logfs: fix logfs_seek_hole()
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / logfs / readwrite.c
1 /*
2  * fs/logfs/readwrite.c
3  *
4  * As should be obvious for Linux kernel code, license is GPLv2
5  *
6  * Copyright (c) 2005-2008 Joern Engel <joern@logfs.org>
7  *
8  *
9  * Actually contains five sets of very similar functions:
10  * read         read blocks from a file
11  * seek_hole    find next hole
12  * seek_data    find next data block
13  * valid        check whether a block still belongs to a file
14  * write        write blocks to a file
15  * delete       delete a block (for directories and ifile)
16  * rewrite      move existing blocks of a file to a new location (gc helper)
17  * truncate     truncate a file
18  */
19 #include "logfs.h"
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22
23 static u64 adjust_bix(u64 bix, level_t level)
24 {
25         switch (level) {
26         case 0:
27                 return bix;
28         case LEVEL(1):
29                 return max_t(u64, bix, I0_BLOCKS);
30         case LEVEL(2):
31                 return max_t(u64, bix, I1_BLOCKS);
32         case LEVEL(3):
33                 return max_t(u64, bix, I2_BLOCKS);
34         case LEVEL(4):
35                 return max_t(u64, bix, I3_BLOCKS);
36         case LEVEL(5):
37                 return max_t(u64, bix, I4_BLOCKS);
38         default:
39                 WARN_ON(1);
40                 return bix;
41         }
42 }
43
44 static inline u64 maxbix(u8 height)
45 {
46         return 1ULL << (LOGFS_BLOCK_BITS * height);
47 }
48
49 /**
50  * The inode address space is cut in two halves.  Lower half belongs to data
51  * pages, upper half to indirect blocks.  If the high bit (INDIRECT_BIT) is
52  * set, the actual block index (bix) and level can be derived from the page
53  * index.
54  *
55  * The lowest three bits of the block index are set to 0 after packing and
56  * unpacking.  Since the lowest n bits (9 for 4KiB blocksize) are ignored
57  * anyway this is harmless.
58  */
59 #define ARCH_SHIFT      (BITS_PER_LONG - 32)
60 #define INDIRECT_BIT    (0x80000000UL << ARCH_SHIFT)
61 #define LEVEL_SHIFT     (28 + ARCH_SHIFT)
62 static inline pgoff_t first_indirect_block(void)
63 {
64         return INDIRECT_BIT | (1ULL << LEVEL_SHIFT);
65 }
66
67 pgoff_t logfs_pack_index(u64 bix, level_t level)
68 {
69         pgoff_t index;
70
71         BUG_ON(bix >= INDIRECT_BIT);
72         if (level == 0)
73                 return bix;
74
75         index  = INDIRECT_BIT;
76         index |= (__force long)level << LEVEL_SHIFT;
77         index |= bix >> ((__force u8)level * LOGFS_BLOCK_BITS);
78         return index;
79 }
80
81 void logfs_unpack_index(pgoff_t index, u64 *bix, level_t *level)
82 {
83         u8 __level;
84
85         if (!(index & INDIRECT_BIT)) {
86                 *bix = index;
87                 *level = 0;
88                 return;
89         }
90
91         __level = (index & ~INDIRECT_BIT) >> LEVEL_SHIFT;
92         *level = LEVEL(__level);
93         *bix = (index << (__level * LOGFS_BLOCK_BITS)) & ~INDIRECT_BIT;
94         *bix = adjust_bix(*bix, *level);
95         return;
96 }
97 #undef ARCH_SHIFT
98 #undef INDIRECT_BIT
99 #undef LEVEL_SHIFT
100
101 /*
102  * Time is stored as nanoseconds since the epoch.
103  */
104 static struct timespec be64_to_timespec(__be64 betime)
105 {
106         return ns_to_timespec(be64_to_cpu(betime));
107 }
108
109 static __be64 timespec_to_be64(struct timespec tsp)
110 {
111         return cpu_to_be64((u64)tsp.tv_sec * NSEC_PER_SEC + tsp.tv_nsec);
112 }
113
114 static void logfs_disk_to_inode(struct logfs_disk_inode *di, struct inode*inode)
115 {
116         struct logfs_inode *li = logfs_inode(inode);
117         int i;
118
119         inode->i_mode   = be16_to_cpu(di->di_mode);
120         li->li_height   = di->di_height;
121         li->li_flags    = be32_to_cpu(di->di_flags);
122         inode->i_uid    = be32_to_cpu(di->di_uid);
123         inode->i_gid    = be32_to_cpu(di->di_gid);
124         inode->i_size   = be64_to_cpu(di->di_size);
125         logfs_set_blocks(inode, be64_to_cpu(di->di_used_bytes));
126         inode->i_atime  = be64_to_timespec(di->di_atime);
127         inode->i_ctime  = be64_to_timespec(di->di_ctime);
128         inode->i_mtime  = be64_to_timespec(di->di_mtime);
129         inode->i_nlink  = be32_to_cpu(di->di_refcount);
130         inode->i_generation = be32_to_cpu(di->di_generation);
131
132         switch (inode->i_mode & S_IFMT) {
133         case S_IFSOCK:  /* fall through */
134         case S_IFBLK:   /* fall through */
135         case S_IFCHR:   /* fall through */
136         case S_IFIFO:
137                 inode->i_rdev = be64_to_cpu(di->di_data[0]);
138                 break;
139         case S_IFDIR:   /* fall through */
140         case S_IFREG:   /* fall through */
141         case S_IFLNK:
142                 for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
143                         li->li_data[i] = be64_to_cpu(di->di_data[i]);
144                 break;
145         default:
146                 BUG();
147         }
148 }
149
150 static void logfs_inode_to_disk(struct inode *inode, struct logfs_disk_inode*di)
151 {
152         struct logfs_inode *li = logfs_inode(inode);
153         int i;
154
155         di->di_mode     = cpu_to_be16(inode->i_mode);
156         di->di_height   = li->li_height;
157         di->di_pad      = 0;
158         di->di_flags    = cpu_to_be32(li->li_flags);
159         di->di_uid      = cpu_to_be32(inode->i_uid);
160         di->di_gid      = cpu_to_be32(inode->i_gid);
161         di->di_size     = cpu_to_be64(i_size_read(inode));
162         di->di_used_bytes = cpu_to_be64(li->li_used_bytes);
163         di->di_atime    = timespec_to_be64(inode->i_atime);
164         di->di_ctime    = timespec_to_be64(inode->i_ctime);
165         di->di_mtime    = timespec_to_be64(inode->i_mtime);
166         di->di_refcount = cpu_to_be32(inode->i_nlink);
167         di->di_generation = cpu_to_be32(inode->i_generation);
168
169         switch (inode->i_mode & S_IFMT) {
170         case S_IFSOCK:  /* fall through */
171         case S_IFBLK:   /* fall through */
172         case S_IFCHR:   /* fall through */
173         case S_IFIFO:
174                 di->di_data[0] = cpu_to_be64(inode->i_rdev);
175                 break;
176         case S_IFDIR:   /* fall through */
177         case S_IFREG:   /* fall through */
178         case S_IFLNK:
179                 for (i = 0; i < LOGFS_EMBEDDED_FIELDS; i++)
180                         di->di_data[i] = cpu_to_be64(li->li_data[i]);
181                 break;
182         default:
183                 BUG();
184         }
185 }
186
187 static void __logfs_set_blocks(struct inode *inode)
188 {
189         struct super_block *sb = inode->i_sb;
190         struct logfs_inode *li = logfs_inode(inode);
191
192         inode->i_blocks = ULONG_MAX;
193         if (li->li_used_bytes >> sb->s_blocksize_bits < ULONG_MAX)
194                 inode->i_blocks = ALIGN(li->li_used_bytes, 512) >> 9;
195 }
196
197 void logfs_set_blocks(struct inode *inode, u64 bytes)
198 {
199         struct logfs_inode *li = logfs_inode(inode);
200
201         li->li_used_bytes = bytes;
202         __logfs_set_blocks(inode);
203 }
204
205 static void prelock_page(struct super_block *sb, struct page *page, int lock)
206 {
207         struct logfs_super *super = logfs_super(sb);
208
209         BUG_ON(!PageLocked(page));
210         if (lock) {
211                 BUG_ON(PagePreLocked(page));
212                 SetPagePreLocked(page);
213         } else {
214                 /* We are in GC path. */
215                 if (PagePreLocked(page))
216                         super->s_lock_count++;
217                 else
218                         SetPagePreLocked(page);
219         }
220 }
221
222 static void preunlock_page(struct super_block *sb, struct page *page, int lock)
223 {
224         struct logfs_super *super = logfs_super(sb);
225
226         BUG_ON(!PageLocked(page));
227         if (lock)
228                 ClearPagePreLocked(page);
229         else {
230                 /* We are in GC path. */
231                 BUG_ON(!PagePreLocked(page));
232                 if (super->s_lock_count)
233                         super->s_lock_count--;
234                 else
235                         ClearPagePreLocked(page);
236         }
237 }
238
239 /*
240  * Logfs is prone to an AB-BA deadlock where one task tries to acquire
241  * s_write_mutex with a locked page and GC tries to get that page while holding
242  * s_write_mutex.
243  * To solve this issue logfs will ignore the page lock iff the page in question
244  * is waiting for s_write_mutex.  We annotate this fact by setting PG_pre_locked
245  * in addition to PG_locked.
246  */
247 static void logfs_get_wblocks(struct super_block *sb, struct page *page,
248                 int lock)
249 {
250         struct logfs_super *super = logfs_super(sb);
251
252         if (page)
253                 prelock_page(sb, page, lock);
254
255         if (lock) {
256                 mutex_lock(&super->s_write_mutex);
257                 logfs_gc_pass(sb);
258                 /* FIXME: We also have to check for shadowed space
259                  * and mempool fill grade */
260         }
261 }
262
263 static void logfs_put_wblocks(struct super_block *sb, struct page *page,
264                 int lock)
265 {
266         struct logfs_super *super = logfs_super(sb);
267
268         if (page)
269                 preunlock_page(sb, page, lock);
270         /* Order matters - we must clear PG_pre_locked before releasing
271          * s_write_mutex or we could race against another task. */
272         if (lock)
273                 mutex_unlock(&super->s_write_mutex);
274 }
275
276 static struct page *logfs_get_read_page(struct inode *inode, u64 bix,
277                 level_t level)
278 {
279         return find_or_create_page(inode->i_mapping,
280                         logfs_pack_index(bix, level), GFP_NOFS);
281 }
282
283 static void logfs_put_read_page(struct page *page)
284 {
285         unlock_page(page);
286         page_cache_release(page);
287 }
288
289 static void logfs_lock_write_page(struct page *page)
290 {
291         int loop = 0;
292
293         while (unlikely(!trylock_page(page))) {
294                 if (loop++ > 0x1000) {
295                         /* Has been observed once so far... */
296                         printk(KERN_ERR "stack at %p\n", &loop);
297                         BUG();
298                 }
299                 if (PagePreLocked(page)) {
300                         /* Holder of page lock is waiting for us, it
301                          * is safe to use this page. */
302                         break;
303                 }
304                 /* Some other process has this page locked and has
305                  * nothing to do with us.  Wait for it to finish.
306                  */
307                 schedule();
308         }
309         BUG_ON(!PageLocked(page));
310 }
311
312 static struct page *logfs_get_write_page(struct inode *inode, u64 bix,
313                 level_t level)
314 {
315         struct address_space *mapping = inode->i_mapping;
316         pgoff_t index = logfs_pack_index(bix, level);
317         struct page *page;
318         int err;
319
320 repeat:
321         page = find_get_page(mapping, index);
322         if (!page) {
323                 page = __page_cache_alloc(GFP_NOFS);
324                 if (!page)
325                         return NULL;
326                 err = add_to_page_cache_lru(page, mapping, index, GFP_NOFS);
327                 if (unlikely(err)) {
328                         page_cache_release(page);
329                         if (err == -EEXIST)
330                                 goto repeat;
331                         return NULL;
332                 }
333         } else logfs_lock_write_page(page);
334         BUG_ON(!PageLocked(page));
335         return page;
336 }
337
338 static void logfs_unlock_write_page(struct page *page)
339 {
340         if (!PagePreLocked(page))
341                 unlock_page(page);
342 }
343
344 static void logfs_put_write_page(struct page *page)
345 {
346         logfs_unlock_write_page(page);
347         page_cache_release(page);
348 }
349
350 static struct page *logfs_get_page(struct inode *inode, u64 bix, level_t level,
351                 int rw)
352 {
353         if (rw == READ)
354                 return logfs_get_read_page(inode, bix, level);
355         else
356                 return logfs_get_write_page(inode, bix, level);
357 }
358
359 static void logfs_put_page(struct page *page, int rw)
360 {
361         if (rw == READ)
362                 logfs_put_read_page(page);
363         else
364                 logfs_put_write_page(page);
365 }
366
367 static unsigned long __get_bits(u64 val, int skip, int no)
368 {
369         u64 ret = val;
370
371         ret >>= skip * no;
372         ret <<= 64 - no;
373         ret >>= 64 - no;
374         return ret;
375 }
376
377 static unsigned long get_bits(u64 val, level_t skip)
378 {
379         return __get_bits(val, (__force int)skip, LOGFS_BLOCK_BITS);
380 }
381
382 static inline void init_shadow_tree(struct super_block *sb,
383                 struct shadow_tree *tree)
384 {
385         struct logfs_super *super = logfs_super(sb);
386
387         btree_init_mempool64(&tree->new, super->s_btree_pool);
388         btree_init_mempool64(&tree->old, super->s_btree_pool);
389 }
390
391 static void indirect_write_block(struct logfs_block *block)
392 {
393         struct page *page;
394         struct inode *inode;
395         int ret;
396
397         page = block->page;
398         inode = page->mapping->host;
399         logfs_lock_write_page(page);
400         ret = logfs_write_buf(inode, page, 0);
401         logfs_unlock_write_page(page);
402         /*
403          * This needs some rework.  Unless you want your filesystem to run
404          * completely synchronously (you don't), the filesystem will always
405          * report writes as 'successful' before the actual work has been
406          * done.  The actual work gets done here and this is where any errors
407          * will show up.  And there isn't much we can do about it, really.
408          *
409          * Some attempts to fix the errors (move from bad blocks, retry io,...)
410          * have already been done, so anything left should be either a broken
411          * device or a bug somewhere in logfs itself.  Being relatively new,
412          * the odds currently favor a bug, so for now the line below isn't
413          * entirely tasteles.
414          */
415         BUG_ON(ret);
416 }
417
418 static void inode_write_block(struct logfs_block *block)
419 {
420         struct inode *inode;
421         int ret;
422
423         inode = block->inode;
424         if (inode->i_ino == LOGFS_INO_MASTER)
425                 logfs_write_anchor(inode->i_sb);
426         else {
427                 ret = __logfs_write_inode(inode, 0);
428                 /* see indirect_write_block comment */
429                 BUG_ON(ret);
430         }
431 }
432
433 /*
434  * This silences a false, yet annoying gcc warning.  I hate it when my editor
435  * jumps into bitops.h each time I recompile this file.
436  * TODO: Complain to gcc folks about this and upgrade compiler.
437  */
438 static unsigned long fnb(const unsigned long *addr,
439                 unsigned long size, unsigned long offset)
440 {
441         return find_next_bit(addr, size, offset);
442 }
443
444 static __be64 inode_val0(struct inode *inode)
445 {
446         struct logfs_inode *li = logfs_inode(inode);
447         u64 val;
448
449         /*
450          * Explicit shifting generates good code, but must match the format
451          * of the structure.  Add some paranoia just in case.
452          */
453         BUILD_BUG_ON(offsetof(struct logfs_disk_inode, di_mode) != 0);
454         BUILD_BUG_ON(offsetof(struct logfs_disk_inode, di_height) != 2);
455         BUILD_BUG_ON(offsetof(struct logfs_disk_inode, di_flags) != 4);
456
457         val =   (u64)inode->i_mode << 48 |
458                 (u64)li->li_height << 40 |
459                 (u64)li->li_flags;
460         return cpu_to_be64(val);
461 }
462
463 static int inode_write_alias(struct super_block *sb,
464                 struct logfs_block *block, write_alias_t *write_one_alias)
465 {
466         struct inode *inode = block->inode;
467         struct logfs_inode *li = logfs_inode(inode);
468         unsigned long pos;
469         u64 ino , bix;
470         __be64 val;
471         level_t level;
472         int err;
473
474         for (pos = 0; ; pos++) {
475                 pos = fnb(block->alias_map, LOGFS_BLOCK_FACTOR, pos);
476                 if (pos >= LOGFS_EMBEDDED_FIELDS + INODE_POINTER_OFS)
477                         return 0;
478
479                 switch (pos) {
480                 case INODE_HEIGHT_OFS:
481                         val = inode_val0(inode);
482                         break;
483                 case INODE_USED_OFS:
484                         val = cpu_to_be64(li->li_used_bytes);;
485                         break;
486                 case INODE_SIZE_OFS:
487                         val = cpu_to_be64(i_size_read(inode));
488                         break;
489                 case INODE_POINTER_OFS ... INODE_POINTER_OFS + LOGFS_EMBEDDED_FIELDS - 1:
490                         val = cpu_to_be64(li->li_data[pos - INODE_POINTER_OFS]);
491                         break;
492                 default:
493                         BUG();
494                 }
495
496                 ino = LOGFS_INO_MASTER;
497                 bix = inode->i_ino;
498                 level = LEVEL(0);
499                 err = write_one_alias(sb, ino, bix, level, pos, val);
500                 if (err)
501                         return err;
502         }
503 }
504
505 static int indirect_write_alias(struct super_block *sb,
506                 struct logfs_block *block, write_alias_t *write_one_alias)
507 {
508         unsigned long pos;
509         struct page *page = block->page;
510         u64 ino , bix;
511         __be64 *child, val;
512         level_t level;
513         int err;
514
515         for (pos = 0; ; pos++) {
516                 pos = fnb(block->alias_map, LOGFS_BLOCK_FACTOR, pos);
517                 if (pos >= LOGFS_BLOCK_FACTOR)
518                         return 0;
519
520                 ino = page->mapping->host->i_ino;
521                 logfs_unpack_index(page->index, &bix, &level);
522                 child = kmap_atomic(page, KM_USER0);
523                 val = child[pos];
524                 kunmap_atomic(child, KM_USER0);
525                 err = write_one_alias(sb, ino, bix, level, pos, val);
526                 if (err)
527                         return err;
528         }
529 }
530
531 int logfs_write_obj_aliases_pagecache(struct super_block *sb)
532 {
533         struct logfs_super *super = logfs_super(sb);
534         struct logfs_block *block;
535         int err;
536
537         list_for_each_entry(block, &super->s_object_alias, alias_list) {
538                 err = block->ops->write_alias(sb, block, write_alias_journal);
539                 if (err)
540                         return err;
541         }
542         return 0;
543 }
544
545 void __free_block(struct super_block *sb, struct logfs_block *block)
546 {
547         BUG_ON(!list_empty(&block->item_list));
548         list_del(&block->alias_list);
549         mempool_free(block, logfs_super(sb)->s_block_pool);
550 }
551
552 static void inode_free_block(struct super_block *sb, struct logfs_block *block)
553 {
554         struct inode *inode = block->inode;
555
556         logfs_inode(inode)->li_block = NULL;
557         __free_block(sb, block);
558 }
559
560 static void indirect_free_block(struct super_block *sb,
561                 struct logfs_block *block)
562 {
563         ClearPagePrivate(block->page);
564         block->page->private = 0;
565         __free_block(sb, block);
566 }
567
568
569 static struct logfs_block_ops inode_block_ops = {
570         .write_block = inode_write_block,
571         .free_block = inode_free_block,
572         .write_alias = inode_write_alias,
573 };
574
575 struct logfs_block_ops indirect_block_ops = {
576         .write_block = indirect_write_block,
577         .free_block = indirect_free_block,
578         .write_alias = indirect_write_alias,
579 };
580
581 struct logfs_block *__alloc_block(struct super_block *sb,
582                 u64 ino, u64 bix, level_t level)
583 {
584         struct logfs_super *super = logfs_super(sb);
585         struct logfs_block *block;
586
587         block = mempool_alloc(super->s_block_pool, GFP_NOFS);
588         memset(block, 0, sizeof(*block));
589         INIT_LIST_HEAD(&block->alias_list);
590         INIT_LIST_HEAD(&block->item_list);
591         block->sb = sb;
592         block->ino = ino;
593         block->bix = bix;
594         block->level = level;
595         return block;
596 }
597
598 static void alloc_inode_block(struct inode *inode)
599 {
600         struct logfs_inode *li = logfs_inode(inode);
601         struct logfs_block *block;
602
603         if (li->li_block)
604                 return;
605
606         block = __alloc_block(inode->i_sb, LOGFS_INO_MASTER, inode->i_ino, 0);
607         block->inode = inode;
608         li->li_block = block;
609         block->ops = &inode_block_ops;
610 }
611
612 void initialize_block_counters(struct page *page, struct logfs_block *block,
613                 __be64 *array, int page_is_empty)
614 {
615         u64 ptr;
616         int i, start;
617
618         block->partial = 0;
619         block->full = 0;
620         start = 0;
621         if (page->index < first_indirect_block()) {
622                 /* Counters are pointless on level 0 */
623                 return;
624         }
625         if (page->index == first_indirect_block()) {
626                 /* Skip unused pointers */
627                 start = I0_BLOCKS;
628                 block->full = I0_BLOCKS;
629         }
630         if (!page_is_empty) {
631                 for (i = start; i < LOGFS_BLOCK_FACTOR; i++) {
632                         ptr = be64_to_cpu(array[i]);
633                         if (ptr)
634                                 block->partial++;
635                         if (ptr & LOGFS_FULLY_POPULATED)
636                                 block->full++;
637                 }
638         }
639 }
640
641 static void alloc_data_block(struct inode *inode, struct page *page)
642 {
643         struct logfs_block *block;
644         u64 bix;
645         level_t level;
646
647         if (PagePrivate(page))
648                 return;
649
650         logfs_unpack_index(page->index, &bix, &level);
651         block = __alloc_block(inode->i_sb, inode->i_ino, bix, level);
652         block->page = page;
653         SetPagePrivate(page);
654         page->private = (unsigned long)block;
655         block->ops = &indirect_block_ops;
656 }
657
658 static void alloc_indirect_block(struct inode *inode, struct page *page,
659                 int page_is_empty)
660 {
661         struct logfs_block *block;
662         __be64 *array;
663
664         if (PagePrivate(page))
665                 return;
666
667         alloc_data_block(inode, page);
668
669         block = logfs_block(page);
670         array = kmap_atomic(page, KM_USER0);
671         initialize_block_counters(page, block, array, page_is_empty);
672         kunmap_atomic(array, KM_USER0);
673 }
674
675 static void block_set_pointer(struct page *page, int index, u64 ptr)
676 {
677         struct logfs_block *block = logfs_block(page);
678         __be64 *array;
679         u64 oldptr;
680
681         BUG_ON(!block);
682         array = kmap_atomic(page, KM_USER0);
683         oldptr = be64_to_cpu(array[index]);
684         array[index] = cpu_to_be64(ptr);
685         kunmap_atomic(array, KM_USER0);
686         SetPageUptodate(page);
687
688         block->full += !!(ptr & LOGFS_FULLY_POPULATED)
689                 - !!(oldptr & LOGFS_FULLY_POPULATED);
690         block->partial += !!ptr - !!oldptr;
691 }
692
693 static u64 block_get_pointer(struct page *page, int index)
694 {
695         __be64 *block;
696         u64 ptr;
697
698         block = kmap_atomic(page, KM_USER0);
699         ptr = be64_to_cpu(block[index]);
700         kunmap_atomic(block, KM_USER0);
701         return ptr;
702 }
703
704 static int logfs_read_empty(struct page *page)
705 {
706         zero_user_segment(page, 0, PAGE_CACHE_SIZE);
707         return 0;
708 }
709
710 static int logfs_read_direct(struct inode *inode, struct page *page)
711 {
712         struct logfs_inode *li = logfs_inode(inode);
713         pgoff_t index = page->index;
714         u64 block;
715
716         block = li->li_data[index];
717         if (!block)
718                 return logfs_read_empty(page);
719
720         return logfs_segment_read(inode, page, block, index, 0);
721 }
722
723 static int logfs_read_loop(struct inode *inode, struct page *page,
724                 int rw_context)
725 {
726         struct logfs_inode *li = logfs_inode(inode);
727         u64 bix, bofs = li->li_data[INDIRECT_INDEX];
728         level_t level, target_level;
729         int ret;
730         struct page *ipage;
731
732         logfs_unpack_index(page->index, &bix, &target_level);
733         if (!bofs)
734                 return logfs_read_empty(page);
735
736         if (bix >= maxbix(li->li_height))
737                 return logfs_read_empty(page);
738
739         for (level = LEVEL(li->li_height);
740                         (__force u8)level > (__force u8)target_level;
741                         level = SUBLEVEL(level)){
742                 ipage = logfs_get_page(inode, bix, level, rw_context);
743                 if (!ipage)
744                         return -ENOMEM;
745
746                 ret = logfs_segment_read(inode, ipage, bofs, bix, level);
747                 if (ret) {
748                         logfs_put_read_page(ipage);
749                         return ret;
750                 }
751
752                 bofs = block_get_pointer(ipage, get_bits(bix, SUBLEVEL(level)));
753                 logfs_put_page(ipage, rw_context);
754                 if (!bofs)
755                         return logfs_read_empty(page);
756         }
757
758         return logfs_segment_read(inode, page, bofs, bix, 0);
759 }
760
761 static int logfs_read_block(struct inode *inode, struct page *page,
762                 int rw_context)
763 {
764         pgoff_t index = page->index;
765
766         if (index < I0_BLOCKS)
767                 return logfs_read_direct(inode, page);
768         return logfs_read_loop(inode, page, rw_context);
769 }
770
771 static int logfs_exist_loop(struct inode *inode, u64 bix)
772 {
773         struct logfs_inode *li = logfs_inode(inode);
774         u64 bofs = li->li_data[INDIRECT_INDEX];
775         level_t level;
776         int ret;
777         struct page *ipage;
778
779         if (!bofs)
780                 return 0;
781         if (bix >= maxbix(li->li_height))
782                 return 0;
783
784         for (level = LEVEL(li->li_height); level != 0; level = SUBLEVEL(level)) {
785                 ipage = logfs_get_read_page(inode, bix, level);
786                 if (!ipage)
787                         return -ENOMEM;
788
789                 ret = logfs_segment_read(inode, ipage, bofs, bix, level);
790                 if (ret) {
791                         logfs_put_read_page(ipage);
792                         return ret;
793                 }
794
795                 bofs = block_get_pointer(ipage, get_bits(bix, SUBLEVEL(level)));
796                 logfs_put_read_page(ipage);
797                 if (!bofs)
798                         return 0;
799         }
800
801         return 1;
802 }
803
804 int logfs_exist_block(struct inode *inode, u64 bix)
805 {
806         struct logfs_inode *li = logfs_inode(inode);
807
808         if (bix < I0_BLOCKS)
809                 return !!li->li_data[bix];
810         return logfs_exist_loop(inode, bix);
811 }
812
813 static u64 seek_holedata_direct(struct inode *inode, u64 bix, int data)
814 {
815         struct logfs_inode *li = logfs_inode(inode);
816
817         for (; bix < I0_BLOCKS; bix++)
818                 if (data ^ (li->li_data[bix] == 0))
819                         return bix;
820         return I0_BLOCKS;
821 }
822
823 static u64 seek_holedata_loop(struct inode *inode, u64 bix, int data)
824 {
825         struct logfs_inode *li = logfs_inode(inode);
826         __be64 *rblock;
827         u64 increment, bofs = li->li_data[INDIRECT_INDEX];
828         level_t level;
829         int ret, slot;
830         struct page *page;
831
832         BUG_ON(!bofs);
833
834         for (level = LEVEL(li->li_height); level != 0; level = SUBLEVEL(level)) {
835                 increment = 1 << (LOGFS_BLOCK_BITS * ((__force u8)level-1));
836                 page = logfs_get_read_page(inode, bix, level);
837                 if (!page)
838                         return bix;
839
840                 ret = logfs_segment_read(inode, page, bofs, bix, level);
841                 if (ret) {
842                         logfs_put_read_page(page);
843                         return bix;
844                 }
845
846                 slot = get_bits(bix, SUBLEVEL(level));
847                 rblock = kmap_atomic(page, KM_USER0);
848                 while (slot < LOGFS_BLOCK_FACTOR) {
849                         if (data && (rblock[slot] != 0))
850                                 break;
851                         if (!data && !(be64_to_cpu(rblock[slot]) & LOGFS_FULLY_POPULATED))
852                                 break;
853                         slot++;
854                         bix += increment;
855                         bix &= ~(increment - 1);
856                 }
857                 if (slot >= LOGFS_BLOCK_FACTOR) {
858                         kunmap_atomic(rblock, KM_USER0);
859                         logfs_put_read_page(page);
860                         return bix;
861                 }
862                 bofs = be64_to_cpu(rblock[slot]);
863                 kunmap_atomic(rblock, KM_USER0);
864                 logfs_put_read_page(page);
865                 if (!bofs) {
866                         BUG_ON(data);
867                         return bix;
868                 }
869         }
870         return bix;
871 }
872
873 /**
874  * logfs_seek_hole - find next hole starting at a given block index
875  * @inode:              inode to search in
876  * @bix:                block index to start searching
877  *
878  * Returns next hole.  If the file doesn't contain any further holes, the
879  * block address next to eof is returned instead.
880  */
881 u64 logfs_seek_hole(struct inode *inode, u64 bix)
882 {
883         struct logfs_inode *li = logfs_inode(inode);
884
885         if (bix < I0_BLOCKS) {
886                 bix = seek_holedata_direct(inode, bix, 0);
887                 if (bix < I0_BLOCKS)
888                         return bix;
889         }
890
891         if (!li->li_data[INDIRECT_INDEX])
892                 return bix;
893         else if (li->li_data[INDIRECT_INDEX] & LOGFS_FULLY_POPULATED)
894                 bix = maxbix(li->li_height);
895         else if (bix >= maxbix(li->li_height))
896                 return bix;
897         else {
898                 bix = seek_holedata_loop(inode, bix, 0);
899                 if (bix < maxbix(li->li_height))
900                         return bix;
901                 /* Should not happen anymore.  But if some port writes semi-
902                  * corrupt images (as this one used to) we might run into it.
903                  */
904                 WARN_ON_ONCE(bix == maxbix(li->li_height));
905         }
906
907         return bix;
908 }
909
910 static u64 __logfs_seek_data(struct inode *inode, u64 bix)
911 {
912         struct logfs_inode *li = logfs_inode(inode);
913
914         if (bix < I0_BLOCKS) {
915                 bix = seek_holedata_direct(inode, bix, 1);
916                 if (bix < I0_BLOCKS)
917                         return bix;
918         }
919
920         if (bix < maxbix(li->li_height)) {
921                 if (!li->li_data[INDIRECT_INDEX])
922                         bix = maxbix(li->li_height);
923                 else
924                         return seek_holedata_loop(inode, bix, 1);
925         }
926
927         return bix;
928 }
929
930 /**
931  * logfs_seek_data - find next data block after a given block index
932  * @inode:              inode to search in
933  * @bix:                block index to start searching
934  *
935  * Returns next data block.  If the file doesn't contain any further data
936  * blocks, the last block in the file is returned instead.
937  */
938 u64 logfs_seek_data(struct inode *inode, u64 bix)
939 {
940         struct super_block *sb = inode->i_sb;
941         u64 ret, end;
942
943         ret = __logfs_seek_data(inode, bix);
944         end = i_size_read(inode) >> sb->s_blocksize_bits;
945         if (ret >= end)
946                 ret = max(bix, end);
947         return ret;
948 }
949
950 static int logfs_is_valid_direct(struct logfs_inode *li, u64 bix, u64 ofs)
951 {
952         return pure_ofs(li->li_data[bix]) == ofs;
953 }
954
955 static int __logfs_is_valid_loop(struct inode *inode, u64 bix,
956                 u64 ofs, u64 bofs)
957 {
958         struct logfs_inode *li = logfs_inode(inode);
959         level_t level;
960         int ret;
961         struct page *page;
962
963         for (level = LEVEL(li->li_height); level != 0; level = SUBLEVEL(level)){
964                 page = logfs_get_write_page(inode, bix, level);
965                 BUG_ON(!page);
966
967                 ret = logfs_segment_read(inode, page, bofs, bix, level);
968                 if (ret) {
969                         logfs_put_write_page(page);
970                         return 0;
971                 }
972
973                 bofs = block_get_pointer(page, get_bits(bix, SUBLEVEL(level)));
974                 logfs_put_write_page(page);
975                 if (!bofs)
976                         return 0;
977
978                 if (pure_ofs(bofs) == ofs)
979                         return 1;
980         }
981         return 0;
982 }
983
984 static int logfs_is_valid_loop(struct inode *inode, u64 bix, u64 ofs)
985 {
986         struct logfs_inode *li = logfs_inode(inode);
987         u64 bofs = li->li_data[INDIRECT_INDEX];
988
989         if (!bofs)
990                 return 0;
991
992         if (bix >= maxbix(li->li_height))
993                 return 0;
994
995         if (pure_ofs(bofs) == ofs)
996                 return 1;
997
998         return __logfs_is_valid_loop(inode, bix, ofs, bofs);
999 }
1000
1001 static int __logfs_is_valid_block(struct inode *inode, u64 bix, u64 ofs)
1002 {
1003         struct logfs_inode *li = logfs_inode(inode);
1004
1005         if ((inode->i_nlink == 0) && atomic_read(&inode->i_count) == 1)
1006                 return 0;
1007
1008         if (bix < I0_BLOCKS)
1009                 return logfs_is_valid_direct(li, bix, ofs);
1010         return logfs_is_valid_loop(inode, bix, ofs);
1011 }
1012
1013 /**
1014  * logfs_is_valid_block - check whether this block is still valid
1015  *
1016  * @sb  - superblock
1017  * @ofs - block physical offset
1018  * @ino - block inode number
1019  * @bix - block index
1020  * @level - block level
1021  *
1022  * Returns 0 if the block is invalid, 1 if it is valid and 2 if it will
1023  * become invalid once the journal is written.
1024  */
1025 int logfs_is_valid_block(struct super_block *sb, u64 ofs, u64 ino, u64 bix,
1026                 gc_level_t gc_level)
1027 {
1028         struct logfs_super *super = logfs_super(sb);
1029         struct inode *inode;
1030         int ret, cookie;
1031
1032         /* Umount closes a segment with free blocks remaining.  Those
1033          * blocks are by definition invalid. */
1034         if (ino == -1)
1035                 return 0;
1036
1037         LOGFS_BUG_ON((u64)(u_long)ino != ino, sb);
1038
1039         inode = logfs_safe_iget(sb, ino, &cookie);
1040         if (IS_ERR(inode))
1041                 goto invalid;
1042
1043         ret = __logfs_is_valid_block(inode, bix, ofs);
1044         logfs_safe_iput(inode, cookie);
1045         if (ret)
1046                 return ret;
1047
1048 invalid:
1049         /* Block is nominally invalid, but may still sit in the shadow tree,
1050          * waiting for a journal commit.
1051          */
1052         if (btree_lookup64(&super->s_shadow_tree.old, ofs))
1053                 return 2;
1054         return 0;
1055 }
1056
1057 int logfs_readpage_nolock(struct page *page)
1058 {
1059         struct inode *inode = page->mapping->host;
1060         int ret = -EIO;
1061
1062         ret = logfs_read_block(inode, page, READ);
1063
1064         if (ret) {
1065                 ClearPageUptodate(page);
1066                 SetPageError(page);
1067         } else {
1068                 SetPageUptodate(page);
1069                 ClearPageError(page);
1070         }
1071         flush_dcache_page(page);
1072
1073         return ret;
1074 }
1075
1076 static int logfs_reserve_bytes(struct inode *inode, int bytes)
1077 {
1078         struct logfs_super *super = logfs_super(inode->i_sb);
1079         u64 available = super->s_free_bytes + super->s_dirty_free_bytes
1080                         - super->s_dirty_used_bytes - super->s_dirty_pages;
1081
1082         if (!bytes)
1083                 return 0;
1084
1085         if (available < bytes)
1086                 return -ENOSPC;
1087
1088         if (available < bytes + super->s_root_reserve &&
1089                         !capable(CAP_SYS_RESOURCE))
1090                 return -ENOSPC;
1091
1092         return 0;
1093 }
1094
1095 int get_page_reserve(struct inode *inode, struct page *page)
1096 {
1097         struct logfs_super *super = logfs_super(inode->i_sb);
1098         int ret;
1099
1100         if (logfs_block(page) && logfs_block(page)->reserved_bytes)
1101                 return 0;
1102
1103         logfs_get_wblocks(inode->i_sb, page, WF_LOCK);
1104         ret = logfs_reserve_bytes(inode, 6 * LOGFS_MAX_OBJECTSIZE);
1105         if (!ret) {
1106                 alloc_data_block(inode, page);
1107                 logfs_block(page)->reserved_bytes += 6 * LOGFS_MAX_OBJECTSIZE;
1108                 super->s_dirty_pages += 6 * LOGFS_MAX_OBJECTSIZE;
1109         }
1110         logfs_put_wblocks(inode->i_sb, page, WF_LOCK);
1111         return ret;
1112 }
1113
1114 /*
1115  * We are protected by write lock.  Push victims up to superblock level
1116  * and release transaction when appropriate.
1117  */
1118 /* FIXME: This is currently called from the wrong spots. */
1119 static void logfs_handle_transaction(struct inode *inode,
1120                 struct logfs_transaction *ta)
1121 {
1122         struct logfs_super *super = logfs_super(inode->i_sb);
1123
1124         if (!ta)
1125                 return;
1126         logfs_inode(inode)->li_block->ta = NULL;
1127
1128         if (inode->i_ino != LOGFS_INO_MASTER) {
1129                 BUG(); /* FIXME: Yes, this needs more thought */
1130                 /* just remember the transaction until inode is written */
1131                 //BUG_ON(logfs_inode(inode)->li_transaction);
1132                 //logfs_inode(inode)->li_transaction = ta;
1133                 return;
1134         }
1135
1136         switch (ta->state) {
1137         case CREATE_1: /* fall through */
1138         case UNLINK_1:
1139                 BUG_ON(super->s_victim_ino);
1140                 super->s_victim_ino = ta->ino;
1141                 break;
1142         case CREATE_2: /* fall through */
1143         case UNLINK_2:
1144                 BUG_ON(super->s_victim_ino != ta->ino);
1145                 super->s_victim_ino = 0;
1146                 /* transaction ends here - free it */
1147                 kfree(ta);
1148                 break;
1149         case CROSS_RENAME_1:
1150                 BUG_ON(super->s_rename_dir);
1151                 BUG_ON(super->s_rename_pos);
1152                 super->s_rename_dir = ta->dir;
1153                 super->s_rename_pos = ta->pos;
1154                 break;
1155         case CROSS_RENAME_2:
1156                 BUG_ON(super->s_rename_dir != ta->dir);
1157                 BUG_ON(super->s_rename_pos != ta->pos);
1158                 super->s_rename_dir = 0;
1159                 super->s_rename_pos = 0;
1160                 kfree(ta);
1161                 break;
1162         case TARGET_RENAME_1:
1163                 BUG_ON(super->s_rename_dir);
1164                 BUG_ON(super->s_rename_pos);
1165                 BUG_ON(super->s_victim_ino);
1166                 super->s_rename_dir = ta->dir;
1167                 super->s_rename_pos = ta->pos;
1168                 super->s_victim_ino = ta->ino;
1169                 break;
1170         case TARGET_RENAME_2:
1171                 BUG_ON(super->s_rename_dir != ta->dir);
1172                 BUG_ON(super->s_rename_pos != ta->pos);
1173                 BUG_ON(super->s_victim_ino != ta->ino);
1174                 super->s_rename_dir = 0;
1175                 super->s_rename_pos = 0;
1176                 break;
1177         case TARGET_RENAME_3:
1178                 BUG_ON(super->s_rename_dir);
1179                 BUG_ON(super->s_rename_pos);
1180                 BUG_ON(super->s_victim_ino != ta->ino);
1181                 super->s_victim_ino = 0;
1182                 kfree(ta);
1183                 break;
1184         default:
1185                 BUG();
1186         }
1187 }
1188
1189 /*
1190  * Not strictly a reservation, but rather a check that we still have enough
1191  * space to satisfy the write.
1192  */
1193 static int logfs_reserve_blocks(struct inode *inode, int blocks)
1194 {
1195         return logfs_reserve_bytes(inode, blocks * LOGFS_MAX_OBJECTSIZE);
1196 }
1197
1198 struct write_control {
1199         u64 ofs;
1200         long flags;
1201 };
1202
1203 static struct logfs_shadow *alloc_shadow(struct inode *inode, u64 bix,
1204                 level_t level, u64 old_ofs)
1205 {
1206         struct logfs_super *super = logfs_super(inode->i_sb);
1207         struct logfs_shadow *shadow;
1208
1209         shadow = mempool_alloc(super->s_shadow_pool, GFP_NOFS);
1210         memset(shadow, 0, sizeof(*shadow));
1211         shadow->ino = inode->i_ino;
1212         shadow->bix = bix;
1213         shadow->gc_level = expand_level(inode->i_ino, level);
1214         shadow->old_ofs = old_ofs & ~LOGFS_FULLY_POPULATED;
1215         return shadow;
1216 }
1217
1218 static void free_shadow(struct inode *inode, struct logfs_shadow *shadow)
1219 {
1220         struct logfs_super *super = logfs_super(inode->i_sb);
1221
1222         mempool_free(shadow, super->s_shadow_pool);
1223 }
1224
1225 static void mark_segment(struct shadow_tree *tree, u32 segno)
1226 {
1227         int err;
1228
1229         if (!btree_lookup32(&tree->segment_map, segno)) {
1230                 err = btree_insert32(&tree->segment_map, segno, (void *)1,
1231                                 GFP_NOFS);
1232                 BUG_ON(err);
1233                 tree->no_shadowed_segments++;
1234         }
1235 }
1236
1237 /**
1238  * fill_shadow_tree - Propagate shadow tree changes due to a write
1239  * @inode:      Inode owning the page
1240  * @page:       Struct page that was written
1241  * @shadow:     Shadow for the current write
1242  *
1243  * Writes in logfs can result in two semi-valid objects.  The old object
1244  * is still valid as long as it can be reached by following pointers on
1245  * the medium.  Only when writes propagate all the way up to the journal
1246  * has the new object safely replaced the old one.
1247  *
1248  * To handle this problem, a struct logfs_shadow is used to represent
1249  * every single write.  It is attached to the indirect block, which is
1250  * marked dirty.  When the indirect block is written, its shadows are
1251  * handed up to the next indirect block (or inode).  Untimately they
1252  * will reach the master inode and be freed upon journal commit.
1253  *
1254  * This function handles a single step in the propagation.  It adds the
1255  * shadow for the current write to the tree, along with any shadows in
1256  * the page's tree, in case it was an indirect block.  If a page is
1257  * written, the inode parameter is left NULL, if an inode is written,
1258  * the page parameter is left NULL.
1259  */
1260 static void fill_shadow_tree(struct inode *inode, struct page *page,
1261                 struct logfs_shadow *shadow)
1262 {
1263         struct logfs_super *super = logfs_super(inode->i_sb);
1264         struct logfs_block *block = logfs_block(page);
1265         struct shadow_tree *tree = &super->s_shadow_tree;
1266
1267         if (PagePrivate(page)) {
1268                 if (block->alias_map)
1269                         super->s_no_object_aliases -= bitmap_weight(
1270                                         block->alias_map, LOGFS_BLOCK_FACTOR);
1271                 logfs_handle_transaction(inode, block->ta);
1272                 block->ops->free_block(inode->i_sb, block);
1273         }
1274         if (shadow) {
1275                 if (shadow->old_ofs)
1276                         btree_insert64(&tree->old, shadow->old_ofs, shadow,
1277                                         GFP_NOFS);
1278                 else
1279                         btree_insert64(&tree->new, shadow->new_ofs, shadow,
1280                                         GFP_NOFS);
1281
1282                 super->s_dirty_used_bytes += shadow->new_len;
1283                 super->s_dirty_free_bytes += shadow->old_len;
1284                 mark_segment(tree, shadow->old_ofs >> super->s_segshift);
1285                 mark_segment(tree, shadow->new_ofs >> super->s_segshift);
1286         }
1287 }
1288
1289 static void logfs_set_alias(struct super_block *sb, struct logfs_block *block,
1290                 long child_no)
1291 {
1292         struct logfs_super *super = logfs_super(sb);
1293
1294         if (block->inode && block->inode->i_ino == LOGFS_INO_MASTER) {
1295                 /* Aliases in the master inode are pointless. */
1296                 return;
1297         }
1298
1299         if (!test_bit(child_no, block->alias_map)) {
1300                 set_bit(child_no, block->alias_map);
1301                 super->s_no_object_aliases++;
1302         }
1303         list_move_tail(&block->alias_list, &super->s_object_alias);
1304 }
1305
1306 /*
1307  * Object aliases can and often do change the size and occupied space of a
1308  * file.  So not only do we have to change the pointers, we also have to
1309  * change inode->i_size and li->li_used_bytes.  Which is done by setting
1310  * another two object aliases for the inode itself.
1311  */
1312 static void set_iused(struct inode *inode, struct logfs_shadow *shadow)
1313 {
1314         struct logfs_inode *li = logfs_inode(inode);
1315
1316         if (shadow->new_len == shadow->old_len)
1317                 return;
1318
1319         alloc_inode_block(inode);
1320         li->li_used_bytes += shadow->new_len - shadow->old_len;
1321         __logfs_set_blocks(inode);
1322         logfs_set_alias(inode->i_sb, li->li_block, INODE_USED_OFS);
1323         logfs_set_alias(inode->i_sb, li->li_block, INODE_SIZE_OFS);
1324 }
1325
1326 static int logfs_write_i0(struct inode *inode, struct page *page,
1327                 struct write_control *wc)
1328 {
1329         struct logfs_shadow *shadow;
1330         u64 bix;
1331         level_t level;
1332         int full, err = 0;
1333
1334         logfs_unpack_index(page->index, &bix, &level);
1335         if (wc->ofs == 0)
1336                 if (logfs_reserve_blocks(inode, 1))
1337                         return -ENOSPC;
1338
1339         shadow = alloc_shadow(inode, bix, level, wc->ofs);
1340         if (wc->flags & WF_WRITE)
1341                 err = logfs_segment_write(inode, page, shadow);
1342         if (wc->flags & WF_DELETE)
1343                 logfs_segment_delete(inode, shadow);
1344         if (err) {
1345                 free_shadow(inode, shadow);
1346                 return err;
1347         }
1348
1349         set_iused(inode, shadow);
1350         full = 1;
1351         if (level != 0) {
1352                 alloc_indirect_block(inode, page, 0);
1353                 full = logfs_block(page)->full == LOGFS_BLOCK_FACTOR;
1354         }
1355         fill_shadow_tree(inode, page, shadow);
1356         wc->ofs = shadow->new_ofs;
1357         if (wc->ofs && full)
1358                 wc->ofs |= LOGFS_FULLY_POPULATED;
1359         return 0;
1360 }
1361
1362 static int logfs_write_direct(struct inode *inode, struct page *page,
1363                 long flags)
1364 {
1365         struct logfs_inode *li = logfs_inode(inode);
1366         struct write_control wc = {
1367                 .ofs = li->li_data[page->index],
1368                 .flags = flags,
1369         };
1370         int err;
1371
1372         alloc_inode_block(inode);
1373
1374         err = logfs_write_i0(inode, page, &wc);
1375         if (err)
1376                 return err;
1377
1378         li->li_data[page->index] = wc.ofs;
1379         logfs_set_alias(inode->i_sb, li->li_block,
1380                         page->index + INODE_POINTER_OFS);
1381         return 0;
1382 }
1383
1384 static int ptr_change(u64 ofs, struct page *page)
1385 {
1386         struct logfs_block *block = logfs_block(page);
1387         int empty0, empty1, full0, full1;
1388
1389         empty0 = ofs == 0;
1390         empty1 = block->partial == 0;
1391         if (empty0 != empty1)
1392                 return 1;
1393
1394         /* The !! is necessary to shrink result to int */
1395         full0 = !!(ofs & LOGFS_FULLY_POPULATED);
1396         full1 = block->full == LOGFS_BLOCK_FACTOR;
1397         if (full0 != full1)
1398                 return 1;
1399         return 0;
1400 }
1401
1402 static int __logfs_write_rec(struct inode *inode, struct page *page,
1403                 struct write_control *this_wc,
1404                 pgoff_t bix, level_t target_level, level_t level)
1405 {
1406         int ret, page_empty = 0;
1407         int child_no = get_bits(bix, SUBLEVEL(level));
1408         struct page *ipage;
1409         struct write_control child_wc = {
1410                 .flags = this_wc->flags,
1411         };
1412
1413         ipage = logfs_get_write_page(inode, bix, level);
1414         if (!ipage)
1415                 return -ENOMEM;
1416
1417         if (this_wc->ofs) {
1418                 ret = logfs_segment_read(inode, ipage, this_wc->ofs, bix, level);
1419                 if (ret)
1420                         goto out;
1421         } else if (!PageUptodate(ipage)) {
1422                 page_empty = 1;
1423                 logfs_read_empty(ipage);
1424         }
1425
1426         child_wc.ofs = block_get_pointer(ipage, child_no);
1427
1428         if ((__force u8)level-1 > (__force u8)target_level)
1429                 ret = __logfs_write_rec(inode, page, &child_wc, bix,
1430                                 target_level, SUBLEVEL(level));
1431         else
1432                 ret = logfs_write_i0(inode, page, &child_wc);
1433
1434         if (ret)
1435                 goto out;
1436
1437         alloc_indirect_block(inode, ipage, page_empty);
1438         block_set_pointer(ipage, child_no, child_wc.ofs);
1439         /* FIXME: first condition seems superfluous */
1440         if (child_wc.ofs || logfs_block(ipage)->partial)
1441                 this_wc->flags |= WF_WRITE;
1442         /* the condition on this_wc->ofs ensures that we won't consume extra
1443          * space for indirect blocks in the future, which we cannot reserve */
1444         if (!this_wc->ofs || ptr_change(this_wc->ofs, ipage))
1445                 ret = logfs_write_i0(inode, ipage, this_wc);
1446         else
1447                 logfs_set_alias(inode->i_sb, logfs_block(ipage), child_no);
1448 out:
1449         logfs_put_write_page(ipage);
1450         return ret;
1451 }
1452
1453 static int logfs_write_rec(struct inode *inode, struct page *page,
1454                 pgoff_t bix, level_t target_level, long flags)
1455 {
1456         struct logfs_inode *li = logfs_inode(inode);
1457         struct write_control wc = {
1458                 .ofs = li->li_data[INDIRECT_INDEX],
1459                 .flags = flags,
1460         };
1461         int ret;
1462
1463         alloc_inode_block(inode);
1464
1465         if (li->li_height > (__force u8)target_level)
1466                 ret = __logfs_write_rec(inode, page, &wc, bix, target_level,
1467                                 LEVEL(li->li_height));
1468         else
1469                 ret = logfs_write_i0(inode, page, &wc);
1470         if (ret)
1471                 return ret;
1472
1473         if (li->li_data[INDIRECT_INDEX] != wc.ofs) {
1474                 li->li_data[INDIRECT_INDEX] = wc.ofs;
1475                 logfs_set_alias(inode->i_sb, li->li_block,
1476                                 INDIRECT_INDEX + INODE_POINTER_OFS);
1477         }
1478         return ret;
1479 }
1480
1481 void logfs_add_transaction(struct inode *inode, struct logfs_transaction *ta)
1482 {
1483         alloc_inode_block(inode);
1484         logfs_inode(inode)->li_block->ta = ta;
1485 }
1486
1487 void logfs_del_transaction(struct inode *inode, struct logfs_transaction *ta)
1488 {
1489         struct logfs_block *block = logfs_inode(inode)->li_block;
1490
1491         if (block && block->ta)
1492                 block->ta = NULL;
1493 }
1494
1495 static int grow_inode(struct inode *inode, u64 bix, level_t level)
1496 {
1497         struct logfs_inode *li = logfs_inode(inode);
1498         u8 height = (__force u8)level;
1499         struct page *page;
1500         struct write_control wc = {
1501                 .flags = WF_WRITE,
1502         };
1503         int err;
1504
1505         BUG_ON(height > 5 || li->li_height > 5);
1506         while (height > li->li_height || bix >= maxbix(li->li_height)) {
1507                 page = logfs_get_write_page(inode, I0_BLOCKS + 1,
1508                                 LEVEL(li->li_height + 1));
1509                 if (!page)
1510                         return -ENOMEM;
1511                 logfs_read_empty(page);
1512                 alloc_indirect_block(inode, page, 1);
1513                 block_set_pointer(page, 0, li->li_data[INDIRECT_INDEX]);
1514                 err = logfs_write_i0(inode, page, &wc);
1515                 logfs_put_write_page(page);
1516                 if (err)
1517                         return err;
1518                 li->li_data[INDIRECT_INDEX] = wc.ofs;
1519                 wc.ofs = 0;
1520                 li->li_height++;
1521                 logfs_set_alias(inode->i_sb, li->li_block, INODE_HEIGHT_OFS);
1522         }
1523         return 0;
1524 }
1525
1526 static int __logfs_write_buf(struct inode *inode, struct page *page, long flags)
1527 {
1528         struct logfs_super *super = logfs_super(inode->i_sb);
1529         pgoff_t index = page->index;
1530         u64 bix;
1531         level_t level;
1532         int err;
1533
1534         flags |= WF_WRITE | WF_DELETE;
1535         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1536
1537         logfs_unpack_index(index, &bix, &level);
1538         if (logfs_block(page) && logfs_block(page)->reserved_bytes)
1539                 super->s_dirty_pages -= logfs_block(page)->reserved_bytes;
1540
1541         if (index < I0_BLOCKS)
1542                 return logfs_write_direct(inode, page, flags);
1543
1544         bix = adjust_bix(bix, level);
1545         err = grow_inode(inode, bix, level);
1546         if (err)
1547                 return err;
1548         return logfs_write_rec(inode, page, bix, level, flags);
1549 }
1550
1551 int logfs_write_buf(struct inode *inode, struct page *page, long flags)
1552 {
1553         struct super_block *sb = inode->i_sb;
1554         int ret;
1555
1556         logfs_get_wblocks(sb, page, flags & WF_LOCK);
1557         ret = __logfs_write_buf(inode, page, flags);
1558         logfs_put_wblocks(sb, page, flags & WF_LOCK);
1559         return ret;
1560 }
1561
1562 static int __logfs_delete(struct inode *inode, struct page *page)
1563 {
1564         long flags = WF_DELETE;
1565
1566         inode->i_ctime = inode->i_mtime = CURRENT_TIME;
1567
1568         if (page->index < I0_BLOCKS)
1569                 return logfs_write_direct(inode, page, flags);
1570         return logfs_write_rec(inode, page, page->index, 0, flags);
1571 }
1572
1573 int logfs_delete(struct inode *inode, pgoff_t index,
1574                 struct shadow_tree *shadow_tree)
1575 {
1576         struct super_block *sb = inode->i_sb;
1577         struct page *page;
1578         int ret;
1579
1580         page = logfs_get_read_page(inode, index, 0);
1581         if (!page)
1582                 return -ENOMEM;
1583
1584         logfs_get_wblocks(sb, page, 1);
1585         ret = __logfs_delete(inode, page);
1586         logfs_put_wblocks(sb, page, 1);
1587
1588         logfs_put_read_page(page);
1589
1590         return ret;
1591 }
1592
1593 int logfs_rewrite_block(struct inode *inode, u64 bix, u64 ofs,
1594                 gc_level_t gc_level, long flags)
1595 {
1596         level_t level = shrink_level(gc_level);
1597         struct page *page;
1598         int err;
1599
1600         page = logfs_get_write_page(inode, bix, level);
1601         if (!page)
1602                 return -ENOMEM;
1603
1604         err = logfs_segment_read(inode, page, ofs, bix, level);
1605         if (!err) {
1606                 if (level != 0)
1607                         alloc_indirect_block(inode, page, 0);
1608                 err = logfs_write_buf(inode, page, flags);
1609                 if (!err && shrink_level(gc_level) == 0) {
1610                         /* Rewrite cannot mark the inode dirty but has to
1611                          * write it immediatly.
1612                          * Q: Can't we just create an alias for the inode
1613                          * instead?  And if not, why not?
1614                          */
1615                         if (inode->i_ino == LOGFS_INO_MASTER)
1616                                 logfs_write_anchor(inode->i_sb);
1617                         else {
1618                                 err = __logfs_write_inode(inode, flags);
1619                         }
1620                 }
1621         }
1622         logfs_put_write_page(page);
1623         return err;
1624 }
1625
1626 static int truncate_data_block(struct inode *inode, struct page *page,
1627                 u64 ofs, struct logfs_shadow *shadow, u64 size)
1628 {
1629         loff_t pageofs = page->index << inode->i_sb->s_blocksize_bits;
1630         u64 bix;
1631         level_t level;
1632         int err;
1633
1634         /* Does truncation happen within this page? */
1635         if (size <= pageofs || size - pageofs >= PAGE_SIZE)
1636                 return 0;
1637
1638         logfs_unpack_index(page->index, &bix, &level);
1639         BUG_ON(level != 0);
1640
1641         err = logfs_segment_read(inode, page, ofs, bix, level);
1642         if (err)
1643                 return err;
1644
1645         zero_user_segment(page, size - pageofs, PAGE_CACHE_SIZE);
1646         return logfs_segment_write(inode, page, shadow);
1647 }
1648
1649 static int logfs_truncate_i0(struct inode *inode, struct page *page,
1650                 struct write_control *wc, u64 size)
1651 {
1652         struct logfs_shadow *shadow;
1653         u64 bix;
1654         level_t level;
1655         int err = 0;
1656
1657         logfs_unpack_index(page->index, &bix, &level);
1658         BUG_ON(level != 0);
1659         shadow = alloc_shadow(inode, bix, level, wc->ofs);
1660
1661         err = truncate_data_block(inode, page, wc->ofs, shadow, size);
1662         if (err) {
1663                 free_shadow(inode, shadow);
1664                 return err;
1665         }
1666
1667         logfs_segment_delete(inode, shadow);
1668         set_iused(inode, shadow);
1669         fill_shadow_tree(inode, page, shadow);
1670         wc->ofs = shadow->new_ofs;
1671         return 0;
1672 }
1673
1674 static int logfs_truncate_direct(struct inode *inode, u64 size)
1675 {
1676         struct logfs_inode *li = logfs_inode(inode);
1677         struct write_control wc;
1678         struct page *page;
1679         int e;
1680         int err;
1681
1682         alloc_inode_block(inode);
1683
1684         for (e = I0_BLOCKS - 1; e >= 0; e--) {
1685                 if (size > (e+1) * LOGFS_BLOCKSIZE)
1686                         break;
1687
1688                 wc.ofs = li->li_data[e];
1689                 if (!wc.ofs)
1690                         continue;
1691
1692                 page = logfs_get_write_page(inode, e, 0);
1693                 if (!page)
1694                         return -ENOMEM;
1695                 err = logfs_segment_read(inode, page, wc.ofs, e, 0);
1696                 if (err) {
1697                         logfs_put_write_page(page);
1698                         return err;
1699                 }
1700                 err = logfs_truncate_i0(inode, page, &wc, size);
1701                 logfs_put_write_page(page);
1702                 if (err)
1703                         return err;
1704
1705                 li->li_data[e] = wc.ofs;
1706         }
1707         return 0;
1708 }
1709
1710 /* FIXME: these need to become per-sb once we support different blocksizes */
1711 static u64 __logfs_step[] = {
1712         1,
1713         I1_BLOCKS,
1714         I2_BLOCKS,
1715         I3_BLOCKS,
1716 };
1717
1718 static u64 __logfs_start_index[] = {
1719         I0_BLOCKS,
1720         I1_BLOCKS,
1721         I2_BLOCKS,
1722         I3_BLOCKS
1723 };
1724
1725 static inline u64 logfs_step(level_t level)
1726 {
1727         return __logfs_step[(__force u8)level];
1728 }
1729
1730 static inline u64 logfs_factor(u8 level)
1731 {
1732         return __logfs_step[level] * LOGFS_BLOCKSIZE;
1733 }
1734
1735 static inline u64 logfs_start_index(level_t level)
1736 {
1737         return __logfs_start_index[(__force u8)level];
1738 }
1739
1740 static void logfs_unpack_raw_index(pgoff_t index, u64 *bix, level_t *level)
1741 {
1742         logfs_unpack_index(index, bix, level);
1743         if (*bix <= logfs_start_index(SUBLEVEL(*level)))
1744                 *bix = 0;
1745 }
1746
1747 static int __logfs_truncate_rec(struct inode *inode, struct page *ipage,
1748                 struct write_control *this_wc, u64 size)
1749 {
1750         int truncate_happened = 0;
1751         int e, err = 0;
1752         u64 bix, child_bix, next_bix;
1753         level_t level;
1754         struct page *page;
1755         struct write_control child_wc = { /* FIXME: flags */ };
1756
1757         logfs_unpack_raw_index(ipage->index, &bix, &level);
1758         err = logfs_segment_read(inode, ipage, this_wc->ofs, bix, level);
1759         if (err)
1760                 return err;
1761
1762         for (e = LOGFS_BLOCK_FACTOR - 1; e >= 0; e--) {
1763                 child_bix = bix + e * logfs_step(SUBLEVEL(level));
1764                 next_bix = child_bix + logfs_step(SUBLEVEL(level));
1765                 if (size > next_bix * LOGFS_BLOCKSIZE)
1766                         break;
1767
1768                 child_wc.ofs = pure_ofs(block_get_pointer(ipage, e));
1769                 if (!child_wc.ofs)
1770                         continue;
1771
1772                 page = logfs_get_write_page(inode, child_bix, SUBLEVEL(level));
1773                 if (!page)
1774                         return -ENOMEM;
1775
1776                 if ((__force u8)level > 1)
1777                         err = __logfs_truncate_rec(inode, page, &child_wc, size);
1778                 else
1779                         err = logfs_truncate_i0(inode, page, &child_wc, size);
1780                 logfs_put_write_page(page);
1781                 if (err)
1782                         return err;
1783
1784                 truncate_happened = 1;
1785                 alloc_indirect_block(inode, ipage, 0);
1786                 block_set_pointer(ipage, e, child_wc.ofs);
1787         }
1788
1789         if (!truncate_happened) {
1790                 printk("ineffectual truncate (%lx, %lx, %llx)\n", inode->i_ino, ipage->index, size);
1791                 return 0;
1792         }
1793
1794         this_wc->flags = WF_DELETE;
1795         if (logfs_block(ipage)->partial)
1796                 this_wc->flags |= WF_WRITE;
1797
1798         return logfs_write_i0(inode, ipage, this_wc);
1799 }
1800
1801 static int logfs_truncate_rec(struct inode *inode, u64 size)
1802 {
1803         struct logfs_inode *li = logfs_inode(inode);
1804         struct write_control wc = {
1805                 .ofs = li->li_data[INDIRECT_INDEX],
1806         };
1807         struct page *page;
1808         int err;
1809
1810         alloc_inode_block(inode);
1811
1812         if (!wc.ofs)
1813                 return 0;
1814
1815         page = logfs_get_write_page(inode, 0, LEVEL(li->li_height));
1816         if (!page)
1817                 return -ENOMEM;
1818
1819         err = __logfs_truncate_rec(inode, page, &wc, size);
1820         logfs_put_write_page(page);
1821         if (err)
1822                 return err;
1823
1824         if (li->li_data[INDIRECT_INDEX] != wc.ofs)
1825                 li->li_data[INDIRECT_INDEX] = wc.ofs;
1826         return 0;
1827 }
1828
1829 static int __logfs_truncate(struct inode *inode, u64 size)
1830 {
1831         int ret;
1832
1833         if (size >= logfs_factor(logfs_inode(inode)->li_height))
1834                 return 0;
1835
1836         ret = logfs_truncate_rec(inode, size);
1837         if (ret)
1838                 return ret;
1839
1840         return logfs_truncate_direct(inode, size);
1841 }
1842
1843 /*
1844  * Truncate, by changing the segment file, can consume a fair amount
1845  * of resources.  So back off from time to time and do some GC.
1846  * 8 or 2048 blocks should be well within safety limits even if
1847  * every single block resided in a different segment.
1848  */
1849 #define TRUNCATE_STEP   (8 * 1024 * 1024)
1850 int logfs_truncate(struct inode *inode, u64 target)
1851 {
1852         struct super_block *sb = inode->i_sb;
1853         u64 size = i_size_read(inode);
1854         int err = 0;
1855
1856         size = ALIGN(size, TRUNCATE_STEP);
1857         while (size > target) {
1858                 if (size > TRUNCATE_STEP)
1859                         size -= TRUNCATE_STEP;
1860                 else
1861                         size = 0;
1862                 if (size < target)
1863                         size = target;
1864
1865                 logfs_get_wblocks(sb, NULL, 1);
1866                 err = __logfs_truncate(inode, size);
1867                 if (!err)
1868                         err = __logfs_write_inode(inode, 0);
1869                 logfs_put_wblocks(sb, NULL, 1);
1870         }
1871
1872         if (!err)
1873                 err = vmtruncate(inode, target);
1874
1875         /* I don't trust error recovery yet. */
1876         WARN_ON(err);
1877         return err;
1878 }
1879
1880 static void move_page_to_inode(struct inode *inode, struct page *page)
1881 {
1882         struct logfs_inode *li = logfs_inode(inode);
1883         struct logfs_block *block = logfs_block(page);
1884
1885         if (!block)
1886                 return;
1887
1888         log_blockmove("move_page_to_inode(%llx, %llx, %x)\n",
1889                         block->ino, block->bix, block->level);
1890         BUG_ON(li->li_block);
1891         block->ops = &inode_block_ops;
1892         block->inode = inode;
1893         li->li_block = block;
1894
1895         block->page = NULL;
1896         page->private = 0;
1897         ClearPagePrivate(page);
1898 }
1899
1900 static void move_inode_to_page(struct page *page, struct inode *inode)
1901 {
1902         struct logfs_inode *li = logfs_inode(inode);
1903         struct logfs_block *block = li->li_block;
1904
1905         if (!block)
1906                 return;
1907
1908         log_blockmove("move_inode_to_page(%llx, %llx, %x)\n",
1909                         block->ino, block->bix, block->level);
1910         BUG_ON(PagePrivate(page));
1911         block->ops = &indirect_block_ops;
1912         block->page = page;
1913         page->private = (unsigned long)block;
1914         SetPagePrivate(page);
1915
1916         block->inode = NULL;
1917         li->li_block = NULL;
1918 }
1919
1920 int logfs_read_inode(struct inode *inode)
1921 {
1922         struct super_block *sb = inode->i_sb;
1923         struct logfs_super *super = logfs_super(sb);
1924         struct inode *master_inode = super->s_master_inode;
1925         struct page *page;
1926         struct logfs_disk_inode *di;
1927         u64 ino = inode->i_ino;
1928
1929         if (ino << sb->s_blocksize_bits > i_size_read(master_inode))
1930                 return -ENODATA;
1931         if (!logfs_exist_block(master_inode, ino))
1932                 return -ENODATA;
1933
1934         page = read_cache_page(master_inode->i_mapping, ino,
1935                         (filler_t *)logfs_readpage, NULL);
1936         if (IS_ERR(page))
1937                 return PTR_ERR(page);
1938
1939         di = kmap_atomic(page, KM_USER0);
1940         logfs_disk_to_inode(di, inode);
1941         kunmap_atomic(di, KM_USER0);
1942         move_page_to_inode(inode, page);
1943         page_cache_release(page);
1944         return 0;
1945 }
1946
1947 /* Caller must logfs_put_write_page(page); */
1948 static struct page *inode_to_page(struct inode *inode)
1949 {
1950         struct inode *master_inode = logfs_super(inode->i_sb)->s_master_inode;
1951         struct logfs_disk_inode *di;
1952         struct page *page;
1953
1954         BUG_ON(inode->i_ino == LOGFS_INO_MASTER);
1955
1956         page = logfs_get_write_page(master_inode, inode->i_ino, 0);
1957         if (!page)
1958                 return NULL;
1959
1960         di = kmap_atomic(page, KM_USER0);
1961         logfs_inode_to_disk(inode, di);
1962         kunmap_atomic(di, KM_USER0);
1963         move_inode_to_page(page, inode);
1964         return page;
1965 }
1966
1967 /* Cheaper version of write_inode.  All changes are concealed in
1968  * aliases, which are moved back.  No write to the medium happens.
1969  */
1970 void logfs_clear_inode(struct inode *inode)
1971 {
1972         struct super_block *sb = inode->i_sb;
1973         struct logfs_inode *li = logfs_inode(inode);
1974         struct logfs_block *block = li->li_block;
1975         struct page *page;
1976
1977         /* Only deleted files may be dirty at this point */
1978         BUG_ON(inode->i_state & I_DIRTY && inode->i_nlink);
1979         if (!block)
1980                 return;
1981         if ((logfs_super(sb)->s_flags & LOGFS_SB_FLAG_SHUTDOWN)) {
1982                 block->ops->free_block(inode->i_sb, block);
1983                 return;
1984         }
1985
1986         BUG_ON(inode->i_ino < LOGFS_RESERVED_INOS);
1987         page = inode_to_page(inode);
1988         BUG_ON(!page); /* FIXME: Use emergency page */
1989         logfs_put_write_page(page);
1990 }
1991
1992 static int do_write_inode(struct inode *inode)
1993 {
1994         struct super_block *sb = inode->i_sb;
1995         struct inode *master_inode = logfs_super(sb)->s_master_inode;
1996         loff_t size = (inode->i_ino + 1) << inode->i_sb->s_blocksize_bits;
1997         struct page *page;
1998         int err;
1999
2000         BUG_ON(inode->i_ino == LOGFS_INO_MASTER);
2001         /* FIXME: lock inode */
2002
2003         if (i_size_read(master_inode) < size)
2004                 i_size_write(master_inode, size);
2005
2006         /* TODO: Tell vfs this inode is clean now */
2007
2008         page = inode_to_page(inode);
2009         if (!page)
2010                 return -ENOMEM;
2011
2012         /* FIXME: transaction is part of logfs_block now.  Is that enough? */
2013         err = logfs_write_buf(master_inode, page, 0);
2014         logfs_put_write_page(page);
2015         return err;
2016 }
2017
2018 static void logfs_mod_segment_entry(struct super_block *sb, u32 segno,
2019                 int write,
2020                 void (*change_se)(struct logfs_segment_entry *, long),
2021                 long arg)
2022 {
2023         struct logfs_super *super = logfs_super(sb);
2024         struct inode *inode;
2025         struct page *page;
2026         struct logfs_segment_entry *se;
2027         pgoff_t page_no;
2028         int child_no;
2029
2030         page_no = segno >> (sb->s_blocksize_bits - 3);
2031         child_no = segno & ((sb->s_blocksize >> 3) - 1);
2032
2033         inode = super->s_segfile_inode;
2034         page = logfs_get_write_page(inode, page_no, 0);
2035         BUG_ON(!page); /* FIXME: We need some reserve page for this case */
2036         if (!PageUptodate(page))
2037                 logfs_read_block(inode, page, WRITE);
2038
2039         if (write)
2040                 alloc_indirect_block(inode, page, 0);
2041         se = kmap_atomic(page, KM_USER0);
2042         change_se(se + child_no, arg);
2043         if (write) {
2044                 logfs_set_alias(sb, logfs_block(page), child_no);
2045                 BUG_ON((int)be32_to_cpu(se[child_no].valid) > super->s_segsize);
2046         }
2047         kunmap_atomic(se, KM_USER0);
2048
2049         logfs_put_write_page(page);
2050 }
2051
2052 static void __get_segment_entry(struct logfs_segment_entry *se, long _target)
2053 {
2054         struct logfs_segment_entry *target = (void *)_target;
2055
2056         *target = *se;
2057 }
2058
2059 void logfs_get_segment_entry(struct super_block *sb, u32 segno,
2060                 struct logfs_segment_entry *se)
2061 {
2062         logfs_mod_segment_entry(sb, segno, 0, __get_segment_entry, (long)se);
2063 }
2064
2065 static void __set_segment_used(struct logfs_segment_entry *se, long increment)
2066 {
2067         u32 valid;
2068
2069         valid = be32_to_cpu(se->valid);
2070         valid += increment;
2071         se->valid = cpu_to_be32(valid);
2072 }
2073
2074 void logfs_set_segment_used(struct super_block *sb, u64 ofs, int increment)
2075 {
2076         struct logfs_super *super = logfs_super(sb);
2077         u32 segno = ofs >> super->s_segshift;
2078
2079         if (!increment)
2080                 return;
2081
2082         logfs_mod_segment_entry(sb, segno, 1, __set_segment_used, increment);
2083 }
2084
2085 static void __set_segment_erased(struct logfs_segment_entry *se, long ec_level)
2086 {
2087         se->ec_level = cpu_to_be32(ec_level);
2088 }
2089
2090 void logfs_set_segment_erased(struct super_block *sb, u32 segno, u32 ec,
2091                 gc_level_t gc_level)
2092 {
2093         u32 ec_level = ec << 4 | (__force u8)gc_level;
2094
2095         logfs_mod_segment_entry(sb, segno, 1, __set_segment_erased, ec_level);
2096 }
2097
2098 static void __set_segment_reserved(struct logfs_segment_entry *se, long ignore)
2099 {
2100         se->valid = cpu_to_be32(RESERVED);
2101 }
2102
2103 void logfs_set_segment_reserved(struct super_block *sb, u32 segno)
2104 {
2105         logfs_mod_segment_entry(sb, segno, 1, __set_segment_reserved, 0);
2106 }
2107
2108 static void __set_segment_unreserved(struct logfs_segment_entry *se,
2109                 long ec_level)
2110 {
2111         se->valid = 0;
2112         se->ec_level = cpu_to_be32(ec_level);
2113 }
2114
2115 void logfs_set_segment_unreserved(struct super_block *sb, u32 segno, u32 ec)
2116 {
2117         u32 ec_level = ec << 4;
2118
2119         logfs_mod_segment_entry(sb, segno, 1, __set_segment_unreserved,
2120                         ec_level);
2121 }
2122
2123 int __logfs_write_inode(struct inode *inode, long flags)
2124 {
2125         struct super_block *sb = inode->i_sb;
2126         int ret;
2127
2128         logfs_get_wblocks(sb, NULL, flags & WF_LOCK);
2129         ret = do_write_inode(inode);
2130         logfs_put_wblocks(sb, NULL, flags & WF_LOCK);
2131         return ret;
2132 }
2133
2134 static int do_delete_inode(struct inode *inode)
2135 {
2136         struct super_block *sb = inode->i_sb;
2137         struct inode *master_inode = logfs_super(sb)->s_master_inode;
2138         struct page *page;
2139         int ret;
2140
2141         page = logfs_get_write_page(master_inode, inode->i_ino, 0);
2142         if (!page)
2143                 return -ENOMEM;
2144
2145         move_inode_to_page(page, inode);
2146
2147         logfs_get_wblocks(sb, page, 1);
2148         ret = __logfs_delete(master_inode, page);
2149         logfs_put_wblocks(sb, page, 1);
2150
2151         logfs_put_write_page(page);
2152         return ret;
2153 }
2154
2155 /*
2156  * ZOMBIE inodes have already been deleted before and should remain dead,
2157  * if it weren't for valid checking.  No need to kill them again here.
2158  */
2159 void logfs_delete_inode(struct inode *inode)
2160 {
2161         struct logfs_inode *li = logfs_inode(inode);
2162
2163         if (!(li->li_flags & LOGFS_IF_ZOMBIE)) {
2164                 li->li_flags |= LOGFS_IF_ZOMBIE;
2165                 if (i_size_read(inode) > 0)
2166                         logfs_truncate(inode, 0);
2167                 do_delete_inode(inode);
2168         }
2169         truncate_inode_pages(&inode->i_data, 0);
2170         clear_inode(inode);
2171 }
2172
2173 void btree_write_block(struct logfs_block *block)
2174 {
2175         struct inode *inode;
2176         struct page *page;
2177         int err, cookie;
2178
2179         inode = logfs_safe_iget(block->sb, block->ino, &cookie);
2180         page = logfs_get_write_page(inode, block->bix, block->level);
2181
2182         err = logfs_readpage_nolock(page);
2183         BUG_ON(err);
2184         BUG_ON(!PagePrivate(page));
2185         BUG_ON(logfs_block(page) != block);
2186         err = __logfs_write_buf(inode, page, 0);
2187         BUG_ON(err);
2188         BUG_ON(PagePrivate(page) || page->private);
2189
2190         logfs_put_write_page(page);
2191         logfs_safe_iput(inode, cookie);
2192 }
2193
2194 /**
2195  * logfs_inode_write - write inode or dentry objects
2196  *
2197  * @inode:              parent inode (ifile or directory)
2198  * @buf:                object to write (inode or dentry)
2199  * @n:                  object size
2200  * @_pos:               object number (file position in blocks/objects)
2201  * @flags:              write flags
2202  * @lock:               0 if write lock is already taken, 1 otherwise
2203  * @shadow_tree:        shadow below this inode
2204  *
2205  * FIXME: All caller of this put a 200-300 byte variable on the stack,
2206  * only to call here and do a memcpy from that stack variable.  A good
2207  * example of wasted performance and stack space.
2208  */
2209 int logfs_inode_write(struct inode *inode, const void *buf, size_t count,
2210                 loff_t bix, long flags, struct shadow_tree *shadow_tree)
2211 {
2212         loff_t pos = bix << inode->i_sb->s_blocksize_bits;
2213         int err;
2214         struct page *page;
2215         void *pagebuf;
2216
2217         BUG_ON(pos & (LOGFS_BLOCKSIZE-1));
2218         BUG_ON(count > LOGFS_BLOCKSIZE);
2219         page = logfs_get_write_page(inode, bix, 0);
2220         if (!page)
2221                 return -ENOMEM;
2222
2223         pagebuf = kmap_atomic(page, KM_USER0);
2224         memcpy(pagebuf, buf, count);
2225         flush_dcache_page(page);
2226         kunmap_atomic(pagebuf, KM_USER0);
2227
2228         if (i_size_read(inode) < pos + LOGFS_BLOCKSIZE)
2229                 i_size_write(inode, pos + LOGFS_BLOCKSIZE);
2230
2231         err = logfs_write_buf(inode, page, flags);
2232         logfs_put_write_page(page);
2233         return err;
2234 }
2235
2236 int logfs_open_segfile(struct super_block *sb)
2237 {
2238         struct logfs_super *super = logfs_super(sb);
2239         struct inode *inode;
2240
2241         inode = logfs_read_meta_inode(sb, LOGFS_INO_SEGFILE);
2242         if (IS_ERR(inode))
2243                 return PTR_ERR(inode);
2244         super->s_segfile_inode = inode;
2245         return 0;
2246 }
2247
2248 int logfs_init_rw(struct super_block *sb)
2249 {
2250         struct logfs_super *super = logfs_super(sb);
2251         int min_fill = 3 * super->s_no_blocks;
2252
2253         INIT_LIST_HEAD(&super->s_object_alias);
2254         mutex_init(&super->s_write_mutex);
2255         super->s_block_pool = mempool_create_kmalloc_pool(min_fill,
2256                         sizeof(struct logfs_block));
2257         super->s_shadow_pool = mempool_create_kmalloc_pool(min_fill,
2258                         sizeof(struct logfs_shadow));
2259         return 0;
2260 }
2261
2262 void logfs_cleanup_rw(struct super_block *sb)
2263 {
2264         struct logfs_super *super = logfs_super(sb);
2265
2266         destroy_meta_inode(super->s_segfile_inode);
2267         logfs_mempool_destroy(super->s_block_pool);
2268         logfs_mempool_destroy(super->s_shadow_pool);
2269 }