUP_JUMPED)))
627 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
630 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
641 static __always_inline void set_root(struct nameidata *nd)
644 get_fs_root(current->fs, &nd->root);
647 static int link_path_walk(const char *, struct nameidata *);
649 static __always_inline void set_root_rcu(struct nameidata *nd)
652 struct fs_struct *fs = current->fs;
656 seq = read_seqcount_begin(&fs->seq);
658 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
659 } while (read_seqcount_retry(&fs->seq, seq));
663 static void path_put_conditional(struct path *path, struct nameidata *nd)
666 if (path->mnt != nd->path.mnt)
670 static inline void path_to_nameidata(const struct path *path,
671 struct nameidata *nd)
673 if (!(nd->flags & LOOKUP_RCU)) {
674 dput(nd->path.dentry);
675 if (nd->path.mnt != path->mnt)
676 mntput(nd->path.mnt);
678 nd->path.mnt = path->mnt;
679 nd->path.dentry = path->dentry;
683 * Helper to directly jump to a known parsed path from ->follow_link,
684 * caller must have taken a reference to path beforehand.
686 void nd_jump_link(struct nameidata *nd, struct path *path)
691 nd->inode = nd->path.dentry->d_inode;
692 nd->flags |= LOOKUP_JUMPED;
695 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
697 struct inode *inode = link->dentry->d_inode;
698 if (inode->i_op->put_link)
699 inode->i_op->put_link(link->dentry, nd, cookie);
703 int sysctl_protected_symlinks __read_mostly = 0;
704 int sysctl_protected_hardlinks __read_mostly = 0;
707 * may_follow_link - Check symlink following for unsafe situations
708 * @link: The path of the symlink
709 * @nd: nameidata pathwalk data
711 * In the case of the sysctl_protected_symlinks sysctl being enabled,
712 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
713 * in a sticky world-writable directory. This is to protect privileged
714 * processes from failing races against path names that may change out
715 * from under them by way of other users creating malicious symlinks.
716 * It will permit symlinks to be followed only when outside a sticky
717 * world-writable directory, or when the uid of the symlink and follower
718 * match, or when the directory owner matches the symlink's owner.
720 * Returns 0 if following the symlink is allowed, -ve on error.
722 static inline int may_follow_link(struct path *link, struct nameidata *nd)
724 const struct inode *inode;
725 const struct inode *parent;
727 if (!sysctl_protected_symlinks)
730 /* Allowed if owner and follower match. */
731 inode = link->dentry->d_inode;
732 if (uid_eq(current_cred()->fsuid, inode->i_uid))
735 /* Allowed if parent directory not sticky and world-writable. */
736 parent = nd->path.dentry->d_inode;
737 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
740 /* Allowed if parent directory and link owner match. */
741 if (uid_eq(parent->i_uid, inode->i_uid))
744 audit_log_link_denied("follow_link", link);
745 path_put_conditional(link, nd);
751 * safe_hardlink_source - Check for safe hardlink conditions
752 * @inode: the source inode to hardlink from
754 * Return false if at least one of the following conditions:
755 * - inode is not a regular file
757 * - inode is setgid and group-exec
758 * - access failure for read and write
760 * Otherwise returns true.
762 static bool safe_hardlink_source(struct inode *inode)
764 umode_t mode = inode->i_mode;
766 /* Special files should not get pinned to the filesystem. */
770 /* Setuid files should not get pinned to the filesystem. */
774 /* Executable setgid files should not get pinned to the filesystem. */
775 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
778 /* Hardlinking to unreadable or unwritable sources is dangerous. */
779 if (inode_permission(inode, MAY_READ | MAY_WRITE))
786 * may_linkat - Check permissions for creating a hardlink
787 * @link: the source to hardlink from
789 * Block hardlink when all of:
790 * - sysctl_protected_hardlinks enabled
791 * - fsuid does not match inode
792 * - hardlink source is unsafe (see safe_hardlink_source() above)
795 * Returns 0 if successful, -ve on error.
797 static int may_linkat(struct path *link)
799 const struct cred *cred;
802 if (!sysctl_protected_hardlinks)
805 cred = current_cred();
806 inode = link->dentry->d_inode;
808 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
809 * otherwise, it must be a safe source.
811 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
815 audit_log_link_denied("linkat", link);
819 static __always_inline int
820 follow_link(struct path *link, struct nameidata *nd, void **p)
822 struct dentry *dentry = link->dentry;
826 BUG_ON(nd->flags & LOOKUP_RCU);
828 if (link->mnt == nd->path.mnt)
832 if (unlikely(current->total_link_count >= 40))
833 goto out_put_nd_path;
836 current->total_link_count++;
839 nd_set_link(nd, NULL);
841 error = security_inode_follow_link(link->dentry, nd);
843 goto out_put_nd_path;
845 nd->last_type = LAST_BIND;
846 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
849 goto out_put_nd_path;
854 if (unlikely(IS_ERR(s))) {
856 put_link(nd, link, *p);
864 nd->flags |= LOOKUP_JUMPED;
866 nd->inode = nd->path.dentry->d_inode;
867 error = link_path_walk(s, nd);
869 put_link(nd, link, *p);
881 static int follow_up_rcu(struct path *path)
883 struct mount *mnt = real_mount(path->mnt);
884 struct mount *parent;
885 struct dentry *mountpoint;
887 parent = mnt->mnt_parent;
888 if (&parent->mnt == path->mnt)
890 mountpoint = mnt->mnt_mountpoint;
891 path->dentry = mountpoint;
892 path->mnt = &parent->mnt;
897 * follow_up - Find the mountpoint of path's vfsmount
899 * Given a path, find the mountpoint of its source file system.
900 * Replace @path with the path of the mountpoint in the parent mount.
903 * Return 1 if we went up a level and 0 if we were already at the
906 int follow_up(struct path *path)
908 struct mount *mnt = real_mount(path->mnt);
909 struct mount *parent;
910 struct dentry *mountpoint;
912 read_seqlock_excl(&mount_lock);
913 parent = mnt->mnt_parent;
915 read_sequnlock_excl(&mount_lock);
918 mntget(&parent->mnt);
919 mountpoint = dget(mnt->mnt_mountpoint);
920 read_sequnlock_excl(&mount_lock);
922 path->dentry = mountpoint;
924 path->mnt = &parent->mnt;
929 * Perform an automount
930 * - return -EISDIR to tell follow_managed() to stop and return the path we
933 static int follow_automount(struct path *path, unsigned flags,
936 struct vfsmount *mnt;
939 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
942 /* We don't want to mount if someone's just doing a stat -
943 * unless they're stat'ing a directory and appended a '/' to
946 * We do, however, want to mount if someone wants to open or
947 * create a file of any type under the mountpoint, wants to
948 * traverse through the mountpoint or wants to open the
949 * mounted directory. Also, autofs may mark negative dentries
950 * as being automount points. These will need the attentions
951 * of the daemon to instantiate them before they can be used.
953 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
954 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
955 path->dentry->d_inode)
958 current->total_link_count++;
959 if (current->total_link_count >= 40)
962 mnt = path->dentry->d_op->d_automount(path);
965 * The filesystem is allowed to return -EISDIR here to indicate
966 * it doesn't want to automount. For instance, autofs would do
967 * this so that its userspace daemon can mount on this dentry.
969 * However, we can only permit this if it's a terminal point in
970 * the path being looked up; if it wasn't then the remainder of
971 * the path is inaccessible and we should say so.
973 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
978 if (!mnt) /* mount collision */
982 /* lock_mount() may release path->mnt on error */
986 err = finish_automount(mnt, path);
990 /* Someone else made a mount here whilst we were busy */
995 path->dentry = dget(mnt->mnt_root);
1004 * Handle a dentry that is managed in some way.
1005 * - Flagged for transit management (autofs)
1006 * - Flagged as mountpoint
1007 * - Flagged as automount point
1009 * This may only be called in refwalk mode.
1011 * Serialization is taken care of in namespace.c
1013 static int follow_managed(struct path *path, unsigned flags)
1015 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1017 bool need_mntput = false;
1020 /* Given that we're not holding a lock here, we retain the value in a
1021 * local variable for each dentry as we look at it so that we don't see
1022 * the components of that value change under us */
1023 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1024 managed &= DCACHE_MANAGED_DENTRY,
1025 unlikely(managed != 0)) {
1026 /* Allow the filesystem to manage the transit without i_mutex
1028 if (managed & DCACHE_MANAGE_TRANSIT) {
1029 BUG_ON(!path->dentry->d_op);
1030 BUG_ON(!path->dentry->d_op->d_manage);
1031 ret = path->dentry->d_op->d_manage(path->dentry, false);
1036 /* Transit to a mounted filesystem. */
1037 if (managed & DCACHE_MOUNTED) {
1038 struct vfsmount *mounted = lookup_mnt(path);
1043 path->mnt = mounted;
1044 path->dentry = dget(mounted->mnt_root);
1049 /* Something is mounted on this dentry in another
1050 * namespace and/or whatever was mounted there in this
1051 * namespace got unmounted before lookup_mnt() could
1055 /* Handle an automount point */
1056 if (managed & DCACHE_NEED_AUTOMOUNT) {
1057 ret = follow_automount(path, flags, &need_mntput);
1063 /* We didn't change the current path point */
1067 if (need_mntput && path->mnt == mnt)
1071 return ret < 0 ? ret : need_mntput;
1074 int follow_down_one(struct path *path)
1076 struct vfsmount *mounted;
1078 mounted = lookup_mnt(path);
1082 path->mnt = mounted;
1083 path->dentry = dget(mounted->mnt_root);
1089 static inline bool managed_dentry_might_block(struct dentry *dentry)
1091 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
1092 dentry->d_op->d_manage(dentry, true) < 0);
1096 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1097 * we meet a managed dentry that would need blocking.
1099 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1100 struct inode **inode)
1103 struct mount *mounted;
1105 * Don't forget we might have a non-mountpoint managed dentry
1106 * that wants to block transit.
1108 if (unlikely(managed_dentry_might_block(path->dentry)))
1111 if (!d_mountpoint(path->dentry))
1114 mounted = __lookup_mnt(path->mnt, path->dentry);
1117 path->mnt = &mounted->mnt;
1118 path->dentry = mounted->mnt.mnt_root;
1119 nd->flags |= LOOKUP_JUMPED;
1120 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1122 * Update the inode too. We don't need to re-check the
1123 * dentry sequence number here after this d_inode read,
1124 * because a mount-point is always pinned.
1126 *inode = path->dentry->d_inode;
1131 static void follow_mount_rcu(struct nameidata *nd)
1133 while (d_mountpoint(nd->path.dentry)) {
1134 struct mount *mounted;
1135 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1138 nd->path.mnt = &mounted->mnt;
1139 nd->path.dentry = mounted->mnt.mnt_root;
1140 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1144 static int follow_dotdot_rcu(struct nameidata *nd)
1149 if (nd->path.dentry == nd->root.dentry &&
1150 nd->path.mnt == nd->root.mnt) {
1153 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1154 struct dentry *old = nd->path.dentry;
1155 struct dentry *parent = old->d_parent;
1158 seq = read_seqcount_begin(&parent->d_seq);
1159 if (read_seqcount_retry(&old->d_seq, nd->seq))
1161 nd->path.dentry = parent;
1165 if (!follow_up_rcu(&nd->path))
1167 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1169 follow_mount_rcu(nd);
1170 nd->inode = nd->path.dentry->d_inode;
1174 nd->flags &= ~LOOKUP_RCU;
1175 if (!(nd->flags & LOOKUP_ROOT))
1176 nd->root.mnt = NULL;
1182 * Follow down to the covering mount currently visible to userspace. At each
1183 * point, the filesystem owning that dentry may be queried as to whether the
1184 * caller is permitted to proceed or not.
1186 int follow_down(struct path *path)
1191 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1192 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1193 /* Allow the filesystem to manage the transit without i_mutex
1196 * We indicate to the filesystem if someone is trying to mount
1197 * something here. This gives autofs the chance to deny anyone
1198 * other than its daemon the right to mount on its
1201 * The filesystem may sleep at this point.
1203 if (managed & DCACHE_MANAGE_TRANSIT) {
1204 BUG_ON(!path->dentry->d_op);
1205 BUG_ON(!path->dentry->d_op->d_manage);
1206 ret = path->dentry->d_op->d_manage(
1207 path->dentry, false);
1209 return ret == -EISDIR ? 0 : ret;
1212 /* Transit to a mounted filesystem. */
1213 if (managed & DCACHE_MOUNTED) {
1214 struct vfsmount *mounted = lookup_mnt(path);
1219 path->mnt = mounted;
1220 path->dentry = dget(mounted->mnt_root);
1224 /* Don't handle automount points here */
1231 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1233 static void follow_mount(struct path *path)
1235 while (d_mountpoint(path->dentry)) {
1236 struct vfsmount *mounted = lookup_mnt(path);
1241 path->mnt = mounted;
1242 path->dentry = dget(mounted->mnt_root);
1246 static void follow_dotdot(struct nameidata *nd)
1251 struct dentry *old = nd->path.dentry;
1253 if (nd->path.dentry == nd->root.dentry &&
1254 nd->path.mnt == nd->root.mnt) {
1257 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1258 /* rare case of legitimate dget_parent()... */
1259 nd->path.dentry = dget_parent(nd->path.dentry);
1263 if (!follow_up(&nd->path))
1266 follow_mount(&nd->path);
1267 nd->inode = nd->path.dentry->d_inode;
1271 * This looks up the name in dcache, possibly revalidates the old dentry and
1272 * allocates a new one if not found or not valid. In the need_lookup argument
1273 * returns whether i_op->lookup is necessary.
1275 * dir->d_inode->i_mutex must be held
1277 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1278 unsigned int flags, bool *need_lookup)
1280 struct dentry *dentry;
1283 *need_lookup = false;
1284 dentry = d_lookup(dir, name);
1286 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1287 error = d_revalidate(dentry, flags);
1288 if (unlikely(error <= 0)) {
1291 return ERR_PTR(error);
1292 } else if (!d_invalidate(dentry)) {
1301 dentry = d_alloc(dir, name);
1302 if (unlikely(!dentry))
1303 return ERR_PTR(-ENOMEM);
1305 *need_lookup = true;
1311 * Call i_op->lookup on the dentry. The dentry must be negative and
1314 * dir->d_inode->i_mutex must be held
1316 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1321 /* Don't create child dentry for a dead directory. */
1322 if (unlikely(IS_DEADDIR(dir))) {
1324 return ERR_PTR(-ENOENT);
1327 old = dir->i_op->lookup(dir, dentry, flags);
1328 if (unlikely(old)) {
1335 static struct dentry *__lookup_hash(struct qstr *name,
1336 struct dentry *base, unsigned int flags)
1339 struct dentry *dentry;
1341 dentry = lookup_dcache(name, base, flags, &need_lookup);
1345 return lookup_real(base->d_inode, dentry, flags);
1349 * It's more convoluted than I'd like it to be, but... it's still fairly
1350 * small and for now I'd prefer to have fast path as straight as possible.
1351 * It _is_ time-critical.
1353 static int lookup_fast(struct nameidata *nd,
1354 struct path *path, struct inode **inode)
1356 struct vfsmount *mnt = nd->path.mnt;
1357 struct dentry *dentry, *parent = nd->path.dentry;
1363 * Rename seqlock is not required here because in the off chance
1364 * of a false negative due to a concurrent rename, we're going to
1365 * do the non-racy lookup, below.
1367 if (nd->flags & LOOKUP_RCU) {
1369 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1374 * This sequence count validates that the inode matches
1375 * the dentry name information from lookup.
1377 *inode = dentry->d_inode;
1378 if (read_seqcount_retry(&dentry->d_seq, seq))
1382 * This sequence count validates that the parent had no
1383 * changes while we did the lookup of the dentry above.
1385 * The memory barrier in read_seqcount_begin of child is
1386 * enough, we can use __read_seqcount_retry here.
1388 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1392 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1393 status = d_revalidate(dentry, nd->flags);
1394 if (unlikely(status <= 0)) {
1395 if (status != -ECHILD)
1401 path->dentry = dentry;
1402 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1404 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1408 if (unlazy_walk(nd, dentry))
1411 dentry = __d_lookup(parent, &nd->last);
1414 if (unlikely(!dentry))
1417 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1418 status = d_revalidate(dentry, nd->flags);
1419 if (unlikely(status <= 0)) {
1424 if (!d_invalidate(dentry)) {
1431 path->dentry = dentry;
1432 err = follow_managed(path, nd->flags);
1433 if (unlikely(err < 0)) {
1434 path_put_conditional(path, nd);
1438 nd->flags |= LOOKUP_JUMPED;
1439 *inode = path->dentry->d_inode;
1446 /* Fast lookup failed, do it the slow way */
1447 static int lookup_slow(struct nameidata *nd, struct path *path)
1449 struct dentry *dentry, *parent;
1452 parent = nd->path.dentry;
1453 BUG_ON(nd->inode != parent->d_inode);
1455 mutex_lock(&parent->d_inode->i_mutex);
1456 dentry = __lookup_hash(&nd->last, parent, nd->flags);
1457 mutex_unlock(&parent->d_inode->i_mutex);
1459 return PTR_ERR(dentry);
1460 path->mnt = nd->path.mnt;
1461 path->dentry = dentry;
1462 err = follow_managed(path, nd->flags);
1463 if (unlikely(err < 0)) {
1464 path_put_conditional(path, nd);
1468 nd->flags |= LOOKUP_JUMPED;
1472 static inline int may_lookup(struct nameidata *nd)
1474 if (nd->flags & LOOKUP_RCU) {
1475 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1478 if (unlazy_walk(nd, NULL))
1481 return inode_permission(nd->inode, MAY_EXEC);
1484 static inline int handle_dots(struct nameidata *nd, int type)
1486 if (type == LAST_DOTDOT) {
1487 if (nd->flags & LOOKUP_RCU) {
1488 if (follow_dotdot_rcu(nd))
1496 static void terminate_walk(struct nameidata *nd)
1498 if (!(nd->flags & LOOKUP_RCU)) {
1499 path_put(&nd->path);
1501 nd->flags &= ~LOOKUP_RCU;
1502 if (!(nd->flags & LOOKUP_ROOT))
1503 nd->root.mnt = NULL;
1509 * Do we need to follow links? We _really_ want to be able
1510 * to do this check without having to look at inode->i_op,
1511 * so we keep a cache of "no, this doesn't need follow_link"
1512 * for the common case.
1514 static inline int should_follow_link(struct dentry *dentry, int follow)
1516 return unlikely(d_is_symlink(dentry)) ? follow : 0;
1519 static inline int walk_component(struct nameidata *nd, struct path *path,
1522 struct inode *inode;
1525 * "." and ".." are special - ".." especially so because it has
1526 * to be able to know about the current root directory and
1527 * parent relationships.
1529 if (unlikely(nd->last_type != LAST_NORM))
1530 return handle_dots(nd, nd->last_type);
1531 err = lookup_fast(nd, path, &inode);
1532 if (unlikely(err)) {
1536 err = lookup_slow(nd, path);
1540 inode = path->dentry->d_inode;
1546 if (should_follow_link(path->dentry, follow)) {
1547 if (nd->flags & LOOKUP_RCU) {
1548 if (unlikely(unlazy_walk(nd, path->dentry))) {
1553 BUG_ON(inode != path->dentry->d_inode);
1556 path_to_nameidata(path, nd);
1561 path_to_nameidata(path, nd);
1568 * This limits recursive symlink follows to 8, while
1569 * limiting consecutive symlinks to 40.
1571 * Without that kind of total limit, nasty chains of consecutive
1572 * symlinks can cause almost arbitrarily long lookups.
1574 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1578 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1579 path_put_conditional(path, nd);
1580 path_put(&nd->path);
1583 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1586 current->link_count++;
1589 struct path link = *path;
1592 res = follow_link(&link, nd, &cookie);
1595 res = walk_component(nd, path, LOOKUP_FOLLOW);
1596 put_link(nd, &link, cookie);
1599 current->link_count--;
1605 * We can do the critical dentry name comparison and hashing
1606 * operations one word at a time, but we are limited to:
1608 * - Architectures with fast unaligned word accesses. We could
1609 * do a "get_unaligned()" if this helps and is sufficiently
1612 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1613 * do not trap on the (extremely unlikely) case of a page
1614 * crossing operation.
1616 * - Furthermore, we need an efficient 64-bit compile for the
1617 * 64-bit case in order to generate the "number of bytes in
1618 * the final mask". Again, that could be replaced with a
1619 * efficient population count instruction or similar.
1621 #ifdef CONFIG_DCACHE_WORD_ACCESS
1623 #include <asm/word-at-a-time.h>
1627 static inline unsigned int fold_hash(unsigned long hash)
1629 hash += hash >> (8*sizeof(int));
1633 #else /* 32-bit case */
1635 #define fold_hash(x) (x)
1639 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1641 unsigned long a, mask;
1642 unsigned long hash = 0;
1645 a = load_unaligned_zeropad(name);
1646 if (len < sizeof(unsigned long))
1650 name += sizeof(unsigned long);
1651 len -= sizeof(unsigned long);
1655 mask = bytemask_from_count(len);
1658 return fold_hash(hash);
1660 EXPORT_SYMBOL(full_name_hash);
1663 * Calculate the length and hash of the path component, and
1664 * return the length of the component;
1666 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1668 unsigned long a, b, adata, bdata, mask, hash, len;
1669 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1672 len = -sizeof(unsigned long);
1674 hash = (hash + a) * 9;
1675 len += sizeof(unsigned long);
1676 a = load_unaligned_zeropad(name+len);
1677 b = a ^ REPEAT_BYTE('/');
1678 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1680 adata = prep_zero_mask(a, adata, &constants);
1681 bdata = prep_zero_mask(b, bdata, &constants);
1683 mask = create_zero_mask(adata | bdata);
1685 hash += a & zero_bytemask(mask);
1686 *hashp = fold_hash(hash);
1688 return len + find_zero(mask);
1693 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1695 unsigned long hash = init_name_hash();
1697 hash = partial_name_hash(*name++, hash);
1698 return end_name_hash(hash);
1700 EXPORT_SYMBOL(full_name_hash);
1703 * We know there's a real path component here of at least
1706 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1708 unsigned long hash = init_name_hash();
1709 unsigned long len = 0, c;
1711 c = (unsigned char)*name;
1714 hash = partial_name_hash(c, hash);
1715 c = (unsigned char)name[len];
1716 } while (c && c != '/');
1717 *hashp = end_name_hash(hash);
1725 * This is the basic name resolution function, turning a pathname into
1726 * the final dentry. We expect 'base' to be positive and a directory.
1728 * Returns 0 and nd will have valid dentry and mnt on success.
1729 * Returns error and drops reference to input namei data on failure.
1731 static int link_path_walk(const char *name, struct nameidata *nd)
1741 /* At this point we know we have a real path component. */
1747 err = may_lookup(nd);
1751 len = hash_name(name, &this.hash);
1756 if (name[0] == '.') switch (len) {
1758 if (name[1] == '.') {
1760 nd->flags |= LOOKUP_JUMPED;
1766 if (likely(type == LAST_NORM)) {
1767 struct dentry *parent = nd->path.dentry;
1768 nd->flags &= ~LOOKUP_JUMPED;
1769 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1770 err = parent->d_op->d_hash(parent, &this);
1777 nd->last_type = type;
1782 * If it wasn't NUL, we know it was '/'. Skip that
1783 * slash, and continue until no more slashes.
1787 } while (unlikely(name[len] == '/'));
1793 err = walk_component(nd, &next, LOOKUP_FOLLOW);
1798 err = nested_symlink(&next, nd);
1802 if (!d_is_directory(nd->path.dentry)) {
1811 static int path_init(int dfd, const char *name, unsigned int flags,
1812 struct nameidata *nd, struct file **fp)
1816 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1817 nd->flags = flags | LOOKUP_JUMPED;
1819 if (flags & LOOKUP_ROOT) {
1820 struct dentry *root = nd->root.dentry;
1821 struct inode *inode = root->d_inode;
1823 if (!d_is_directory(root))
1825 retval = inode_permission(inode, MAY_EXEC);
1829 nd->path = nd->root;
1831 if (flags & LOOKUP_RCU) {
1833 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1834 nd->m_seq = read_seqbegin(&mount_lock);
1836 path_get(&nd->path);
1841 nd->root.mnt = NULL;
1843 nd->m_seq = read_seqbegin(&mount_lock);
1845 if (flags & LOOKUP_RCU) {
1850 path_get(&nd->root);
1852 nd->path = nd->root;
1853 } else if (dfd == AT_FDCWD) {
1854 if (flags & LOOKUP_RCU) {
1855 struct fs_struct *fs = current->fs;
1861 seq = read_seqcount_begin(&fs->seq);
1863 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1864 } while (read_seqcount_retry(&fs->seq, seq));
1866 get_fs_pwd(current->fs, &nd->path);
1869 /* Caller must check execute permissions on the starting path component */
1870 struct fd f = fdget_raw(dfd);
1871 struct dentry *dentry;
1876 dentry = f.file->f_path.dentry;
1879 if (!d_is_directory(dentry)) {
1885 nd->path = f.file->f_path;
1886 if (flags & LOOKUP_RCU) {
1889 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1892 path_get(&nd->path);
1897 nd->inode = nd->path.dentry->d_inode;
1901 static inline int lookup_last(struct nameidata *nd, struct path *path)
1903 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1904 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1906 nd->flags &= ~LOOKUP_PARENT;
1907 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
1910 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1911 static int path_lookupat(int dfd, const char *name,
1912 unsigned int flags, struct nameidata *nd)
1914 struct file *base = NULL;
1919 * Path walking is largely split up into 2 different synchronisation
1920 * schemes, rcu-walk and ref-walk (explained in
1921 * Documentation/filesystems/path-lookup.txt). These share much of the
1922 * path walk code, but some things particularly setup, cleanup, and
1923 * following mounts are sufficiently divergent that functions are
1924 * duplicated. Typically there is a function foo(), and its RCU
1925 * analogue, foo_rcu().
1927 * -ECHILD is the error number of choice (just to avoid clashes) that
1928 * is returned if some aspect of an rcu-walk fails. Such an error must
1929 * be handled by restarting a traditional ref-walk (which will always
1930 * be able to complete).
1932 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1937 current->total_link_count = 0;
1938 err = link_path_walk(name, nd);
1940 if (!err && !(flags & LOOKUP_PARENT)) {
1941 err = lookup_last(nd, &path);
1944 struct path link = path;
1945 err = may_follow_link(&link, nd);
1948 nd->flags |= LOOKUP_PARENT;
1949 err = follow_link(&link, nd, &cookie);
1952 err = lookup_last(nd, &path);
1953 put_link(nd, &link, cookie);
1958 err = complete_walk(nd);
1960 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1961 if (!d_is_directory(nd->path.dentry)) {
1962 path_put(&nd->path);
1970 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1971 path_put(&nd->root);
1972 nd->root.mnt = NULL;
1977 static int filename_lookup(int dfd, struct filename *name,
1978 unsigned int flags, struct nameidata *nd)
1980 int retval = path_lookupat(dfd, name->name, flags | LOOKUP_RCU, nd);
1981 if (unlikely(retval == -ECHILD))
1982 retval = path_lookupat(dfd, name->name, flags, nd);
1983 if (unlikely(retval == -ESTALE))
1984 retval = path_lookupat(dfd, name->name,
1985 flags | LOOKUP_REVAL, nd);
1987 if (likely(!retval))
1988 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
1992 static int do_path_lookup(int dfd, const char *name,
1993 unsigned int flags, struct nameidata *nd)
1995 struct filename filename = { .name = name };
1997 return filename_lookup(dfd, &filename, flags, nd);
2000 /* does lookup, returns the object with parent locked */
2001 struct dentry *kern_path_locked(const char *name, struct path *path)
2003 struct nameidata nd;
2005 int err = do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, &nd);
2007 return ERR_PTR(err);
2008 if (nd.last_type != LAST_NORM) {
2010 return ERR_PTR(-EINVAL);
2012 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2013 d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2015 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2023 int kern_path(const char *name, unsigned int flags, struct path *path)
2025 struct nameidata nd;
2026 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
2033 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2034 * @dentry: pointer to dentry of the base directory
2035 * @mnt: pointer to vfs mount of the base directory
2036 * @name: pointer to file name
2037 * @flags: lookup flags
2038 * @path: pointer to struct path to fill
2040 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2041 const char *name, unsigned int flags,
2044 struct nameidata nd;
2046 nd.root.dentry = dentry;
2048 BUG_ON(flags & LOOKUP_PARENT);
2049 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
2050 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
2057 * Restricted form of lookup. Doesn't follow links, single-component only,
2058 * needs parent already locked. Doesn't follow mounts.
2061 static struct dentry *lookup_hash(struct nameidata *nd)
2063 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2067 * lookup_one_len - filesystem helper to lookup single pathname component
2068 * @name: pathname component to lookup
2069 * @base: base directory to lookup from
2070 * @len: maximum length @len should be interpreted to
2072 * Note that this routine is purely a helper for filesystem usage and should
2073 * not be called by generic code. Also note that by using this function the
2074 * nameidata argument is passed to the filesystem methods and a filesystem
2075 * using this helper needs to be prepared for that.
2077 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2083 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2087 this.hash = full_name_hash(name, len);
2089 return ERR_PTR(-EACCES);
2091 if (unlikely(name[0] == '.')) {
2092 if (len < 2 || (len == 2 && name[1] == '.'))
2093 return ERR_PTR(-EACCES);
2097 c = *(const unsigned char *)name++;
2098 if (c == '/' || c == '\0')
2099 return ERR_PTR(-EACCES);
2102 * See if the low-level filesystem might want
2103 * to use its own hash..
2105 if (base->d_flags & DCACHE_OP_HASH) {
2106 int err = base->d_op->d_hash(base, &this);
2108 return ERR_PTR(err);
2111 err = inode_permission(base->d_inode, MAY_EXEC);
2113 return ERR_PTR(err);
2115 return __lookup_hash(&this, base, 0);
2118 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2119 struct path *path, int *empty)
2121 struct nameidata nd;
2122 struct filename *tmp = getname_flags(name, flags, empty);
2123 int err = PTR_ERR(tmp);
2126 BUG_ON(flags & LOOKUP_PARENT);
2128 err = filename_lookup(dfd, tmp, flags, &nd);
2136 int user_path_at(int dfd, const char __user *name, unsigned flags,
2139 return user_path_at_empty(dfd, name, flags, path, NULL);
2143 * NB: most callers don't do anything directly with the reference to the
2144 * to struct filename, but the nd->last pointer points into the name string
2145 * allocated by getname. So we must hold the reference to it until all
2146 * path-walking is complete.
2148 static struct filename *
2149 user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2152 struct filename *s = getname(path);
2155 /* only LOOKUP_REVAL is allowed in extra flags */
2156 flags &= LOOKUP_REVAL;
2161 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2164 return ERR_PTR(error);
2171 * mountpoint_last - look up last component for umount
2172 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2173 * @path: pointer to container for result
2175 * This is a special lookup_last function just for umount. In this case, we
2176 * need to resolve the path without doing any revalidation.
2178 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2179 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2180 * in almost all cases, this lookup will be served out of the dcache. The only
2181 * cases where it won't are if nd->last refers to a symlink or the path is
2182 * bogus and it doesn't exist.
2185 * -error: if there was an error during lookup. This includes -ENOENT if the
2186 * lookup found a negative dentry. The nd->path reference will also be
2189 * 0: if we successfully resolved nd->path and found it to not to be a
2190 * symlink that needs to be followed. "path" will also be populated.
2191 * The nd->path reference will also be put.
2193 * 1: if we successfully resolved nd->last and found it to be a symlink
2194 * that needs to be followed. "path" will be populated with the path
2195 * to the link, and nd->path will *not* be put.
2198 mountpoint_last(struct nameidata *nd, struct path *path)
2201 struct dentry *dentry;
2202 struct dentry *dir = nd->path.dentry;
2204 /* If we're in rcuwalk, drop out of it to handle last component */
2205 if (nd->flags & LOOKUP_RCU) {
2206 if (unlazy_walk(nd, NULL)) {
2212 nd->flags &= ~LOOKUP_PARENT;
2214 if (unlikely(nd->last_type != LAST_NORM)) {
2215 error = handle_dots(nd, nd->last_type);
2218 dentry = dget(nd->path.dentry);
2222 mutex_lock(&dir->d_inode->i_mutex);
2223 dentry = d_lookup(dir, &nd->last);
2226 * No cached dentry. Mounted dentries are pinned in the cache,
2227 * so that means that this dentry is probably a symlink or the
2228 * path doesn't actually point to a mounted dentry.
2230 dentry = d_alloc(dir, &nd->last);
2233 mutex_unlock(&dir->d_inode->i_mutex);
2236 dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2237 error = PTR_ERR(dentry);
2238 if (IS_ERR(dentry)) {
2239 mutex_unlock(&dir->d_inode->i_mutex);
2243 mutex_unlock(&dir->d_inode->i_mutex);
2246 if (!dentry->d_inode) {
2251 path->dentry = dentry;
2252 path->mnt = mntget(nd->path.mnt);
2253 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2263 * path_mountpoint - look up a path to be umounted
2264 * @dfd: directory file descriptor to start walk from
2265 * @name: full pathname to walk
2266 * @path: pointer to container for result
2267 * @flags: lookup flags
2269 * Look up the given name, but don't attempt to revalidate the last component.
2270 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2273 path_mountpoint(int dfd, const char *name, struct path *path, unsigned int flags)
2275 struct file *base = NULL;
2276 struct nameidata nd;
2279 err = path_init(dfd, name, flags | LOOKUP_PARENT, &nd, &base);
2283 current->total_link_count = 0;
2284 err = link_path_walk(name, &nd);
2288 err = mountpoint_last(&nd, path);
2291 struct path link = *path;
2292 err = may_follow_link(&link, &nd);
2295 nd.flags |= LOOKUP_PARENT;
2296 err = follow_link(&link, &nd, &cookie);
2299 err = mountpoint_last(&nd, path);
2300 put_link(&nd, &link, cookie);
2306 if (nd.root.mnt && !(nd.flags & LOOKUP_ROOT))
2313 filename_mountpoint(int dfd, struct filename *s, struct path *path,
2316 int error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_RCU);
2317 if (unlikely(error == -ECHILD))
2318 error = path_mountpoint(dfd, s->name, path, flags);
2319 if (unlikely(error == -ESTALE))
2320 error = path_mountpoint(dfd, s->name, path, flags | LOOKUP_REVAL);
2322 audit_inode(s, path->dentry, 0);
2327 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2328 * @dfd: directory file descriptor
2329 * @name: pathname from userland
2330 * @flags: lookup flags
2331 * @path: pointer to container to hold result
2333 * A umount is a special case for path walking. We're not actually interested
2334 * in the inode in this situation, and ESTALE errors can be a problem. We
2335 * simply want track down the dentry and vfsmount attached at the mountpoint
2336 * and avoid revalidating the last component.
2338 * Returns 0 and populates "path" on success.
2341 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2344 struct filename *s = getname(name);
2348 error = filename_mountpoint(dfd, s, path, flags);
2354 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2357 struct filename s = {.name = name};
2358 return filename_mountpoint(dfd, &s, path, flags);
2360 EXPORT_SYMBOL(kern_path_mountpoint);
2363 * It's inline, so penalty for filesystems that don't use sticky bit is
2366 static inline int check_sticky(struct inode *dir, struct inode *inode)
2368 kuid_t fsuid = current_fsuid();
2370 if (!(dir->i_mode & S_ISVTX))
2372 if (uid_eq(inode->i_uid, fsuid))
2374 if (uid_eq(dir->i_uid, fsuid))
2376 return !inode_capable(inode, CAP_FOWNER);
2380 * Check whether we can remove a link victim from directory dir, check
2381 * whether the type of victim is right.
2382 * 1. We can't do it if dir is read-only (done in permission())
2383 * 2. We should have write and exec permissions on dir
2384 * 3. We can't remove anything from append-only dir
2385 * 4. We can't do anything with immutable dir (done in permission())
2386 * 5. If the sticky bit on dir is set we should either
2387 * a. be owner of dir, or
2388 * b. be owner of victim, or
2389 * c. have CAP_FOWNER capability
2390 * 6. If the victim is append-only or immutable we can't do antyhing with
2391 * links pointing to it.
2392 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2393 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2394 * 9. We can't remove a root or mountpoint.
2395 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2396 * nfs_async_unlink().
2398 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2400 struct inode *inode = victim->d_inode;
2403 if (d_is_negative(victim))
2407 BUG_ON(victim->d_parent->d_inode != dir);
2408 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2410 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2416 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2417 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2420 if (!d_is_directory(victim) && !d_is_autodir(victim))
2422 if (IS_ROOT(victim))
2424 } else if (d_is_directory(victim) || d_is_autodir(victim))
2426 if (IS_DEADDIR(dir))
2428 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2433 /* Check whether we can create an object with dentry child in directory
2435 * 1. We can't do it if child already exists (open has special treatment for
2436 * this case, but since we are inlined it's OK)
2437 * 2. We can't do it if dir is read-only (done in permission())
2438 * 3. We should have write and exec permissions on dir
2439 * 4. We can't do it if dir is immutable (done in permission())
2441 static inline int may_create(struct inode *dir, struct dentry *child)
2443 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2446 if (IS_DEADDIR(dir))
2448 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2452 * p1 and p2 should be directories on the same fs.
2454 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2459 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2463 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2465 p = d_ancestor(p2, p1);
2467 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2468 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2472 p = d_ancestor(p1, p2);
2474 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2475 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2479 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2480 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2484 void unlock_rename(struct dentry *p1, struct dentry *p2)
2486 mutex_unlock(&p1->d_inode->i_mutex);
2488 mutex_unlock(&p2->d_inode->i_mutex);
2489 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2493 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2496 int error = may_create(dir, dentry);
2500 if (!dir->i_op->create)
2501 return -EACCES; /* shouldn't it be ENOSYS? */
2504 error = security_inode_create(dir, dentry, mode);
2507 error = dir->i_op->create(dir, dentry, mode, want_excl);
2509 fsnotify_create(dir, dentry);
2513 static int may_open(struct path *path, int acc_mode, int flag)
2515 struct dentry *dentry = path->dentry;
2516 struct inode *inode = dentry->d_inode;
2526 switch (inode->i_mode & S_IFMT) {
2530 if (acc_mode & MAY_WRITE)
2535 if (path->mnt->mnt_flags & MNT_NODEV)
2544 error = inode_permission(inode, acc_mode);
2549 * An append-only file must be opened in append mode for writing.
2551 if (IS_APPEND(inode)) {
2552 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2558 /* O_NOATIME can only be set by the owner or superuser */
2559 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2565 static int handle_truncate(struct file *filp)
2567 struct path *path = &filp->f_path;
2568 struct inode *inode = path->dentry->d_inode;
2569 int error = get_write_access(inode);
2573 * Refuse to truncate files with mandatory locks held on them.
2575 error = locks_verify_locked(inode);
2577 error = security_path_truncate(path);
2579 error = do_truncate(path->dentry, 0,
2580 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2583 put_write_access(inode);
2587 static inline int open_to_namei_flags(int flag)
2589 if ((flag & O_ACCMODE) == 3)
2594 static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2596 int error = security_path_mknod(dir, dentry, mode, 0);
2600 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2604 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2608 * Attempt to atomically look up, create and open a file from a negative
2611 * Returns 0 if successful. The file will have been created and attached to
2612 * @file by the filesystem calling finish_open().
2614 * Returns 1 if the file was looked up only or didn't need creating. The
2615 * caller will need to perform the open themselves. @path will have been
2616 * updated to point to the new dentry. This may be negative.
2618 * Returns an error code otherwise.
2620 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2621 struct path *path, struct file *file,
2622 const struct open_flags *op,
2623 bool got_write, bool need_lookup,
2626 struct inode *dir = nd->path.dentry->d_inode;
2627 unsigned open_flag = open_to_namei_flags(op->open_flag);
2631 int create_error = 0;
2632 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2635 BUG_ON(dentry->d_inode);
2637 /* Don't create child dentry for a dead directory. */
2638 if (unlikely(IS_DEADDIR(dir))) {
2644 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2645 mode &= ~current_umask();
2647 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2649 open_flag &= ~O_TRUNC;
2652 * Checking write permission is tricky, bacuse we don't know if we are
2653 * going to actually need it: O_CREAT opens should work as long as the
2654 * file exists. But checking existence breaks atomicity. The trick is
2655 * to check access and if not granted clear O_CREAT from the flags.
2657 * Another problem is returing the "right" error value (e.g. for an
2658 * O_EXCL open we want to return EEXIST not EROFS).
2660 if (((open_flag & (O_CREAT | O_TRUNC)) ||
2661 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2662 if (!(open_flag & O_CREAT)) {
2664 * No O_CREATE -> atomicity not a requirement -> fall
2665 * back to lookup + open
2668 } else if (open_flag & (O_EXCL | O_TRUNC)) {
2669 /* Fall back and fail with the right error */
2670 create_error = -EROFS;
2673 /* No side effects, safe to clear O_CREAT */
2674 create_error = -EROFS;
2675 open_flag &= ~O_CREAT;
2679 if (open_flag & O_CREAT) {
2680 error = may_o_create(&nd->path, dentry, mode);
2682 create_error = error;
2683 if (open_flag & O_EXCL)
2685 open_flag &= ~O_CREAT;
2689 if (nd->flags & LOOKUP_DIRECTORY)
2690 open_flag |= O_DIRECTORY;
2692 file->f_path.dentry = DENTRY_NOT_SET;
2693 file->f_path.mnt = nd->path.mnt;
2694 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2697 if (create_error && error == -ENOENT)
2698 error = create_error;
2702 if (error) { /* returned 1, that is */
2703 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2707 if (file->f_path.dentry) {
2709 dentry = file->f_path.dentry;
2711 if (*opened & FILE_CREATED)
2712 fsnotify_create(dir, dentry);
2713 if (!dentry->d_inode) {
2714 WARN_ON(*opened & FILE_CREATED);
2716 error = create_error;
2720 if (excl && !(*opened & FILE_CREATED)) {
2729 * We didn't have the inode before the open, so check open permission
2732 acc_mode = op->acc_mode;
2733 if (*opened & FILE_CREATED) {
2734 WARN_ON(!(open_flag & O_CREAT));
2735 fsnotify_create(dir, dentry);
2736 acc_mode = MAY_OPEN;
2738 error = may_open(&file->f_path, acc_mode, open_flag);
2748 dentry = lookup_real(dir, dentry, nd->flags);
2750 return PTR_ERR(dentry);
2753 int open_flag = op->open_flag;
2755 error = create_error;
2756 if ((open_flag & O_EXCL)) {
2757 if (!dentry->d_inode)
2759 } else if (!dentry->d_inode) {
2761 } else if ((open_flag & O_TRUNC) &&
2762 S_ISREG(dentry->d_inode->i_mode)) {
2765 /* will fail later, go on to get the right error */
2769 path->dentry = dentry;
2770 path->mnt = nd->path.mnt;
2775 * Look up and maybe create and open the last component.
2777 * Must be called with i_mutex held on parent.
2779 * Returns 0 if the file was successfully atomically created (if necessary) and
2780 * opened. In this case the file will be returned attached to @file.
2782 * Returns 1 if the file was not completely opened at this time, though lookups
2783 * and creations will have been performed and the dentry returned in @path will
2784 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
2785 * specified then a negative dentry may be returned.
2787 * An error code is returned otherwise.
2789 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2790 * cleared otherwise prior to returning.
2792 static int lookup_open(struct nameidata *nd, struct path *path,
2794 const struct open_flags *op,
2795 bool got_write, int *opened)
2797 struct dentry *dir = nd->path.dentry;
2798 struct inode *dir_inode = dir->d_inode;
2799 struct dentry *dentry;
2803 *opened &= ~FILE_CREATED;
2804 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2806 return PTR_ERR(dentry);
2808 /* Cached positive dentry: will open in f_op->open */
2809 if (!need_lookup && dentry->d_inode)
2812 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2813 return atomic_open(nd, dentry, path, file, op, got_write,
2814 need_lookup, opened);
2818 BUG_ON(dentry->d_inode);
2820 dentry = lookup_real(dir_inode, dentry, nd->flags);
2822 return PTR_ERR(dentry);
2825 /* Negative dentry, just create the file */
2826 if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2827 umode_t mode = op->mode;
2828 if (!IS_POSIXACL(dir->d_inode))
2829 mode &= ~current_umask();
2831 * This write is needed to ensure that a
2832 * rw->ro transition does not occur between
2833 * the time when the file is created and when
2834 * a permanent write count is taken through
2835 * the 'struct file' in finish_open().
2841 *opened |= FILE_CREATED;
2842 error = security_path_mknod(&nd->path, dentry, mode, 0);
2845 error = vfs_create(dir->d_inode, dentry, mode,
2846 nd->flags & LOOKUP_EXCL);
2851 path->dentry = dentry;
2852 path->mnt = nd->path.mnt;
2861 * Handle the last step of open()
2863 static int do_last(struct nameidata *nd, struct path *path,
2864 struct file *file, const struct open_flags *op,
2865 int *opened, struct filename *name)
2867 struct dentry *dir = nd->path.dentry;
2868 int open_flag = op->open_flag;
2869 bool will_truncate = (open_flag & O_TRUNC) != 0;
2870 bool got_write = false;
2871 int acc_mode = op->acc_mode;
2872 struct inode *inode;
2873 bool symlink_ok = false;
2874 struct path save_parent = { .dentry = NULL, .mnt = NULL };
2875 bool retried = false;
2878 nd->flags &= ~LOOKUP_PARENT;
2879 nd->flags |= op->intent;
2881 if (nd->last_type != LAST_NORM) {
2882 error = handle_dots(nd, nd->last_type);
2888 if (!(open_flag & O_CREAT)) {
2889 if (nd->last.name[nd->last.len])
2890 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2891 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2893 /* we _can_ be in RCU mode here */
2894 error = lookup_fast(nd, path, &inode);
2901 BUG_ON(nd->inode != dir->d_inode);
2903 /* create side of things */
2905 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2906 * has been cleared when we got to the last component we are
2909 error = complete_walk(nd);
2913 audit_inode(name, dir, LOOKUP_PARENT);
2915 /* trailing slashes? */
2916 if (nd->last.name[nd->last.len])
2921 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
2922 error = mnt_want_write(nd->path.mnt);
2926 * do _not_ fail yet - we might not need that or fail with
2927 * a different error; let lookup_open() decide; we'll be
2928 * dropping this one anyway.
2931 mutex_lock(&dir->d_inode->i_mutex);
2932 error = lookup_open(nd, path, file, op, got_write, opened);
2933 mutex_unlock(&dir->d_inode->i_mutex);
2939 if ((*opened & FILE_CREATED) ||
2940 !S_ISREG(file_inode(file)->i_mode))
2941 will_truncate = false;
2943 audit_inode(name, file->f_path.dentry, 0);
2947 if (*opened & FILE_CREATED) {
2948 /* Don't check for write permission, don't truncate */
2949 open_flag &= ~O_TRUNC;
2950 will_truncate = false;
2951 acc_mode = MAY_OPEN;
2952 path_to_nameidata(path, nd);
2953 goto finish_open_created;
2957 * create/update audit record if it already exists.
2959 if (d_is_positive(path->dentry))
2960 audit_inode(name, path->dentry, 0);
2963 * If atomic_open() acquired write access it is dropped now due to
2964 * possible mount and symlink following (this might be optimized away if
2968 mnt_drop_write(nd->path.mnt);
2973 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
2976 error = follow_managed(path, nd->flags);
2981 nd->flags |= LOOKUP_JUMPED;
2983 BUG_ON(nd->flags & LOOKUP_RCU);
2984 inode = path->dentry->d_inode;
2986 /* we _can_ be in RCU mode here */
2988 if (d_is_negative(path->dentry)) {
2989 path_to_nameidata(path, nd);
2993 if (should_follow_link(path->dentry, !symlink_ok)) {
2994 if (nd->flags & LOOKUP_RCU) {
2995 if (unlikely(unlazy_walk(nd, path->dentry))) {
3000 BUG_ON(inode != path->dentry->d_inode);
3004 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3005 path_to_nameidata(path, nd);
3007 save_parent.dentry = nd->path.dentry;
3008 save_parent.mnt = mntget(path->mnt);
3009 nd->path.dentry = path->dentry;
3013 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3015 error = complete_walk(nd);
3017 path_put(&save_parent);
3020 audit_inode(name, nd->path.dentry, 0);
3022 if ((open_flag & O_CREAT) &&
3023 (d_is_directory(nd->path.dentry) || d_is_autodir(nd->path.dentry)))
3026 if ((nd->flags & LOOKUP_DIRECTORY) && !d_is_directory(nd->path.dentry))
3028 if (!S_ISREG(nd->inode->i_mode))
3029 will_truncate = false;
3031 if (will_truncate) {
3032 error = mnt_want_write(nd->path.mnt);
3037 finish_open_created:
3038 error = may_open(&nd->path, acc_mode, open_flag);
3041 file->f_path.mnt = nd->path.mnt;
3042 error = finish_open(file, nd->path.dentry, NULL, opened);
3044 if (error == -EOPENSTALE)
3049 error = open_check_o_direct(file);
3052 error = ima_file_check(file, op->acc_mode);
3056 if (will_truncate) {
3057 error = handle_truncate(file);
3063 mnt_drop_write(nd->path.mnt);
3064 path_put(&save_parent);
3069 path_put_conditional(path, nd);
3076 /* If no saved parent or already retried then can't retry */
3077 if (!save_parent.dentry || retried)
3080 BUG_ON(save_parent.dentry != dir);
3081 path_put(&nd->path);
3082 nd->path = save_parent;
3083 nd->inode = dir->d_inode;
3084 save_parent.mnt = NULL;
3085 save_parent.dentry = NULL;
3087 mnt_drop_write(nd->path.mnt);
3094 static int do_tmpfile(int dfd, struct filename *pathname,
3095 struct nameidata *nd, int flags,
3096 const struct open_flags *op,
3097 struct file *file, int *opened)
3099 static const struct qstr name = QSTR_INIT("/", 1);
3100 struct dentry *dentry, *child;
3102 int error = path_lookupat(dfd, pathname->name,
3103 flags | LOOKUP_DIRECTORY, nd);
3104 if (unlikely(error))
3106 error = mnt_want_write(nd->path.mnt);
3107 if (unlikely(error))
3109 /* we want directory to be writable */
3110 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3113 dentry = nd->path.dentry;
3114 dir = dentry->d_inode;
3115 if (!dir->i_op->tmpfile) {
3116 error = -EOPNOTSUPP;
3119 child = d_alloc(dentry, &name);
3120 if (unlikely(!child)) {
3124 nd->flags &= ~LOOKUP_DIRECTORY;
3125 nd->flags |= op->intent;
3126 dput(nd->path.dentry);
3127 nd->path.dentry = child;
3128 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3131 audit_inode(pathname, nd->path.dentry, 0);
3132 error = may_open(&nd->path, op->acc_mode, op->open_flag);
3135 file->f_path.mnt = nd->path.mnt;
3136 error = finish_open(file, nd->path.dentry, NULL, opened);
3139 error = open_check_o_direct(file);
3142 } else if (!(op->open_flag & O_EXCL)) {
3143 struct inode *inode = file_inode(file);
3144 spin_lock(&inode->i_lock);
3145 inode->i_state |= I_LINKABLE;
3146 spin_unlock(&inode->i_lock);
3149 mnt_drop_write(nd->path.mnt);
3151 path_put(&nd->path);
3155 static struct file *path_openat(int dfd, struct filename *pathname,
3156 struct nameidata *nd, const struct open_flags *op, int flags)
3158 struct file *base = NULL;
3164 file = get_empty_filp();
3168 file->f_flags = op->open_flag;
3170 if (unlikely(file->f_flags & __O_TMPFILE)) {
3171 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3175 error = path_init(dfd, pathname->name, flags | LOOKUP_PARENT, nd, &base);
3176 if (unlikely(error))
3179 current->total_link_count = 0;
3180 error = link_path_walk(pathname->name, nd);
3181 if (unlikely(error))
3184 error = do_last(nd, &path, file, op, &opened, pathname);
3185 while (unlikely(error > 0)) { /* trailing symlink */
3186 struct path link = path;
3188 if (!(nd->flags & LOOKUP_FOLLOW)) {
3189 path_put_conditional(&path, nd);
3190 path_put(&nd->path);
3194 error = may_follow_link(&link, nd);
3195 if (unlikely(error))
3197 nd->flags |= LOOKUP_PARENT;
3198 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3199 error = follow_link(&link, nd, &cookie);
3200 if (unlikely(error))
3202 error = do_last(nd, &path, file, op, &opened, pathname);
3203 put_link(nd, &link, cookie);
3206 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
3207 path_put(&nd->root);
3210 if (!(opened & FILE_OPENED)) {
3214 if (unlikely(error)) {
3215 if (error == -EOPENSTALE) {
3216 if (flags & LOOKUP_RCU)
3221 file = ERR_PTR(error);
3226 struct file *do_filp_open(int dfd, struct filename *pathname,
3227 const struct open_flags *op)
3229 struct nameidata nd;
3230 int flags = op->lookup_flags;
3233 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3234 if (unlikely(filp == ERR_PTR(-ECHILD)))
3235 filp = path_openat(dfd, pathname, &nd, op, flags);
3236 if (unlikely(filp == ERR_PTR(-ESTALE)))
3237 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3241 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3242 const char *name, const struct open_flags *op)
3244 struct nameidata nd;
3246 struct filename filename = { .name = name };
3247 int flags = op->lookup_flags | LOOKUP_ROOT;
3250 nd.root.dentry = dentry;
3252 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3253 return ERR_PTR(-ELOOP);
3255 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_RCU);
3256 if (unlikely(file == ERR_PTR(-ECHILD)))
3257 file = path_openat(-1, &filename, &nd, op, flags);
3258 if (unlikely(file == ERR_PTR(-ESTALE)))
3259 file = path_openat(-1, &filename, &nd, op, flags | LOOKUP_REVAL);
3263 struct dentry *kern_path_create(int dfd, const char *pathname,
3264 struct path *path, unsigned int lookup_flags)
3266 struct dentry *dentry = ERR_PTR(-EEXIST);
3267 struct nameidata nd;
3270 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3273 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3274 * other flags passed in are ignored!
3276 lookup_flags &= LOOKUP_REVAL;
3278 error = do_path_lookup(dfd, pathname, LOOKUP_PARENT|lookup_flags, &nd);
3280 return ERR_PTR(error);
3283 * Yucky last component or no last component at all?
3284 * (foo/., foo/.., /////)
3286 if (nd.last_type != LAST_NORM)
3288 nd.flags &= ~LOOKUP_PARENT;
3289 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3291 /* don't fail immediately if it's r/o, at least try to report other errors */
3292 err2 = mnt_want_write(nd.path.mnt);
3294 * Do the final lookup.
3296 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3297 dentry = lookup_hash(&nd);
3302 if (d_is_positive(dentry))
3306 * Special case - lookup gave negative, but... we had foo/bar/
3307 * From the vfs_mknod() POV we just have a negative dentry -
3308 * all is fine. Let's be bastards - you had / on the end, you've
3309 * been asking for (non-existent) directory. -ENOENT for you.
3311 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3315 if (unlikely(err2)) {
3323 dentry = ERR_PTR(error);
3325 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3327 mnt_drop_write(nd.path.mnt);
3332 EXPORT_SYMBOL(kern_path_create);
3334 void done_path_create(struct path *path, struct dentry *dentry)
3337 mutex_unlock(&path->dentry->d_inode->i_mutex);
3338 mnt_drop_write(path->mnt);
3341 EXPORT_SYMBOL(done_path_create);
3343 struct dentry *user_path_create(int dfd, const char __user *pathname,
3344 struct path *path, unsigned int lookup_flags)
3346 struct filename *tmp = getname(pathname);
3349 return ERR_CAST(tmp);
3350 res = kern_path_create(dfd, tmp->name, path, lookup_flags);
3354 EXPORT_SYMBOL(user_path_create);
3356 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3358 int error = may_create(dir, dentry);
3363 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3366 if (!dir->i_op->mknod)
3369 error = devcgroup_inode_mknod(mode, dev);
3373 error = security_inode_mknod(dir, dentry, mode, dev);
3377 error = dir->i_op->mknod(dir, dentry, mode, dev);
3379 fsnotify_create(dir, dentry);
3383 static int may_mknod(umode_t mode)
3385 switch (mode & S_IFMT) {
3391 case 0: /* zero mode translates to S_IFREG */
3400 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3403 struct dentry *dentry;
3406 unsigned int lookup_flags = 0;
3408 error = may_mknod(mode);
3412 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3414 return PTR_ERR(dentry);
3416 if (!IS_POSIXACL(path.dentry->d_inode))
3417 mode &= ~current_umask();
3418 error = security_path_mknod(&path, dentry, mode, dev);
3421 switch (mode & S_IFMT) {
3422 case 0: case S_IFREG:
3423 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3425 case S_IFCHR: case S_IFBLK:
3426 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3427 new_decode_dev(dev));
3429 case S_IFIFO: case S_IFSOCK:
3430 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3434 done_path_create(&path, dentry);
3435 if (retry_estale(error, lookup_flags)) {
3436 lookup_flags |= LOOKUP_REVAL;
3442 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3444 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3447 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3449 int error = may_create(dir, dentry);
3450 unsigned max_links = dir->i_sb->s_max_links;
3455 if (!dir->i_op->mkdir)
3458 mode &= (S_IRWXUGO|S_ISVTX);
3459 error = security_inode_mkdir(dir, dentry, mode);
3463 if (max_links && dir->i_nlink >= max_links)
3466 error = dir->i_op->mkdir(dir, dentry, mode);
3468 fsnotify_mkdir(dir, dentry);
3472 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3474 struct dentry *dentry;
3477 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3480 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3482 return PTR_ERR(dentry);
3484 if (!IS_POSIXACL(path.dentry->d_inode))
3485 mode &= ~current_umask();
3486 error = security_path_mkdir(&path, dentry, mode);
3488 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3489 done_path_create(&path, dentry);
3490 if (retry_estale(error, lookup_flags)) {
3491 lookup_flags |= LOOKUP_REVAL;
3497 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3499 return sys_mkdirat(AT_FDCWD, pathname, mode);
3503 * The dentry_unhash() helper will try to drop the dentry early: we
3504 * should have a usage count of 1 if we're the only user of this
3505 * dentry, and if that is true (possibly after pruning the dcache),
3506 * then we drop the dentry now.
3508 * A low-level filesystem can, if it choses, legally
3511 * if (!d_unhashed(dentry))
3514 * if it cannot handle the case of removing a directory
3515 * that is still in use by something else..
3517 void dentry_unhash(struct dentry *dentry)
3519 shrink_dcache_parent(dentry);
3520 spin_lock(&dentry->d_lock);
3521 if (dentry->d_lockref.count == 1)
3523 spin_unlock(&dentry->d_lock);
3526 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3528 int error = may_delete(dir, dentry, 1);
3533 if (!dir->i_op->rmdir)
3537 mutex_lock(&dentry->d_inode->i_mutex);
3540 if (d_mountpoint(dentry))
3543 error = security_inode_rmdir(dir, dentry);
3547 shrink_dcache_parent(dentry);
3548 error = dir->i_op->rmdir(dir, dentry);
3552 dentry->d_inode->i_flags |= S_DEAD;
3556 mutex_unlock(&dentry->d_inode->i_mutex);
3563 static long do_rmdir(int dfd, const char __user *pathname)
3566 struct filename *name;
3567 struct dentry *dentry;
3568 struct nameidata nd;
3569 unsigned int lookup_flags = 0;
3571 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3573 return PTR_ERR(name);
3575 switch(nd.last_type) {
3587 nd.flags &= ~LOOKUP_PARENT;
3588 error = mnt_want_write(nd.path.mnt);
3592 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3593 dentry = lookup_hash(&nd);
3594 error = PTR_ERR(dentry);
3597 if (!dentry->d_inode) {
3601 error = security_path_rmdir(&nd.path, dentry);
3604 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3608 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3609 mnt_drop_write(nd.path.mnt);
3613 if (retry_estale(error, lookup_flags)) {
3614 lookup_flags |= LOOKUP_REVAL;
3620 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3622 return do_rmdir(AT_FDCWD, pathname);
3626 * vfs_unlink - unlink a filesystem object
3627 * @dir: parent directory
3629 * @delegated_inode: returns victim inode, if the inode is delegated.
3631 * The caller must hold dir->i_mutex.
3633 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3634 * return a reference to the inode in delegated_inode. The caller
3635 * should then break the delegation on that inode and retry. Because
3636 * breaking a delegation may take a long time, the caller should drop
3637 * dir->i_mutex before doing so.
3639 * Alternatively, a caller may pass NULL for delegated_inode. This may
3640 * be appropriate for callers that expect the underlying filesystem not
3641 * to be NFS exported.
3643 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3645 struct inode *target = dentry->d_inode;
3646 int error = may_delete(dir, dentry, 0);
3651 if (!dir->i_op->unlink)
3654 mutex_lock(&target->i_mutex);
3655 if (d_mountpoint(dentry))
3658 error = security_inode_unlink(dir, dentry);
3660 error = try_break_deleg(target, delegated_inode);
3663 error = dir->i_op->unlink(dir, dentry);
3669 mutex_unlock(&target->i_mutex);
3671 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3672 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3673 fsnotify_link_count(target);
3681 * Make sure that the actual truncation of the file will occur outside its
3682 * directory's i_mutex. Truncate can take a long time if there is a lot of
3683 * writeout happening, and we don't want to prevent access to the directory
3684 * while waiting on the I/O.
3686 static long do_unlinkat(int dfd, const char __user *pathname)
3689 struct filename *name;
3690 struct dentry *dentry;
3691 struct nameidata nd;
3692 struct inode *inode = NULL;
3693 struct inode *delegated_inode = NULL;
3694 unsigned int lookup_flags = 0;
3696 name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3698 return PTR_ERR(name);
3701 if (nd.last_type != LAST_NORM)
3704 nd.flags &= ~LOOKUP_PARENT;
3705 error = mnt_want_write(nd.path.mnt);
3709 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3710 dentry = lookup_hash(&nd);
3711 error = PTR_ERR(dentry);
3712 if (!IS_ERR(dentry)) {
3713 /* Why not before? Because we want correct error value */
3714 if (nd.last.name[nd.last.len])
3716 inode = dentry->d_inode;
3717 if (d_is_negative(dentry))
3720 error = security_path_unlink(&nd.path, dentry);
3723 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3727 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3729 iput(inode); /* truncate the inode here */
3731 if (delegated_inode) {
3732 error = break_deleg_wait(&delegated_inode);
3736 mnt_drop_write(nd.path.mnt);
3740 if (retry_estale(error, lookup_flags)) {
3741 lookup_flags |= LOOKUP_REVAL;
3748 if (d_is_negative(dentry))
3750 else if (d_is_directory(dentry) || d_is_autodir(dentry))
3757 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3759 if ((flag & ~AT_REMOVEDIR) != 0)
3762 if (flag & AT_REMOVEDIR)
3763 return do_rmdir(dfd, pathname);
3765 return do_unlinkat(dfd, pathname);
3768 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3770 return do_unlinkat(AT_FDCWD, pathname);
3773 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3775 int error = may_create(dir, dentry);
3780 if (!dir->i_op->symlink)
3783 error = security_inode_symlink(dir, dentry, oldname);
3787 error = dir->i_op->symlink(dir, dentry, oldname);
3789 fsnotify_create(dir, dentry);
3793 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3794 int, newdfd, const char __user *, newname)
3797 struct filename *from;
3798 struct dentry *dentry;
3800 unsigned int lookup_flags = 0;
3802 from = getname(oldname);
3804 return PTR_ERR(from);
3806 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3807 error = PTR_ERR(dentry);
3811 error = security_path_symlink(&path, dentry, from->name);
3813 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3814 done_path_create(&path, dentry);
3815 if (retry_estale(error, lookup_flags)) {
3816 lookup_flags |= LOOKUP_REVAL;
3824 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3826 return sys_symlinkat(oldname, AT_FDCWD, newname);
3830 * vfs_link - create a new link
3831 * @old_dentry: object to be linked
3833 * @new_dentry: where to create the new link
3834 * @delegated_inode: returns inode needing a delegation break
3836 * The caller must hold dir->i_mutex
3838 * If vfs_link discovers a delegation on the to-be-linked file in need
3839 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3840 * inode in delegated_inode. The caller should then break the delegation
3841 * and retry. Because breaking a delegation may take a long time, the
3842 * caller should drop the i_mutex before doing so.
3844 * Alternatively, a caller may pass NULL for delegated_inode. This may
3845 * be appropriate for callers that expect the underlying filesystem not
3846 * to be NFS exported.
3848 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3850 struct inode *inode = old_dentry->d_inode;
3851 unsigned max_links = dir->i_sb->s_max_links;
3857 error = may_create(dir, new_dentry);
3861 if (dir->i_sb != inode->i_sb)
3865 * A link to an append-only or immutable file cannot be created.
3867 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3869 if (!dir->i_op->link)
3871 if (S_ISDIR(inode->i_mode))
3874 error = security_inode_link(old_dentry, dir, new_dentry);
3878 mutex_lock(&inode->i_mutex);
3879 /* Make sure we don't allow creating hardlink to an unlinked file */
3880 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3882 else if (max_links && inode->i_nlink >= max_links)
3885 error = try_break_deleg(inode, delegated_inode);
3887 error = dir->i_op->link(old_dentry, dir, new_dentry);
3890 if (!error && (inode->i_state & I_LINKABLE)) {
3891 spin_lock(&inode->i_lock);
3892 inode->i_state &= ~I_LINKABLE;
3893 spin_unlock(&inode->i_lock);
3895 mutex_unlock(&inode->i_mutex);
3897 fsnotify_link(dir, inode, new_dentry);
3902 * Hardlinks are often used in delicate situations. We avoid
3903 * security-related surprises by not following symlinks on the
3906 * We don't follow them on the oldname either to be compatible
3907 * with linux 2.0, and to avoid hard-linking to directories
3908 * and other special files. --ADM
3910 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3911 int, newdfd, const char __user *, newname, int, flags)
3913 struct dentry *new_dentry;
3914 struct path old_path, new_path;
3915 struct inode *delegated_inode = NULL;
3919 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3922 * To use null names we require CAP_DAC_READ_SEARCH
3923 * This ensures that not everyone will be able to create
3924 * handlink using the passed filedescriptor.
3926 if (flags & AT_EMPTY_PATH) {
3927 if (!capable(CAP_DAC_READ_SEARCH))
3932 if (flags & AT_SYMLINK_FOLLOW)
3933 how |= LOOKUP_FOLLOW;
3935 error = user_path_at(olddfd, oldname, how, &old_path);
3939 new_dentry = user_path_create(newdfd, newname, &new_path,
3940 (how & LOOKUP_REVAL));
3941 error = PTR_ERR(new_dentry);
3942 if (IS_ERR(new_dentry))
3946 if (old_path.mnt != new_path.mnt)
3948 error = may_linkat(&old_path);
3949 if (unlikely(error))
3951 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3954 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
3956 done_path_create(&new_path, new_dentry);
3957 if (delegated_inode) {
3958 error = break_deleg_wait(&delegated_inode);
3960 path_put(&old_path);
3964 if (retry_estale(error, how)) {
3965 path_put(&old_path);
3966 how |= LOOKUP_REVAL;
3970 path_put(&old_path);
3975 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3977 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3981 * The worst of all namespace operations - renaming directory. "Perverted"
3982 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3984 * a) we can get into loop creation. Check is done in is_subdir().
3985 * b) race potential - two innocent renames can create a loop together.
3986 * That's where 4.4 screws up. Current fix: serialization on
3987 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3989 * c) we have to lock _four_ objects - parents and victim (if it exists),
3990 * and source (if it is not a directory).
3991 * And that - after we got ->i_mutex on parents (until then we don't know
3992 * whether the target exists). Solution: try to be smart with locking
3993 * order for inodes. We rely on the fact that tree topology may change
3994 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3995 * move will be locked. Thus we can rank directories by the tree
3996 * (ancestors first) and rank all non-directories after them.
3997 * That works since everybody except rename does "lock parent, lookup,
3998 * lock child" and rename is under ->s_vfs_rename_mutex.
3999 * HOWEVER, it relies on the assumption that any object with ->lookup()
4000 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4001 * we'd better make sure that there's no link(2) for them.
4002 * d) conversion from fhandle to dentry may come in the wrong moment - when
4003 * we are removing the target. Solution: we will have to grab ->i_mutex
4004 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4005 * ->i_mutex on parents, which works but leads to some truly excessive
4008 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
4009 struct inode *new_dir, struct dentry *new_dentry)
4012 struct inode *target = new_dentry->d_inode;
4013 unsigned max_links = new_dir->i_sb->s_max_links;
4016 * If we are going to change the parent - check write permissions,
4017 * we'll need to flip '..'.
4019 if (new_dir != old_dir) {
4020 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
4025 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4031 mutex_lock(&target->i_mutex);
4034 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
4038 if (max_links && !target && new_dir != old_dir &&
4039 new_dir->i_nlink >= max_links)
4043 shrink_dcache_parent(new_dentry);
4044 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4049 target->i_flags |= S_DEAD;
4050 dont_mount(new_dentry);
4054 mutex_unlock(&target->i_mutex);
4057 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4058 d_move(old_dentry,new_dentry);
4062 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
4063 struct inode *new_dir, struct dentry *new_dentry,
4064 struct inode **delegated_inode)
4066 struct inode *target = new_dentry->d_inode;
4067 struct inode *source = old_dentry->d_inode;
4070 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
4075 lock_two_nondirectories(source, target);
4078 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
4081 error = try_break_deleg(source, delegated_inode);
4085 error = try_break_deleg(target, delegated_inode);
4089 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
4094 dont_mount(new_dentry);
4095 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
4096 d_move(old_dentry, new_dentry);
4098 unlock_two_nondirectories(source, target);
4104 * vfs_rename - rename a filesystem object
4105 * @old_dir: parent of source
4106 * @old_dentry: source
4107 * @new_dir: parent of destination
4108 * @new_dentry: destination
4109 * @delegated_inode: returns an inode needing a delegation break
4111 * The caller must hold multiple mutexes--see lock_rename()).
4113 * If vfs_rename discovers a delegation in need of breaking at either
4114 * the source or destination, it will return -EWOULDBLOCK and return a
4115 * reference to the inode in delegated_inode. The caller should then
4116 * break the delegation and retry. Because breaking a delegation may
4117 * take a long time, the caller should drop all locks before doing
4120 * Alternatively, a caller may pass NULL for delegated_inode. This may
4121 * be appropriate for callers that expect the underlying filesystem not
4122 * to be NFS exported.
4124 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4125 struct inode *new_dir, struct dentry *new_dentry,
4126 struct inode **delegated_inode)
4129 int is_dir = d_is_directory(old_dentry) || d_is_autodir(old_dentry);
4130 const unsigned char *old_name;
4132 if (old_dentry->d_inode == new_dentry->d_inode)
4135 error = may_delete(old_dir, old_dentry, is_dir);
4139 if (!new_dentry->d_inode)
4140 error = may_create(new_dir, new_dentry);
4142 error = may_delete(new_dir, new_dentry, is_dir);
4146 if (!old_dir->i_op->rename)
4149 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4152 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
4154 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry,delegated_inode);
4156 fsnotify_move(old_dir, new_dir, old_name, is_dir,
4157 new_dentry->d_inode, old_dentry);
4158 fsnotify_oldname_free(old_name);
4163 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4164 int, newdfd, const char __user *, newname)
4166 struct dentry *old_dir, *new_dir;
4167 struct dentry *old_dentry, *new_dentry;
4168 struct dentry *trap;
4169 struct nameidata oldnd, newnd;
4170 struct inode *delegated_inode = NULL;
4171 struct filename *from;
4172 struct filename *to;
4173 unsigned int lookup_flags = 0;
4174 bool should_retry = false;
4177 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4179 error = PTR_ERR(from);
4183 to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4185 error = PTR_ERR(to);
4190 if (oldnd.path.mnt != newnd.path.mnt)
4193 old_dir = oldnd.path.dentry;
4195 if (oldnd.last_type != LAST_NORM)
4198 new_dir = newnd.path.dentry;
4199 if (newnd.last_type != LAST_NORM)
4202 error = mnt_want_write(oldnd.path.mnt);
4206 oldnd.flags &= ~LOOKUP_PARENT;
4207 newnd.flags &= ~LOOKUP_PARENT;
4208 newnd.flags |= LOOKUP_RENAME_TARGET;
4211 trap = lock_rename(new_dir, old_dir);
4213 old_dentry = lookup_hash(&oldnd);
4214 error = PTR_ERR(old_dentry);
4215 if (IS_ERR(old_dentry))
4217 /* source must exist */
4219 if (d_is_negative(old_dentry))
4221 /* unless the source is a directory trailing slashes give -ENOTDIR */
4222 if (!d_is_directory(old_dentry) && !d_is_autodir(old_dentry)) {
4224 if (oldnd.last.name[oldnd.last.len])
4226 if (newnd.last.name[newnd.last.len])
4229 /* source should not be ancestor of target */
4231 if (old_dentry == trap)
4233 new_dentry = lookup_hash(&newnd);
4234 error = PTR_ERR(new_dentry);
4235 if (IS_ERR(new_dentry))
4237 /* target should not be an ancestor of source */
4239 if (new_dentry == trap)
4242 error = security_path_rename(&oldnd.path, old_dentry,
4243 &newnd.path, new_dentry);
4246 error = vfs_rename(old_dir->d_inode, old_dentry,
4247 new_dir->d_inode, new_dentry,
4254 unlock_rename(new_dir, old_dir);
4255 if (delegated_inode) {
4256 error = break_deleg_wait(&delegated_inode);
4260 mnt_drop_write(oldnd.path.mnt);
4262 if (retry_estale(error, lookup_flags))
4263 should_retry = true;
4264 path_put(&newnd.path);
4267 path_put(&oldnd.path);
4270 should_retry = false;
4271 lookup_flags |= LOOKUP_REVAL;
4278 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4280 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
4283 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
4287 len = PTR_ERR(link);
4292 if (len > (unsigned) buflen)
4294 if (copy_to_user(buffer, link, len))
4301 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4302 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
4303 * using) it for any given inode is up to filesystem.
4305 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4307 struct nameidata nd;
4312 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4314 return PTR_ERR(cookie);
4316 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
4317 if (dentry->d_inode->i_op->put_link)
4318 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4322 /* get the link contents into pagecache */
4323 static char *page_getlink(struct dentry * dentry, struct page **ppage)
4327 struct address_space *mapping = dentry->d_inode->i_mapping;
4328 page = read_mapping_page(mapping, 0, NULL);
4333 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4337 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4339 struct page *page = NULL;
4340 char *s = page_getlink(dentry, &page);
4341 int res = vfs_readlink(dentry,buffer,buflen,s);
4344 page_cache_release(page);
4349 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4351 struct page *page = NULL;
4352 nd_set_link(nd, page_getlink(dentry, &page));
4356 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4358 struct page *page = cookie;
4362 page_cache_release(page);
4367 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4369 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4371 struct address_space *mapping = inode->i_mapping;
4376 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4378 flags |= AOP_FLAG_NOFS;
4381 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4382 flags, &page, &fsdata);
4386 kaddr = kmap_atomic(page);
4387 memcpy(kaddr, symname, len-1);
4388 kunmap_atomic(kaddr);
4390 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4397 mark_inode_dirty(inode);
4403 int page_symlink(struct inode *inode, const char *symname, int len)
4405 return __page_symlink(inode, symname, len,
4406 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4409 const struct inode_operations page_symlink_inode_operations = {
4410 .readlink = generic_readlink,
4411 .follow_link = page_follow_link_light,
4412 .put_link = page_put_link,
4415 EXPORT_SYMBOL(user_path_at);
4416 EXPORT_SYMBOL(follow_down_one);
4417 EXPORT_SYMBOL(follow_down);
4418 EXPORT_SYMBOL(follow_up);
4419 EXPORT_SYMBOL(get_write_access); /* nfsd */
4420 EXPORT_SYMBOL(lock_rename);
4421 EXPORT_SYMBOL(lookup_one_len);
4422 EXPORT_SYMBOL(page_follow_link_light);
4423 EXPORT_SYMBOL(page_put_link);
4424 EXPORT_SYMBOL(page_readlink);
4425 EXPORT_SYMBOL(__page_symlink);
4426 EXPORT_SYMBOL(page_symlink);
4427 EXPORT_SYMBOL(page_symlink_inode_operations);
4428 EXPORT_SYMBOL(kern_path);
4429 EXPORT_SYMBOL(vfs_path_lookup);
4430 EXPORT_SYMBOL(inode_permission);
4431 EXPORT_SYMBOL(unlock_rename);
4432 EXPORT_SYMBOL(vfs_create);
4433 EXPORT_SYMBOL(vfs_link);
4434 EXPORT_SYMBOL(vfs_mkdir);
4435 EXPORT_SYMBOL(vfs_mknod);
4436 EXPORT_SYMBOL(generic_permission);
4437 EXPORT_SYMBOL(vfs_readlink);
4438 EXPORT_SYMBOL(vfs_rename);
4439 EXPORT_SYMBOL(vfs_rmdir);
4440 EXPORT_SYMBOL(vfs_symlink);
4441 EXPORT_SYMBOL(vfs_unlink);
4442 EXPORT_SYMBOL(dentry_unhash);
4443 EXPORT_SYMBOL(generic_readlink);