1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 2002, Linus Torvalds.
7 * Contains functions related to preparing and submitting BIOs which contain
8 * multiple pagecache pages.
10 * 15May2002 Andrew Morton
12 * 27Jun2002 axboe@suse.de
13 * use bio_add_page() to build bio's just the right size
16 #include <linux/kernel.h>
17 #include <linux/export.h>
19 #include <linux/kdev_t.h>
20 #include <linux/gfp.h>
21 #include <linux/bio.h>
23 #include <linux/buffer_head.h>
24 #include <linux/blkdev.h>
25 #include <linux/highmem.h>
26 #include <linux/prefetch.h>
27 #include <linux/mpage.h>
28 #include <linux/mm_inline.h>
29 #include <linux/writeback.h>
30 #include <linux/backing-dev.h>
31 #include <linux/pagevec.h>
35 * I/O completion handler for multipage BIOs.
37 * The mpage code never puts partial pages into a BIO (except for end-of-file).
38 * If a page does not map to a contiguous run of blocks then it simply falls
39 * back to block_read_full_folio().
41 * Why is this? If a page's completion depends on a number of different BIOs
42 * which can complete in any order (or at the same time) then determining the
43 * status of that page is hard. See end_buffer_async_read() for the details.
44 * There is no point in duplicating all that complexity.
46 static void mpage_read_end_io(struct bio *bio)
49 int err = blk_status_to_errno(bio->bi_status);
51 bio_for_each_folio_all(fi, bio) {
53 folio_set_error(fi.folio);
55 folio_mark_uptodate(fi.folio);
56 folio_unlock(fi.folio);
62 static void mpage_write_end_io(struct bio *bio)
65 int err = blk_status_to_errno(bio->bi_status);
67 bio_for_each_folio_all(fi, bio) {
69 folio_set_error(fi.folio);
70 mapping_set_error(fi.folio->mapping, err);
72 folio_end_writeback(fi.folio);
78 static struct bio *mpage_bio_submit_read(struct bio *bio)
80 bio->bi_end_io = mpage_read_end_io;
86 static struct bio *mpage_bio_submit_write(struct bio *bio)
88 bio->bi_end_io = mpage_write_end_io;
95 * support function for mpage_readahead. The fs supplied get_block might
96 * return an up to date buffer. This is used to map that buffer into
97 * the page, which allows read_folio to avoid triggering a duplicate call
100 * The idea is to avoid adding buffers to pages that don't already have
101 * them. So when the buffer is up to date and the page size == block size,
102 * this marks the page up to date instead of adding new buffers.
104 static void map_buffer_to_folio(struct folio *folio, struct buffer_head *bh,
107 struct inode *inode = folio->mapping->host;
108 struct buffer_head *page_bh, *head;
111 head = folio_buffers(folio);
114 * don't make any buffers if there is only one buffer on
115 * the folio and the folio just needs to be set up to date
117 if (inode->i_blkbits == PAGE_SHIFT &&
118 buffer_uptodate(bh)) {
119 folio_mark_uptodate(folio);
122 create_empty_buffers(&folio->page, i_blocksize(inode), 0);
123 head = folio_buffers(folio);
128 if (block == page_block) {
129 page_bh->b_state = bh->b_state;
130 page_bh->b_bdev = bh->b_bdev;
131 page_bh->b_blocknr = bh->b_blocknr;
134 page_bh = page_bh->b_this_page;
136 } while (page_bh != head);
139 struct mpage_readpage_args {
142 unsigned int nr_pages;
144 sector_t last_block_in_bio;
145 struct buffer_head map_bh;
146 unsigned long first_logical_block;
147 get_block_t *get_block;
151 * This is the worker routine which does all the work of mapping the disk
152 * blocks and constructs largest possible bios, submits them for IO if the
153 * blocks are not contiguous on the disk.
155 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
156 * represent the validity of its disk mapping and to decide when to do the next
159 static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
161 struct folio *folio = args->folio;
162 struct inode *inode = folio->mapping->host;
163 const unsigned blkbits = inode->i_blkbits;
164 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
165 const unsigned blocksize = 1 << blkbits;
166 struct buffer_head *map_bh = &args->map_bh;
167 sector_t block_in_file;
169 sector_t last_block_in_file;
170 sector_t blocks[MAX_BUF_PER_PAGE];
172 unsigned first_hole = blocks_per_page;
173 struct block_device *bdev = NULL;
175 int fully_mapped = 1;
176 blk_opf_t opf = REQ_OP_READ;
178 unsigned relative_block;
179 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
181 /* MAX_BUF_PER_PAGE, for example */
182 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
184 if (args->is_readahead) {
186 gfp |= __GFP_NORETRY | __GFP_NOWARN;
189 if (folio_buffers(folio))
192 block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits);
193 last_block = block_in_file + args->nr_pages * blocks_per_page;
194 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
195 if (last_block > last_block_in_file)
196 last_block = last_block_in_file;
200 * Map blocks using the result from the previous get_blocks call first.
202 nblocks = map_bh->b_size >> blkbits;
203 if (buffer_mapped(map_bh) &&
204 block_in_file > args->first_logical_block &&
205 block_in_file < (args->first_logical_block + nblocks)) {
206 unsigned map_offset = block_in_file - args->first_logical_block;
207 unsigned last = nblocks - map_offset;
209 for (relative_block = 0; ; relative_block++) {
210 if (relative_block == last) {
211 clear_buffer_mapped(map_bh);
214 if (page_block == blocks_per_page)
216 blocks[page_block] = map_bh->b_blocknr + map_offset +
221 bdev = map_bh->b_bdev;
225 * Then do more get_blocks calls until we are done with this folio.
227 map_bh->b_folio = folio;
228 while (page_block < blocks_per_page) {
232 if (block_in_file < last_block) {
233 map_bh->b_size = (last_block-block_in_file) << blkbits;
234 if (args->get_block(inode, block_in_file, map_bh, 0))
236 args->first_logical_block = block_in_file;
239 if (!buffer_mapped(map_bh)) {
241 if (first_hole == blocks_per_page)
242 first_hole = page_block;
248 /* some filesystems will copy data into the page during
249 * the get_block call, in which case we don't want to
250 * read it again. map_buffer_to_folio copies the data
251 * we just collected from get_block into the folio's buffers
252 * so read_folio doesn't have to repeat the get_block call
254 if (buffer_uptodate(map_bh)) {
255 map_buffer_to_folio(folio, map_bh, page_block);
259 if (first_hole != blocks_per_page)
260 goto confused; /* hole -> non-hole */
262 /* Contiguous blocks? */
263 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
265 nblocks = map_bh->b_size >> blkbits;
266 for (relative_block = 0; ; relative_block++) {
267 if (relative_block == nblocks) {
268 clear_buffer_mapped(map_bh);
270 } else if (page_block == blocks_per_page)
272 blocks[page_block] = map_bh->b_blocknr+relative_block;
276 bdev = map_bh->b_bdev;
279 if (first_hole != blocks_per_page) {
280 folio_zero_segment(folio, first_hole << blkbits, PAGE_SIZE);
281 if (first_hole == 0) {
282 folio_mark_uptodate(folio);
286 } else if (fully_mapped) {
287 folio_set_mappedtodisk(folio);
291 * This folio will go to BIO. Do we need to send this BIO off first?
293 if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
294 args->bio = mpage_bio_submit_read(args->bio);
297 if (args->bio == NULL) {
298 args->bio = bio_alloc(bdev, bio_max_segs(args->nr_pages), opf,
300 if (args->bio == NULL)
302 args->bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
305 length = first_hole << blkbits;
306 if (!bio_add_folio(args->bio, folio, length, 0)) {
307 args->bio = mpage_bio_submit_read(args->bio);
311 relative_block = block_in_file - args->first_logical_block;
312 nblocks = map_bh->b_size >> blkbits;
313 if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
314 (first_hole != blocks_per_page))
315 args->bio = mpage_bio_submit_read(args->bio);
317 args->last_block_in_bio = blocks[blocks_per_page - 1];
323 args->bio = mpage_bio_submit_read(args->bio);
324 if (!folio_test_uptodate(folio))
325 block_read_full_folio(folio, args->get_block);
332 * mpage_readahead - start reads against pages
333 * @rac: Describes which pages to read.
334 * @get_block: The filesystem's block mapper function.
336 * This function walks the pages and the blocks within each page, building and
337 * emitting large BIOs.
339 * If anything unusual happens, such as:
341 * - encountering a page which has buffers
342 * - encountering a page which has a non-hole after a hole
343 * - encountering a page with non-contiguous blocks
345 * then this code just gives up and calls the buffer_head-based read function.
346 * It does handle a page which has holes at the end - that is a common case:
347 * the end-of-file on blocksize < PAGE_SIZE setups.
349 * BH_Boundary explanation:
351 * There is a problem. The mpage read code assembles several pages, gets all
352 * their disk mappings, and then submits them all. That's fine, but obtaining
353 * the disk mappings may require I/O. Reads of indirect blocks, for example.
355 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
356 * submitted in the following order:
358 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
360 * because the indirect block has to be read to get the mappings of blocks
361 * 13,14,15,16. Obviously, this impacts performance.
363 * So what we do it to allow the filesystem's get_block() function to set
364 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block
365 * after this one will require I/O against a block which is probably close to
366 * this one. So you should push what I/O you have currently accumulated.
368 * This all causes the disk requests to be issued in the correct order.
370 void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
373 struct mpage_readpage_args args = {
374 .get_block = get_block,
375 .is_readahead = true,
378 while ((folio = readahead_folio(rac))) {
379 prefetchw(&folio->flags);
381 args.nr_pages = readahead_count(rac);
382 args.bio = do_mpage_readpage(&args);
385 mpage_bio_submit_read(args.bio);
387 EXPORT_SYMBOL(mpage_readahead);
390 * This isn't called much at all
392 int mpage_read_folio(struct folio *folio, get_block_t get_block)
394 struct mpage_readpage_args args = {
397 .get_block = get_block,
400 args.bio = do_mpage_readpage(&args);
402 mpage_bio_submit_read(args.bio);
405 EXPORT_SYMBOL(mpage_read_folio);
408 * Writing is not so simple.
410 * If the page has buffers then they will be used for obtaining the disk
411 * mapping. We only support pages which are fully mapped-and-dirty, with a
412 * special case for pages which are unmapped at the end: end-of-file.
414 * If the page has no buffers (preferred) then the page is mapped here.
416 * If all blocks are found to be contiguous then the page can go into the
417 * BIO. Otherwise fall back to the mapping's writepage().
419 * FIXME: This code wants an estimate of how many pages are still to be
420 * written, so it can intelligently allocate a suitably-sized BIO. For now,
421 * just allocate full-size (16-page) BIOs.
426 sector_t last_block_in_bio;
427 get_block_t *get_block;
431 * We have our BIO, so we can now mark the buffers clean. Make
432 * sure to only clean buffers which we know we'll be writing.
434 static void clean_buffers(struct page *page, unsigned first_unmapped)
436 unsigned buffer_counter = 0;
437 struct buffer_head *bh, *head;
438 if (!page_has_buffers(page))
440 head = page_buffers(page);
444 if (buffer_counter++ == first_unmapped)
446 clear_buffer_dirty(bh);
447 bh = bh->b_this_page;
448 } while (bh != head);
451 * we cannot drop the bh if the page is not uptodate or a concurrent
452 * read_folio would fail to serialize with the bh and it would read from
453 * disk before we reach the platter.
455 if (buffer_heads_over_limit && PageUptodate(page))
456 try_to_free_buffers(page_folio(page));
460 * For situations where we want to clean all buffers attached to a page.
461 * We don't need to calculate how many buffers are attached to the page,
462 * we just need to specify a number larger than the maximum number of buffers.
464 void clean_page_buffers(struct page *page)
466 clean_buffers(page, ~0U);
469 static int __mpage_writepage(struct folio *folio, struct writeback_control *wbc,
472 struct mpage_data *mpd = data;
473 struct bio *bio = mpd->bio;
474 struct address_space *mapping = folio->mapping;
475 struct inode *inode = mapping->host;
476 const unsigned blkbits = inode->i_blkbits;
477 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
479 sector_t block_in_file;
480 sector_t blocks[MAX_BUF_PER_PAGE];
482 unsigned first_unmapped = blocks_per_page;
483 struct block_device *bdev = NULL;
485 sector_t boundary_block = 0;
486 struct block_device *boundary_bdev = NULL;
488 struct buffer_head map_bh;
489 loff_t i_size = i_size_read(inode);
491 struct buffer_head *head = folio_buffers(folio);
494 struct buffer_head *bh = head;
496 /* If they're all mapped and dirty, do it */
499 BUG_ON(buffer_locked(bh));
500 if (!buffer_mapped(bh)) {
502 * unmapped dirty buffers are created by
503 * block_dirty_folio -> mmapped data
505 if (buffer_dirty(bh))
507 if (first_unmapped == blocks_per_page)
508 first_unmapped = page_block;
512 if (first_unmapped != blocks_per_page)
513 goto confused; /* hole -> non-hole */
515 if (!buffer_dirty(bh) || !buffer_uptodate(bh))
518 if (bh->b_blocknr != blocks[page_block-1] + 1)
521 blocks[page_block++] = bh->b_blocknr;
522 boundary = buffer_boundary(bh);
524 boundary_block = bh->b_blocknr;
525 boundary_bdev = bh->b_bdev;
528 } while ((bh = bh->b_this_page) != head);
534 * Page has buffers, but they are all unmapped. The page was
535 * created by pagein or read over a hole which was handled by
536 * block_read_full_folio(). If this address_space is also
537 * using mpage_readahead then this can rarely happen.
543 * The page has no buffers: map it to disk
545 BUG_ON(!folio_test_uptodate(folio));
546 block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits);
548 * Whole page beyond EOF? Skip allocating blocks to avoid leaking
551 if (block_in_file >= (i_size + (1 << blkbits) - 1) >> blkbits)
553 last_block = (i_size - 1) >> blkbits;
554 map_bh.b_folio = folio;
555 for (page_block = 0; page_block < blocks_per_page; ) {
558 map_bh.b_size = 1 << blkbits;
559 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
561 if (!buffer_mapped(&map_bh))
563 if (buffer_new(&map_bh))
564 clean_bdev_bh_alias(&map_bh);
565 if (buffer_boundary(&map_bh)) {
566 boundary_block = map_bh.b_blocknr;
567 boundary_bdev = map_bh.b_bdev;
570 if (map_bh.b_blocknr != blocks[page_block-1] + 1)
573 blocks[page_block++] = map_bh.b_blocknr;
574 boundary = buffer_boundary(&map_bh);
575 bdev = map_bh.b_bdev;
576 if (block_in_file == last_block)
580 BUG_ON(page_block == 0);
582 first_unmapped = page_block;
585 /* Don't bother writing beyond EOF, truncate will discard the folio */
586 if (folio_pos(folio) >= i_size)
588 length = folio_size(folio);
589 if (folio_pos(folio) + length > i_size) {
591 * The page straddles i_size. It must be zeroed out on each
592 * and every writepage invocation because it may be mmapped.
593 * "A file is mapped in multiples of the page size. For a file
594 * that is not a multiple of the page size, the remaining memory
595 * is zeroed when mapped, and writes to that region are not
596 * written out to the file."
598 length = i_size - folio_pos(folio);
599 folio_zero_segment(folio, length, folio_size(folio));
603 * This page will go to BIO. Do we need to send this BIO off first?
605 if (bio && mpd->last_block_in_bio != blocks[0] - 1)
606 bio = mpage_bio_submit_write(bio);
610 bio = bio_alloc(bdev, BIO_MAX_VECS,
611 REQ_OP_WRITE | wbc_to_write_flags(wbc),
613 bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
614 wbc_init_bio(wbc, bio);
618 * Must try to add the page before marking the buffer clean or
619 * the confused fail path above (OOM) will be very confused when
620 * it finds all bh marked clean (i.e. it will not write anything)
622 wbc_account_cgroup_owner(wbc, &folio->page, folio_size(folio));
623 length = first_unmapped << blkbits;
624 if (!bio_add_folio(bio, folio, length, 0)) {
625 bio = mpage_bio_submit_write(bio);
629 clean_buffers(&folio->page, first_unmapped);
631 BUG_ON(folio_test_writeback(folio));
632 folio_start_writeback(folio);
634 if (boundary || (first_unmapped != blocks_per_page)) {
635 bio = mpage_bio_submit_write(bio);
636 if (boundary_block) {
637 write_boundary_block(boundary_bdev,
638 boundary_block, 1 << blkbits);
641 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
647 bio = mpage_bio_submit_write(bio);
650 * The caller has a ref on the inode, so *mapping is stable
652 ret = block_write_full_page(&folio->page, mpd->get_block, wbc);
653 mapping_set_error(mapping, ret);
660 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
661 * @mapping: address space structure to write
662 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
663 * @get_block: the filesystem's block mapper function.
665 * This is a library function, which implements the writepages()
666 * address_space_operation.
669 mpage_writepages(struct address_space *mapping,
670 struct writeback_control *wbc, get_block_t get_block)
672 struct mpage_data mpd = {
673 .get_block = get_block,
675 struct blk_plug plug;
678 blk_start_plug(&plug);
679 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
681 mpage_bio_submit_write(mpd.bio);
682 blk_finish_plug(&plug);
685 EXPORT_SYMBOL(mpage_writepages);