3 * Library for filesystems writers.
6 #include <linux/export.h>
7 #include <linux/pagemap.h>
8 #include <linux/slab.h>
9 #include <linux/mount.h>
10 #include <linux/vfs.h>
11 #include <linux/quotaops.h>
12 #include <linux/mutex.h>
13 #include <linux/namei.h>
14 #include <linux/exportfs.h>
15 #include <linux/writeback.h>
16 #include <linux/buffer_head.h> /* sync_mapping_buffers */
18 #include <asm/uaccess.h>
22 static inline int simple_positive(struct dentry *dentry)
24 return dentry->d_inode && !d_unhashed(dentry);
27 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
30 struct inode *inode = dentry->d_inode;
31 generic_fillattr(inode, stat);
32 stat->blocks = inode->i_mapping->nrpages << (PAGE_CACHE_SHIFT - 9);
35 EXPORT_SYMBOL(simple_getattr);
37 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
39 buf->f_type = dentry->d_sb->s_magic;
40 buf->f_bsize = PAGE_CACHE_SIZE;
41 buf->f_namelen = NAME_MAX;
44 EXPORT_SYMBOL(simple_statfs);
47 * Retaining negative dentries for an in-memory filesystem just wastes
48 * memory and lookup time: arrange for them to be deleted immediately.
50 static int simple_delete_dentry(const struct dentry *dentry)
56 * Lookup the data. This is trivial - if the dentry didn't already
57 * exist, we know it is negative. Set d_op to delete negative dentries.
59 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
61 static const struct dentry_operations simple_dentry_operations = {
62 .d_delete = simple_delete_dentry,
65 if (dentry->d_name.len > NAME_MAX)
66 return ERR_PTR(-ENAMETOOLONG);
67 if (!dentry->d_sb->s_d_op)
68 d_set_d_op(dentry, &simple_dentry_operations);
72 EXPORT_SYMBOL(simple_lookup);
74 int dcache_dir_open(struct inode *inode, struct file *file)
76 static struct qstr cursor_name = QSTR_INIT(".", 1);
78 file->private_data = d_alloc(file->f_path.dentry, &cursor_name);
80 return file->private_data ? 0 : -ENOMEM;
82 EXPORT_SYMBOL(dcache_dir_open);
84 int dcache_dir_close(struct inode *inode, struct file *file)
86 dput(file->private_data);
89 EXPORT_SYMBOL(dcache_dir_close);
91 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
93 struct dentry *dentry = file->f_path.dentry;
94 mutex_lock(&dentry->d_inode->i_mutex);
97 offset += file->f_pos;
102 mutex_unlock(&dentry->d_inode->i_mutex);
105 if (offset != file->f_pos) {
106 file->f_pos = offset;
107 if (file->f_pos >= 2) {
109 struct dentry *cursor = file->private_data;
110 loff_t n = file->f_pos - 2;
112 spin_lock(&dentry->d_lock);
113 /* d_lock not required for cursor */
114 list_del(&cursor->d_u.d_child);
115 p = dentry->d_subdirs.next;
116 while (n && p != &dentry->d_subdirs) {
118 next = list_entry(p, struct dentry, d_u.d_child);
119 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
120 if (simple_positive(next))
122 spin_unlock(&next->d_lock);
125 list_add_tail(&cursor->d_u.d_child, p);
126 spin_unlock(&dentry->d_lock);
129 mutex_unlock(&dentry->d_inode->i_mutex);
132 EXPORT_SYMBOL(dcache_dir_lseek);
134 /* Relationship between i_mode and the DT_xxx types */
135 static inline unsigned char dt_type(struct inode *inode)
137 return (inode->i_mode >> 12) & 15;
141 * Directory is locked and all positive dentries in it are safe, since
142 * for ramfs-type trees they can't go away without unlink() or rmdir(),
143 * both impossible due to the lock on directory.
146 int dcache_readdir(struct file *file, struct dir_context *ctx)
148 struct dentry *dentry = file->f_path.dentry;
149 struct dentry *cursor = file->private_data;
150 struct list_head *p, *q = &cursor->d_u.d_child;
152 if (!dir_emit_dots(file, ctx))
154 spin_lock(&dentry->d_lock);
156 list_move(q, &dentry->d_subdirs);
158 for (p = q->next; p != &dentry->d_subdirs; p = p->next) {
159 struct dentry *next = list_entry(p, struct dentry, d_u.d_child);
160 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
161 if (!simple_positive(next)) {
162 spin_unlock(&next->d_lock);
166 spin_unlock(&next->d_lock);
167 spin_unlock(&dentry->d_lock);
168 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
169 next->d_inode->i_ino, dt_type(next->d_inode)))
171 spin_lock(&dentry->d_lock);
172 spin_lock_nested(&next->d_lock, DENTRY_D_LOCK_NESTED);
173 /* next is still alive */
175 spin_unlock(&next->d_lock);
179 spin_unlock(&dentry->d_lock);
182 EXPORT_SYMBOL(dcache_readdir);
184 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
188 EXPORT_SYMBOL(generic_read_dir);
190 const struct file_operations simple_dir_operations = {
191 .open = dcache_dir_open,
192 .release = dcache_dir_close,
193 .llseek = dcache_dir_lseek,
194 .read = generic_read_dir,
195 .iterate = dcache_readdir,
198 EXPORT_SYMBOL(simple_dir_operations);
200 const struct inode_operations simple_dir_inode_operations = {
201 .lookup = simple_lookup,
203 EXPORT_SYMBOL(simple_dir_inode_operations);
205 static const struct super_operations simple_super_operations = {
206 .statfs = simple_statfs,
210 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
211 * will never be mountable)
213 struct dentry *mount_pseudo(struct file_system_type *fs_type, char *name,
214 const struct super_operations *ops,
215 const struct dentry_operations *dops, unsigned long magic)
217 struct super_block *s;
218 struct dentry *dentry;
220 struct qstr d_name = QSTR_INIT(name, strlen(name));
222 s = sget(fs_type, NULL, set_anon_super, MS_NOUSER, NULL);
226 s->s_maxbytes = MAX_LFS_FILESIZE;
227 s->s_blocksize = PAGE_SIZE;
228 s->s_blocksize_bits = PAGE_SHIFT;
230 s->s_op = ops ? ops : &simple_super_operations;
236 * since this is the first inode, make it number 1. New inodes created
237 * after this must take care not to collide with it (by passing
238 * max_reserved of 1 to iunique).
241 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
242 root->i_atime = root->i_mtime = root->i_ctime = CURRENT_TIME;
243 dentry = __d_alloc(s, &d_name);
248 d_instantiate(dentry, root);
251 s->s_flags |= MS_ACTIVE;
252 return dget(s->s_root);
255 deactivate_locked_super(s);
256 return ERR_PTR(-ENOMEM);
258 EXPORT_SYMBOL(mount_pseudo);
260 int simple_open(struct inode *inode, struct file *file)
262 if (inode->i_private)
263 file->private_data = inode->i_private;
266 EXPORT_SYMBOL(simple_open);
268 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
270 struct inode *inode = old_dentry->d_inode;
272 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
276 d_instantiate(dentry, inode);
279 EXPORT_SYMBOL(simple_link);
281 int simple_empty(struct dentry *dentry)
283 struct dentry *child;
286 spin_lock(&dentry->d_lock);
287 list_for_each_entry(child, &dentry->d_subdirs, d_u.d_child) {
288 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
289 if (simple_positive(child)) {
290 spin_unlock(&child->d_lock);
293 spin_unlock(&child->d_lock);
297 spin_unlock(&dentry->d_lock);
300 EXPORT_SYMBOL(simple_empty);
302 int simple_unlink(struct inode *dir, struct dentry *dentry)
304 struct inode *inode = dentry->d_inode;
306 inode->i_ctime = dir->i_ctime = dir->i_mtime = CURRENT_TIME;
311 EXPORT_SYMBOL(simple_unlink);
313 int simple_rmdir(struct inode *dir, struct dentry *dentry)
315 if (!simple_empty(dentry))
318 drop_nlink(dentry->d_inode);
319 simple_unlink(dir, dentry);
323 EXPORT_SYMBOL(simple_rmdir);
325 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
326 struct inode *new_dir, struct dentry *new_dentry)
328 struct inode *inode = old_dentry->d_inode;
329 int they_are_dirs = S_ISDIR(old_dentry->d_inode->i_mode);
331 if (!simple_empty(new_dentry))
334 if (new_dentry->d_inode) {
335 simple_unlink(new_dir, new_dentry);
337 drop_nlink(new_dentry->d_inode);
340 } else if (they_are_dirs) {
345 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
346 new_dir->i_mtime = inode->i_ctime = CURRENT_TIME;
350 EXPORT_SYMBOL(simple_rename);
353 * simple_setattr - setattr for simple filesystem
355 * @iattr: iattr structure
357 * Returns 0 on success, -error on failure.
359 * simple_setattr is a simple ->setattr implementation without a proper
360 * implementation of size changes.
362 * It can either be used for in-memory filesystems or special files
363 * on simple regular filesystems. Anything that needs to change on-disk
364 * or wire state on size changes needs its own setattr method.
366 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
368 struct inode *inode = dentry->d_inode;
371 error = inode_change_ok(inode, iattr);
375 if (iattr->ia_valid & ATTR_SIZE)
376 truncate_setsize(inode, iattr->ia_size);
377 setattr_copy(inode, iattr);
378 mark_inode_dirty(inode);
381 EXPORT_SYMBOL(simple_setattr);
383 int simple_readpage(struct file *file, struct page *page)
385 clear_highpage(page);
386 flush_dcache_page(page);
387 SetPageUptodate(page);
391 EXPORT_SYMBOL(simple_readpage);
393 int simple_write_begin(struct file *file, struct address_space *mapping,
394 loff_t pos, unsigned len, unsigned flags,
395 struct page **pagep, void **fsdata)
400 index = pos >> PAGE_CACHE_SHIFT;
402 page = grab_cache_page_write_begin(mapping, index, flags);
408 if (!PageUptodate(page) && (len != PAGE_CACHE_SIZE)) {
409 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
411 zero_user_segments(page, 0, from, from + len, PAGE_CACHE_SIZE);
415 EXPORT_SYMBOL(simple_write_begin);
418 * simple_write_end - .write_end helper for non-block-device FSes
419 * @available: See .write_end of address_space_operations
428 * simple_write_end does the minimum needed for updating a page after writing is
429 * done. It has the same API signature as the .write_end of
430 * address_space_operations vector. So it can just be set onto .write_end for
431 * FSes that don't need any other processing. i_mutex is assumed to be held.
432 * Block based filesystems should use generic_write_end().
433 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
434 * is not called, so a filesystem that actually does store data in .write_inode
435 * should extend on what's done here with a call to mark_inode_dirty() in the
436 * case that i_size has changed.
438 int simple_write_end(struct file *file, struct address_space *mapping,
439 loff_t pos, unsigned len, unsigned copied,
440 struct page *page, void *fsdata)
442 struct inode *inode = page->mapping->host;
443 loff_t last_pos = pos + copied;
445 /* zero the stale part of the page if we did a short copy */
447 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
449 zero_user(page, from + copied, len - copied);
452 if (!PageUptodate(page))
453 SetPageUptodate(page);
455 * No need to use i_size_read() here, the i_size
456 * cannot change under us because we hold the i_mutex.
458 if (last_pos > inode->i_size)
459 i_size_write(inode, last_pos);
461 set_page_dirty(page);
463 page_cache_release(page);
467 EXPORT_SYMBOL(simple_write_end);
470 * the inodes created here are not hashed. If you use iunique to generate
471 * unique inode values later for this filesystem, then you must take care
472 * to pass it an appropriate max_reserved value to avoid collisions.
474 int simple_fill_super(struct super_block *s, unsigned long magic,
475 struct tree_descr *files)
479 struct dentry *dentry;
482 s->s_blocksize = PAGE_CACHE_SIZE;
483 s->s_blocksize_bits = PAGE_CACHE_SHIFT;
485 s->s_op = &simple_super_operations;
488 inode = new_inode(s);
492 * because the root inode is 1, the files array must not contain an
496 inode->i_mode = S_IFDIR | 0755;
497 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
498 inode->i_op = &simple_dir_inode_operations;
499 inode->i_fop = &simple_dir_operations;
501 root = d_make_root(inode);
504 for (i = 0; !files->name || files->name[0]; i++, files++) {
508 /* warn if it tries to conflict with the root inode */
509 if (unlikely(i == 1))
510 printk(KERN_WARNING "%s: %s passed in a files array"
511 "with an index of 1!\n", __func__,
514 dentry = d_alloc_name(root, files->name);
517 inode = new_inode(s);
522 inode->i_mode = S_IFREG | files->mode;
523 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
524 inode->i_fop = files->ops;
526 d_add(dentry, inode);
532 shrink_dcache_parent(root);
536 EXPORT_SYMBOL(simple_fill_super);
538 static DEFINE_SPINLOCK(pin_fs_lock);
540 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
542 struct vfsmount *mnt = NULL;
543 spin_lock(&pin_fs_lock);
544 if (unlikely(!*mount)) {
545 spin_unlock(&pin_fs_lock);
546 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
549 spin_lock(&pin_fs_lock);
555 spin_unlock(&pin_fs_lock);
559 EXPORT_SYMBOL(simple_pin_fs);
561 void simple_release_fs(struct vfsmount **mount, int *count)
563 struct vfsmount *mnt;
564 spin_lock(&pin_fs_lock);
568 spin_unlock(&pin_fs_lock);
571 EXPORT_SYMBOL(simple_release_fs);
574 * simple_read_from_buffer - copy data from the buffer to user space
575 * @to: the user space buffer to read to
576 * @count: the maximum number of bytes to read
577 * @ppos: the current position in the buffer
578 * @from: the buffer to read from
579 * @available: the size of the buffer
581 * The simple_read_from_buffer() function reads up to @count bytes from the
582 * buffer @from at offset @ppos into the user space address starting at @to.
584 * On success, the number of bytes read is returned and the offset @ppos is
585 * advanced by this number, or negative value is returned on error.
587 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
588 const void *from, size_t available)
595 if (pos >= available || !count)
597 if (count > available - pos)
598 count = available - pos;
599 ret = copy_to_user(to, from + pos, count);
606 EXPORT_SYMBOL(simple_read_from_buffer);
609 * simple_write_to_buffer - copy data from user space to the buffer
610 * @to: the buffer to write to
611 * @available: the size of the buffer
612 * @ppos: the current position in the buffer
613 * @from: the user space buffer to read from
614 * @count: the maximum number of bytes to read
616 * The simple_write_to_buffer() function reads up to @count bytes from the user
617 * space address starting at @from into the buffer @to at offset @ppos.
619 * On success, the number of bytes written is returned and the offset @ppos is
620 * advanced by this number, or negative value is returned on error.
622 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
623 const void __user *from, size_t count)
630 if (pos >= available || !count)
632 if (count > available - pos)
633 count = available - pos;
634 res = copy_from_user(to + pos, from, count);
641 EXPORT_SYMBOL(simple_write_to_buffer);
644 * memory_read_from_buffer - copy data from the buffer
645 * @to: the kernel space buffer to read to
646 * @count: the maximum number of bytes to read
647 * @ppos: the current position in the buffer
648 * @from: the buffer to read from
649 * @available: the size of the buffer
651 * The memory_read_from_buffer() function reads up to @count bytes from the
652 * buffer @from at offset @ppos into the kernel space address starting at @to.
654 * On success, the number of bytes read is returned and the offset @ppos is
655 * advanced by this number, or negative value is returned on error.
657 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
658 const void *from, size_t available)
664 if (pos >= available)
666 if (count > available - pos)
667 count = available - pos;
668 memcpy(to, from + pos, count);
673 EXPORT_SYMBOL(memory_read_from_buffer);
676 * Transaction based IO.
677 * The file expects a single write which triggers the transaction, and then
678 * possibly a read which collects the result - which is stored in a
682 void simple_transaction_set(struct file *file, size_t n)
684 struct simple_transaction_argresp *ar = file->private_data;
686 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
689 * The barrier ensures that ar->size will really remain zero until
690 * ar->data is ready for reading.
695 EXPORT_SYMBOL(simple_transaction_set);
697 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
699 struct simple_transaction_argresp *ar;
700 static DEFINE_SPINLOCK(simple_transaction_lock);
702 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
703 return ERR_PTR(-EFBIG);
705 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
707 return ERR_PTR(-ENOMEM);
709 spin_lock(&simple_transaction_lock);
711 /* only one write allowed per open */
712 if (file->private_data) {
713 spin_unlock(&simple_transaction_lock);
714 free_page((unsigned long)ar);
715 return ERR_PTR(-EBUSY);
718 file->private_data = ar;
720 spin_unlock(&simple_transaction_lock);
722 if (copy_from_user(ar->data, buf, size))
723 return ERR_PTR(-EFAULT);
727 EXPORT_SYMBOL(simple_transaction_get);
729 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
731 struct simple_transaction_argresp *ar = file->private_data;
735 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
737 EXPORT_SYMBOL(simple_transaction_read);
739 int simple_transaction_release(struct inode *inode, struct file *file)
741 free_page((unsigned long)file->private_data);
744 EXPORT_SYMBOL(simple_transaction_release);
746 /* Simple attribute files */
749 int (*get)(void *, u64 *);
750 int (*set)(void *, u64);
751 char get_buf[24]; /* enough to store a u64 and "\n\0" */
754 const char *fmt; /* format for read operation */
755 struct mutex mutex; /* protects access to these buffers */
758 /* simple_attr_open is called by an actual attribute open file operation
759 * to set the attribute specific access operations. */
760 int simple_attr_open(struct inode *inode, struct file *file,
761 int (*get)(void *, u64 *), int (*set)(void *, u64),
764 struct simple_attr *attr;
766 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
772 attr->data = inode->i_private;
774 mutex_init(&attr->mutex);
776 file->private_data = attr;
778 return nonseekable_open(inode, file);
780 EXPORT_SYMBOL_GPL(simple_attr_open);
782 int simple_attr_release(struct inode *inode, struct file *file)
784 kfree(file->private_data);
787 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
789 /* read from the buffer that is filled with the get function */
790 ssize_t simple_attr_read(struct file *file, char __user *buf,
791 size_t len, loff_t *ppos)
793 struct simple_attr *attr;
797 attr = file->private_data;
802 ret = mutex_lock_interruptible(&attr->mutex);
806 if (*ppos) { /* continued read */
807 size = strlen(attr->get_buf);
808 } else { /* first read */
810 ret = attr->get(attr->data, &val);
814 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
815 attr->fmt, (unsigned long long)val);
818 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
820 mutex_unlock(&attr->mutex);
823 EXPORT_SYMBOL_GPL(simple_attr_read);
825 /* interpret the buffer as a number to call the set function with */
826 ssize_t simple_attr_write(struct file *file, const char __user *buf,
827 size_t len, loff_t *ppos)
829 struct simple_attr *attr;
834 attr = file->private_data;
838 ret = mutex_lock_interruptible(&attr->mutex);
843 size = min(sizeof(attr->set_buf) - 1, len);
844 if (copy_from_user(attr->set_buf, buf, size))
847 attr->set_buf[size] = '\0';
848 val = simple_strtoll(attr->set_buf, NULL, 0);
849 ret = attr->set(attr->data, val);
851 ret = len; /* on success, claim we got the whole input */
853 mutex_unlock(&attr->mutex);
856 EXPORT_SYMBOL_GPL(simple_attr_write);
859 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
860 * @sb: filesystem to do the file handle conversion on
861 * @fid: file handle to convert
862 * @fh_len: length of the file handle in bytes
863 * @fh_type: type of file handle
864 * @get_inode: filesystem callback to retrieve inode
866 * This function decodes @fid as long as it has one of the well-known
867 * Linux filehandle types and calls @get_inode on it to retrieve the
868 * inode for the object specified in the file handle.
870 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
871 int fh_len, int fh_type, struct inode *(*get_inode)
872 (struct super_block *sb, u64 ino, u32 gen))
874 struct inode *inode = NULL;
880 case FILEID_INO32_GEN:
881 case FILEID_INO32_GEN_PARENT:
882 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
886 return d_obtain_alias(inode);
888 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
891 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
892 * @sb: filesystem to do the file handle conversion on
893 * @fid: file handle to convert
894 * @fh_len: length of the file handle in bytes
895 * @fh_type: type of file handle
896 * @get_inode: filesystem callback to retrieve inode
898 * This function decodes @fid as long as it has one of the well-known
899 * Linux filehandle types and calls @get_inode on it to retrieve the
900 * inode for the _parent_ object specified in the file handle if it
901 * is specified in the file handle, or NULL otherwise.
903 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
904 int fh_len, int fh_type, struct inode *(*get_inode)
905 (struct super_block *sb, u64 ino, u32 gen))
907 struct inode *inode = NULL;
913 case FILEID_INO32_GEN_PARENT:
914 inode = get_inode(sb, fid->i32.parent_ino,
915 (fh_len > 3 ? fid->i32.parent_gen : 0));
919 return d_obtain_alias(inode);
921 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
924 * generic_file_fsync - generic fsync implementation for simple filesystems
925 * @file: file to synchronize
926 * @datasync: only synchronize essential metadata if true
928 * This is a generic implementation of the fsync method for simple
929 * filesystems which track all non-inode metadata in the buffers list
930 * hanging off the address_space structure.
932 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
935 struct inode *inode = file->f_mapping->host;
939 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
943 mutex_lock(&inode->i_mutex);
944 ret = sync_mapping_buffers(inode->i_mapping);
945 if (!(inode->i_state & I_DIRTY))
947 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
950 err = sync_inode_metadata(inode, 1);
954 mutex_unlock(&inode->i_mutex);
957 EXPORT_SYMBOL(generic_file_fsync);
960 * generic_check_addressable - Check addressability of file system
961 * @blocksize_bits: log of file system block size
962 * @num_blocks: number of blocks in file system
964 * Determine whether a file system with @num_blocks blocks (and a
965 * block size of 2**@blocksize_bits) is addressable by the sector_t
966 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
968 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
970 u64 last_fs_block = num_blocks - 1;
972 last_fs_block >> (PAGE_CACHE_SHIFT - blocksize_bits);
974 if (unlikely(num_blocks == 0))
977 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_CACHE_SHIFT))
980 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
981 (last_fs_page > (pgoff_t)(~0ULL))) {
986 EXPORT_SYMBOL(generic_check_addressable);
989 * No-op implementation of ->fsync for in-memory filesystems.
991 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
995 EXPORT_SYMBOL(noop_fsync);
997 void kfree_put_link(struct dentry *dentry, struct nameidata *nd,
1000 char *s = nd_get_link(nd);
1004 EXPORT_SYMBOL(kfree_put_link);
1007 * nop .set_page_dirty method so that people can use .page_mkwrite on
1010 static int anon_set_page_dirty(struct page *page)
1016 * A single inode exists for all anon_inode files. Contrary to pipes,
1017 * anon_inode inodes have no associated per-instance data, so we need
1018 * only allocate one of them.
1020 struct inode *alloc_anon_inode(struct super_block *s)
1022 static const struct address_space_operations anon_aops = {
1023 .set_page_dirty = anon_set_page_dirty,
1025 struct inode *inode = new_inode_pseudo(s);
1028 return ERR_PTR(-ENOMEM);
1030 inode->i_ino = get_next_ino();
1031 inode->i_mapping->a_ops = &anon_aops;
1034 * Mark the inode dirty from the very beginning,
1035 * that way it will never be moved to the dirty
1036 * list because mark_inode_dirty() will think
1037 * that it already _is_ on the dirty list.
1039 inode->i_state = I_DIRTY;
1040 inode->i_mode = S_IRUSR | S_IWUSR;
1041 inode->i_uid = current_fsuid();
1042 inode->i_gid = current_fsgid();
1043 inode->i_flags |= S_PRIVATE;
1044 inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1047 EXPORT_SYMBOL(alloc_anon_inode);