1 // SPDX-License-Identifier: GPL-2.0-only
4 * Library for filesystems writers.
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/writeback.h>
19 #include <linux/buffer_head.h> /* sync_mapping_buffers */
20 #include <linux/fs_context.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/unicode.h>
24 #include <linux/fscrypt.h>
26 #include <linux/uaccess.h>
30 int simple_getattr(struct user_namespace *mnt_userns, const struct path *path,
31 struct kstat *stat, u32 request_mask,
32 unsigned int query_flags)
34 struct inode *inode = d_inode(path->dentry);
35 generic_fillattr(&init_user_ns, inode, stat);
36 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
39 EXPORT_SYMBOL(simple_getattr);
41 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
43 buf->f_type = dentry->d_sb->s_magic;
44 buf->f_bsize = PAGE_SIZE;
45 buf->f_namelen = NAME_MAX;
48 EXPORT_SYMBOL(simple_statfs);
51 * Retaining negative dentries for an in-memory filesystem just wastes
52 * memory and lookup time: arrange for them to be deleted immediately.
54 int always_delete_dentry(const struct dentry *dentry)
58 EXPORT_SYMBOL(always_delete_dentry);
60 const struct dentry_operations simple_dentry_operations = {
61 .d_delete = always_delete_dentry,
63 EXPORT_SYMBOL(simple_dentry_operations);
66 * Lookup the data. This is trivial - if the dentry didn't already
67 * exist, we know it is negative. Set d_op to delete negative dentries.
69 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
71 if (dentry->d_name.len > NAME_MAX)
72 return ERR_PTR(-ENAMETOOLONG);
73 if (!dentry->d_sb->s_d_op)
74 d_set_d_op(dentry, &simple_dentry_operations);
78 EXPORT_SYMBOL(simple_lookup);
80 int dcache_dir_open(struct inode *inode, struct file *file)
82 file->private_data = d_alloc_cursor(file->f_path.dentry);
84 return file->private_data ? 0 : -ENOMEM;
86 EXPORT_SYMBOL(dcache_dir_open);
88 int dcache_dir_close(struct inode *inode, struct file *file)
90 dput(file->private_data);
93 EXPORT_SYMBOL(dcache_dir_close);
95 /* parent is locked at least shared */
97 * Returns an element of siblings' list.
98 * We are looking for <count>th positive after <p>; if
99 * found, dentry is grabbed and returned to caller.
100 * If no such element exists, NULL is returned.
102 static struct dentry *scan_positives(struct dentry *cursor,
107 struct dentry *dentry = cursor->d_parent, *found = NULL;
109 spin_lock(&dentry->d_lock);
110 while ((p = p->next) != &dentry->d_subdirs) {
111 struct dentry *d = list_entry(p, struct dentry, d_child);
112 // we must at least skip cursors, to avoid livelocks
113 if (d->d_flags & DCACHE_DENTRY_CURSOR)
115 if (simple_positive(d) && !--count) {
116 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
117 if (simple_positive(d))
118 found = dget_dlock(d);
119 spin_unlock(&d->d_lock);
124 if (need_resched()) {
125 list_move(&cursor->d_child, p);
126 p = &cursor->d_child;
127 spin_unlock(&dentry->d_lock);
129 spin_lock(&dentry->d_lock);
132 spin_unlock(&dentry->d_lock);
137 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
139 struct dentry *dentry = file->f_path.dentry;
142 offset += file->f_pos;
151 if (offset != file->f_pos) {
152 struct dentry *cursor = file->private_data;
153 struct dentry *to = NULL;
155 inode_lock_shared(dentry->d_inode);
158 to = scan_positives(cursor, &dentry->d_subdirs,
160 spin_lock(&dentry->d_lock);
162 list_move(&cursor->d_child, &to->d_child);
164 list_del_init(&cursor->d_child);
165 spin_unlock(&dentry->d_lock);
168 file->f_pos = offset;
170 inode_unlock_shared(dentry->d_inode);
174 EXPORT_SYMBOL(dcache_dir_lseek);
176 /* Relationship between i_mode and the DT_xxx types */
177 static inline unsigned char dt_type(struct inode *inode)
179 return (inode->i_mode >> 12) & 15;
183 * Directory is locked and all positive dentries in it are safe, since
184 * for ramfs-type trees they can't go away without unlink() or rmdir(),
185 * both impossible due to the lock on directory.
188 int dcache_readdir(struct file *file, struct dir_context *ctx)
190 struct dentry *dentry = file->f_path.dentry;
191 struct dentry *cursor = file->private_data;
192 struct list_head *anchor = &dentry->d_subdirs;
193 struct dentry *next = NULL;
196 if (!dir_emit_dots(file, ctx))
201 else if (!list_empty(&cursor->d_child))
202 p = &cursor->d_child;
206 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
207 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
208 d_inode(next)->i_ino, dt_type(d_inode(next))))
213 spin_lock(&dentry->d_lock);
215 list_move_tail(&cursor->d_child, &next->d_child);
217 list_del_init(&cursor->d_child);
218 spin_unlock(&dentry->d_lock);
223 EXPORT_SYMBOL(dcache_readdir);
225 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
229 EXPORT_SYMBOL(generic_read_dir);
231 const struct file_operations simple_dir_operations = {
232 .open = dcache_dir_open,
233 .release = dcache_dir_close,
234 .llseek = dcache_dir_lseek,
235 .read = generic_read_dir,
236 .iterate_shared = dcache_readdir,
239 EXPORT_SYMBOL(simple_dir_operations);
241 const struct inode_operations simple_dir_inode_operations = {
242 .lookup = simple_lookup,
244 EXPORT_SYMBOL(simple_dir_inode_operations);
246 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
248 struct dentry *child = NULL;
249 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
251 spin_lock(&parent->d_lock);
252 while ((p = p->next) != &parent->d_subdirs) {
253 struct dentry *d = container_of(p, struct dentry, d_child);
254 if (simple_positive(d)) {
255 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
256 if (simple_positive(d))
257 child = dget_dlock(d);
258 spin_unlock(&d->d_lock);
263 spin_unlock(&parent->d_lock);
268 void simple_recursive_removal(struct dentry *dentry,
269 void (*callback)(struct dentry *))
271 struct dentry *this = dget(dentry);
273 struct dentry *victim = NULL, *child;
274 struct inode *inode = this->d_inode;
278 inode->i_flags |= S_DEAD;
279 while ((child = find_next_child(this, victim)) == NULL) {
281 // update metadata while it's still locked
282 inode->i_ctime = current_time(inode);
286 this = this->d_parent;
287 inode = this->d_inode;
289 if (simple_positive(victim)) {
290 d_invalidate(victim); // avoid lost mounts
291 if (d_is_dir(victim))
292 fsnotify_rmdir(inode, victim);
294 fsnotify_unlink(inode, victim);
297 dput(victim); // unpin it
299 if (victim == dentry) {
300 inode->i_ctime = inode->i_mtime =
302 if (d_is_dir(dentry))
313 EXPORT_SYMBOL(simple_recursive_removal);
315 static const struct super_operations simple_super_operations = {
316 .statfs = simple_statfs,
319 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
321 struct pseudo_fs_context *ctx = fc->fs_private;
324 s->s_maxbytes = MAX_LFS_FILESIZE;
325 s->s_blocksize = PAGE_SIZE;
326 s->s_blocksize_bits = PAGE_SHIFT;
327 s->s_magic = ctx->magic;
328 s->s_op = ctx->ops ?: &simple_super_operations;
329 s->s_xattr = ctx->xattr;
336 * since this is the first inode, make it number 1. New inodes created
337 * after this must take care not to collide with it (by passing
338 * max_reserved of 1 to iunique).
341 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
342 root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
343 s->s_root = d_make_root(root);
346 s->s_d_op = ctx->dops;
350 static int pseudo_fs_get_tree(struct fs_context *fc)
352 return get_tree_nodev(fc, pseudo_fs_fill_super);
355 static void pseudo_fs_free(struct fs_context *fc)
357 kfree(fc->fs_private);
360 static const struct fs_context_operations pseudo_fs_context_ops = {
361 .free = pseudo_fs_free,
362 .get_tree = pseudo_fs_get_tree,
366 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
367 * will never be mountable)
369 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
372 struct pseudo_fs_context *ctx;
374 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
377 fc->fs_private = ctx;
378 fc->ops = &pseudo_fs_context_ops;
379 fc->sb_flags |= SB_NOUSER;
384 EXPORT_SYMBOL(init_pseudo);
386 int simple_open(struct inode *inode, struct file *file)
388 if (inode->i_private)
389 file->private_data = inode->i_private;
392 EXPORT_SYMBOL(simple_open);
394 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
396 struct inode *inode = d_inode(old_dentry);
398 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
402 d_instantiate(dentry, inode);
405 EXPORT_SYMBOL(simple_link);
407 int simple_empty(struct dentry *dentry)
409 struct dentry *child;
412 spin_lock(&dentry->d_lock);
413 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
414 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
415 if (simple_positive(child)) {
416 spin_unlock(&child->d_lock);
419 spin_unlock(&child->d_lock);
423 spin_unlock(&dentry->d_lock);
426 EXPORT_SYMBOL(simple_empty);
428 int simple_unlink(struct inode *dir, struct dentry *dentry)
430 struct inode *inode = d_inode(dentry);
432 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
437 EXPORT_SYMBOL(simple_unlink);
439 int simple_rmdir(struct inode *dir, struct dentry *dentry)
441 if (!simple_empty(dentry))
444 drop_nlink(d_inode(dentry));
445 simple_unlink(dir, dentry);
449 EXPORT_SYMBOL(simple_rmdir);
451 int simple_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
452 struct dentry *old_dentry, struct inode *new_dir,
453 struct dentry *new_dentry, unsigned int flags)
455 struct inode *inode = d_inode(old_dentry);
456 int they_are_dirs = d_is_dir(old_dentry);
458 if (flags & ~RENAME_NOREPLACE)
461 if (!simple_empty(new_dentry))
464 if (d_really_is_positive(new_dentry)) {
465 simple_unlink(new_dir, new_dentry);
467 drop_nlink(d_inode(new_dentry));
470 } else if (they_are_dirs) {
475 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
476 new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
480 EXPORT_SYMBOL(simple_rename);
483 * simple_setattr - setattr for simple filesystem
484 * @mnt_userns: user namespace of the target mount
486 * @iattr: iattr structure
488 * Returns 0 on success, -error on failure.
490 * simple_setattr is a simple ->setattr implementation without a proper
491 * implementation of size changes.
493 * It can either be used for in-memory filesystems or special files
494 * on simple regular filesystems. Anything that needs to change on-disk
495 * or wire state on size changes needs its own setattr method.
497 int simple_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
500 struct inode *inode = d_inode(dentry);
503 error = setattr_prepare(mnt_userns, dentry, iattr);
507 if (iattr->ia_valid & ATTR_SIZE)
508 truncate_setsize(inode, iattr->ia_size);
509 setattr_copy(mnt_userns, inode, iattr);
510 mark_inode_dirty(inode);
513 EXPORT_SYMBOL(simple_setattr);
515 static int simple_readpage(struct file *file, struct page *page)
517 clear_highpage(page);
518 flush_dcache_page(page);
519 SetPageUptodate(page);
524 int simple_write_begin(struct file *file, struct address_space *mapping,
525 loff_t pos, unsigned len, unsigned flags,
526 struct page **pagep, void **fsdata)
531 index = pos >> PAGE_SHIFT;
533 page = grab_cache_page_write_begin(mapping, index, flags);
539 if (!PageUptodate(page) && (len != PAGE_SIZE)) {
540 unsigned from = pos & (PAGE_SIZE - 1);
542 zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
546 EXPORT_SYMBOL(simple_write_begin);
549 * simple_write_end - .write_end helper for non-block-device FSes
550 * @file: See .write_end of address_space_operations
558 * simple_write_end does the minimum needed for updating a page after writing is
559 * done. It has the same API signature as the .write_end of
560 * address_space_operations vector. So it can just be set onto .write_end for
561 * FSes that don't need any other processing. i_mutex is assumed to be held.
562 * Block based filesystems should use generic_write_end().
563 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
564 * is not called, so a filesystem that actually does store data in .write_inode
565 * should extend on what's done here with a call to mark_inode_dirty() in the
566 * case that i_size has changed.
568 * Use *ONLY* with simple_readpage()
570 static int simple_write_end(struct file *file, struct address_space *mapping,
571 loff_t pos, unsigned len, unsigned copied,
572 struct page *page, void *fsdata)
574 struct inode *inode = page->mapping->host;
575 loff_t last_pos = pos + copied;
577 /* zero the stale part of the page if we did a short copy */
578 if (!PageUptodate(page)) {
580 unsigned from = pos & (PAGE_SIZE - 1);
582 zero_user(page, from + copied, len - copied);
584 SetPageUptodate(page);
587 * No need to use i_size_read() here, the i_size
588 * cannot change under us because we hold the i_mutex.
590 if (last_pos > inode->i_size)
591 i_size_write(inode, last_pos);
593 set_page_dirty(page);
601 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
603 const struct address_space_operations ram_aops = {
604 .readpage = simple_readpage,
605 .write_begin = simple_write_begin,
606 .write_end = simple_write_end,
607 .set_page_dirty = __set_page_dirty_no_writeback,
609 EXPORT_SYMBOL(ram_aops);
612 * the inodes created here are not hashed. If you use iunique to generate
613 * unique inode values later for this filesystem, then you must take care
614 * to pass it an appropriate max_reserved value to avoid collisions.
616 int simple_fill_super(struct super_block *s, unsigned long magic,
617 const struct tree_descr *files)
621 struct dentry *dentry;
624 s->s_blocksize = PAGE_SIZE;
625 s->s_blocksize_bits = PAGE_SHIFT;
627 s->s_op = &simple_super_operations;
630 inode = new_inode(s);
634 * because the root inode is 1, the files array must not contain an
638 inode->i_mode = S_IFDIR | 0755;
639 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
640 inode->i_op = &simple_dir_inode_operations;
641 inode->i_fop = &simple_dir_operations;
643 root = d_make_root(inode);
646 for (i = 0; !files->name || files->name[0]; i++, files++) {
650 /* warn if it tries to conflict with the root inode */
651 if (unlikely(i == 1))
652 printk(KERN_WARNING "%s: %s passed in a files array"
653 "with an index of 1!\n", __func__,
656 dentry = d_alloc_name(root, files->name);
659 inode = new_inode(s);
664 inode->i_mode = S_IFREG | files->mode;
665 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
666 inode->i_fop = files->ops;
668 d_add(dentry, inode);
674 shrink_dcache_parent(root);
678 EXPORT_SYMBOL(simple_fill_super);
680 static DEFINE_SPINLOCK(pin_fs_lock);
682 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
684 struct vfsmount *mnt = NULL;
685 spin_lock(&pin_fs_lock);
686 if (unlikely(!*mount)) {
687 spin_unlock(&pin_fs_lock);
688 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
691 spin_lock(&pin_fs_lock);
697 spin_unlock(&pin_fs_lock);
701 EXPORT_SYMBOL(simple_pin_fs);
703 void simple_release_fs(struct vfsmount **mount, int *count)
705 struct vfsmount *mnt;
706 spin_lock(&pin_fs_lock);
710 spin_unlock(&pin_fs_lock);
713 EXPORT_SYMBOL(simple_release_fs);
716 * simple_read_from_buffer - copy data from the buffer to user space
717 * @to: the user space buffer to read to
718 * @count: the maximum number of bytes to read
719 * @ppos: the current position in the buffer
720 * @from: the buffer to read from
721 * @available: the size of the buffer
723 * The simple_read_from_buffer() function reads up to @count bytes from the
724 * buffer @from at offset @ppos into the user space address starting at @to.
726 * On success, the number of bytes read is returned and the offset @ppos is
727 * advanced by this number, or negative value is returned on error.
729 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
730 const void *from, size_t available)
737 if (pos >= available || !count)
739 if (count > available - pos)
740 count = available - pos;
741 ret = copy_to_user(to, from + pos, count);
748 EXPORT_SYMBOL(simple_read_from_buffer);
751 * simple_write_to_buffer - copy data from user space to the buffer
752 * @to: the buffer to write to
753 * @available: the size of the buffer
754 * @ppos: the current position in the buffer
755 * @from: the user space buffer to read from
756 * @count: the maximum number of bytes to read
758 * The simple_write_to_buffer() function reads up to @count bytes from the user
759 * space address starting at @from into the buffer @to at offset @ppos.
761 * On success, the number of bytes written is returned and the offset @ppos is
762 * advanced by this number, or negative value is returned on error.
764 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
765 const void __user *from, size_t count)
772 if (pos >= available || !count)
774 if (count > available - pos)
775 count = available - pos;
776 res = copy_from_user(to + pos, from, count);
783 EXPORT_SYMBOL(simple_write_to_buffer);
786 * memory_read_from_buffer - copy data from the buffer
787 * @to: the kernel space buffer to read to
788 * @count: the maximum number of bytes to read
789 * @ppos: the current position in the buffer
790 * @from: the buffer to read from
791 * @available: the size of the buffer
793 * The memory_read_from_buffer() function reads up to @count bytes from the
794 * buffer @from at offset @ppos into the kernel space address starting at @to.
796 * On success, the number of bytes read is returned and the offset @ppos is
797 * advanced by this number, or negative value is returned on error.
799 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
800 const void *from, size_t available)
806 if (pos >= available)
808 if (count > available - pos)
809 count = available - pos;
810 memcpy(to, from + pos, count);
815 EXPORT_SYMBOL(memory_read_from_buffer);
818 * Transaction based IO.
819 * The file expects a single write which triggers the transaction, and then
820 * possibly a read which collects the result - which is stored in a
824 void simple_transaction_set(struct file *file, size_t n)
826 struct simple_transaction_argresp *ar = file->private_data;
828 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
831 * The barrier ensures that ar->size will really remain zero until
832 * ar->data is ready for reading.
837 EXPORT_SYMBOL(simple_transaction_set);
839 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
841 struct simple_transaction_argresp *ar;
842 static DEFINE_SPINLOCK(simple_transaction_lock);
844 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
845 return ERR_PTR(-EFBIG);
847 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
849 return ERR_PTR(-ENOMEM);
851 spin_lock(&simple_transaction_lock);
853 /* only one write allowed per open */
854 if (file->private_data) {
855 spin_unlock(&simple_transaction_lock);
856 free_page((unsigned long)ar);
857 return ERR_PTR(-EBUSY);
860 file->private_data = ar;
862 spin_unlock(&simple_transaction_lock);
864 if (copy_from_user(ar->data, buf, size))
865 return ERR_PTR(-EFAULT);
869 EXPORT_SYMBOL(simple_transaction_get);
871 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
873 struct simple_transaction_argresp *ar = file->private_data;
877 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
879 EXPORT_SYMBOL(simple_transaction_read);
881 int simple_transaction_release(struct inode *inode, struct file *file)
883 free_page((unsigned long)file->private_data);
886 EXPORT_SYMBOL(simple_transaction_release);
888 /* Simple attribute files */
891 int (*get)(void *, u64 *);
892 int (*set)(void *, u64);
893 char get_buf[24]; /* enough to store a u64 and "\n\0" */
896 const char *fmt; /* format for read operation */
897 struct mutex mutex; /* protects access to these buffers */
900 /* simple_attr_open is called by an actual attribute open file operation
901 * to set the attribute specific access operations. */
902 int simple_attr_open(struct inode *inode, struct file *file,
903 int (*get)(void *, u64 *), int (*set)(void *, u64),
906 struct simple_attr *attr;
908 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
914 attr->data = inode->i_private;
916 mutex_init(&attr->mutex);
918 file->private_data = attr;
920 return nonseekable_open(inode, file);
922 EXPORT_SYMBOL_GPL(simple_attr_open);
924 int simple_attr_release(struct inode *inode, struct file *file)
926 kfree(file->private_data);
929 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
931 /* read from the buffer that is filled with the get function */
932 ssize_t simple_attr_read(struct file *file, char __user *buf,
933 size_t len, loff_t *ppos)
935 struct simple_attr *attr;
939 attr = file->private_data;
944 ret = mutex_lock_interruptible(&attr->mutex);
948 if (*ppos && attr->get_buf[0]) {
950 size = strlen(attr->get_buf);
954 ret = attr->get(attr->data, &val);
958 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
959 attr->fmt, (unsigned long long)val);
962 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
964 mutex_unlock(&attr->mutex);
967 EXPORT_SYMBOL_GPL(simple_attr_read);
969 /* interpret the buffer as a number to call the set function with */
970 ssize_t simple_attr_write(struct file *file, const char __user *buf,
971 size_t len, loff_t *ppos)
973 struct simple_attr *attr;
974 unsigned long long val;
978 attr = file->private_data;
982 ret = mutex_lock_interruptible(&attr->mutex);
987 size = min(sizeof(attr->set_buf) - 1, len);
988 if (copy_from_user(attr->set_buf, buf, size))
991 attr->set_buf[size] = '\0';
992 ret = kstrtoull(attr->set_buf, 0, &val);
995 ret = attr->set(attr->data, val);
997 ret = len; /* on success, claim we got the whole input */
999 mutex_unlock(&attr->mutex);
1002 EXPORT_SYMBOL_GPL(simple_attr_write);
1005 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1006 * @sb: filesystem to do the file handle conversion on
1007 * @fid: file handle to convert
1008 * @fh_len: length of the file handle in bytes
1009 * @fh_type: type of file handle
1010 * @get_inode: filesystem callback to retrieve inode
1012 * This function decodes @fid as long as it has one of the well-known
1013 * Linux filehandle types and calls @get_inode on it to retrieve the
1014 * inode for the object specified in the file handle.
1016 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1017 int fh_len, int fh_type, struct inode *(*get_inode)
1018 (struct super_block *sb, u64 ino, u32 gen))
1020 struct inode *inode = NULL;
1026 case FILEID_INO32_GEN:
1027 case FILEID_INO32_GEN_PARENT:
1028 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1032 return d_obtain_alias(inode);
1034 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1037 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1038 * @sb: filesystem to do the file handle conversion on
1039 * @fid: file handle to convert
1040 * @fh_len: length of the file handle in bytes
1041 * @fh_type: type of file handle
1042 * @get_inode: filesystem callback to retrieve inode
1044 * This function decodes @fid as long as it has one of the well-known
1045 * Linux filehandle types and calls @get_inode on it to retrieve the
1046 * inode for the _parent_ object specified in the file handle if it
1047 * is specified in the file handle, or NULL otherwise.
1049 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1050 int fh_len, int fh_type, struct inode *(*get_inode)
1051 (struct super_block *sb, u64 ino, u32 gen))
1053 struct inode *inode = NULL;
1059 case FILEID_INO32_GEN_PARENT:
1060 inode = get_inode(sb, fid->i32.parent_ino,
1061 (fh_len > 3 ? fid->i32.parent_gen : 0));
1065 return d_obtain_alias(inode);
1067 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1070 * __generic_file_fsync - generic fsync implementation for simple filesystems
1072 * @file: file to synchronize
1073 * @start: start offset in bytes
1074 * @end: end offset in bytes (inclusive)
1075 * @datasync: only synchronize essential metadata if true
1077 * This is a generic implementation of the fsync method for simple
1078 * filesystems which track all non-inode metadata in the buffers list
1079 * hanging off the address_space structure.
1081 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1084 struct inode *inode = file->f_mapping->host;
1088 err = file_write_and_wait_range(file, start, end);
1093 ret = sync_mapping_buffers(inode->i_mapping);
1094 if (!(inode->i_state & I_DIRTY_ALL))
1096 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1099 err = sync_inode_metadata(inode, 1);
1104 inode_unlock(inode);
1105 /* check and advance again to catch errors after syncing out buffers */
1106 err = file_check_and_advance_wb_err(file);
1111 EXPORT_SYMBOL(__generic_file_fsync);
1114 * generic_file_fsync - generic fsync implementation for simple filesystems
1116 * @file: file to synchronize
1117 * @start: start offset in bytes
1118 * @end: end offset in bytes (inclusive)
1119 * @datasync: only synchronize essential metadata if true
1123 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1126 struct inode *inode = file->f_mapping->host;
1129 err = __generic_file_fsync(file, start, end, datasync);
1132 return blkdev_issue_flush(inode->i_sb->s_bdev);
1134 EXPORT_SYMBOL(generic_file_fsync);
1137 * generic_check_addressable - Check addressability of file system
1138 * @blocksize_bits: log of file system block size
1139 * @num_blocks: number of blocks in file system
1141 * Determine whether a file system with @num_blocks blocks (and a
1142 * block size of 2**@blocksize_bits) is addressable by the sector_t
1143 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1145 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1147 u64 last_fs_block = num_blocks - 1;
1149 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1151 if (unlikely(num_blocks == 0))
1154 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1157 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1158 (last_fs_page > (pgoff_t)(~0ULL))) {
1163 EXPORT_SYMBOL(generic_check_addressable);
1166 * No-op implementation of ->fsync for in-memory filesystems.
1168 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1172 EXPORT_SYMBOL(noop_fsync);
1174 void noop_invalidatepage(struct page *page, unsigned int offset,
1175 unsigned int length)
1178 * There is no page cache to invalidate in the dax case, however
1179 * we need this callback defined to prevent falling back to
1180 * block_invalidatepage() in do_invalidatepage().
1183 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1185 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1188 * iomap based filesystems support direct I/O without need for
1189 * this callback. However, it still needs to be set in
1190 * inode->a_ops so that open/fcntl know that direct I/O is
1191 * generally supported.
1195 EXPORT_SYMBOL_GPL(noop_direct_IO);
1197 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1198 void kfree_link(void *p)
1202 EXPORT_SYMBOL(kfree_link);
1204 struct inode *alloc_anon_inode(struct super_block *s)
1206 static const struct address_space_operations anon_aops = {
1207 .set_page_dirty = __set_page_dirty_no_writeback,
1209 struct inode *inode = new_inode_pseudo(s);
1212 return ERR_PTR(-ENOMEM);
1214 inode->i_ino = get_next_ino();
1215 inode->i_mapping->a_ops = &anon_aops;
1218 * Mark the inode dirty from the very beginning,
1219 * that way it will never be moved to the dirty
1220 * list because mark_inode_dirty() will think
1221 * that it already _is_ on the dirty list.
1223 inode->i_state = I_DIRTY;
1224 inode->i_mode = S_IRUSR | S_IWUSR;
1225 inode->i_uid = current_fsuid();
1226 inode->i_gid = current_fsgid();
1227 inode->i_flags |= S_PRIVATE;
1228 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1231 EXPORT_SYMBOL(alloc_anon_inode);
1234 * simple_nosetlease - generic helper for prohibiting leases
1235 * @filp: file pointer
1236 * @arg: type of lease to obtain
1237 * @flp: new lease supplied for insertion
1238 * @priv: private data for lm_setup operation
1240 * Generic helper for filesystems that do not wish to allow leases to be set.
1241 * All arguments are ignored and it just returns -EINVAL.
1244 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1249 EXPORT_SYMBOL(simple_nosetlease);
1252 * simple_get_link - generic helper to get the target of "fast" symlinks
1253 * @dentry: not used here
1254 * @inode: the symlink inode
1255 * @done: not used here
1257 * Generic helper for filesystems to use for symlink inodes where a pointer to
1258 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1259 * since as an optimization the path lookup code uses any non-NULL ->i_link
1260 * directly, without calling ->get_link(). But ->get_link() still must be set,
1261 * to mark the inode_operations as being for a symlink.
1263 * Return: the symlink target
1265 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1266 struct delayed_call *done)
1268 return inode->i_link;
1270 EXPORT_SYMBOL(simple_get_link);
1272 const struct inode_operations simple_symlink_inode_operations = {
1273 .get_link = simple_get_link,
1275 EXPORT_SYMBOL(simple_symlink_inode_operations);
1278 * Operations for a permanently empty directory.
1280 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1282 return ERR_PTR(-ENOENT);
1285 static int empty_dir_getattr(struct user_namespace *mnt_userns,
1286 const struct path *path, struct kstat *stat,
1287 u32 request_mask, unsigned int query_flags)
1289 struct inode *inode = d_inode(path->dentry);
1290 generic_fillattr(&init_user_ns, inode, stat);
1294 static int empty_dir_setattr(struct user_namespace *mnt_userns,
1295 struct dentry *dentry, struct iattr *attr)
1300 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1305 static const struct inode_operations empty_dir_inode_operations = {
1306 .lookup = empty_dir_lookup,
1307 .permission = generic_permission,
1308 .setattr = empty_dir_setattr,
1309 .getattr = empty_dir_getattr,
1310 .listxattr = empty_dir_listxattr,
1313 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1315 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1316 return generic_file_llseek_size(file, offset, whence, 2, 2);
1319 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1321 dir_emit_dots(file, ctx);
1325 static const struct file_operations empty_dir_operations = {
1326 .llseek = empty_dir_llseek,
1327 .read = generic_read_dir,
1328 .iterate_shared = empty_dir_readdir,
1329 .fsync = noop_fsync,
1333 void make_empty_dir_inode(struct inode *inode)
1335 set_nlink(inode, 2);
1336 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1337 inode->i_uid = GLOBAL_ROOT_UID;
1338 inode->i_gid = GLOBAL_ROOT_GID;
1341 inode->i_blkbits = PAGE_SHIFT;
1342 inode->i_blocks = 0;
1344 inode->i_op = &empty_dir_inode_operations;
1345 inode->i_opflags &= ~IOP_XATTR;
1346 inode->i_fop = &empty_dir_operations;
1349 bool is_empty_dir_inode(struct inode *inode)
1351 return (inode->i_fop == &empty_dir_operations) &&
1352 (inode->i_op == &empty_dir_inode_operations);
1355 #ifdef CONFIG_UNICODE
1357 * Determine if the name of a dentry should be casefolded.
1359 * Return: if names will need casefolding
1361 static bool needs_casefold(const struct inode *dir)
1363 return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1367 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1368 * @dentry: dentry whose name we are checking against
1369 * @len: len of name of dentry
1370 * @str: str pointer to name of dentry
1371 * @name: Name to compare against
1373 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1375 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1376 const char *str, const struct qstr *name)
1378 const struct dentry *parent = READ_ONCE(dentry->d_parent);
1379 const struct inode *dir = READ_ONCE(parent->d_inode);
1380 const struct super_block *sb = dentry->d_sb;
1381 const struct unicode_map *um = sb->s_encoding;
1382 struct qstr qstr = QSTR_INIT(str, len);
1383 char strbuf[DNAME_INLINE_LEN];
1386 if (!dir || !needs_casefold(dir))
1389 * If the dentry name is stored in-line, then it may be concurrently
1390 * modified by a rename. If this happens, the VFS will eventually retry
1391 * the lookup, so it doesn't matter what ->d_compare() returns.
1392 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1393 * string. Therefore, we have to copy the name into a temporary buffer.
1395 if (len <= DNAME_INLINE_LEN - 1) {
1396 memcpy(strbuf, str, len);
1399 /* prevent compiler from optimizing out the temporary buffer */
1402 ret = utf8_strncasecmp(um, name, &qstr);
1406 if (sb_has_strict_encoding(sb))
1409 if (len != name->len)
1411 return !!memcmp(str, name->name, len);
1415 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1416 * @dentry: dentry of the parent directory
1417 * @str: qstr of name whose hash we should fill in
1419 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1421 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1423 const struct inode *dir = READ_ONCE(dentry->d_inode);
1424 struct super_block *sb = dentry->d_sb;
1425 const struct unicode_map *um = sb->s_encoding;
1428 if (!dir || !needs_casefold(dir))
1431 ret = utf8_casefold_hash(um, dentry, str);
1432 if (ret < 0 && sb_has_strict_encoding(sb))
1437 static const struct dentry_operations generic_ci_dentry_ops = {
1438 .d_hash = generic_ci_d_hash,
1439 .d_compare = generic_ci_d_compare,
1443 #ifdef CONFIG_FS_ENCRYPTION
1444 static const struct dentry_operations generic_encrypted_dentry_ops = {
1445 .d_revalidate = fscrypt_d_revalidate,
1449 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1450 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1451 .d_hash = generic_ci_d_hash,
1452 .d_compare = generic_ci_d_compare,
1453 .d_revalidate = fscrypt_d_revalidate,
1458 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1459 * @dentry: dentry to set ops on
1461 * Casefolded directories need d_hash and d_compare set, so that the dentries
1462 * contained in them are handled case-insensitively. Note that these operations
1463 * are needed on the parent directory rather than on the dentries in it, and
1464 * while the casefolding flag can be toggled on and off on an empty directory,
1465 * dentry_operations can't be changed later. As a result, if the filesystem has
1466 * casefolding support enabled at all, we have to give all dentries the
1467 * casefolding operations even if their inode doesn't have the casefolding flag
1468 * currently (and thus the casefolding ops would be no-ops for now).
1470 * Encryption works differently in that the only dentry operation it needs is
1471 * d_revalidate, which it only needs on dentries that have the no-key name flag.
1472 * The no-key flag can't be set "later", so we don't have to worry about that.
1474 * Finally, to maximize compatibility with overlayfs (which isn't compatible
1475 * with certain dentry operations) and to avoid taking an unnecessary
1476 * performance hit, we use custom dentry_operations for each possible
1477 * combination rather than always installing all operations.
1479 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1481 #ifdef CONFIG_FS_ENCRYPTION
1482 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1484 #ifdef CONFIG_UNICODE
1485 bool needs_ci_ops = dentry->d_sb->s_encoding;
1487 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1488 if (needs_encrypt_ops && needs_ci_ops) {
1489 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1493 #ifdef CONFIG_FS_ENCRYPTION
1494 if (needs_encrypt_ops) {
1495 d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1499 #ifdef CONFIG_UNICODE
1501 d_set_d_op(dentry, &generic_ci_dentry_ops);
1506 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);