4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * Some corrections by tytso.
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/slab.h>
21 #include <linux/namei.h>
22 #include <linux/pagemap.h>
23 #include <linux/fsnotify.h>
24 #include <linux/personality.h>
25 #include <linux/security.h>
26 #include <linux/ima.h>
27 #include <linux/syscalls.h>
28 #include <linux/mount.h>
29 #include <linux/audit.h>
30 #include <linux/capability.h>
31 #include <linux/file.h>
32 #include <linux/fcntl.h>
33 #include <linux/device_cgroup.h>
34 #include <linux/fs_struct.h>
35 #include <linux/posix_acl.h>
36 #include <asm/uaccess.h>
41 /* [Feb-1997 T. Schoebel-Theuer]
42 * Fundamental changes in the pathname lookup mechanisms (namei)
43 * were necessary because of omirr. The reason is that omirr needs
44 * to know the _real_ pathname, not the user-supplied one, in case
45 * of symlinks (and also when transname replacements occur).
47 * The new code replaces the old recursive symlink resolution with
48 * an iterative one (in case of non-nested symlink chains). It does
49 * this with calls to <fs>_follow_link().
50 * As a side effect, dir_namei(), _namei() and follow_link() are now
51 * replaced with a single function lookup_dentry() that can handle all
52 * the special cases of the former code.
54 * With the new dcache, the pathname is stored at each inode, at least as
55 * long as the refcount of the inode is positive. As a side effect, the
56 * size of the dcache depends on the inode cache and thus is dynamic.
58 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
59 * resolution to correspond with current state of the code.
61 * Note that the symlink resolution is not *completely* iterative.
62 * There is still a significant amount of tail- and mid- recursion in
63 * the algorithm. Also, note that <fs>_readlink() is not used in
64 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
65 * may return different results than <fs>_follow_link(). Many virtual
66 * filesystems (including /proc) exhibit this behavior.
69 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
70 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
71 * and the name already exists in form of a symlink, try to create the new
72 * name indicated by the symlink. The old code always complained that the
73 * name already exists, due to not following the symlink even if its target
74 * is nonexistent. The new semantics affects also mknod() and link() when
75 * the name is a symlink pointing to a non-existent name.
77 * I don't know which semantics is the right one, since I have no access
78 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
79 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
80 * "old" one. Personally, I think the new semantics is much more logical.
81 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
82 * file does succeed in both HP-UX and SunOs, but not in Solaris
83 * and in the old Linux semantics.
86 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
87 * semantics. See the comments in "open_namei" and "do_link" below.
89 * [10-Sep-98 Alan Modra] Another symlink change.
92 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
93 * inside the path - always follow.
94 * in the last component in creation/removal/renaming - never follow.
95 * if LOOKUP_FOLLOW passed - follow.
96 * if the pathname has trailing slashes - follow.
97 * otherwise - don't follow.
98 * (applied in that order).
100 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
101 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
102 * During the 2.4 we need to fix the userland stuff depending on it -
103 * hopefully we will be able to get rid of that wart in 2.5. So far only
104 * XEmacs seems to be relying on it...
107 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
108 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
109 * any extra contention...
112 /* In order to reduce some races, while at the same time doing additional
113 * checking and hopefully speeding things up, we copy filenames to the
114 * kernel data space before using them..
116 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
117 * PATH_MAX includes the nul terminator --RR.
119 static int do_getname(const char __user *filename, char *page)
122 unsigned long len = PATH_MAX;
124 if (!segment_eq(get_fs(), KERNEL_DS)) {
125 if ((unsigned long) filename >= TASK_SIZE)
127 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
128 len = TASK_SIZE - (unsigned long) filename;
131 retval = strncpy_from_user(page, filename, len);
135 return -ENAMETOOLONG;
141 static char *getname_flags(const char __user *filename, int flags, int *empty)
143 char *result = __getname();
147 return ERR_PTR(-ENOMEM);
149 retval = do_getname(filename, result);
151 if (retval == -ENOENT && empty)
153 if (retval != -ENOENT || !(flags & LOOKUP_EMPTY)) {
155 return ERR_PTR(retval);
158 audit_getname(result);
162 char *getname(const char __user * filename)
164 return getname_flags(filename, 0, NULL);
167 #ifdef CONFIG_AUDITSYSCALL
168 void putname(const char *name)
170 if (unlikely(!audit_dummy_context()))
175 EXPORT_SYMBOL(putname);
178 static int check_acl(struct inode *inode, int mask)
180 #ifdef CONFIG_FS_POSIX_ACL
181 struct posix_acl *acl;
183 if (mask & MAY_NOT_BLOCK) {
184 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
187 /* no ->get_acl() calls in RCU mode... */
188 if (acl == ACL_NOT_CACHED)
190 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
193 acl = get_cached_acl(inode, ACL_TYPE_ACCESS);
196 * A filesystem can force a ACL callback by just never filling the
197 * ACL cache. But normally you'd fill the cache either at inode
198 * instantiation time, or on the first ->get_acl call.
200 * If the filesystem doesn't have a get_acl() function at all, we'll
201 * just create the negative cache entry.
203 if (acl == ACL_NOT_CACHED) {
204 if (inode->i_op->get_acl) {
205 acl = inode->i_op->get_acl(inode, ACL_TYPE_ACCESS);
209 set_cached_acl(inode, ACL_TYPE_ACCESS, NULL);
215 int error = posix_acl_permission(inode, acl, mask);
216 posix_acl_release(acl);
225 * This does the basic permission checking
227 static int acl_permission_check(struct inode *inode, int mask)
229 unsigned int mode = inode->i_mode;
231 if (current_user_ns() != inode_userns(inode))
234 if (likely(current_fsuid() == inode->i_uid))
237 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
238 int error = check_acl(inode, mask);
239 if (error != -EAGAIN)
243 if (in_group_p(inode->i_gid))
249 * If the DACs are ok we don't need any capability check.
251 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
257 * generic_permission - check for access rights on a Posix-like filesystem
258 * @inode: inode to check access rights for
259 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
261 * Used to check for read/write/execute permissions on a file.
262 * We use "fsuid" for this, letting us set arbitrary permissions
263 * for filesystem access without changing the "normal" uids which
264 * are used for other things.
266 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
267 * request cannot be satisfied (eg. requires blocking or too much complexity).
268 * It would then be called again in ref-walk mode.
270 int generic_permission(struct inode *inode, int mask)
275 * Do the basic permission checks.
277 ret = acl_permission_check(inode, mask);
281 if (S_ISDIR(inode->i_mode)) {
282 /* DACs are overridable for directories */
283 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
285 if (!(mask & MAY_WRITE))
286 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
291 * Read/write DACs are always overridable.
292 * Executable DACs are overridable when there is
293 * at least one exec bit set.
295 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
296 if (ns_capable(inode_userns(inode), CAP_DAC_OVERRIDE))
300 * Searching includes executable on directories, else just read.
302 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
303 if (mask == MAY_READ)
304 if (ns_capable(inode_userns(inode), CAP_DAC_READ_SEARCH))
311 * We _really_ want to just do "generic_permission()" without
312 * even looking at the inode->i_op values. So we keep a cache
313 * flag in inode->i_opflags, that says "this has not special
314 * permission function, use the fast case".
316 static inline int do_inode_permission(struct inode *inode, int mask)
318 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
319 if (likely(inode->i_op->permission))
320 return inode->i_op->permission(inode, mask);
322 /* This gets set once for the inode lifetime */
323 spin_lock(&inode->i_lock);
324 inode->i_opflags |= IOP_FASTPERM;
325 spin_unlock(&inode->i_lock);
327 return generic_permission(inode, mask);
331 * inode_permission - check for access rights to a given inode
332 * @inode: inode to check permission on
333 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
335 * Used to check for read/write/execute permissions on an inode.
336 * We use "fsuid" for this, letting us set arbitrary permissions
337 * for filesystem access without changing the "normal" uids which
338 * are used for other things.
340 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
342 int inode_permission(struct inode *inode, int mask)
346 if (unlikely(mask & MAY_WRITE)) {
347 umode_t mode = inode->i_mode;
350 * Nobody gets write access to a read-only fs.
352 if (IS_RDONLY(inode) &&
353 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
357 * Nobody gets write access to an immutable file.
359 if (IS_IMMUTABLE(inode))
363 retval = do_inode_permission(inode, mask);
367 retval = devcgroup_inode_permission(inode, mask);
371 return security_inode_permission(inode, mask);
375 * path_get - get a reference to a path
376 * @path: path to get the reference to
378 * Given a path increment the reference count to the dentry and the vfsmount.
380 void path_get(struct path *path)
385 EXPORT_SYMBOL(path_get);
388 * path_put - put a reference to a path
389 * @path: path to put the reference to
391 * Given a path decrement the reference count to the dentry and the vfsmount.
393 void path_put(struct path *path)
398 EXPORT_SYMBOL(path_put);
401 * Path walking has 2 modes, rcu-walk and ref-walk (see
402 * Documentation/filesystems/path-lookup.txt). In situations when we can't
403 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
404 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
405 * mode. Refcounts are grabbed at the last known good point before rcu-walk
406 * got stuck, so ref-walk may continue from there. If this is not successful
407 * (eg. a seqcount has changed), then failure is returned and it's up to caller
408 * to restart the path walk from the beginning in ref-walk mode.
412 * unlazy_walk - try to switch to ref-walk mode.
413 * @nd: nameidata pathwalk data
414 * @dentry: child of nd->path.dentry or NULL
415 * Returns: 0 on success, -ECHILD on failure
417 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
418 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
419 * @nd or NULL. Must be called from rcu-walk context.
421 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
423 struct fs_struct *fs = current->fs;
424 struct dentry *parent = nd->path.dentry;
427 BUG_ON(!(nd->flags & LOOKUP_RCU));
428 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
430 spin_lock(&fs->lock);
431 if (nd->root.mnt != fs->root.mnt ||
432 nd->root.dentry != fs->root.dentry)
435 spin_lock(&parent->d_lock);
437 if (!__d_rcu_to_refcount(parent, nd->seq))
439 BUG_ON(nd->inode != parent->d_inode);
441 if (dentry->d_parent != parent)
443 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
444 if (!__d_rcu_to_refcount(dentry, nd->seq))
447 * If the sequence check on the child dentry passed, then
448 * the child has not been removed from its parent. This
449 * means the parent dentry must be valid and able to take
450 * a reference at this point.
452 BUG_ON(!IS_ROOT(dentry) && dentry->d_parent != parent);
453 BUG_ON(!parent->d_count);
455 spin_unlock(&dentry->d_lock);
457 spin_unlock(&parent->d_lock);
460 spin_unlock(&fs->lock);
462 mntget(nd->path.mnt);
465 br_read_unlock(vfsmount_lock);
466 nd->flags &= ~LOOKUP_RCU;
470 spin_unlock(&dentry->d_lock);
472 spin_unlock(&parent->d_lock);
475 spin_unlock(&fs->lock);
480 * release_open_intent - free up open intent resources
481 * @nd: pointer to nameidata
483 void release_open_intent(struct nameidata *nd)
485 struct file *file = nd->intent.open.file;
487 if (file && !IS_ERR(file)) {
488 if (file->f_path.dentry == NULL)
495 static inline int d_revalidate(struct dentry *dentry, struct nameidata *nd)
497 return dentry->d_op->d_revalidate(dentry, nd);
501 * complete_walk - successful completion of path walk
502 * @nd: pointer nameidata
504 * If we had been in RCU mode, drop out of it and legitimize nd->path.
505 * Revalidate the final result, unless we'd already done that during
506 * the path walk or the filesystem doesn't ask for it. Return 0 on
507 * success, -error on failure. In case of failure caller does not
508 * need to drop nd->path.
510 static int complete_walk(struct nameidata *nd)
512 struct dentry *dentry = nd->path.dentry;
515 if (nd->flags & LOOKUP_RCU) {
516 nd->flags &= ~LOOKUP_RCU;
517 if (!(nd->flags & LOOKUP_ROOT))
519 spin_lock(&dentry->d_lock);
520 if (unlikely(!__d_rcu_to_refcount(dentry, nd->seq))) {
521 spin_unlock(&dentry->d_lock);
523 br_read_unlock(vfsmount_lock);
526 BUG_ON(nd->inode != dentry->d_inode);
527 spin_unlock(&dentry->d_lock);
528 mntget(nd->path.mnt);
530 br_read_unlock(vfsmount_lock);
533 if (likely(!(nd->flags & LOOKUP_JUMPED)))
536 if (likely(!(dentry->d_flags & DCACHE_OP_REVALIDATE)))
539 if (likely(!(dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)))
542 /* Note: we do not d_invalidate() */
543 status = d_revalidate(dentry, nd);
554 static __always_inline void set_root(struct nameidata *nd)
557 get_fs_root(current->fs, &nd->root);
560 static int link_path_walk(const char *, struct nameidata *);
562 static __always_inline void set_root_rcu(struct nameidata *nd)
565 struct fs_struct *fs = current->fs;
569 seq = read_seqcount_begin(&fs->seq);
571 nd->seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
572 } while (read_seqcount_retry(&fs->seq, seq));
576 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
588 nd->flags |= LOOKUP_JUMPED;
590 nd->inode = nd->path.dentry->d_inode;
592 ret = link_path_walk(link, nd);
596 return PTR_ERR(link);
599 static void path_put_conditional(struct path *path, struct nameidata *nd)
602 if (path->mnt != nd->path.mnt)
606 static inline void path_to_nameidata(const struct path *path,
607 struct nameidata *nd)
609 if (!(nd->flags & LOOKUP_RCU)) {
610 dput(nd->path.dentry);
611 if (nd->path.mnt != path->mnt)
612 mntput(nd->path.mnt);
614 nd->path.mnt = path->mnt;
615 nd->path.dentry = path->dentry;
618 static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
620 struct inode *inode = link->dentry->d_inode;
621 if (!IS_ERR(cookie) && inode->i_op->put_link)
622 inode->i_op->put_link(link->dentry, nd, cookie);
626 static __always_inline int
627 follow_link(struct path *link, struct nameidata *nd, void **p)
630 struct dentry *dentry = link->dentry;
632 BUG_ON(nd->flags & LOOKUP_RCU);
634 if (link->mnt == nd->path.mnt)
637 if (unlikely(current->total_link_count >= 40)) {
638 *p = ERR_PTR(-ELOOP); /* no ->put_link(), please */
643 current->total_link_count++;
646 nd_set_link(nd, NULL);
648 error = security_inode_follow_link(link->dentry, nd);
650 *p = ERR_PTR(error); /* no ->put_link(), please */
655 nd->last_type = LAST_BIND;
656 *p = dentry->d_inode->i_op->follow_link(dentry, nd);
659 char *s = nd_get_link(nd);
662 error = __vfs_follow_link(nd, s);
663 else if (nd->last_type == LAST_BIND) {
664 nd->flags |= LOOKUP_JUMPED;
665 nd->inode = nd->path.dentry->d_inode;
666 if (nd->inode->i_op->follow_link) {
667 /* stepped on a _really_ weird one */
676 static int follow_up_rcu(struct path *path)
678 struct mount *mnt = real_mount(path->mnt);
679 struct mount *parent;
680 struct dentry *mountpoint;
682 parent = mnt->mnt_parent;
683 if (&parent->mnt == path->mnt)
685 mountpoint = mnt->mnt_mountpoint;
686 path->dentry = mountpoint;
687 path->mnt = &parent->mnt;
691 int follow_up(struct path *path)
693 struct mount *mnt = real_mount(path->mnt);
694 struct mount *parent;
695 struct dentry *mountpoint;
697 br_read_lock(vfsmount_lock);
698 parent = mnt->mnt_parent;
699 if (&parent->mnt == path->mnt) {
700 br_read_unlock(vfsmount_lock);
703 mntget(&parent->mnt);
704 mountpoint = dget(mnt->mnt_mountpoint);
705 br_read_unlock(vfsmount_lock);
707 path->dentry = mountpoint;
709 path->mnt = &parent->mnt;
714 * Perform an automount
715 * - return -EISDIR to tell follow_managed() to stop and return the path we
718 static int follow_automount(struct path *path, unsigned flags,
721 struct vfsmount *mnt;
724 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
727 /* We don't want to mount if someone's just doing a stat -
728 * unless they're stat'ing a directory and appended a '/' to
731 * We do, however, want to mount if someone wants to open or
732 * create a file of any type under the mountpoint, wants to
733 * traverse through the mountpoint or wants to open the
734 * mounted directory. Also, autofs may mark negative dentries
735 * as being automount points. These will need the attentions
736 * of the daemon to instantiate them before they can be used.
738 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
739 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
740 path->dentry->d_inode)
743 current->total_link_count++;
744 if (current->total_link_count >= 40)
747 mnt = path->dentry->d_op->d_automount(path);
750 * The filesystem is allowed to return -EISDIR here to indicate
751 * it doesn't want to automount. For instance, autofs would do
752 * this so that its userspace daemon can mount on this dentry.
754 * However, we can only permit this if it's a terminal point in
755 * the path being looked up; if it wasn't then the remainder of
756 * the path is inaccessible and we should say so.
758 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
763 if (!mnt) /* mount collision */
767 /* lock_mount() may release path->mnt on error */
771 err = finish_automount(mnt, path);
775 /* Someone else made a mount here whilst we were busy */
780 path->dentry = dget(mnt->mnt_root);
789 * Handle a dentry that is managed in some way.
790 * - Flagged for transit management (autofs)
791 * - Flagged as mountpoint
792 * - Flagged as automount point
794 * This may only be called in refwalk mode.
796 * Serialization is taken care of in namespace.c
798 static int follow_managed(struct path *path, unsigned flags)
800 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
802 bool need_mntput = false;
805 /* Given that we're not holding a lock here, we retain the value in a
806 * local variable for each dentry as we look at it so that we don't see
807 * the components of that value change under us */
808 while (managed = ACCESS_ONCE(path->dentry->d_flags),
809 managed &= DCACHE_MANAGED_DENTRY,
810 unlikely(managed != 0)) {
811 /* Allow the filesystem to manage the transit without i_mutex
813 if (managed & DCACHE_MANAGE_TRANSIT) {
814 BUG_ON(!path->dentry->d_op);
815 BUG_ON(!path->dentry->d_op->d_manage);
816 ret = path->dentry->d_op->d_manage(path->dentry, false);
821 /* Transit to a mounted filesystem. */
822 if (managed & DCACHE_MOUNTED) {
823 struct vfsmount *mounted = lookup_mnt(path);
829 path->dentry = dget(mounted->mnt_root);
834 /* Something is mounted on this dentry in another
835 * namespace and/or whatever was mounted there in this
836 * namespace got unmounted before we managed to get the
840 /* Handle an automount point */
841 if (managed & DCACHE_NEED_AUTOMOUNT) {
842 ret = follow_automount(path, flags, &need_mntput);
848 /* We didn't change the current path point */
852 if (need_mntput && path->mnt == mnt)
856 return ret < 0 ? ret : need_mntput;
859 int follow_down_one(struct path *path)
861 struct vfsmount *mounted;
863 mounted = lookup_mnt(path);
868 path->dentry = dget(mounted->mnt_root);
874 static inline bool managed_dentry_might_block(struct dentry *dentry)
876 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT &&
877 dentry->d_op->d_manage(dentry, true) < 0);
881 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
882 * we meet a managed dentry that would need blocking.
884 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
885 struct inode **inode)
888 struct mount *mounted;
890 * Don't forget we might have a non-mountpoint managed dentry
891 * that wants to block transit.
893 if (unlikely(managed_dentry_might_block(path->dentry)))
896 if (!d_mountpoint(path->dentry))
899 mounted = __lookup_mnt(path->mnt, path->dentry, 1);
902 path->mnt = &mounted->mnt;
903 path->dentry = mounted->mnt.mnt_root;
904 nd->flags |= LOOKUP_JUMPED;
905 nd->seq = read_seqcount_begin(&path->dentry->d_seq);
907 * Update the inode too. We don't need to re-check the
908 * dentry sequence number here after this d_inode read,
909 * because a mount-point is always pinned.
911 *inode = path->dentry->d_inode;
916 static void follow_mount_rcu(struct nameidata *nd)
918 while (d_mountpoint(nd->path.dentry)) {
919 struct mount *mounted;
920 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry, 1);
923 nd->path.mnt = &mounted->mnt;
924 nd->path.dentry = mounted->mnt.mnt_root;
925 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
929 static int follow_dotdot_rcu(struct nameidata *nd)
934 if (nd->path.dentry == nd->root.dentry &&
935 nd->path.mnt == nd->root.mnt) {
938 if (nd->path.dentry != nd->path.mnt->mnt_root) {
939 struct dentry *old = nd->path.dentry;
940 struct dentry *parent = old->d_parent;
943 seq = read_seqcount_begin(&parent->d_seq);
944 if (read_seqcount_retry(&old->d_seq, nd->seq))
946 nd->path.dentry = parent;
950 if (!follow_up_rcu(&nd->path))
952 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
954 follow_mount_rcu(nd);
955 nd->inode = nd->path.dentry->d_inode;
959 nd->flags &= ~LOOKUP_RCU;
960 if (!(nd->flags & LOOKUP_ROOT))
963 br_read_unlock(vfsmount_lock);
968 * Follow down to the covering mount currently visible to userspace. At each
969 * point, the filesystem owning that dentry may be queried as to whether the
970 * caller is permitted to proceed or not.
972 int follow_down(struct path *path)
977 while (managed = ACCESS_ONCE(path->dentry->d_flags),
978 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
979 /* Allow the filesystem to manage the transit without i_mutex
982 * We indicate to the filesystem if someone is trying to mount
983 * something here. This gives autofs the chance to deny anyone
984 * other than its daemon the right to mount on its
987 * The filesystem may sleep at this point.
989 if (managed & DCACHE_MANAGE_TRANSIT) {
990 BUG_ON(!path->dentry->d_op);
991 BUG_ON(!path->dentry->d_op->d_manage);
992 ret = path->dentry->d_op->d_manage(
993 path->dentry, false);
995 return ret == -EISDIR ? 0 : ret;
998 /* Transit to a mounted filesystem. */
999 if (managed & DCACHE_MOUNTED) {
1000 struct vfsmount *mounted = lookup_mnt(path);
1005 path->mnt = mounted;
1006 path->dentry = dget(mounted->mnt_root);
1010 /* Don't handle automount points here */
1017 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1019 static void follow_mount(struct path *path)
1021 while (d_mountpoint(path->dentry)) {
1022 struct vfsmount *mounted = lookup_mnt(path);
1027 path->mnt = mounted;
1028 path->dentry = dget(mounted->mnt_root);
1032 static void follow_dotdot(struct nameidata *nd)
1037 struct dentry *old = nd->path.dentry;
1039 if (nd->path.dentry == nd->root.dentry &&
1040 nd->path.mnt == nd->root.mnt) {
1043 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1044 /* rare case of legitimate dget_parent()... */
1045 nd->path.dentry = dget_parent(nd->path.dentry);
1049 if (!follow_up(&nd->path))
1052 follow_mount(&nd->path);
1053 nd->inode = nd->path.dentry->d_inode;
1057 * This looks up the name in dcache, possibly revalidates the old dentry and
1058 * allocates a new one if not found or not valid. In the need_lookup argument
1059 * returns whether i_op->lookup is necessary.
1061 * dir->d_inode->i_mutex must be held
1063 static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1064 struct nameidata *nd, bool *need_lookup)
1066 struct dentry *dentry;
1069 *need_lookup = false;
1070 dentry = d_lookup(dir, name);
1072 if (d_need_lookup(dentry)) {
1073 *need_lookup = true;
1074 } else if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1075 error = d_revalidate(dentry, nd);
1076 if (unlikely(error <= 0)) {
1079 return ERR_PTR(error);
1080 } else if (!d_invalidate(dentry)) {
1089 dentry = d_alloc(dir, name);
1090 if (unlikely(!dentry))
1091 return ERR_PTR(-ENOMEM);
1093 *need_lookup = true;
1099 * Call i_op->lookup on the dentry. The dentry must be negative but may be
1100 * hashed if it was pouplated with DCACHE_NEED_LOOKUP.
1102 * dir->d_inode->i_mutex must be held
1104 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1105 struct nameidata *nd)
1109 /* Don't create child dentry for a dead directory. */
1110 if (unlikely(IS_DEADDIR(dir))) {
1112 return ERR_PTR(-ENOENT);
1115 old = dir->i_op->lookup(dir, dentry, nd);
1116 if (unlikely(old)) {
1123 static struct dentry *__lookup_hash(struct qstr *name,
1124 struct dentry *base, struct nameidata *nd)
1127 struct dentry *dentry;
1129 dentry = lookup_dcache(name, base, nd, &need_lookup);
1133 return lookup_real(base->d_inode, dentry, nd);
1137 * It's more convoluted than I'd like it to be, but... it's still fairly
1138 * small and for now I'd prefer to have fast path as straight as possible.
1139 * It _is_ time-critical.
1141 static int do_lookup(struct nameidata *nd, struct qstr *name,
1142 struct path *path, struct inode **inode)
1144 struct vfsmount *mnt = nd->path.mnt;
1145 struct dentry *dentry, *parent = nd->path.dentry;
1151 * Rename seqlock is not required here because in the off chance
1152 * of a false negative due to a concurrent rename, we're going to
1153 * do the non-racy lookup, below.
1155 if (nd->flags & LOOKUP_RCU) {
1158 dentry = __d_lookup_rcu(parent, name, &seq, inode);
1162 /* Memory barrier in read_seqcount_begin of child is enough */
1163 if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1167 if (unlikely(d_need_lookup(dentry)))
1169 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1170 status = d_revalidate(dentry, nd);
1171 if (unlikely(status <= 0)) {
1172 if (status != -ECHILD)
1178 path->dentry = dentry;
1179 if (unlikely(!__follow_mount_rcu(nd, path, inode)))
1181 if (unlikely(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT))
1185 if (unlazy_walk(nd, dentry))
1188 dentry = __d_lookup(parent, name);
1191 if (unlikely(!dentry))
1194 if (unlikely(d_need_lookup(dentry))) {
1199 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1200 status = d_revalidate(dentry, nd);
1201 if (unlikely(status <= 0)) {
1206 if (!d_invalidate(dentry)) {
1213 path->dentry = dentry;
1214 err = follow_managed(path, nd->flags);
1215 if (unlikely(err < 0)) {
1216 path_put_conditional(path, nd);
1220 nd->flags |= LOOKUP_JUMPED;
1221 *inode = path->dentry->d_inode;
1225 BUG_ON(nd->inode != parent->d_inode);
1227 mutex_lock(&parent->d_inode->i_mutex);
1228 dentry = __lookup_hash(name, parent, nd);
1229 mutex_unlock(&parent->d_inode->i_mutex);
1231 return PTR_ERR(dentry);
1235 static inline int may_lookup(struct nameidata *nd)
1237 if (nd->flags & LOOKUP_RCU) {
1238 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1241 if (unlazy_walk(nd, NULL))
1244 return inode_permission(nd->inode, MAY_EXEC);
1247 static inline int handle_dots(struct nameidata *nd, int type)
1249 if (type == LAST_DOTDOT) {
1250 if (nd->flags & LOOKUP_RCU) {
1251 if (follow_dotdot_rcu(nd))
1259 static void terminate_walk(struct nameidata *nd)
1261 if (!(nd->flags & LOOKUP_RCU)) {
1262 path_put(&nd->path);
1264 nd->flags &= ~LOOKUP_RCU;
1265 if (!(nd->flags & LOOKUP_ROOT))
1266 nd->root.mnt = NULL;
1268 br_read_unlock(vfsmount_lock);
1273 * Do we need to follow links? We _really_ want to be able
1274 * to do this check without having to look at inode->i_op,
1275 * so we keep a cache of "no, this doesn't need follow_link"
1276 * for the common case.
1278 static inline int should_follow_link(struct inode *inode, int follow)
1280 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1281 if (likely(inode->i_op->follow_link))
1284 /* This gets set once for the inode lifetime */
1285 spin_lock(&inode->i_lock);
1286 inode->i_opflags |= IOP_NOFOLLOW;
1287 spin_unlock(&inode->i_lock);
1292 static inline int walk_component(struct nameidata *nd, struct path *path,
1293 struct qstr *name, int type, int follow)
1295 struct inode *inode;
1298 * "." and ".." are special - ".." especially so because it has
1299 * to be able to know about the current root directory and
1300 * parent relationships.
1302 if (unlikely(type != LAST_NORM))
1303 return handle_dots(nd, type);
1304 err = do_lookup(nd, name, path, &inode);
1305 if (unlikely(err)) {
1310 path_to_nameidata(path, nd);
1314 if (should_follow_link(inode, follow)) {
1315 if (nd->flags & LOOKUP_RCU) {
1316 if (unlikely(unlazy_walk(nd, path->dentry))) {
1321 BUG_ON(inode != path->dentry->d_inode);
1324 path_to_nameidata(path, nd);
1330 * This limits recursive symlink follows to 8, while
1331 * limiting consecutive symlinks to 40.
1333 * Without that kind of total limit, nasty chains of consecutive
1334 * symlinks can cause almost arbitrarily long lookups.
1336 static inline int nested_symlink(struct path *path, struct nameidata *nd)
1340 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1341 path_put_conditional(path, nd);
1342 path_put(&nd->path);
1345 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1348 current->link_count++;
1351 struct path link = *path;
1354 res = follow_link(&link, nd, &cookie);
1356 res = walk_component(nd, path, &nd->last,
1357 nd->last_type, LOOKUP_FOLLOW);
1358 put_link(nd, &link, cookie);
1361 current->link_count--;
1367 * We really don't want to look at inode->i_op->lookup
1368 * when we don't have to. So we keep a cache bit in
1369 * the inode ->i_opflags field that says "yes, we can
1370 * do lookup on this inode".
1372 static inline int can_lookup(struct inode *inode)
1374 if (likely(inode->i_opflags & IOP_LOOKUP))
1376 if (likely(!inode->i_op->lookup))
1379 /* We do this once for the lifetime of the inode */
1380 spin_lock(&inode->i_lock);
1381 inode->i_opflags |= IOP_LOOKUP;
1382 spin_unlock(&inode->i_lock);
1387 * We can do the critical dentry name comparison and hashing
1388 * operations one word at a time, but we are limited to:
1390 * - Architectures with fast unaligned word accesses. We could
1391 * do a "get_unaligned()" if this helps and is sufficiently
1394 * - Little-endian machines (so that we can generate the mask
1395 * of low bytes efficiently). Again, we *could* do a byte
1396 * swapping load on big-endian architectures if that is not
1397 * expensive enough to make the optimization worthless.
1399 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1400 * do not trap on the (extremely unlikely) case of a page
1401 * crossing operation.
1403 * - Furthermore, we need an efficient 64-bit compile for the
1404 * 64-bit case in order to generate the "number of bytes in
1405 * the final mask". Again, that could be replaced with a
1406 * efficient population count instruction or similar.
1408 #ifdef CONFIG_DCACHE_WORD_ACCESS
1410 #include <asm/word-at-a-time.h>
1414 static inline unsigned int fold_hash(unsigned long hash)
1416 hash += hash >> (8*sizeof(int));
1420 #else /* 32-bit case */
1422 #define fold_hash(x) (x)
1426 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1428 unsigned long a, mask;
1429 unsigned long hash = 0;
1432 a = *(unsigned long *)name;
1433 if (len < sizeof(unsigned long))
1437 name += sizeof(unsigned long);
1438 len -= sizeof(unsigned long);
1442 mask = ~(~0ul << len*8);
1445 return fold_hash(hash);
1447 EXPORT_SYMBOL(full_name_hash);
1450 * Calculate the length and hash of the path component, and
1451 * return the length of the component;
1453 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1455 unsigned long a, mask, hash, len;
1458 len = -sizeof(unsigned long);
1460 hash = (hash + a) * 9;
1461 len += sizeof(unsigned long);
1462 a = *(unsigned long *)(name+len);
1463 /* Do we have any NUL or '/' bytes in this word? */
1464 mask = has_zero(a) | has_zero(a ^ REPEAT_BYTE('/'));
1467 /* The mask *below* the first high bit set */
1468 mask = (mask - 1) & ~mask;
1471 *hashp = fold_hash(hash);
1473 return len + count_masked_bytes(mask);
1478 unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1480 unsigned long hash = init_name_hash();
1482 hash = partial_name_hash(*name++, hash);
1483 return end_name_hash(hash);
1485 EXPORT_SYMBOL(full_name_hash);
1488 * We know there's a real path component here of at least
1491 static inline unsigned long hash_name(const char *name, unsigned int *hashp)
1493 unsigned long hash = init_name_hash();
1494 unsigned long len = 0, c;
1496 c = (unsigned char)*name;
1499 hash = partial_name_hash(c, hash);
1500 c = (unsigned char)name[len];
1501 } while (c && c != '/');
1502 *hashp = end_name_hash(hash);
1510 * This is the basic name resolution function, turning a pathname into
1511 * the final dentry. We expect 'base' to be positive and a directory.
1513 * Returns 0 and nd will have valid dentry and mnt on success.
1514 * Returns error and drops reference to input namei data on failure.
1516 static int link_path_walk(const char *name, struct nameidata *nd)
1526 /* At this point we know we have a real path component. */
1532 err = may_lookup(nd);
1536 len = hash_name(name, &this.hash);
1541 if (name[0] == '.') switch (len) {
1543 if (name[1] == '.') {
1545 nd->flags |= LOOKUP_JUMPED;
1551 if (likely(type == LAST_NORM)) {
1552 struct dentry *parent = nd->path.dentry;
1553 nd->flags &= ~LOOKUP_JUMPED;
1554 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1555 err = parent->d_op->d_hash(parent, nd->inode,
1563 goto last_component;
1565 * If it wasn't NUL, we know it was '/'. Skip that
1566 * slash, and continue until no more slashes.
1570 } while (unlikely(name[len] == '/'));
1572 goto last_component;
1575 err = walk_component(nd, &next, &this, type, LOOKUP_FOLLOW);
1580 err = nested_symlink(&next, nd);
1584 if (can_lookup(nd->inode))
1588 /* here ends the main loop */
1592 nd->last_type = type;
1599 static int path_init(int dfd, const char *name, unsigned int flags,
1600 struct nameidata *nd, struct file **fp)
1606 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1607 nd->flags = flags | LOOKUP_JUMPED;
1609 if (flags & LOOKUP_ROOT) {
1610 struct inode *inode = nd->root.dentry->d_inode;
1612 if (!inode->i_op->lookup)
1614 retval = inode_permission(inode, MAY_EXEC);
1618 nd->path = nd->root;
1620 if (flags & LOOKUP_RCU) {
1621 br_read_lock(vfsmount_lock);
1623 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1625 path_get(&nd->path);
1630 nd->root.mnt = NULL;
1633 if (flags & LOOKUP_RCU) {
1634 br_read_lock(vfsmount_lock);
1639 path_get(&nd->root);
1641 nd->path = nd->root;
1642 } else if (dfd == AT_FDCWD) {
1643 if (flags & LOOKUP_RCU) {
1644 struct fs_struct *fs = current->fs;
1647 br_read_lock(vfsmount_lock);
1651 seq = read_seqcount_begin(&fs->seq);
1653 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1654 } while (read_seqcount_retry(&fs->seq, seq));
1656 get_fs_pwd(current->fs, &nd->path);
1659 struct dentry *dentry;
1661 file = fget_raw_light(dfd, &fput_needed);
1666 dentry = file->f_path.dentry;
1670 if (!S_ISDIR(dentry->d_inode->i_mode))
1673 retval = inode_permission(dentry->d_inode, MAY_EXEC);
1678 nd->path = file->f_path;
1679 if (flags & LOOKUP_RCU) {
1682 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1683 br_read_lock(vfsmount_lock);
1686 path_get(&file->f_path);
1687 fput_light(file, fput_needed);
1691 nd->inode = nd->path.dentry->d_inode;
1695 fput_light(file, fput_needed);
1700 static inline int lookup_last(struct nameidata *nd, struct path *path)
1702 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
1703 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
1705 nd->flags &= ~LOOKUP_PARENT;
1706 return walk_component(nd, path, &nd->last, nd->last_type,
1707 nd->flags & LOOKUP_FOLLOW);
1710 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1711 static int path_lookupat(int dfd, const char *name,
1712 unsigned int flags, struct nameidata *nd)
1714 struct file *base = NULL;
1719 * Path walking is largely split up into 2 different synchronisation
1720 * schemes, rcu-walk and ref-walk (explained in
1721 * Documentation/filesystems/path-lookup.txt). These share much of the
1722 * path walk code, but some things particularly setup, cleanup, and
1723 * following mounts are sufficiently divergent that functions are
1724 * duplicated. Typically there is a function foo(), and its RCU
1725 * analogue, foo_rcu().
1727 * -ECHILD is the error number of choice (just to avoid clashes) that
1728 * is returned if some aspect of an rcu-walk fails. Such an error must
1729 * be handled by restarting a traditional ref-walk (which will always
1730 * be able to complete).
1732 err = path_init(dfd, name, flags | LOOKUP_PARENT, nd, &base);
1737 current->total_link_count = 0;
1738 err = link_path_walk(name, nd);
1740 if (!err && !(flags & LOOKUP_PARENT)) {
1741 err = lookup_last(nd, &path);
1744 struct path link = path;
1745 nd->flags |= LOOKUP_PARENT;
1746 err = follow_link(&link, nd, &cookie);
1748 err = lookup_last(nd, &path);
1749 put_link(nd, &link, cookie);
1754 err = complete_walk(nd);
1756 if (!err && nd->flags & LOOKUP_DIRECTORY) {
1757 if (!nd->inode->i_op->lookup) {
1758 path_put(&nd->path);
1766 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1767 path_put(&nd->root);
1768 nd->root.mnt = NULL;
1773 static int do_path_lookup(int dfd, const char *name,
1774 unsigned int flags, struct nameidata *nd)
1776 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
1777 if (unlikely(retval == -ECHILD))
1778 retval = path_lookupat(dfd, name, flags, nd);
1779 if (unlikely(retval == -ESTALE))
1780 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
1782 if (likely(!retval)) {
1783 if (unlikely(!audit_dummy_context())) {
1784 if (nd->path.dentry && nd->inode)
1785 audit_inode(name, nd->path.dentry);
1791 int kern_path_parent(const char *name, struct nameidata *nd)
1793 return do_path_lookup(AT_FDCWD, name, LOOKUP_PARENT, nd);
1796 int kern_path(const char *name, unsigned int flags, struct path *path)
1798 struct nameidata nd;
1799 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1806 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1807 * @dentry: pointer to dentry of the base directory
1808 * @mnt: pointer to vfs mount of the base directory
1809 * @name: pointer to file name
1810 * @flags: lookup flags
1811 * @path: pointer to struct path to fill
1813 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1814 const char *name, unsigned int flags,
1817 struct nameidata nd;
1819 nd.root.dentry = dentry;
1821 BUG_ON(flags & LOOKUP_PARENT);
1822 /* the first argument of do_path_lookup() is ignored with LOOKUP_ROOT */
1823 err = do_path_lookup(AT_FDCWD, name, flags | LOOKUP_ROOT, &nd);
1830 * Restricted form of lookup. Doesn't follow links, single-component only,
1831 * needs parent already locked. Doesn't follow mounts.
1834 static struct dentry *lookup_hash(struct nameidata *nd)
1836 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1840 * lookup_one_len - filesystem helper to lookup single pathname component
1841 * @name: pathname component to lookup
1842 * @base: base directory to lookup from
1843 * @len: maximum length @len should be interpreted to
1845 * Note that this routine is purely a helper for filesystem usage and should
1846 * not be called by generic code. Also note that by using this function the
1847 * nameidata argument is passed to the filesystem methods and a filesystem
1848 * using this helper needs to be prepared for that.
1850 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1856 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1860 this.hash = full_name_hash(name, len);
1862 return ERR_PTR(-EACCES);
1865 c = *(const unsigned char *)name++;
1866 if (c == '/' || c == '\0')
1867 return ERR_PTR(-EACCES);
1870 * See if the low-level filesystem might want
1871 * to use its own hash..
1873 if (base->d_flags & DCACHE_OP_HASH) {
1874 int err = base->d_op->d_hash(base, base->d_inode, &this);
1876 return ERR_PTR(err);
1879 err = inode_permission(base->d_inode, MAY_EXEC);
1881 return ERR_PTR(err);
1883 return __lookup_hash(&this, base, NULL);
1886 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
1887 struct path *path, int *empty)
1889 struct nameidata nd;
1890 char *tmp = getname_flags(name, flags, empty);
1891 int err = PTR_ERR(tmp);
1894 BUG_ON(flags & LOOKUP_PARENT);
1896 err = do_path_lookup(dfd, tmp, flags, &nd);
1904 int user_path_at(int dfd, const char __user *name, unsigned flags,
1907 return user_path_at_empty(dfd, name, flags, path, NULL);
1910 static int user_path_parent(int dfd, const char __user *path,
1911 struct nameidata *nd, char **name)
1913 char *s = getname(path);
1919 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1929 * It's inline, so penalty for filesystems that don't use sticky bit is
1932 static inline int check_sticky(struct inode *dir, struct inode *inode)
1934 uid_t fsuid = current_fsuid();
1936 if (!(dir->i_mode & S_ISVTX))
1938 if (current_user_ns() != inode_userns(inode))
1940 if (inode->i_uid == fsuid)
1942 if (dir->i_uid == fsuid)
1946 return !ns_capable(inode_userns(inode), CAP_FOWNER);
1950 * Check whether we can remove a link victim from directory dir, check
1951 * whether the type of victim is right.
1952 * 1. We can't do it if dir is read-only (done in permission())
1953 * 2. We should have write and exec permissions on dir
1954 * 3. We can't remove anything from append-only dir
1955 * 4. We can't do anything with immutable dir (done in permission())
1956 * 5. If the sticky bit on dir is set we should either
1957 * a. be owner of dir, or
1958 * b. be owner of victim, or
1959 * c. have CAP_FOWNER capability
1960 * 6. If the victim is append-only or immutable we can't do antyhing with
1961 * links pointing to it.
1962 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1963 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1964 * 9. We can't remove a root or mountpoint.
1965 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1966 * nfs_async_unlink().
1968 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1972 if (!victim->d_inode)
1975 BUG_ON(victim->d_parent->d_inode != dir);
1976 audit_inode_child(victim, dir);
1978 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1983 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1984 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1987 if (!S_ISDIR(victim->d_inode->i_mode))
1989 if (IS_ROOT(victim))
1991 } else if (S_ISDIR(victim->d_inode->i_mode))
1993 if (IS_DEADDIR(dir))
1995 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2000 /* Check whether we can create an object with dentry child in directory
2002 * 1. We can't do it if child already exists (open has special treatment for
2003 * this case, but since we are inlined it's OK)
2004 * 2. We can't do it if dir is read-only (done in permission())
2005 * 3. We should have write and exec permissions on dir
2006 * 4. We can't do it if dir is immutable (done in permission())
2008 static inline int may_create(struct inode *dir, struct dentry *child)
2012 if (IS_DEADDIR(dir))
2014 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2018 * p1 and p2 should be directories on the same fs.
2020 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2025 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2029 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2031 p = d_ancestor(p2, p1);
2033 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2034 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2038 p = d_ancestor(p1, p2);
2040 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2041 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2045 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2046 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2050 void unlock_rename(struct dentry *p1, struct dentry *p2)
2052 mutex_unlock(&p1->d_inode->i_mutex);
2054 mutex_unlock(&p2->d_inode->i_mutex);
2055 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2059 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2060 struct nameidata *nd)
2062 int error = may_create(dir, dentry);
2067 if (!dir->i_op->create)
2068 return -EACCES; /* shouldn't it be ENOSYS? */
2071 error = security_inode_create(dir, dentry, mode);
2074 error = dir->i_op->create(dir, dentry, mode, nd);
2076 fsnotify_create(dir, dentry);
2080 static int may_open(struct path *path, int acc_mode, int flag)
2082 struct dentry *dentry = path->dentry;
2083 struct inode *inode = dentry->d_inode;
2093 switch (inode->i_mode & S_IFMT) {
2097 if (acc_mode & MAY_WRITE)
2102 if (path->mnt->mnt_flags & MNT_NODEV)
2111 error = inode_permission(inode, acc_mode);
2116 * An append-only file must be opened in append mode for writing.
2118 if (IS_APPEND(inode)) {
2119 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2125 /* O_NOATIME can only be set by the owner or superuser */
2126 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2132 static int handle_truncate(struct file *filp)
2134 struct path *path = &filp->f_path;
2135 struct inode *inode = path->dentry->d_inode;
2136 int error = get_write_access(inode);
2140 * Refuse to truncate files with mandatory locks held on them.
2142 error = locks_verify_locked(inode);
2144 error = security_path_truncate(path);
2146 error = do_truncate(path->dentry, 0,
2147 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2150 put_write_access(inode);
2154 static inline int open_to_namei_flags(int flag)
2156 if ((flag & O_ACCMODE) == 3)
2162 * Handle the last step of open()
2164 static struct file *do_last(struct nameidata *nd, struct path *path,
2165 const struct open_flags *op, const char *pathname)
2167 struct dentry *dir = nd->path.dentry;
2168 struct dentry *dentry;
2169 int open_flag = op->open_flag;
2170 int will_truncate = open_flag & O_TRUNC;
2172 int acc_mode = op->acc_mode;
2176 nd->flags &= ~LOOKUP_PARENT;
2177 nd->flags |= op->intent;
2179 switch (nd->last_type) {
2182 error = handle_dots(nd, nd->last_type);
2184 return ERR_PTR(error);
2187 error = complete_walk(nd);
2189 return ERR_PTR(error);
2190 audit_inode(pathname, nd->path.dentry);
2191 if (open_flag & O_CREAT) {
2197 error = complete_walk(nd);
2199 return ERR_PTR(error);
2200 audit_inode(pathname, dir);
2204 if (!(open_flag & O_CREAT)) {
2206 if (nd->last.name[nd->last.len])
2207 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2208 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2210 /* we _can_ be in RCU mode here */
2211 error = walk_component(nd, path, &nd->last, LAST_NORM,
2214 return ERR_PTR(error);
2215 if (error) /* symlink */
2218 error = complete_walk(nd);
2220 return ERR_PTR(error);
2223 if (nd->flags & LOOKUP_DIRECTORY) {
2224 if (!nd->inode->i_op->lookup)
2227 audit_inode(pathname, nd->path.dentry);
2231 /* create side of things */
2233 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED has been
2234 * cleared when we got to the last component we are about to look up
2236 error = complete_walk(nd);
2238 return ERR_PTR(error);
2240 audit_inode(pathname, dir);
2242 /* trailing slashes? */
2243 if (nd->last.name[nd->last.len])
2246 mutex_lock(&dir->d_inode->i_mutex);
2248 dentry = lookup_hash(nd);
2249 error = PTR_ERR(dentry);
2250 if (IS_ERR(dentry)) {
2251 mutex_unlock(&dir->d_inode->i_mutex);
2255 path->dentry = dentry;
2256 path->mnt = nd->path.mnt;
2258 /* Negative dentry, just create the file */
2259 if (!dentry->d_inode) {
2260 umode_t mode = op->mode;
2261 if (!IS_POSIXACL(dir->d_inode))
2262 mode &= ~current_umask();
2264 * This write is needed to ensure that a
2265 * rw->ro transition does not occur between
2266 * the time when the file is created and when
2267 * a permanent write count is taken through
2268 * the 'struct file' in nameidata_to_filp().
2270 error = mnt_want_write(nd->path.mnt);
2272 goto exit_mutex_unlock;
2274 /* Don't check for write permission, don't truncate */
2275 open_flag &= ~O_TRUNC;
2277 acc_mode = MAY_OPEN;
2278 error = security_path_mknod(&nd->path, dentry, mode, 0);
2280 goto exit_mutex_unlock;
2281 error = vfs_create(dir->d_inode, dentry, mode, nd);
2283 goto exit_mutex_unlock;
2284 mutex_unlock(&dir->d_inode->i_mutex);
2285 dput(nd->path.dentry);
2286 nd->path.dentry = dentry;
2291 * It already exists.
2293 mutex_unlock(&dir->d_inode->i_mutex);
2294 audit_inode(pathname, path->dentry);
2297 if (open_flag & O_EXCL)
2300 error = follow_managed(path, nd->flags);
2305 nd->flags |= LOOKUP_JUMPED;
2308 if (!path->dentry->d_inode)
2311 if (path->dentry->d_inode->i_op->follow_link)
2314 path_to_nameidata(path, nd);
2315 nd->inode = path->dentry->d_inode;
2316 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
2317 error = complete_walk(nd);
2319 return ERR_PTR(error);
2321 if (S_ISDIR(nd->inode->i_mode))
2324 if (!S_ISREG(nd->inode->i_mode))
2327 if (will_truncate) {
2328 error = mnt_want_write(nd->path.mnt);
2334 error = may_open(&nd->path, acc_mode, open_flag);
2337 filp = nameidata_to_filp(nd);
2338 if (!IS_ERR(filp)) {
2339 error = ima_file_check(filp, op->acc_mode);
2342 filp = ERR_PTR(error);
2345 if (!IS_ERR(filp)) {
2346 if (will_truncate) {
2347 error = handle_truncate(filp);
2350 filp = ERR_PTR(error);
2356 mnt_drop_write(nd->path.mnt);
2357 path_put(&nd->path);
2361 mutex_unlock(&dir->d_inode->i_mutex);
2363 path_put_conditional(path, nd);
2365 filp = ERR_PTR(error);
2369 static struct file *path_openat(int dfd, const char *pathname,
2370 struct nameidata *nd, const struct open_flags *op, int flags)
2372 struct file *base = NULL;
2377 filp = get_empty_filp();
2379 return ERR_PTR(-ENFILE);
2381 filp->f_flags = op->open_flag;
2382 nd->intent.open.file = filp;
2383 nd->intent.open.flags = open_to_namei_flags(op->open_flag);
2384 nd->intent.open.create_mode = op->mode;
2386 error = path_init(dfd, pathname, flags | LOOKUP_PARENT, nd, &base);
2387 if (unlikely(error))
2390 current->total_link_count = 0;
2391 error = link_path_walk(pathname, nd);
2392 if (unlikely(error))
2395 filp = do_last(nd, &path, op, pathname);
2396 while (unlikely(!filp)) { /* trailing symlink */
2397 struct path link = path;
2399 if (!(nd->flags & LOOKUP_FOLLOW)) {
2400 path_put_conditional(&path, nd);
2401 path_put(&nd->path);
2402 filp = ERR_PTR(-ELOOP);
2405 nd->flags |= LOOKUP_PARENT;
2406 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
2407 error = follow_link(&link, nd, &cookie);
2408 if (unlikely(error))
2409 filp = ERR_PTR(error);
2411 filp = do_last(nd, &path, op, pathname);
2412 put_link(nd, &link, cookie);
2415 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT))
2416 path_put(&nd->root);
2419 release_open_intent(nd);
2423 filp = ERR_PTR(error);
2427 struct file *do_filp_open(int dfd, const char *pathname,
2428 const struct open_flags *op, int flags)
2430 struct nameidata nd;
2433 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
2434 if (unlikely(filp == ERR_PTR(-ECHILD)))
2435 filp = path_openat(dfd, pathname, &nd, op, flags);
2436 if (unlikely(filp == ERR_PTR(-ESTALE)))
2437 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
2441 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
2442 const char *name, const struct open_flags *op, int flags)
2444 struct nameidata nd;
2448 nd.root.dentry = dentry;
2450 flags |= LOOKUP_ROOT;
2452 if (dentry->d_inode->i_op->follow_link && op->intent & LOOKUP_OPEN)
2453 return ERR_PTR(-ELOOP);
2455 file = path_openat(-1, name, &nd, op, flags | LOOKUP_RCU);
2456 if (unlikely(file == ERR_PTR(-ECHILD)))
2457 file = path_openat(-1, name, &nd, op, flags);
2458 if (unlikely(file == ERR_PTR(-ESTALE)))
2459 file = path_openat(-1, name, &nd, op, flags | LOOKUP_REVAL);
2463 struct dentry *kern_path_create(int dfd, const char *pathname, struct path *path, int is_dir)
2465 struct dentry *dentry = ERR_PTR(-EEXIST);
2466 struct nameidata nd;
2467 int error = do_path_lookup(dfd, pathname, LOOKUP_PARENT, &nd);
2469 return ERR_PTR(error);
2472 * Yucky last component or no last component at all?
2473 * (foo/., foo/.., /////)
2475 if (nd.last_type != LAST_NORM)
2477 nd.flags &= ~LOOKUP_PARENT;
2478 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
2479 nd.intent.open.flags = O_EXCL;
2482 * Do the final lookup.
2484 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2485 dentry = lookup_hash(&nd);
2489 if (dentry->d_inode)
2492 * Special case - lookup gave negative, but... we had foo/bar/
2493 * From the vfs_mknod() POV we just have a negative dentry -
2494 * all is fine. Let's be bastards - you had / on the end, you've
2495 * been asking for (non-existent) directory. -ENOENT for you.
2497 if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
2499 dentry = ERR_PTR(-ENOENT);
2506 dentry = ERR_PTR(-EEXIST);
2508 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2513 EXPORT_SYMBOL(kern_path_create);
2515 struct dentry *user_path_create(int dfd, const char __user *pathname, struct path *path, int is_dir)
2517 char *tmp = getname(pathname);
2520 return ERR_CAST(tmp);
2521 res = kern_path_create(dfd, tmp, path, is_dir);
2525 EXPORT_SYMBOL(user_path_create);
2527 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2529 int error = may_create(dir, dentry);
2534 if ((S_ISCHR(mode) || S_ISBLK(mode)) &&
2535 !ns_capable(inode_userns(dir), CAP_MKNOD))
2538 if (!dir->i_op->mknod)
2541 error = devcgroup_inode_mknod(mode, dev);
2545 error = security_inode_mknod(dir, dentry, mode, dev);
2549 error = dir->i_op->mknod(dir, dentry, mode, dev);
2551 fsnotify_create(dir, dentry);
2555 static int may_mknod(umode_t mode)
2557 switch (mode & S_IFMT) {
2563 case 0: /* zero mode translates to S_IFREG */
2572 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
2575 struct dentry *dentry;
2582 dentry = user_path_create(dfd, filename, &path, 0);
2584 return PTR_ERR(dentry);
2586 if (!IS_POSIXACL(path.dentry->d_inode))
2587 mode &= ~current_umask();
2588 error = may_mknod(mode);
2591 error = mnt_want_write(path.mnt);
2594 error = security_path_mknod(&path, dentry, mode, dev);
2596 goto out_drop_write;
2597 switch (mode & S_IFMT) {
2598 case 0: case S_IFREG:
2599 error = vfs_create(path.dentry->d_inode,dentry,mode,NULL);
2601 case S_IFCHR: case S_IFBLK:
2602 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
2603 new_decode_dev(dev));
2605 case S_IFIFO: case S_IFSOCK:
2606 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
2610 mnt_drop_write(path.mnt);
2613 mutex_unlock(&path.dentry->d_inode->i_mutex);
2619 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
2621 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2624 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2626 int error = may_create(dir, dentry);
2627 unsigned max_links = dir->i_sb->s_max_links;
2632 if (!dir->i_op->mkdir)
2635 mode &= (S_IRWXUGO|S_ISVTX);
2636 error = security_inode_mkdir(dir, dentry, mode);
2640 if (max_links && dir->i_nlink >= max_links)
2643 error = dir->i_op->mkdir(dir, dentry, mode);
2645 fsnotify_mkdir(dir, dentry);
2649 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
2651 struct dentry *dentry;
2655 dentry = user_path_create(dfd, pathname, &path, 1);
2657 return PTR_ERR(dentry);
2659 if (!IS_POSIXACL(path.dentry->d_inode))
2660 mode &= ~current_umask();
2661 error = mnt_want_write(path.mnt);
2664 error = security_path_mkdir(&path, dentry, mode);
2666 goto out_drop_write;
2667 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
2669 mnt_drop_write(path.mnt);
2672 mutex_unlock(&path.dentry->d_inode->i_mutex);
2677 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
2679 return sys_mkdirat(AT_FDCWD, pathname, mode);
2683 * The dentry_unhash() helper will try to drop the dentry early: we
2684 * should have a usage count of 1 if we're the only user of this
2685 * dentry, and if that is true (possibly after pruning the dcache),
2686 * then we drop the dentry now.
2688 * A low-level filesystem can, if it choses, legally
2691 * if (!d_unhashed(dentry))
2694 * if it cannot handle the case of removing a directory
2695 * that is still in use by something else..
2697 void dentry_unhash(struct dentry *dentry)
2699 shrink_dcache_parent(dentry);
2700 spin_lock(&dentry->d_lock);
2701 if (dentry->d_count == 1)
2703 spin_unlock(&dentry->d_lock);
2706 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2708 int error = may_delete(dir, dentry, 1);
2713 if (!dir->i_op->rmdir)
2717 mutex_lock(&dentry->d_inode->i_mutex);
2720 if (d_mountpoint(dentry))
2723 error = security_inode_rmdir(dir, dentry);
2727 shrink_dcache_parent(dentry);
2728 error = dir->i_op->rmdir(dir, dentry);
2732 dentry->d_inode->i_flags |= S_DEAD;
2736 mutex_unlock(&dentry->d_inode->i_mutex);
2743 static long do_rmdir(int dfd, const char __user *pathname)
2747 struct dentry *dentry;
2748 struct nameidata nd;
2750 error = user_path_parent(dfd, pathname, &nd, &name);
2754 switch(nd.last_type) {
2766 nd.flags &= ~LOOKUP_PARENT;
2768 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2769 dentry = lookup_hash(&nd);
2770 error = PTR_ERR(dentry);
2773 if (!dentry->d_inode) {
2777 error = mnt_want_write(nd.path.mnt);
2780 error = security_path_rmdir(&nd.path, dentry);
2783 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2785 mnt_drop_write(nd.path.mnt);
2789 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2796 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2798 return do_rmdir(AT_FDCWD, pathname);
2801 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2803 int error = may_delete(dir, dentry, 0);
2808 if (!dir->i_op->unlink)
2811 mutex_lock(&dentry->d_inode->i_mutex);
2812 if (d_mountpoint(dentry))
2815 error = security_inode_unlink(dir, dentry);
2817 error = dir->i_op->unlink(dir, dentry);
2822 mutex_unlock(&dentry->d_inode->i_mutex);
2824 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2825 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2826 fsnotify_link_count(dentry->d_inode);
2834 * Make sure that the actual truncation of the file will occur outside its
2835 * directory's i_mutex. Truncate can take a long time if there is a lot of
2836 * writeout happening, and we don't want to prevent access to the directory
2837 * while waiting on the I/O.
2839 static long do_unlinkat(int dfd, const char __user *pathname)
2843 struct dentry *dentry;
2844 struct nameidata nd;
2845 struct inode *inode = NULL;
2847 error = user_path_parent(dfd, pathname, &nd, &name);
2852 if (nd.last_type != LAST_NORM)
2855 nd.flags &= ~LOOKUP_PARENT;
2857 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2858 dentry = lookup_hash(&nd);
2859 error = PTR_ERR(dentry);
2860 if (!IS_ERR(dentry)) {
2861 /* Why not before? Because we want correct error value */
2862 if (nd.last.name[nd.last.len])
2864 inode = dentry->d_inode;
2868 error = mnt_want_write(nd.path.mnt);
2871 error = security_path_unlink(&nd.path, dentry);
2874 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2876 mnt_drop_write(nd.path.mnt);
2880 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2882 iput(inode); /* truncate the inode here */
2889 error = !dentry->d_inode ? -ENOENT :
2890 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2894 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2896 if ((flag & ~AT_REMOVEDIR) != 0)
2899 if (flag & AT_REMOVEDIR)
2900 return do_rmdir(dfd, pathname);
2902 return do_unlinkat(dfd, pathname);
2905 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2907 return do_unlinkat(AT_FDCWD, pathname);
2910 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2912 int error = may_create(dir, dentry);
2917 if (!dir->i_op->symlink)
2920 error = security_inode_symlink(dir, dentry, oldname);
2924 error = dir->i_op->symlink(dir, dentry, oldname);
2926 fsnotify_create(dir, dentry);
2930 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2931 int, newdfd, const char __user *, newname)
2935 struct dentry *dentry;
2938 from = getname(oldname);
2940 return PTR_ERR(from);
2942 dentry = user_path_create(newdfd, newname, &path, 0);
2943 error = PTR_ERR(dentry);
2947 error = mnt_want_write(path.mnt);
2950 error = security_path_symlink(&path, dentry, from);
2952 goto out_drop_write;
2953 error = vfs_symlink(path.dentry->d_inode, dentry, from);
2955 mnt_drop_write(path.mnt);
2958 mutex_unlock(&path.dentry->d_inode->i_mutex);
2965 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2967 return sys_symlinkat(oldname, AT_FDCWD, newname);
2970 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2972 struct inode *inode = old_dentry->d_inode;
2973 unsigned max_links = dir->i_sb->s_max_links;
2979 error = may_create(dir, new_dentry);
2983 if (dir->i_sb != inode->i_sb)
2987 * A link to an append-only or immutable file cannot be created.
2989 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2991 if (!dir->i_op->link)
2993 if (S_ISDIR(inode->i_mode))
2996 error = security_inode_link(old_dentry, dir, new_dentry);
3000 mutex_lock(&inode->i_mutex);
3001 /* Make sure we don't allow creating hardlink to an unlinked file */
3002 if (inode->i_nlink == 0)
3004 else if (max_links && inode->i_nlink >= max_links)
3007 error = dir->i_op->link(old_dentry, dir, new_dentry);
3008 mutex_unlock(&inode->i_mutex);
3010 fsnotify_link(dir, inode, new_dentry);
3015 * Hardlinks are often used in delicate situations. We avoid
3016 * security-related surprises by not following symlinks on the
3019 * We don't follow them on the oldname either to be compatible
3020 * with linux 2.0, and to avoid hard-linking to directories
3021 * and other special files. --ADM
3023 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
3024 int, newdfd, const char __user *, newname, int, flags)
3026 struct dentry *new_dentry;
3027 struct path old_path, new_path;
3031 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
3034 * To use null names we require CAP_DAC_READ_SEARCH
3035 * This ensures that not everyone will be able to create
3036 * handlink using the passed filedescriptor.
3038 if (flags & AT_EMPTY_PATH) {
3039 if (!capable(CAP_DAC_READ_SEARCH))
3044 if (flags & AT_SYMLINK_FOLLOW)
3045 how |= LOOKUP_FOLLOW;
3047 error = user_path_at(olddfd, oldname, how, &old_path);
3051 new_dentry = user_path_create(newdfd, newname, &new_path, 0);
3052 error = PTR_ERR(new_dentry);
3053 if (IS_ERR(new_dentry))
3057 if (old_path.mnt != new_path.mnt)
3059 error = mnt_want_write(new_path.mnt);
3062 error = security_path_link(old_path.dentry, &new_path, new_dentry);
3064 goto out_drop_write;
3065 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry);
3067 mnt_drop_write(new_path.mnt);
3070 mutex_unlock(&new_path.dentry->d_inode->i_mutex);
3071 path_put(&new_path);
3073 path_put(&old_path);
3078 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
3080 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
3084 * The worst of all namespace operations - renaming directory. "Perverted"
3085 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
3087 * a) we can get into loop creation. Check is done in is_subdir().
3088 * b) race potential - two innocent renames can create a loop together.
3089 * That's where 4.4 screws up. Current fix: serialization on
3090 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
3092 * c) we have to lock _three_ objects - parents and victim (if it exists).
3093 * And that - after we got ->i_mutex on parents (until then we don't know
3094 * whether the target exists). Solution: try to be smart with locking
3095 * order for inodes. We rely on the fact that tree topology may change
3096 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
3097 * move will be locked. Thus we can rank directories by the tree
3098 * (ancestors first) and rank all non-directories after them.
3099 * That works since everybody except rename does "lock parent, lookup,
3100 * lock child" and rename is under ->s_vfs_rename_mutex.
3101 * HOWEVER, it relies on the assumption that any object with ->lookup()
3102 * has no more than 1 dentry. If "hybrid" objects will ever appear,
3103 * we'd better make sure that there's no link(2) for them.
3104 * d) conversion from fhandle to dentry may come in the wrong moment - when
3105 * we are removing the target. Solution: we will have to grab ->i_mutex
3106 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
3107 * ->i_mutex on parents, which works but leads to some truly excessive
3110 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
3111 struct inode *new_dir, struct dentry *new_dentry)
3114 struct inode *target = new_dentry->d_inode;
3115 unsigned max_links = new_dir->i_sb->s_max_links;
3118 * If we are going to change the parent - check write permissions,
3119 * we'll need to flip '..'.
3121 if (new_dir != old_dir) {
3122 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
3127 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3133 mutex_lock(&target->i_mutex);
3136 if (d_mountpoint(old_dentry) || d_mountpoint(new_dentry))
3140 if (max_links && !target && new_dir != old_dir &&
3141 new_dir->i_nlink >= max_links)
3145 shrink_dcache_parent(new_dentry);
3146 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3151 target->i_flags |= S_DEAD;
3152 dont_mount(new_dentry);
3156 mutex_unlock(&target->i_mutex);
3159 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3160 d_move(old_dentry,new_dentry);
3164 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
3165 struct inode *new_dir, struct dentry *new_dentry)
3167 struct inode *target = new_dentry->d_inode;
3170 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
3176 mutex_lock(&target->i_mutex);
3179 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
3182 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
3187 dont_mount(new_dentry);
3188 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
3189 d_move(old_dentry, new_dentry);
3192 mutex_unlock(&target->i_mutex);
3197 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
3198 struct inode *new_dir, struct dentry *new_dentry)
3201 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
3202 const unsigned char *old_name;
3204 if (old_dentry->d_inode == new_dentry->d_inode)
3207 error = may_delete(old_dir, old_dentry, is_dir);
3211 if (!new_dentry->d_inode)
3212 error = may_create(new_dir, new_dentry);
3214 error = may_delete(new_dir, new_dentry, is_dir);
3218 if (!old_dir->i_op->rename)
3221 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
3224 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
3226 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
3228 fsnotify_move(old_dir, new_dir, old_name, is_dir,
3229 new_dentry->d_inode, old_dentry);
3230 fsnotify_oldname_free(old_name);
3235 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
3236 int, newdfd, const char __user *, newname)
3238 struct dentry *old_dir, *new_dir;
3239 struct dentry *old_dentry, *new_dentry;
3240 struct dentry *trap;
3241 struct nameidata oldnd, newnd;
3246 error = user_path_parent(olddfd, oldname, &oldnd, &from);
3250 error = user_path_parent(newdfd, newname, &newnd, &to);
3255 if (oldnd.path.mnt != newnd.path.mnt)
3258 old_dir = oldnd.path.dentry;
3260 if (oldnd.last_type != LAST_NORM)
3263 new_dir = newnd.path.dentry;
3264 if (newnd.last_type != LAST_NORM)
3267 oldnd.flags &= ~LOOKUP_PARENT;
3268 newnd.flags &= ~LOOKUP_PARENT;
3269 newnd.flags |= LOOKUP_RENAME_TARGET;
3271 trap = lock_rename(new_dir, old_dir);
3273 old_dentry = lookup_hash(&oldnd);
3274 error = PTR_ERR(old_dentry);
3275 if (IS_ERR(old_dentry))
3277 /* source must exist */
3279 if (!old_dentry->d_inode)
3281 /* unless the source is a directory trailing slashes give -ENOTDIR */
3282 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
3284 if (oldnd.last.name[oldnd.last.len])
3286 if (newnd.last.name[newnd.last.len])
3289 /* source should not be ancestor of target */
3291 if (old_dentry == trap)
3293 new_dentry = lookup_hash(&newnd);
3294 error = PTR_ERR(new_dentry);
3295 if (IS_ERR(new_dentry))
3297 /* target should not be an ancestor of source */
3299 if (new_dentry == trap)
3302 error = mnt_want_write(oldnd.path.mnt);
3305 error = security_path_rename(&oldnd.path, old_dentry,
3306 &newnd.path, new_dentry);
3309 error = vfs_rename(old_dir->d_inode, old_dentry,
3310 new_dir->d_inode, new_dentry);
3312 mnt_drop_write(oldnd.path.mnt);
3318 unlock_rename(new_dir, old_dir);
3320 path_put(&newnd.path);
3323 path_put(&oldnd.path);
3329 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
3331 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
3334 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
3338 len = PTR_ERR(link);
3343 if (len > (unsigned) buflen)
3345 if (copy_to_user(buffer, link, len))
3352 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
3353 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
3354 * using) it for any given inode is up to filesystem.
3356 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3358 struct nameidata nd;
3363 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
3365 return PTR_ERR(cookie);
3367 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
3368 if (dentry->d_inode->i_op->put_link)
3369 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
3373 int vfs_follow_link(struct nameidata *nd, const char *link)
3375 return __vfs_follow_link(nd, link);
3378 /* get the link contents into pagecache */
3379 static char *page_getlink(struct dentry * dentry, struct page **ppage)
3383 struct address_space *mapping = dentry->d_inode->i_mapping;
3384 page = read_mapping_page(mapping, 0, NULL);
3389 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
3393 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
3395 struct page *page = NULL;
3396 char *s = page_getlink(dentry, &page);
3397 int res = vfs_readlink(dentry,buffer,buflen,s);
3400 page_cache_release(page);
3405 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
3407 struct page *page = NULL;
3408 nd_set_link(nd, page_getlink(dentry, &page));
3412 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
3414 struct page *page = cookie;
3418 page_cache_release(page);
3423 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
3425 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
3427 struct address_space *mapping = inode->i_mapping;
3432 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
3434 flags |= AOP_FLAG_NOFS;
3437 err = pagecache_write_begin(NULL, mapping, 0, len-1,
3438 flags, &page, &fsdata);
3442 kaddr = kmap_atomic(page);
3443 memcpy(kaddr, symname, len-1);
3444 kunmap_atomic(kaddr);
3446 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
3453 mark_inode_dirty(inode);
3459 int page_symlink(struct inode *inode, const char *symname, int len)
3461 return __page_symlink(inode, symname, len,
3462 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
3465 const struct inode_operations page_symlink_inode_operations = {
3466 .readlink = generic_readlink,
3467 .follow_link = page_follow_link_light,
3468 .put_link = page_put_link,
3471 EXPORT_SYMBOL(user_path_at);
3472 EXPORT_SYMBOL(follow_down_one);
3473 EXPORT_SYMBOL(follow_down);
3474 EXPORT_SYMBOL(follow_up);
3475 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
3476 EXPORT_SYMBOL(getname);
3477 EXPORT_SYMBOL(lock_rename);
3478 EXPORT_SYMBOL(lookup_one_len);
3479 EXPORT_SYMBOL(page_follow_link_light);
3480 EXPORT_SYMBOL(page_put_link);
3481 EXPORT_SYMBOL(page_readlink);
3482 EXPORT_SYMBOL(__page_symlink);
3483 EXPORT_SYMBOL(page_symlink);
3484 EXPORT_SYMBOL(page_symlink_inode_operations);
3485 EXPORT_SYMBOL(kern_path);
3486 EXPORT_SYMBOL(vfs_path_lookup);
3487 EXPORT_SYMBOL(inode_permission);
3488 EXPORT_SYMBOL(unlock_rename);
3489 EXPORT_SYMBOL(vfs_create);
3490 EXPORT_SYMBOL(vfs_follow_link);
3491 EXPORT_SYMBOL(vfs_link);
3492 EXPORT_SYMBOL(vfs_mkdir);
3493 EXPORT_SYMBOL(vfs_mknod);
3494 EXPORT_SYMBOL(generic_permission);
3495 EXPORT_SYMBOL(vfs_readlink);
3496 EXPORT_SYMBOL(vfs_rename);
3497 EXPORT_SYMBOL(vfs_rmdir);
3498 EXPORT_SYMBOL(vfs_symlink);
3499 EXPORT_SYMBOL(vfs_unlink);
3500 EXPORT_SYMBOL(dentry_unhash);
3501 EXPORT_SYMBOL(generic_readlink);