Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[platform/kernel/linux-exynos.git] / fs / mpage.c
1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002    Andrew Morton
10  *              Initial version
11  * 27Jun2002    axboe@suse.de
12  *              use bio_add_page() to build bio's just the right size
13  */
14
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
21 #include <linux/fs.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/cleancache.h>
31 #include "internal.h"
32
33 /*
34  * I/O completion handler for multipage BIOs.
35  *
36  * The mpage code never puts partial pages into a BIO (except for end-of-file).
37  * If a page does not map to a contiguous run of blocks then it simply falls
38  * back to block_read_full_page().
39  *
40  * Why is this?  If a page's completion depends on a number of different BIOs
41  * which can complete in any order (or at the same time) then determining the
42  * status of that page is hard.  See end_buffer_async_read() for the details.
43  * There is no point in duplicating all that complexity.
44  */
45 static void mpage_end_io(struct bio *bio, int err)
46 {
47         struct bio_vec *bv;
48         int i;
49
50         bio_for_each_segment_all(bv, bio, i) {
51                 struct page *page = bv->bv_page;
52                 page_endio(page, bio_data_dir(bio), err);
53         }
54
55         bio_put(bio);
56 }
57
58 static struct bio *mpage_bio_submit(int rw, struct bio *bio)
59 {
60         bio->bi_end_io = mpage_end_io;
61         guard_bio_eod(rw, bio);
62         submit_bio(rw, bio);
63         return NULL;
64 }
65
66 static struct bio *
67 mpage_alloc(struct block_device *bdev,
68                 sector_t first_sector, int nr_vecs,
69                 gfp_t gfp_flags)
70 {
71         struct bio *bio;
72
73         bio = bio_alloc(gfp_flags, nr_vecs);
74
75         if (bio == NULL && (current->flags & PF_MEMALLOC)) {
76                 while (!bio && (nr_vecs /= 2))
77                         bio = bio_alloc(gfp_flags, nr_vecs);
78         }
79
80         if (bio) {
81                 bio->bi_bdev = bdev;
82                 bio->bi_iter.bi_sector = first_sector;
83         }
84         return bio;
85 }
86
87 /*
88  * support function for mpage_readpages.  The fs supplied get_block might
89  * return an up to date buffer.  This is used to map that buffer into
90  * the page, which allows readpage to avoid triggering a duplicate call
91  * to get_block.
92  *
93  * The idea is to avoid adding buffers to pages that don't already have
94  * them.  So when the buffer is up to date and the page size == block size,
95  * this marks the page up to date instead of adding new buffers.
96  */
97 static void 
98 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
99 {
100         struct inode *inode = page->mapping->host;
101         struct buffer_head *page_bh, *head;
102         int block = 0;
103
104         if (!page_has_buffers(page)) {
105                 /*
106                  * don't make any buffers if there is only one buffer on
107                  * the page and the page just needs to be set up to date
108                  */
109                 if (inode->i_blkbits == PAGE_CACHE_SHIFT && 
110                     buffer_uptodate(bh)) {
111                         SetPageUptodate(page);    
112                         return;
113                 }
114                 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
115         }
116         head = page_buffers(page);
117         page_bh = head;
118         do {
119                 if (block == page_block) {
120                         page_bh->b_state = bh->b_state;
121                         page_bh->b_bdev = bh->b_bdev;
122                         page_bh->b_blocknr = bh->b_blocknr;
123                         break;
124                 }
125                 page_bh = page_bh->b_this_page;
126                 block++;
127         } while (page_bh != head);
128 }
129
130 /*
131  * This is the worker routine which does all the work of mapping the disk
132  * blocks and constructs largest possible bios, submits them for IO if the
133  * blocks are not contiguous on the disk.
134  *
135  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
136  * represent the validity of its disk mapping and to decide when to do the next
137  * get_block() call.
138  */
139 static struct bio *
140 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
141                 sector_t *last_block_in_bio, struct buffer_head *map_bh,
142                 unsigned long *first_logical_block, get_block_t get_block)
143 {
144         struct inode *inode = page->mapping->host;
145         const unsigned blkbits = inode->i_blkbits;
146         const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
147         const unsigned blocksize = 1 << blkbits;
148         sector_t block_in_file;
149         sector_t last_block;
150         sector_t last_block_in_file;
151         sector_t blocks[MAX_BUF_PER_PAGE];
152         unsigned page_block;
153         unsigned first_hole = blocks_per_page;
154         struct block_device *bdev = NULL;
155         int length;
156         int fully_mapped = 1;
157         unsigned nblocks;
158         unsigned relative_block;
159
160         if (page_has_buffers(page))
161                 goto confused;
162
163         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
164         last_block = block_in_file + nr_pages * blocks_per_page;
165         last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
166         if (last_block > last_block_in_file)
167                 last_block = last_block_in_file;
168         page_block = 0;
169
170         /*
171          * Map blocks using the result from the previous get_blocks call first.
172          */
173         nblocks = map_bh->b_size >> blkbits;
174         if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
175                         block_in_file < (*first_logical_block + nblocks)) {
176                 unsigned map_offset = block_in_file - *first_logical_block;
177                 unsigned last = nblocks - map_offset;
178
179                 for (relative_block = 0; ; relative_block++) {
180                         if (relative_block == last) {
181                                 clear_buffer_mapped(map_bh);
182                                 break;
183                         }
184                         if (page_block == blocks_per_page)
185                                 break;
186                         blocks[page_block] = map_bh->b_blocknr + map_offset +
187                                                 relative_block;
188                         page_block++;
189                         block_in_file++;
190                 }
191                 bdev = map_bh->b_bdev;
192         }
193
194         /*
195          * Then do more get_blocks calls until we are done with this page.
196          */
197         map_bh->b_page = page;
198         while (page_block < blocks_per_page) {
199                 map_bh->b_state = 0;
200                 map_bh->b_size = 0;
201
202                 if (block_in_file < last_block) {
203                         map_bh->b_size = (last_block-block_in_file) << blkbits;
204                         if (get_block(inode, block_in_file, map_bh, 0))
205                                 goto confused;
206                         *first_logical_block = block_in_file;
207                 }
208
209                 if (!buffer_mapped(map_bh)) {
210                         fully_mapped = 0;
211                         if (first_hole == blocks_per_page)
212                                 first_hole = page_block;
213                         page_block++;
214                         block_in_file++;
215                         continue;
216                 }
217
218                 /* some filesystems will copy data into the page during
219                  * the get_block call, in which case we don't want to
220                  * read it again.  map_buffer_to_page copies the data
221                  * we just collected from get_block into the page's buffers
222                  * so readpage doesn't have to repeat the get_block call
223                  */
224                 if (buffer_uptodate(map_bh)) {
225                         map_buffer_to_page(page, map_bh, page_block);
226                         goto confused;
227                 }
228         
229                 if (first_hole != blocks_per_page)
230                         goto confused;          /* hole -> non-hole */
231
232                 /* Contiguous blocks? */
233                 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
234                         goto confused;
235                 nblocks = map_bh->b_size >> blkbits;
236                 for (relative_block = 0; ; relative_block++) {
237                         if (relative_block == nblocks) {
238                                 clear_buffer_mapped(map_bh);
239                                 break;
240                         } else if (page_block == blocks_per_page)
241                                 break;
242                         blocks[page_block] = map_bh->b_blocknr+relative_block;
243                         page_block++;
244                         block_in_file++;
245                 }
246                 bdev = map_bh->b_bdev;
247         }
248
249         if (first_hole != blocks_per_page) {
250                 zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
251                 if (first_hole == 0) {
252                         SetPageUptodate(page);
253                         unlock_page(page);
254                         goto out;
255                 }
256         } else if (fully_mapped) {
257                 SetPageMappedToDisk(page);
258         }
259
260         if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
261             cleancache_get_page(page) == 0) {
262                 SetPageUptodate(page);
263                 goto confused;
264         }
265
266         /*
267          * This page will go to BIO.  Do we need to send this BIO off first?
268          */
269         if (bio && (*last_block_in_bio != blocks[0] - 1))
270                 bio = mpage_bio_submit(READ, bio);
271
272 alloc_new:
273         if (bio == NULL) {
274                 if (first_hole == blocks_per_page) {
275                         if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
276                                                                 page))
277                                 goto out;
278                 }
279                 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
280                                 min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
281                                 GFP_KERNEL);
282                 if (bio == NULL)
283                         goto confused;
284         }
285
286         length = first_hole << blkbits;
287         if (bio_add_page(bio, page, length, 0) < length) {
288                 bio = mpage_bio_submit(READ, bio);
289                 goto alloc_new;
290         }
291
292         relative_block = block_in_file - *first_logical_block;
293         nblocks = map_bh->b_size >> blkbits;
294         if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
295             (first_hole != blocks_per_page))
296                 bio = mpage_bio_submit(READ, bio);
297         else
298                 *last_block_in_bio = blocks[blocks_per_page - 1];
299 out:
300         return bio;
301
302 confused:
303         if (bio)
304                 bio = mpage_bio_submit(READ, bio);
305         if (!PageUptodate(page))
306                 block_read_full_page(page, get_block);
307         else
308                 unlock_page(page);
309         goto out;
310 }
311
312 /**
313  * mpage_readpages - populate an address space with some pages & start reads against them
314  * @mapping: the address_space
315  * @pages: The address of a list_head which contains the target pages.  These
316  *   pages have their ->index populated and are otherwise uninitialised.
317  *   The page at @pages->prev has the lowest file offset, and reads should be
318  *   issued in @pages->prev to @pages->next order.
319  * @nr_pages: The number of pages at *@pages
320  * @get_block: The filesystem's block mapper function.
321  *
322  * This function walks the pages and the blocks within each page, building and
323  * emitting large BIOs.
324  *
325  * If anything unusual happens, such as:
326  *
327  * - encountering a page which has buffers
328  * - encountering a page which has a non-hole after a hole
329  * - encountering a page with non-contiguous blocks
330  *
331  * then this code just gives up and calls the buffer_head-based read function.
332  * It does handle a page which has holes at the end - that is a common case:
333  * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
334  *
335  * BH_Boundary explanation:
336  *
337  * There is a problem.  The mpage read code assembles several pages, gets all
338  * their disk mappings, and then submits them all.  That's fine, but obtaining
339  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
340  *
341  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
342  * submitted in the following order:
343  *      12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
344  *
345  * because the indirect block has to be read to get the mappings of blocks
346  * 13,14,15,16.  Obviously, this impacts performance.
347  *
348  * So what we do it to allow the filesystem's get_block() function to set
349  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
350  * after this one will require I/O against a block which is probably close to
351  * this one.  So you should push what I/O you have currently accumulated.
352  *
353  * This all causes the disk requests to be issued in the correct order.
354  */
355 int
356 mpage_readpages(struct address_space *mapping, struct list_head *pages,
357                                 unsigned nr_pages, get_block_t get_block)
358 {
359         struct bio *bio = NULL;
360         unsigned page_idx;
361         sector_t last_block_in_bio = 0;
362         struct buffer_head map_bh;
363         unsigned long first_logical_block = 0;
364
365         map_bh.b_state = 0;
366         map_bh.b_size = 0;
367         for (page_idx = 0; page_idx < nr_pages; page_idx++) {
368                 struct page *page = list_entry(pages->prev, struct page, lru);
369
370                 prefetchw(&page->flags);
371                 list_del(&page->lru);
372                 if (!add_to_page_cache_lru(page, mapping,
373                                         page->index, GFP_KERNEL)) {
374                         bio = do_mpage_readpage(bio, page,
375                                         nr_pages - page_idx,
376                                         &last_block_in_bio, &map_bh,
377                                         &first_logical_block,
378                                         get_block);
379                 }
380                 page_cache_release(page);
381         }
382         BUG_ON(!list_empty(pages));
383         if (bio)
384                 mpage_bio_submit(READ, bio);
385         return 0;
386 }
387 EXPORT_SYMBOL(mpage_readpages);
388
389 /*
390  * This isn't called much at all
391  */
392 int mpage_readpage(struct page *page, get_block_t get_block)
393 {
394         struct bio *bio = NULL;
395         sector_t last_block_in_bio = 0;
396         struct buffer_head map_bh;
397         unsigned long first_logical_block = 0;
398
399         map_bh.b_state = 0;
400         map_bh.b_size = 0;
401         bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
402                         &map_bh, &first_logical_block, get_block);
403         if (bio)
404                 mpage_bio_submit(READ, bio);
405         return 0;
406 }
407 EXPORT_SYMBOL(mpage_readpage);
408
409 /*
410  * Writing is not so simple.
411  *
412  * If the page has buffers then they will be used for obtaining the disk
413  * mapping.  We only support pages which are fully mapped-and-dirty, with a
414  * special case for pages which are unmapped at the end: end-of-file.
415  *
416  * If the page has no buffers (preferred) then the page is mapped here.
417  *
418  * If all blocks are found to be contiguous then the page can go into the
419  * BIO.  Otherwise fall back to the mapping's writepage().
420  * 
421  * FIXME: This code wants an estimate of how many pages are still to be
422  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
423  * just allocate full-size (16-page) BIOs.
424  */
425
426 struct mpage_data {
427         struct bio *bio;
428         sector_t last_block_in_bio;
429         get_block_t *get_block;
430         unsigned use_writepage;
431 };
432
433 /*
434  * We have our BIO, so we can now mark the buffers clean.  Make
435  * sure to only clean buffers which we know we'll be writing.
436  */
437 static void clean_buffers(struct page *page, unsigned first_unmapped)
438 {
439         unsigned buffer_counter = 0;
440         struct buffer_head *bh, *head;
441         if (!page_has_buffers(page))
442                 return;
443         head = page_buffers(page);
444         bh = head;
445
446         do {
447                 if (buffer_counter++ == first_unmapped)
448                         break;
449                 clear_buffer_dirty(bh);
450                 bh = bh->b_this_page;
451         } while (bh != head);
452
453         /*
454          * we cannot drop the bh if the page is not uptodate or a concurrent
455          * readpage would fail to serialize with the bh and it would read from
456          * disk before we reach the platter.
457          */
458         if (buffer_heads_over_limit && PageUptodate(page))
459                 try_to_free_buffers(page);
460 }
461
462 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
463                       void *data)
464 {
465         struct mpage_data *mpd = data;
466         struct bio *bio = mpd->bio;
467         struct address_space *mapping = page->mapping;
468         struct inode *inode = page->mapping->host;
469         const unsigned blkbits = inode->i_blkbits;
470         unsigned long end_index;
471         const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
472         sector_t last_block;
473         sector_t block_in_file;
474         sector_t blocks[MAX_BUF_PER_PAGE];
475         unsigned page_block;
476         unsigned first_unmapped = blocks_per_page;
477         struct block_device *bdev = NULL;
478         int boundary = 0;
479         sector_t boundary_block = 0;
480         struct block_device *boundary_bdev = NULL;
481         int length;
482         struct buffer_head map_bh;
483         loff_t i_size = i_size_read(inode);
484         int ret = 0;
485
486         if (page_has_buffers(page)) {
487                 struct buffer_head *head = page_buffers(page);
488                 struct buffer_head *bh = head;
489
490                 /* If they're all mapped and dirty, do it */
491                 page_block = 0;
492                 do {
493                         BUG_ON(buffer_locked(bh));
494                         if (!buffer_mapped(bh)) {
495                                 /*
496                                  * unmapped dirty buffers are created by
497                                  * __set_page_dirty_buffers -> mmapped data
498                                  */
499                                 if (buffer_dirty(bh))
500                                         goto confused;
501                                 if (first_unmapped == blocks_per_page)
502                                         first_unmapped = page_block;
503                                 continue;
504                         }
505
506                         if (first_unmapped != blocks_per_page)
507                                 goto confused;  /* hole -> non-hole */
508
509                         if (!buffer_dirty(bh) || !buffer_uptodate(bh))
510                                 goto confused;
511                         if (page_block) {
512                                 if (bh->b_blocknr != blocks[page_block-1] + 1)
513                                         goto confused;
514                         }
515                         blocks[page_block++] = bh->b_blocknr;
516                         boundary = buffer_boundary(bh);
517                         if (boundary) {
518                                 boundary_block = bh->b_blocknr;
519                                 boundary_bdev = bh->b_bdev;
520                         }
521                         bdev = bh->b_bdev;
522                 } while ((bh = bh->b_this_page) != head);
523
524                 if (first_unmapped)
525                         goto page_is_mapped;
526
527                 /*
528                  * Page has buffers, but they are all unmapped. The page was
529                  * created by pagein or read over a hole which was handled by
530                  * block_read_full_page().  If this address_space is also
531                  * using mpage_readpages then this can rarely happen.
532                  */
533                 goto confused;
534         }
535
536         /*
537          * The page has no buffers: map it to disk
538          */
539         BUG_ON(!PageUptodate(page));
540         block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
541         last_block = (i_size - 1) >> blkbits;
542         map_bh.b_page = page;
543         for (page_block = 0; page_block < blocks_per_page; ) {
544
545                 map_bh.b_state = 0;
546                 map_bh.b_size = 1 << blkbits;
547                 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
548                         goto confused;
549                 if (buffer_new(&map_bh))
550                         unmap_underlying_metadata(map_bh.b_bdev,
551                                                 map_bh.b_blocknr);
552                 if (buffer_boundary(&map_bh)) {
553                         boundary_block = map_bh.b_blocknr;
554                         boundary_bdev = map_bh.b_bdev;
555                 }
556                 if (page_block) {
557                         if (map_bh.b_blocknr != blocks[page_block-1] + 1)
558                                 goto confused;
559                 }
560                 blocks[page_block++] = map_bh.b_blocknr;
561                 boundary = buffer_boundary(&map_bh);
562                 bdev = map_bh.b_bdev;
563                 if (block_in_file == last_block)
564                         break;
565                 block_in_file++;
566         }
567         BUG_ON(page_block == 0);
568
569         first_unmapped = page_block;
570
571 page_is_mapped:
572         end_index = i_size >> PAGE_CACHE_SHIFT;
573         if (page->index >= end_index) {
574                 /*
575                  * The page straddles i_size.  It must be zeroed out on each
576                  * and every writepage invocation because it may be mmapped.
577                  * "A file is mapped in multiples of the page size.  For a file
578                  * that is not a multiple of the page size, the remaining memory
579                  * is zeroed when mapped, and writes to that region are not
580                  * written out to the file."
581                  */
582                 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
583
584                 if (page->index > end_index || !offset)
585                         goto confused;
586                 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
587         }
588
589         /*
590          * This page will go to BIO.  Do we need to send this BIO off first?
591          */
592         if (bio && mpd->last_block_in_bio != blocks[0] - 1)
593                 bio = mpage_bio_submit(WRITE, bio);
594
595 alloc_new:
596         if (bio == NULL) {
597                 if (first_unmapped == blocks_per_page) {
598                         if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
599                                                                 page, wbc)) {
600                                 clean_buffers(page, first_unmapped);
601                                 goto out;
602                         }
603                 }
604                 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
605                                 bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
606                 if (bio == NULL)
607                         goto confused;
608         }
609
610         /*
611          * Must try to add the page before marking the buffer clean or
612          * the confused fail path above (OOM) will be very confused when
613          * it finds all bh marked clean (i.e. it will not write anything)
614          */
615         length = first_unmapped << blkbits;
616         if (bio_add_page(bio, page, length, 0) < length) {
617                 bio = mpage_bio_submit(WRITE, bio);
618                 goto alloc_new;
619         }
620
621         clean_buffers(page, first_unmapped);
622
623         BUG_ON(PageWriteback(page));
624         set_page_writeback(page);
625         unlock_page(page);
626         if (boundary || (first_unmapped != blocks_per_page)) {
627                 bio = mpage_bio_submit(WRITE, bio);
628                 if (boundary_block) {
629                         write_boundary_block(boundary_bdev,
630                                         boundary_block, 1 << blkbits);
631                 }
632         } else {
633                 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
634         }
635         goto out;
636
637 confused:
638         if (bio)
639                 bio = mpage_bio_submit(WRITE, bio);
640
641         if (mpd->use_writepage) {
642                 ret = mapping->a_ops->writepage(page, wbc);
643         } else {
644                 ret = -EAGAIN;
645                 goto out;
646         }
647         /*
648          * The caller has a ref on the inode, so *mapping is stable
649          */
650         mapping_set_error(mapping, ret);
651 out:
652         mpd->bio = bio;
653         return ret;
654 }
655
656 /**
657  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
658  * @mapping: address space structure to write
659  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
660  * @get_block: the filesystem's block mapper function.
661  *             If this is NULL then use a_ops->writepage.  Otherwise, go
662  *             direct-to-BIO.
663  *
664  * This is a library function, which implements the writepages()
665  * address_space_operation.
666  *
667  * If a page is already under I/O, generic_writepages() skips it, even
668  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
669  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
670  * and msync() need to guarantee that all the data which was dirty at the time
671  * the call was made get new I/O started against them.  If wbc->sync_mode is
672  * WB_SYNC_ALL then we were called for data integrity and we must wait for
673  * existing IO to complete.
674  */
675 int
676 mpage_writepages(struct address_space *mapping,
677                 struct writeback_control *wbc, get_block_t get_block)
678 {
679         struct blk_plug plug;
680         int ret;
681
682         blk_start_plug(&plug);
683
684         if (!get_block)
685                 ret = generic_writepages(mapping, wbc);
686         else {
687                 struct mpage_data mpd = {
688                         .bio = NULL,
689                         .last_block_in_bio = 0,
690                         .get_block = get_block,
691                         .use_writepage = 1,
692                 };
693
694                 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
695                 if (mpd.bio)
696                         mpage_bio_submit(WRITE, mpd.bio);
697         }
698         blk_finish_plug(&plug);
699         return ret;
700 }
701 EXPORT_SYMBOL(mpage_writepages);
702
703 int mpage_writepage(struct page *page, get_block_t get_block,
704         struct writeback_control *wbc)
705 {
706         struct mpage_data mpd = {
707                 .bio = NULL,
708                 .last_block_in_bio = 0,
709                 .get_block = get_block,
710                 .use_writepage = 0,
711         };
712         int ret = __mpage_writepage(page, wbc, &mpd);
713         if (mpd.bio)
714                 mpage_bio_submit(WRITE, mpd.bio);
715         return ret;
716 }
717 EXPORT_SYMBOL(mpage_writepage);