1 // SPDX-License-Identifier: GPL-2.0-only
4 * Library for filesystems writers.
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
27 #include <linux/uaccess.h>
31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
32 struct kstat *stat, u32 request_mask,
33 unsigned int query_flags)
35 struct inode *inode = d_inode(path->dentry);
36 generic_fillattr(&nop_mnt_idmap, inode, stat);
37 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
40 EXPORT_SYMBOL(simple_getattr);
42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
44 buf->f_type = dentry->d_sb->s_magic;
45 buf->f_bsize = PAGE_SIZE;
46 buf->f_namelen = NAME_MAX;
49 EXPORT_SYMBOL(simple_statfs);
52 * Retaining negative dentries for an in-memory filesystem just wastes
53 * memory and lookup time: arrange for them to be deleted immediately.
55 int always_delete_dentry(const struct dentry *dentry)
59 EXPORT_SYMBOL(always_delete_dentry);
61 const struct dentry_operations simple_dentry_operations = {
62 .d_delete = always_delete_dentry,
64 EXPORT_SYMBOL(simple_dentry_operations);
67 * Lookup the data. This is trivial - if the dentry didn't already
68 * exist, we know it is negative. Set d_op to delete negative dentries.
70 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
72 if (dentry->d_name.len > NAME_MAX)
73 return ERR_PTR(-ENAMETOOLONG);
74 if (!dentry->d_sb->s_d_op)
75 d_set_d_op(dentry, &simple_dentry_operations);
79 EXPORT_SYMBOL(simple_lookup);
81 int dcache_dir_open(struct inode *inode, struct file *file)
83 file->private_data = d_alloc_cursor(file->f_path.dentry);
85 return file->private_data ? 0 : -ENOMEM;
87 EXPORT_SYMBOL(dcache_dir_open);
89 int dcache_dir_close(struct inode *inode, struct file *file)
91 dput(file->private_data);
94 EXPORT_SYMBOL(dcache_dir_close);
96 /* parent is locked at least shared */
98 * Returns an element of siblings' list.
99 * We are looking for <count>th positive after <p>; if
100 * found, dentry is grabbed and returned to caller.
101 * If no such element exists, NULL is returned.
103 static struct dentry *scan_positives(struct dentry *cursor,
108 struct dentry *dentry = cursor->d_parent, *found = NULL;
110 spin_lock(&dentry->d_lock);
111 while ((p = p->next) != &dentry->d_subdirs) {
112 struct dentry *d = list_entry(p, struct dentry, d_child);
113 // we must at least skip cursors, to avoid livelocks
114 if (d->d_flags & DCACHE_DENTRY_CURSOR)
116 if (simple_positive(d) && !--count) {
117 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
118 if (simple_positive(d))
119 found = dget_dlock(d);
120 spin_unlock(&d->d_lock);
125 if (need_resched()) {
126 list_move(&cursor->d_child, p);
127 p = &cursor->d_child;
128 spin_unlock(&dentry->d_lock);
130 spin_lock(&dentry->d_lock);
133 spin_unlock(&dentry->d_lock);
138 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
140 struct dentry *dentry = file->f_path.dentry;
143 offset += file->f_pos;
152 if (offset != file->f_pos) {
153 struct dentry *cursor = file->private_data;
154 struct dentry *to = NULL;
156 inode_lock_shared(dentry->d_inode);
159 to = scan_positives(cursor, &dentry->d_subdirs,
161 spin_lock(&dentry->d_lock);
163 list_move(&cursor->d_child, &to->d_child);
165 list_del_init(&cursor->d_child);
166 spin_unlock(&dentry->d_lock);
169 file->f_pos = offset;
171 inode_unlock_shared(dentry->d_inode);
175 EXPORT_SYMBOL(dcache_dir_lseek);
178 * Directory is locked and all positive dentries in it are safe, since
179 * for ramfs-type trees they can't go away without unlink() or rmdir(),
180 * both impossible due to the lock on directory.
183 int dcache_readdir(struct file *file, struct dir_context *ctx)
185 struct dentry *dentry = file->f_path.dentry;
186 struct dentry *cursor = file->private_data;
187 struct list_head *anchor = &dentry->d_subdirs;
188 struct dentry *next = NULL;
191 if (!dir_emit_dots(file, ctx))
196 else if (!list_empty(&cursor->d_child))
197 p = &cursor->d_child;
201 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
202 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
203 d_inode(next)->i_ino,
204 fs_umode_to_dtype(d_inode(next)->i_mode)))
209 spin_lock(&dentry->d_lock);
211 list_move_tail(&cursor->d_child, &next->d_child);
213 list_del_init(&cursor->d_child);
214 spin_unlock(&dentry->d_lock);
219 EXPORT_SYMBOL(dcache_readdir);
221 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
225 EXPORT_SYMBOL(generic_read_dir);
227 const struct file_operations simple_dir_operations = {
228 .open = dcache_dir_open,
229 .release = dcache_dir_close,
230 .llseek = dcache_dir_lseek,
231 .read = generic_read_dir,
232 .iterate_shared = dcache_readdir,
235 EXPORT_SYMBOL(simple_dir_operations);
237 const struct inode_operations simple_dir_inode_operations = {
238 .lookup = simple_lookup,
240 EXPORT_SYMBOL(simple_dir_inode_operations);
242 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
244 struct dentry *child = NULL;
245 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
247 spin_lock(&parent->d_lock);
248 while ((p = p->next) != &parent->d_subdirs) {
249 struct dentry *d = container_of(p, struct dentry, d_child);
250 if (simple_positive(d)) {
251 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
252 if (simple_positive(d))
253 child = dget_dlock(d);
254 spin_unlock(&d->d_lock);
259 spin_unlock(&parent->d_lock);
264 void simple_recursive_removal(struct dentry *dentry,
265 void (*callback)(struct dentry *))
267 struct dentry *this = dget(dentry);
269 struct dentry *victim = NULL, *child;
270 struct inode *inode = this->d_inode;
274 inode->i_flags |= S_DEAD;
275 while ((child = find_next_child(this, victim)) == NULL) {
277 // update metadata while it's still locked
278 inode->i_ctime = current_time(inode);
282 this = this->d_parent;
283 inode = this->d_inode;
285 if (simple_positive(victim)) {
286 d_invalidate(victim); // avoid lost mounts
287 if (d_is_dir(victim))
288 fsnotify_rmdir(inode, victim);
290 fsnotify_unlink(inode, victim);
293 dput(victim); // unpin it
295 if (victim == dentry) {
296 inode->i_ctime = inode->i_mtime =
298 if (d_is_dir(dentry))
309 EXPORT_SYMBOL(simple_recursive_removal);
311 static const struct super_operations simple_super_operations = {
312 .statfs = simple_statfs,
315 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
317 struct pseudo_fs_context *ctx = fc->fs_private;
320 s->s_maxbytes = MAX_LFS_FILESIZE;
321 s->s_blocksize = PAGE_SIZE;
322 s->s_blocksize_bits = PAGE_SHIFT;
323 s->s_magic = ctx->magic;
324 s->s_op = ctx->ops ?: &simple_super_operations;
325 s->s_xattr = ctx->xattr;
332 * since this is the first inode, make it number 1. New inodes created
333 * after this must take care not to collide with it (by passing
334 * max_reserved of 1 to iunique).
337 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
338 root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
339 s->s_root = d_make_root(root);
342 s->s_d_op = ctx->dops;
346 static int pseudo_fs_get_tree(struct fs_context *fc)
348 return get_tree_nodev(fc, pseudo_fs_fill_super);
351 static void pseudo_fs_free(struct fs_context *fc)
353 kfree(fc->fs_private);
356 static const struct fs_context_operations pseudo_fs_context_ops = {
357 .free = pseudo_fs_free,
358 .get_tree = pseudo_fs_get_tree,
362 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
363 * will never be mountable)
365 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
368 struct pseudo_fs_context *ctx;
370 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
373 fc->fs_private = ctx;
374 fc->ops = &pseudo_fs_context_ops;
375 fc->sb_flags |= SB_NOUSER;
380 EXPORT_SYMBOL(init_pseudo);
382 int simple_open(struct inode *inode, struct file *file)
384 if (inode->i_private)
385 file->private_data = inode->i_private;
388 EXPORT_SYMBOL(simple_open);
390 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
392 struct inode *inode = d_inode(old_dentry);
394 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
398 d_instantiate(dentry, inode);
401 EXPORT_SYMBOL(simple_link);
403 int simple_empty(struct dentry *dentry)
405 struct dentry *child;
408 spin_lock(&dentry->d_lock);
409 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
410 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
411 if (simple_positive(child)) {
412 spin_unlock(&child->d_lock);
415 spin_unlock(&child->d_lock);
419 spin_unlock(&dentry->d_lock);
422 EXPORT_SYMBOL(simple_empty);
424 int simple_unlink(struct inode *dir, struct dentry *dentry)
426 struct inode *inode = d_inode(dentry);
428 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
433 EXPORT_SYMBOL(simple_unlink);
435 int simple_rmdir(struct inode *dir, struct dentry *dentry)
437 if (!simple_empty(dentry))
440 drop_nlink(d_inode(dentry));
441 simple_unlink(dir, dentry);
445 EXPORT_SYMBOL(simple_rmdir);
447 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
448 struct inode *new_dir, struct dentry *new_dentry)
450 bool old_is_dir = d_is_dir(old_dentry);
451 bool new_is_dir = d_is_dir(new_dentry);
453 if (old_dir != new_dir && old_is_dir != new_is_dir) {
462 old_dir->i_ctime = old_dir->i_mtime =
463 new_dir->i_ctime = new_dir->i_mtime =
464 d_inode(old_dentry)->i_ctime =
465 d_inode(new_dentry)->i_ctime = current_time(old_dir);
469 EXPORT_SYMBOL_GPL(simple_rename_exchange);
471 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
472 struct dentry *old_dentry, struct inode *new_dir,
473 struct dentry *new_dentry, unsigned int flags)
475 struct inode *inode = d_inode(old_dentry);
476 int they_are_dirs = d_is_dir(old_dentry);
478 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
481 if (flags & RENAME_EXCHANGE)
482 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
484 if (!simple_empty(new_dentry))
487 if (d_really_is_positive(new_dentry)) {
488 simple_unlink(new_dir, new_dentry);
490 drop_nlink(d_inode(new_dentry));
493 } else if (they_are_dirs) {
498 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
499 new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
503 EXPORT_SYMBOL(simple_rename);
506 * simple_setattr - setattr for simple filesystem
507 * @idmap: idmap of the target mount
509 * @iattr: iattr structure
511 * Returns 0 on success, -error on failure.
513 * simple_setattr is a simple ->setattr implementation without a proper
514 * implementation of size changes.
516 * It can either be used for in-memory filesystems or special files
517 * on simple regular filesystems. Anything that needs to change on-disk
518 * or wire state on size changes needs its own setattr method.
520 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
523 struct inode *inode = d_inode(dentry);
526 error = setattr_prepare(idmap, dentry, iattr);
530 if (iattr->ia_valid & ATTR_SIZE)
531 truncate_setsize(inode, iattr->ia_size);
532 setattr_copy(idmap, inode, iattr);
533 mark_inode_dirty(inode);
536 EXPORT_SYMBOL(simple_setattr);
538 static int simple_read_folio(struct file *file, struct folio *folio)
540 folio_zero_range(folio, 0, folio_size(folio));
541 flush_dcache_folio(folio);
542 folio_mark_uptodate(folio);
547 int simple_write_begin(struct file *file, struct address_space *mapping,
548 loff_t pos, unsigned len,
549 struct page **pagep, void **fsdata)
554 index = pos >> PAGE_SHIFT;
556 page = grab_cache_page_write_begin(mapping, index);
562 if (!PageUptodate(page) && (len != PAGE_SIZE)) {
563 unsigned from = pos & (PAGE_SIZE - 1);
565 zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
569 EXPORT_SYMBOL(simple_write_begin);
572 * simple_write_end - .write_end helper for non-block-device FSes
573 * @file: See .write_end of address_space_operations
581 * simple_write_end does the minimum needed for updating a page after writing is
582 * done. It has the same API signature as the .write_end of
583 * address_space_operations vector. So it can just be set onto .write_end for
584 * FSes that don't need any other processing. i_mutex is assumed to be held.
585 * Block based filesystems should use generic_write_end().
586 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
587 * is not called, so a filesystem that actually does store data in .write_inode
588 * should extend on what's done here with a call to mark_inode_dirty() in the
589 * case that i_size has changed.
591 * Use *ONLY* with simple_read_folio()
593 static int simple_write_end(struct file *file, struct address_space *mapping,
594 loff_t pos, unsigned len, unsigned copied,
595 struct page *page, void *fsdata)
597 struct inode *inode = page->mapping->host;
598 loff_t last_pos = pos + copied;
600 /* zero the stale part of the page if we did a short copy */
601 if (!PageUptodate(page)) {
603 unsigned from = pos & (PAGE_SIZE - 1);
605 zero_user(page, from + copied, len - copied);
607 SetPageUptodate(page);
610 * No need to use i_size_read() here, the i_size
611 * cannot change under us because we hold the i_mutex.
613 if (last_pos > inode->i_size)
614 i_size_write(inode, last_pos);
616 set_page_dirty(page);
624 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
626 const struct address_space_operations ram_aops = {
627 .read_folio = simple_read_folio,
628 .write_begin = simple_write_begin,
629 .write_end = simple_write_end,
630 .dirty_folio = noop_dirty_folio,
632 EXPORT_SYMBOL(ram_aops);
635 * the inodes created here are not hashed. If you use iunique to generate
636 * unique inode values later for this filesystem, then you must take care
637 * to pass it an appropriate max_reserved value to avoid collisions.
639 int simple_fill_super(struct super_block *s, unsigned long magic,
640 const struct tree_descr *files)
644 struct dentry *dentry;
647 s->s_blocksize = PAGE_SIZE;
648 s->s_blocksize_bits = PAGE_SHIFT;
650 s->s_op = &simple_super_operations;
653 inode = new_inode(s);
657 * because the root inode is 1, the files array must not contain an
661 inode->i_mode = S_IFDIR | 0755;
662 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
663 inode->i_op = &simple_dir_inode_operations;
664 inode->i_fop = &simple_dir_operations;
666 root = d_make_root(inode);
669 for (i = 0; !files->name || files->name[0]; i++, files++) {
673 /* warn if it tries to conflict with the root inode */
674 if (unlikely(i == 1))
675 printk(KERN_WARNING "%s: %s passed in a files array"
676 "with an index of 1!\n", __func__,
679 dentry = d_alloc_name(root, files->name);
682 inode = new_inode(s);
687 inode->i_mode = S_IFREG | files->mode;
688 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
689 inode->i_fop = files->ops;
691 d_add(dentry, inode);
697 shrink_dcache_parent(root);
701 EXPORT_SYMBOL(simple_fill_super);
703 static DEFINE_SPINLOCK(pin_fs_lock);
705 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
707 struct vfsmount *mnt = NULL;
708 spin_lock(&pin_fs_lock);
709 if (unlikely(!*mount)) {
710 spin_unlock(&pin_fs_lock);
711 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
714 spin_lock(&pin_fs_lock);
720 spin_unlock(&pin_fs_lock);
724 EXPORT_SYMBOL(simple_pin_fs);
726 void simple_release_fs(struct vfsmount **mount, int *count)
728 struct vfsmount *mnt;
729 spin_lock(&pin_fs_lock);
733 spin_unlock(&pin_fs_lock);
736 EXPORT_SYMBOL(simple_release_fs);
739 * simple_read_from_buffer - copy data from the buffer to user space
740 * @to: the user space buffer to read to
741 * @count: the maximum number of bytes to read
742 * @ppos: the current position in the buffer
743 * @from: the buffer to read from
744 * @available: the size of the buffer
746 * The simple_read_from_buffer() function reads up to @count bytes from the
747 * buffer @from at offset @ppos into the user space address starting at @to.
749 * On success, the number of bytes read is returned and the offset @ppos is
750 * advanced by this number, or negative value is returned on error.
752 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
753 const void *from, size_t available)
760 if (pos >= available || !count)
762 if (count > available - pos)
763 count = available - pos;
764 ret = copy_to_user(to, from + pos, count);
771 EXPORT_SYMBOL(simple_read_from_buffer);
774 * simple_write_to_buffer - copy data from user space to the buffer
775 * @to: the buffer to write to
776 * @available: the size of the buffer
777 * @ppos: the current position in the buffer
778 * @from: the user space buffer to read from
779 * @count: the maximum number of bytes to read
781 * The simple_write_to_buffer() function reads up to @count bytes from the user
782 * space address starting at @from into the buffer @to at offset @ppos.
784 * On success, the number of bytes written is returned and the offset @ppos is
785 * advanced by this number, or negative value is returned on error.
787 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
788 const void __user *from, size_t count)
795 if (pos >= available || !count)
797 if (count > available - pos)
798 count = available - pos;
799 res = copy_from_user(to + pos, from, count);
806 EXPORT_SYMBOL(simple_write_to_buffer);
809 * memory_read_from_buffer - copy data from the buffer
810 * @to: the kernel space buffer to read to
811 * @count: the maximum number of bytes to read
812 * @ppos: the current position in the buffer
813 * @from: the buffer to read from
814 * @available: the size of the buffer
816 * The memory_read_from_buffer() function reads up to @count bytes from the
817 * buffer @from at offset @ppos into the kernel space address starting at @to.
819 * On success, the number of bytes read is returned and the offset @ppos is
820 * advanced by this number, or negative value is returned on error.
822 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
823 const void *from, size_t available)
829 if (pos >= available)
831 if (count > available - pos)
832 count = available - pos;
833 memcpy(to, from + pos, count);
838 EXPORT_SYMBOL(memory_read_from_buffer);
841 * Transaction based IO.
842 * The file expects a single write which triggers the transaction, and then
843 * possibly a read which collects the result - which is stored in a
847 void simple_transaction_set(struct file *file, size_t n)
849 struct simple_transaction_argresp *ar = file->private_data;
851 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
854 * The barrier ensures that ar->size will really remain zero until
855 * ar->data is ready for reading.
860 EXPORT_SYMBOL(simple_transaction_set);
862 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
864 struct simple_transaction_argresp *ar;
865 static DEFINE_SPINLOCK(simple_transaction_lock);
867 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
868 return ERR_PTR(-EFBIG);
870 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
872 return ERR_PTR(-ENOMEM);
874 spin_lock(&simple_transaction_lock);
876 /* only one write allowed per open */
877 if (file->private_data) {
878 spin_unlock(&simple_transaction_lock);
879 free_page((unsigned long)ar);
880 return ERR_PTR(-EBUSY);
883 file->private_data = ar;
885 spin_unlock(&simple_transaction_lock);
887 if (copy_from_user(ar->data, buf, size))
888 return ERR_PTR(-EFAULT);
892 EXPORT_SYMBOL(simple_transaction_get);
894 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
896 struct simple_transaction_argresp *ar = file->private_data;
900 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
902 EXPORT_SYMBOL(simple_transaction_read);
904 int simple_transaction_release(struct inode *inode, struct file *file)
906 free_page((unsigned long)file->private_data);
909 EXPORT_SYMBOL(simple_transaction_release);
911 /* Simple attribute files */
914 int (*get)(void *, u64 *);
915 int (*set)(void *, u64);
916 char get_buf[24]; /* enough to store a u64 and "\n\0" */
919 const char *fmt; /* format for read operation */
920 struct mutex mutex; /* protects access to these buffers */
923 /* simple_attr_open is called by an actual attribute open file operation
924 * to set the attribute specific access operations. */
925 int simple_attr_open(struct inode *inode, struct file *file,
926 int (*get)(void *, u64 *), int (*set)(void *, u64),
929 struct simple_attr *attr;
931 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
937 attr->data = inode->i_private;
939 mutex_init(&attr->mutex);
941 file->private_data = attr;
943 return nonseekable_open(inode, file);
945 EXPORT_SYMBOL_GPL(simple_attr_open);
947 int simple_attr_release(struct inode *inode, struct file *file)
949 kfree(file->private_data);
952 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
954 /* read from the buffer that is filled with the get function */
955 ssize_t simple_attr_read(struct file *file, char __user *buf,
956 size_t len, loff_t *ppos)
958 struct simple_attr *attr;
962 attr = file->private_data;
967 ret = mutex_lock_interruptible(&attr->mutex);
971 if (*ppos && attr->get_buf[0]) {
973 size = strlen(attr->get_buf);
977 ret = attr->get(attr->data, &val);
981 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
982 attr->fmt, (unsigned long long)val);
985 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
987 mutex_unlock(&attr->mutex);
990 EXPORT_SYMBOL_GPL(simple_attr_read);
992 /* interpret the buffer as a number to call the set function with */
993 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
994 size_t len, loff_t *ppos, bool is_signed)
996 struct simple_attr *attr;
997 unsigned long long val;
1001 attr = file->private_data;
1005 ret = mutex_lock_interruptible(&attr->mutex);
1010 size = min(sizeof(attr->set_buf) - 1, len);
1011 if (copy_from_user(attr->set_buf, buf, size))
1014 attr->set_buf[size] = '\0';
1016 ret = kstrtoll(attr->set_buf, 0, &val);
1018 ret = kstrtoull(attr->set_buf, 0, &val);
1021 ret = attr->set(attr->data, val);
1023 ret = len; /* on success, claim we got the whole input */
1025 mutex_unlock(&attr->mutex);
1029 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1030 size_t len, loff_t *ppos)
1032 return simple_attr_write_xsigned(file, buf, len, ppos, false);
1034 EXPORT_SYMBOL_GPL(simple_attr_write);
1036 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1037 size_t len, loff_t *ppos)
1039 return simple_attr_write_xsigned(file, buf, len, ppos, true);
1041 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1044 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1045 * @sb: filesystem to do the file handle conversion on
1046 * @fid: file handle to convert
1047 * @fh_len: length of the file handle in bytes
1048 * @fh_type: type of file handle
1049 * @get_inode: filesystem callback to retrieve inode
1051 * This function decodes @fid as long as it has one of the well-known
1052 * Linux filehandle types and calls @get_inode on it to retrieve the
1053 * inode for the object specified in the file handle.
1055 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1056 int fh_len, int fh_type, struct inode *(*get_inode)
1057 (struct super_block *sb, u64 ino, u32 gen))
1059 struct inode *inode = NULL;
1065 case FILEID_INO32_GEN:
1066 case FILEID_INO32_GEN_PARENT:
1067 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1071 return d_obtain_alias(inode);
1073 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1076 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1077 * @sb: filesystem to do the file handle conversion on
1078 * @fid: file handle to convert
1079 * @fh_len: length of the file handle in bytes
1080 * @fh_type: type of file handle
1081 * @get_inode: filesystem callback to retrieve inode
1083 * This function decodes @fid as long as it has one of the well-known
1084 * Linux filehandle types and calls @get_inode on it to retrieve the
1085 * inode for the _parent_ object specified in the file handle if it
1086 * is specified in the file handle, or NULL otherwise.
1088 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1089 int fh_len, int fh_type, struct inode *(*get_inode)
1090 (struct super_block *sb, u64 ino, u32 gen))
1092 struct inode *inode = NULL;
1098 case FILEID_INO32_GEN_PARENT:
1099 inode = get_inode(sb, fid->i32.parent_ino,
1100 (fh_len > 3 ? fid->i32.parent_gen : 0));
1104 return d_obtain_alias(inode);
1106 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1109 * __generic_file_fsync - generic fsync implementation for simple filesystems
1111 * @file: file to synchronize
1112 * @start: start offset in bytes
1113 * @end: end offset in bytes (inclusive)
1114 * @datasync: only synchronize essential metadata if true
1116 * This is a generic implementation of the fsync method for simple
1117 * filesystems which track all non-inode metadata in the buffers list
1118 * hanging off the address_space structure.
1120 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1123 struct inode *inode = file->f_mapping->host;
1127 err = file_write_and_wait_range(file, start, end);
1132 ret = sync_mapping_buffers(inode->i_mapping);
1133 if (!(inode->i_state & I_DIRTY_ALL))
1135 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1138 err = sync_inode_metadata(inode, 1);
1143 inode_unlock(inode);
1144 /* check and advance again to catch errors after syncing out buffers */
1145 err = file_check_and_advance_wb_err(file);
1150 EXPORT_SYMBOL(__generic_file_fsync);
1153 * generic_file_fsync - generic fsync implementation for simple filesystems
1155 * @file: file to synchronize
1156 * @start: start offset in bytes
1157 * @end: end offset in bytes (inclusive)
1158 * @datasync: only synchronize essential metadata if true
1162 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1165 struct inode *inode = file->f_mapping->host;
1168 err = __generic_file_fsync(file, start, end, datasync);
1171 return blkdev_issue_flush(inode->i_sb->s_bdev);
1173 EXPORT_SYMBOL(generic_file_fsync);
1176 * generic_check_addressable - Check addressability of file system
1177 * @blocksize_bits: log of file system block size
1178 * @num_blocks: number of blocks in file system
1180 * Determine whether a file system with @num_blocks blocks (and a
1181 * block size of 2**@blocksize_bits) is addressable by the sector_t
1182 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1184 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1186 u64 last_fs_block = num_blocks - 1;
1188 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1190 if (unlikely(num_blocks == 0))
1193 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1196 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1197 (last_fs_page > (pgoff_t)(~0ULL))) {
1202 EXPORT_SYMBOL(generic_check_addressable);
1205 * No-op implementation of ->fsync for in-memory filesystems.
1207 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1211 EXPORT_SYMBOL(noop_fsync);
1213 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1216 * iomap based filesystems support direct I/O without need for
1217 * this callback. However, it still needs to be set in
1218 * inode->a_ops so that open/fcntl know that direct I/O is
1219 * generally supported.
1223 EXPORT_SYMBOL_GPL(noop_direct_IO);
1225 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1226 void kfree_link(void *p)
1230 EXPORT_SYMBOL(kfree_link);
1232 struct inode *alloc_anon_inode(struct super_block *s)
1234 static const struct address_space_operations anon_aops = {
1235 .dirty_folio = noop_dirty_folio,
1237 struct inode *inode = new_inode_pseudo(s);
1240 return ERR_PTR(-ENOMEM);
1242 inode->i_ino = get_next_ino();
1243 inode->i_mapping->a_ops = &anon_aops;
1246 * Mark the inode dirty from the very beginning,
1247 * that way it will never be moved to the dirty
1248 * list because mark_inode_dirty() will think
1249 * that it already _is_ on the dirty list.
1251 inode->i_state = I_DIRTY;
1252 inode->i_mode = S_IRUSR | S_IWUSR;
1253 inode->i_uid = current_fsuid();
1254 inode->i_gid = current_fsgid();
1255 inode->i_flags |= S_PRIVATE;
1256 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1259 EXPORT_SYMBOL(alloc_anon_inode);
1262 * simple_nosetlease - generic helper for prohibiting leases
1263 * @filp: file pointer
1264 * @arg: type of lease to obtain
1265 * @flp: new lease supplied for insertion
1266 * @priv: private data for lm_setup operation
1268 * Generic helper for filesystems that do not wish to allow leases to be set.
1269 * All arguments are ignored and it just returns -EINVAL.
1272 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1277 EXPORT_SYMBOL(simple_nosetlease);
1280 * simple_get_link - generic helper to get the target of "fast" symlinks
1281 * @dentry: not used here
1282 * @inode: the symlink inode
1283 * @done: not used here
1285 * Generic helper for filesystems to use for symlink inodes where a pointer to
1286 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1287 * since as an optimization the path lookup code uses any non-NULL ->i_link
1288 * directly, without calling ->get_link(). But ->get_link() still must be set,
1289 * to mark the inode_operations as being for a symlink.
1291 * Return: the symlink target
1293 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1294 struct delayed_call *done)
1296 return inode->i_link;
1298 EXPORT_SYMBOL(simple_get_link);
1300 const struct inode_operations simple_symlink_inode_operations = {
1301 .get_link = simple_get_link,
1303 EXPORT_SYMBOL(simple_symlink_inode_operations);
1306 * Operations for a permanently empty directory.
1308 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1310 return ERR_PTR(-ENOENT);
1313 static int empty_dir_getattr(struct mnt_idmap *idmap,
1314 const struct path *path, struct kstat *stat,
1315 u32 request_mask, unsigned int query_flags)
1317 struct inode *inode = d_inode(path->dentry);
1318 generic_fillattr(&nop_mnt_idmap, inode, stat);
1322 static int empty_dir_setattr(struct mnt_idmap *idmap,
1323 struct dentry *dentry, struct iattr *attr)
1328 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1333 static const struct inode_operations empty_dir_inode_operations = {
1334 .lookup = empty_dir_lookup,
1335 .permission = generic_permission,
1336 .setattr = empty_dir_setattr,
1337 .getattr = empty_dir_getattr,
1338 .listxattr = empty_dir_listxattr,
1341 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1343 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1344 return generic_file_llseek_size(file, offset, whence, 2, 2);
1347 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1349 dir_emit_dots(file, ctx);
1353 static const struct file_operations empty_dir_operations = {
1354 .llseek = empty_dir_llseek,
1355 .read = generic_read_dir,
1356 .iterate_shared = empty_dir_readdir,
1357 .fsync = noop_fsync,
1361 void make_empty_dir_inode(struct inode *inode)
1363 set_nlink(inode, 2);
1364 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1365 inode->i_uid = GLOBAL_ROOT_UID;
1366 inode->i_gid = GLOBAL_ROOT_GID;
1369 inode->i_blkbits = PAGE_SHIFT;
1370 inode->i_blocks = 0;
1372 inode->i_op = &empty_dir_inode_operations;
1373 inode->i_opflags &= ~IOP_XATTR;
1374 inode->i_fop = &empty_dir_operations;
1377 bool is_empty_dir_inode(struct inode *inode)
1379 return (inode->i_fop == &empty_dir_operations) &&
1380 (inode->i_op == &empty_dir_inode_operations);
1383 #if IS_ENABLED(CONFIG_UNICODE)
1385 * Determine if the name of a dentry should be casefolded.
1387 * Return: if names will need casefolding
1389 static bool needs_casefold(const struct inode *dir)
1391 return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1395 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1396 * @dentry: dentry whose name we are checking against
1397 * @len: len of name of dentry
1398 * @str: str pointer to name of dentry
1399 * @name: Name to compare against
1401 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1403 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1404 const char *str, const struct qstr *name)
1406 const struct dentry *parent = READ_ONCE(dentry->d_parent);
1407 const struct inode *dir = READ_ONCE(parent->d_inode);
1408 const struct super_block *sb = dentry->d_sb;
1409 const struct unicode_map *um = sb->s_encoding;
1410 struct qstr qstr = QSTR_INIT(str, len);
1411 char strbuf[DNAME_INLINE_LEN];
1414 if (!dir || !needs_casefold(dir))
1417 * If the dentry name is stored in-line, then it may be concurrently
1418 * modified by a rename. If this happens, the VFS will eventually retry
1419 * the lookup, so it doesn't matter what ->d_compare() returns.
1420 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1421 * string. Therefore, we have to copy the name into a temporary buffer.
1423 if (len <= DNAME_INLINE_LEN - 1) {
1424 memcpy(strbuf, str, len);
1427 /* prevent compiler from optimizing out the temporary buffer */
1430 ret = utf8_strncasecmp(um, name, &qstr);
1434 if (sb_has_strict_encoding(sb))
1437 if (len != name->len)
1439 return !!memcmp(str, name->name, len);
1443 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1444 * @dentry: dentry of the parent directory
1445 * @str: qstr of name whose hash we should fill in
1447 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1449 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1451 const struct inode *dir = READ_ONCE(dentry->d_inode);
1452 struct super_block *sb = dentry->d_sb;
1453 const struct unicode_map *um = sb->s_encoding;
1456 if (!dir || !needs_casefold(dir))
1459 ret = utf8_casefold_hash(um, dentry, str);
1460 if (ret < 0 && sb_has_strict_encoding(sb))
1465 static const struct dentry_operations generic_ci_dentry_ops = {
1466 .d_hash = generic_ci_d_hash,
1467 .d_compare = generic_ci_d_compare,
1471 #ifdef CONFIG_FS_ENCRYPTION
1472 static const struct dentry_operations generic_encrypted_dentry_ops = {
1473 .d_revalidate = fscrypt_d_revalidate,
1477 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1478 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1479 .d_hash = generic_ci_d_hash,
1480 .d_compare = generic_ci_d_compare,
1481 .d_revalidate = fscrypt_d_revalidate,
1486 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1487 * @dentry: dentry to set ops on
1489 * Casefolded directories need d_hash and d_compare set, so that the dentries
1490 * contained in them are handled case-insensitively. Note that these operations
1491 * are needed on the parent directory rather than on the dentries in it, and
1492 * while the casefolding flag can be toggled on and off on an empty directory,
1493 * dentry_operations can't be changed later. As a result, if the filesystem has
1494 * casefolding support enabled at all, we have to give all dentries the
1495 * casefolding operations even if their inode doesn't have the casefolding flag
1496 * currently (and thus the casefolding ops would be no-ops for now).
1498 * Encryption works differently in that the only dentry operation it needs is
1499 * d_revalidate, which it only needs on dentries that have the no-key name flag.
1500 * The no-key flag can't be set "later", so we don't have to worry about that.
1502 * Finally, to maximize compatibility with overlayfs (which isn't compatible
1503 * with certain dentry operations) and to avoid taking an unnecessary
1504 * performance hit, we use custom dentry_operations for each possible
1505 * combination rather than always installing all operations.
1507 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1509 #ifdef CONFIG_FS_ENCRYPTION
1510 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1512 #if IS_ENABLED(CONFIG_UNICODE)
1513 bool needs_ci_ops = dentry->d_sb->s_encoding;
1515 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1516 if (needs_encrypt_ops && needs_ci_ops) {
1517 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1521 #ifdef CONFIG_FS_ENCRYPTION
1522 if (needs_encrypt_ops) {
1523 d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1527 #if IS_ENABLED(CONFIG_UNICODE)
1529 d_set_d_op(dentry, &generic_ci_dentry_ops);
1534 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1537 * inode_maybe_inc_iversion - increments i_version
1538 * @inode: inode with the i_version that should be updated
1539 * @force: increment the counter even if it's not necessary?
1541 * Every time the inode is modified, the i_version field must be seen to have
1542 * changed by any observer.
1544 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1545 * the value, and clear the queried flag.
1547 * In the common case where neither is set, then we can return "false" without
1548 * updating i_version.
1550 * If this function returns false, and no other metadata has changed, then we
1551 * can avoid logging the metadata.
1553 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1558 * The i_version field is not strictly ordered with any other inode
1559 * information, but the legacy inode_inc_iversion code used a spinlock
1560 * to serialize increments.
1562 * Here, we add full memory barriers to ensure that any de-facto
1563 * ordering with other info is preserved.
1565 * This barrier pairs with the barrier in inode_query_iversion()
1568 cur = inode_peek_iversion_raw(inode);
1570 /* If flag is clear then we needn't do anything */
1571 if (!force && !(cur & I_VERSION_QUERIED))
1574 /* Since lowest bit is flag, add 2 to avoid it */
1575 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1576 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1579 EXPORT_SYMBOL(inode_maybe_inc_iversion);
1582 * inode_query_iversion - read i_version for later use
1583 * @inode: inode from which i_version should be read
1585 * Read the inode i_version counter. This should be used by callers that wish
1586 * to store the returned i_version for later comparison. This will guarantee
1587 * that a later query of the i_version will result in a different value if
1588 * anything has changed.
1590 * In this implementation, we fetch the current value, set the QUERIED flag and
1591 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1592 * that fails, we try again with the newly fetched value from the cmpxchg.
1594 u64 inode_query_iversion(struct inode *inode)
1598 cur = inode_peek_iversion_raw(inode);
1600 /* If flag is already set, then no need to swap */
1601 if (cur & I_VERSION_QUERIED) {
1603 * This barrier (and the implicit barrier in the
1604 * cmpxchg below) pairs with the barrier in
1605 * inode_maybe_inc_iversion().
1611 new = cur | I_VERSION_QUERIED;
1612 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1613 return cur >> I_VERSION_QUERIED_SHIFT;
1615 EXPORT_SYMBOL(inode_query_iversion);