blocklayoutdriver: Fix reference leak of pnfs_device_node
[platform/kernel/linux-rpi.git] / fs / mbcache.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/spinlock.h>
3 #include <linux/slab.h>
4 #include <linux/list.h>
5 #include <linux/list_bl.h>
6 #include <linux/module.h>
7 #include <linux/sched.h>
8 #include <linux/workqueue.h>
9 #include <linux/mbcache.h>
10
11 /*
12  * Mbcache is a simple key-value store. Keys need not be unique, however
13  * key-value pairs are expected to be unique (we use this fact in
14  * mb_cache_entry_delete_or_get()).
15  *
16  * Ext2 and ext4 use this cache for deduplication of extended attribute blocks.
17  * Ext4 also uses it for deduplication of xattr values stored in inodes.
18  * They use hash of data as a key and provide a value that may represent a
19  * block or inode number. That's why keys need not be unique (hash of different
20  * data may be the same). However user provided value always uniquely
21  * identifies a cache entry.
22  *
23  * We provide functions for creation and removal of entries, search by key,
24  * and a special "delete entry with given key-value pair" operation. Fixed
25  * size hash table is used for fast key lookups.
26  */
27
28 struct mb_cache {
29         /* Hash table of entries */
30         struct hlist_bl_head    *c_hash;
31         /* log2 of hash table size */
32         int                     c_bucket_bits;
33         /* Maximum entries in cache to avoid degrading hash too much */
34         unsigned long           c_max_entries;
35         /* Protects c_list, c_entry_count */
36         spinlock_t              c_list_lock;
37         struct list_head        c_list;
38         /* Number of entries in cache */
39         unsigned long           c_entry_count;
40         struct shrinker         c_shrink;
41         /* Work for shrinking when the cache has too many entries */
42         struct work_struct      c_shrink_work;
43 };
44
45 static struct kmem_cache *mb_entry_cache;
46
47 static unsigned long mb_cache_shrink(struct mb_cache *cache,
48                                      unsigned long nr_to_scan);
49
50 static inline struct hlist_bl_head *mb_cache_entry_head(struct mb_cache *cache,
51                                                         u32 key)
52 {
53         return &cache->c_hash[hash_32(key, cache->c_bucket_bits)];
54 }
55
56 /*
57  * Number of entries to reclaim synchronously when there are too many entries
58  * in cache
59  */
60 #define SYNC_SHRINK_BATCH 64
61
62 /*
63  * mb_cache_entry_create - create entry in cache
64  * @cache - cache where the entry should be created
65  * @mask - gfp mask with which the entry should be allocated
66  * @key - key of the entry
67  * @value - value of the entry
68  * @reusable - is the entry reusable by others?
69  *
70  * Creates entry in @cache with key @key and value @value. The function returns
71  * -EBUSY if entry with the same key and value already exists in cache.
72  * Otherwise 0 is returned.
73  */
74 int mb_cache_entry_create(struct mb_cache *cache, gfp_t mask, u32 key,
75                           u64 value, bool reusable)
76 {
77         struct mb_cache_entry *entry, *dup;
78         struct hlist_bl_node *dup_node;
79         struct hlist_bl_head *head;
80
81         /* Schedule background reclaim if there are too many entries */
82         if (cache->c_entry_count >= cache->c_max_entries)
83                 schedule_work(&cache->c_shrink_work);
84         /* Do some sync reclaim if background reclaim cannot keep up */
85         if (cache->c_entry_count >= 2*cache->c_max_entries)
86                 mb_cache_shrink(cache, SYNC_SHRINK_BATCH);
87
88         entry = kmem_cache_alloc(mb_entry_cache, mask);
89         if (!entry)
90                 return -ENOMEM;
91
92         INIT_LIST_HEAD(&entry->e_list);
93         /*
94          * We create entry with two references. One reference is kept by the
95          * hash table, the other reference is used to protect us from
96          * mb_cache_entry_delete_or_get() until the entry is fully setup. This
97          * avoids nesting of cache->c_list_lock into hash table bit locks which
98          * is problematic for RT.
99          */
100         atomic_set(&entry->e_refcnt, 2);
101         entry->e_key = key;
102         entry->e_value = value;
103         entry->e_flags = 0;
104         if (reusable)
105                 set_bit(MBE_REUSABLE_B, &entry->e_flags);
106         head = mb_cache_entry_head(cache, key);
107         hlist_bl_lock(head);
108         hlist_bl_for_each_entry(dup, dup_node, head, e_hash_list) {
109                 if (dup->e_key == key && dup->e_value == value) {
110                         hlist_bl_unlock(head);
111                         kmem_cache_free(mb_entry_cache, entry);
112                         return -EBUSY;
113                 }
114         }
115         hlist_bl_add_head(&entry->e_hash_list, head);
116         hlist_bl_unlock(head);
117         spin_lock(&cache->c_list_lock);
118         list_add_tail(&entry->e_list, &cache->c_list);
119         cache->c_entry_count++;
120         spin_unlock(&cache->c_list_lock);
121         mb_cache_entry_put(cache, entry);
122
123         return 0;
124 }
125 EXPORT_SYMBOL(mb_cache_entry_create);
126
127 void __mb_cache_entry_free(struct mb_cache *cache, struct mb_cache_entry *entry)
128 {
129         struct hlist_bl_head *head;
130
131         head = mb_cache_entry_head(cache, entry->e_key);
132         hlist_bl_lock(head);
133         hlist_bl_del(&entry->e_hash_list);
134         hlist_bl_unlock(head);
135         kmem_cache_free(mb_entry_cache, entry);
136 }
137 EXPORT_SYMBOL(__mb_cache_entry_free);
138
139 /*
140  * mb_cache_entry_wait_unused - wait to be the last user of the entry
141  *
142  * @entry - entry to work on
143  *
144  * Wait to be the last user of the entry.
145  */
146 void mb_cache_entry_wait_unused(struct mb_cache_entry *entry)
147 {
148         wait_var_event(&entry->e_refcnt, atomic_read(&entry->e_refcnt) <= 2);
149 }
150 EXPORT_SYMBOL(mb_cache_entry_wait_unused);
151
152 static struct mb_cache_entry *__entry_find(struct mb_cache *cache,
153                                            struct mb_cache_entry *entry,
154                                            u32 key)
155 {
156         struct mb_cache_entry *old_entry = entry;
157         struct hlist_bl_node *node;
158         struct hlist_bl_head *head;
159
160         head = mb_cache_entry_head(cache, key);
161         hlist_bl_lock(head);
162         if (entry && !hlist_bl_unhashed(&entry->e_hash_list))
163                 node = entry->e_hash_list.next;
164         else
165                 node = hlist_bl_first(head);
166         while (node) {
167                 entry = hlist_bl_entry(node, struct mb_cache_entry,
168                                        e_hash_list);
169                 if (entry->e_key == key &&
170                     test_bit(MBE_REUSABLE_B, &entry->e_flags) &&
171                     atomic_inc_not_zero(&entry->e_refcnt))
172                         goto out;
173                 node = node->next;
174         }
175         entry = NULL;
176 out:
177         hlist_bl_unlock(head);
178         if (old_entry)
179                 mb_cache_entry_put(cache, old_entry);
180
181         return entry;
182 }
183
184 /*
185  * mb_cache_entry_find_first - find the first reusable entry with the given key
186  * @cache: cache where we should search
187  * @key: key to look for
188  *
189  * Search in @cache for a reusable entry with key @key. Grabs reference to the
190  * first reusable entry found and returns the entry.
191  */
192 struct mb_cache_entry *mb_cache_entry_find_first(struct mb_cache *cache,
193                                                  u32 key)
194 {
195         return __entry_find(cache, NULL, key);
196 }
197 EXPORT_SYMBOL(mb_cache_entry_find_first);
198
199 /*
200  * mb_cache_entry_find_next - find next reusable entry with the same key
201  * @cache: cache where we should search
202  * @entry: entry to start search from
203  *
204  * Finds next reusable entry in the hash chain which has the same key as @entry.
205  * If @entry is unhashed (which can happen when deletion of entry races with the
206  * search), finds the first reusable entry in the hash chain. The function drops
207  * reference to @entry and returns with a reference to the found entry.
208  */
209 struct mb_cache_entry *mb_cache_entry_find_next(struct mb_cache *cache,
210                                                 struct mb_cache_entry *entry)
211 {
212         return __entry_find(cache, entry, entry->e_key);
213 }
214 EXPORT_SYMBOL(mb_cache_entry_find_next);
215
216 /*
217  * mb_cache_entry_get - get a cache entry by value (and key)
218  * @cache - cache we work with
219  * @key - key
220  * @value - value
221  */
222 struct mb_cache_entry *mb_cache_entry_get(struct mb_cache *cache, u32 key,
223                                           u64 value)
224 {
225         struct hlist_bl_node *node;
226         struct hlist_bl_head *head;
227         struct mb_cache_entry *entry;
228
229         head = mb_cache_entry_head(cache, key);
230         hlist_bl_lock(head);
231         hlist_bl_for_each_entry(entry, node, head, e_hash_list) {
232                 if (entry->e_key == key && entry->e_value == value &&
233                     atomic_inc_not_zero(&entry->e_refcnt))
234                         goto out;
235         }
236         entry = NULL;
237 out:
238         hlist_bl_unlock(head);
239         return entry;
240 }
241 EXPORT_SYMBOL(mb_cache_entry_get);
242
243 /* mb_cache_entry_delete_or_get - remove a cache entry if it has no users
244  * @cache - cache we work with
245  * @key - key
246  * @value - value
247  *
248  * Remove entry from cache @cache with key @key and value @value. The removal
249  * happens only if the entry is unused. The function returns NULL in case the
250  * entry was successfully removed or there's no entry in cache. Otherwise the
251  * function grabs reference of the entry that we failed to delete because it
252  * still has users and return it.
253  */
254 struct mb_cache_entry *mb_cache_entry_delete_or_get(struct mb_cache *cache,
255                                                     u32 key, u64 value)
256 {
257         struct mb_cache_entry *entry;
258
259         entry = mb_cache_entry_get(cache, key, value);
260         if (!entry)
261                 return NULL;
262
263         /*
264          * Drop the ref we got from mb_cache_entry_get() and the initial hash
265          * ref if we are the last user
266          */
267         if (atomic_cmpxchg(&entry->e_refcnt, 2, 0) != 2)
268                 return entry;
269
270         spin_lock(&cache->c_list_lock);
271         if (!list_empty(&entry->e_list))
272                 list_del_init(&entry->e_list);
273         cache->c_entry_count--;
274         spin_unlock(&cache->c_list_lock);
275         __mb_cache_entry_free(cache, entry);
276         return NULL;
277 }
278 EXPORT_SYMBOL(mb_cache_entry_delete_or_get);
279
280 /* mb_cache_entry_touch - cache entry got used
281  * @cache - cache the entry belongs to
282  * @entry - entry that got used
283  *
284  * Marks entry as used to give hit higher chances of surviving in cache.
285  */
286 void mb_cache_entry_touch(struct mb_cache *cache,
287                           struct mb_cache_entry *entry)
288 {
289         set_bit(MBE_REFERENCED_B, &entry->e_flags);
290 }
291 EXPORT_SYMBOL(mb_cache_entry_touch);
292
293 static unsigned long mb_cache_count(struct shrinker *shrink,
294                                     struct shrink_control *sc)
295 {
296         struct mb_cache *cache = container_of(shrink, struct mb_cache,
297                                               c_shrink);
298
299         return cache->c_entry_count;
300 }
301
302 /* Shrink number of entries in cache */
303 static unsigned long mb_cache_shrink(struct mb_cache *cache,
304                                      unsigned long nr_to_scan)
305 {
306         struct mb_cache_entry *entry;
307         unsigned long shrunk = 0;
308
309         spin_lock(&cache->c_list_lock);
310         while (nr_to_scan-- && !list_empty(&cache->c_list)) {
311                 entry = list_first_entry(&cache->c_list,
312                                          struct mb_cache_entry, e_list);
313                 /* Drop initial hash reference if there is no user */
314                 if (test_bit(MBE_REFERENCED_B, &entry->e_flags) ||
315                     atomic_cmpxchg(&entry->e_refcnt, 1, 0) != 1) {
316                         clear_bit(MBE_REFERENCED_B, &entry->e_flags);
317                         list_move_tail(&entry->e_list, &cache->c_list);
318                         continue;
319                 }
320                 list_del_init(&entry->e_list);
321                 cache->c_entry_count--;
322                 spin_unlock(&cache->c_list_lock);
323                 __mb_cache_entry_free(cache, entry);
324                 shrunk++;
325                 cond_resched();
326                 spin_lock(&cache->c_list_lock);
327         }
328         spin_unlock(&cache->c_list_lock);
329
330         return shrunk;
331 }
332
333 static unsigned long mb_cache_scan(struct shrinker *shrink,
334                                    struct shrink_control *sc)
335 {
336         struct mb_cache *cache = container_of(shrink, struct mb_cache,
337                                               c_shrink);
338         return mb_cache_shrink(cache, sc->nr_to_scan);
339 }
340
341 /* We shrink 1/X of the cache when we have too many entries in it */
342 #define SHRINK_DIVISOR 16
343
344 static void mb_cache_shrink_worker(struct work_struct *work)
345 {
346         struct mb_cache *cache = container_of(work, struct mb_cache,
347                                               c_shrink_work);
348         mb_cache_shrink(cache, cache->c_max_entries / SHRINK_DIVISOR);
349 }
350
351 /*
352  * mb_cache_create - create cache
353  * @bucket_bits: log2 of the hash table size
354  *
355  * Create cache for keys with 2^bucket_bits hash entries.
356  */
357 struct mb_cache *mb_cache_create(int bucket_bits)
358 {
359         struct mb_cache *cache;
360         unsigned long bucket_count = 1UL << bucket_bits;
361         unsigned long i;
362
363         cache = kzalloc(sizeof(struct mb_cache), GFP_KERNEL);
364         if (!cache)
365                 goto err_out;
366         cache->c_bucket_bits = bucket_bits;
367         cache->c_max_entries = bucket_count << 4;
368         INIT_LIST_HEAD(&cache->c_list);
369         spin_lock_init(&cache->c_list_lock);
370         cache->c_hash = kmalloc_array(bucket_count,
371                                       sizeof(struct hlist_bl_head),
372                                       GFP_KERNEL);
373         if (!cache->c_hash) {
374                 kfree(cache);
375                 goto err_out;
376         }
377         for (i = 0; i < bucket_count; i++)
378                 INIT_HLIST_BL_HEAD(&cache->c_hash[i]);
379
380         cache->c_shrink.count_objects = mb_cache_count;
381         cache->c_shrink.scan_objects = mb_cache_scan;
382         cache->c_shrink.seeks = DEFAULT_SEEKS;
383         if (register_shrinker(&cache->c_shrink, "mbcache-shrinker")) {
384                 kfree(cache->c_hash);
385                 kfree(cache);
386                 goto err_out;
387         }
388
389         INIT_WORK(&cache->c_shrink_work, mb_cache_shrink_worker);
390
391         return cache;
392
393 err_out:
394         return NULL;
395 }
396 EXPORT_SYMBOL(mb_cache_create);
397
398 /*
399  * mb_cache_destroy - destroy cache
400  * @cache: the cache to destroy
401  *
402  * Free all entries in cache and cache itself. Caller must make sure nobody
403  * (except shrinker) can reach @cache when calling this.
404  */
405 void mb_cache_destroy(struct mb_cache *cache)
406 {
407         struct mb_cache_entry *entry, *next;
408
409         unregister_shrinker(&cache->c_shrink);
410
411         /*
412          * We don't bother with any locking. Cache must not be used at this
413          * point.
414          */
415         list_for_each_entry_safe(entry, next, &cache->c_list, e_list) {
416                 list_del(&entry->e_list);
417                 WARN_ON(atomic_read(&entry->e_refcnt) != 1);
418                 mb_cache_entry_put(cache, entry);
419         }
420         kfree(cache->c_hash);
421         kfree(cache);
422 }
423 EXPORT_SYMBOL(mb_cache_destroy);
424
425 static int __init mbcache_init(void)
426 {
427         mb_entry_cache = kmem_cache_create("mbcache",
428                                 sizeof(struct mb_cache_entry), 0,
429                                 SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD, NULL);
430         if (!mb_entry_cache)
431                 return -ENOMEM;
432         return 0;
433 }
434
435 static void __exit mbcache_exit(void)
436 {
437         kmem_cache_destroy(mb_entry_cache);
438 }
439
440 module_init(mbcache_init)
441 module_exit(mbcache_exit)
442
443 MODULE_AUTHOR("Jan Kara <jack@suse.cz>");
444 MODULE_DESCRIPTION("Meta block cache (for extended attributes)");
445 MODULE_LICENSE("GPL");