2 * fs/kernfs/file.c - kernfs file implementation
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 * This file is released under the GPLv2.
12 #include <linux/seq_file.h>
13 #include <linux/slab.h>
14 #include <linux/poll.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/fsnotify.h>
19 #include "kernfs-internal.h"
22 * There's one kernfs_open_file for each open file and one kernfs_open_node
23 * for each kernfs_node with one or more open files.
25 * kernfs_node->attr.open points to kernfs_open_node. attr.open is
26 * protected by kernfs_open_node_lock.
28 * filp->private_data points to seq_file whose ->private points to
29 * kernfs_open_file. kernfs_open_files are chained at
30 * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
32 static DEFINE_SPINLOCK(kernfs_open_node_lock);
33 static DEFINE_MUTEX(kernfs_open_file_mutex);
35 struct kernfs_open_node {
38 wait_queue_head_t poll;
39 struct list_head files; /* goes through kernfs_open_file.list */
43 * kernfs_notify() may be called from any context and bounces notifications
44 * through a work item. To minimize space overhead in kernfs_node, the
45 * pending queue is implemented as a singly linked list of kernfs_nodes.
46 * The list is terminated with the self pointer so that whether a
47 * kernfs_node is on the list or not can be determined by testing the next
50 #define KERNFS_NOTIFY_EOL ((void *)&kernfs_notify_list)
52 static DEFINE_SPINLOCK(kernfs_notify_lock);
53 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
55 static struct kernfs_open_file *kernfs_of(struct file *file)
57 return ((struct seq_file *)file->private_data)->private;
61 * Determine the kernfs_ops for the given kernfs_node. This function must
62 * be called while holding an active reference.
64 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
66 if (kn->flags & KERNFS_LOCKDEP)
67 lockdep_assert_held(kn);
72 * As kernfs_seq_stop() is also called after kernfs_seq_start() or
73 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
74 * a seq_file iteration which is fully initialized with an active reference
75 * or an aborted kernfs_seq_start() due to get_active failure. The
76 * position pointer is the only context for each seq_file iteration and
77 * thus the stop condition should be encoded in it. As the return value is
78 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
79 * choice to indicate get_active failure.
81 * Unfortunately, this is complicated due to the optional custom seq_file
82 * operations which may return ERR_PTR(-ENODEV) too. kernfs_seq_stop()
83 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
84 * custom seq_file operations and thus can't decide whether put_active
85 * should be performed or not only on ERR_PTR(-ENODEV).
87 * This is worked around by factoring out the custom seq_stop() and
88 * put_active part into kernfs_seq_stop_active(), skipping it from
89 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
90 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
91 * that kernfs_seq_stop_active() is skipped only after get_active failure.
93 static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
95 struct kernfs_open_file *of = sf->private;
96 const struct kernfs_ops *ops = kernfs_ops(of->kn);
100 kernfs_put_active(of->kn);
103 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
105 struct kernfs_open_file *of = sf->private;
106 const struct kernfs_ops *ops;
109 * @of->mutex nests outside active ref and is primarily to ensure that
110 * the ops aren't called concurrently for the same open file.
112 mutex_lock(&of->mutex);
113 if (!kernfs_get_active(of->kn))
114 return ERR_PTR(-ENODEV);
116 ops = kernfs_ops(of->kn);
117 if (ops->seq_start) {
118 void *next = ops->seq_start(sf, ppos);
119 /* see the comment above kernfs_seq_stop_active() */
120 if (next == ERR_PTR(-ENODEV))
121 kernfs_seq_stop_active(sf, next);
125 * The same behavior and code as single_open(). Returns
126 * !NULL if pos is at the beginning; otherwise, NULL.
128 return NULL + !*ppos;
132 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
134 struct kernfs_open_file *of = sf->private;
135 const struct kernfs_ops *ops = kernfs_ops(of->kn);
138 void *next = ops->seq_next(sf, v, ppos);
139 /* see the comment above kernfs_seq_stop_active() */
140 if (next == ERR_PTR(-ENODEV))
141 kernfs_seq_stop_active(sf, next);
145 * The same behavior and code as single_open(), always
146 * terminate after the initial read.
153 static void kernfs_seq_stop(struct seq_file *sf, void *v)
155 struct kernfs_open_file *of = sf->private;
157 if (v != ERR_PTR(-ENODEV))
158 kernfs_seq_stop_active(sf, v);
159 mutex_unlock(&of->mutex);
162 static int kernfs_seq_show(struct seq_file *sf, void *v)
164 struct kernfs_open_file *of = sf->private;
166 of->event = atomic_read(&of->kn->attr.open->event);
168 return of->kn->attr.ops->seq_show(sf, v);
171 static const struct seq_operations kernfs_seq_ops = {
172 .start = kernfs_seq_start,
173 .next = kernfs_seq_next,
174 .stop = kernfs_seq_stop,
175 .show = kernfs_seq_show,
179 * As reading a bin file can have side-effects, the exact offset and bytes
180 * specified in read(2) call should be passed to the read callback making
181 * it difficult to use seq_file. Implement simplistic custom buffering for
184 static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of,
185 char __user *user_buf, size_t count,
188 ssize_t len = min_t(size_t, count, PAGE_SIZE);
189 const struct kernfs_ops *ops;
192 buf = of->prealloc_buf;
194 mutex_lock(&of->prealloc_mutex);
196 buf = kmalloc(len, GFP_KERNEL);
201 * @of->mutex nests outside active ref and is used both to ensure that
202 * the ops aren't called concurrently for the same open file.
204 mutex_lock(&of->mutex);
205 if (!kernfs_get_active(of->kn)) {
207 mutex_unlock(&of->mutex);
211 of->event = atomic_read(&of->kn->attr.open->event);
212 ops = kernfs_ops(of->kn);
214 len = ops->read(of, buf, len, *ppos);
218 kernfs_put_active(of->kn);
219 mutex_unlock(&of->mutex);
224 if (copy_to_user(user_buf, buf, len)) {
232 if (buf == of->prealloc_buf)
233 mutex_unlock(&of->prealloc_mutex);
240 * kernfs_fop_read - kernfs vfs read callback
241 * @file: file pointer
242 * @user_buf: data to write
243 * @count: number of bytes
244 * @ppos: starting offset
246 static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf,
247 size_t count, loff_t *ppos)
249 struct kernfs_open_file *of = kernfs_of(file);
251 if (of->kn->flags & KERNFS_HAS_SEQ_SHOW)
252 return seq_read(file, user_buf, count, ppos);
254 return kernfs_file_direct_read(of, user_buf, count, ppos);
258 * kernfs_fop_write - kernfs vfs write callback
259 * @file: file pointer
260 * @user_buf: data to write
261 * @count: number of bytes
262 * @ppos: starting offset
264 * Copy data in from userland and pass it to the matching kernfs write
267 * There is no easy way for us to know if userspace is only doing a partial
268 * write, so we don't support them. We expect the entire buffer to come on
269 * the first write. Hint: if you're writing a value, first read the file,
270 * modify only the the value you're changing, then write entire buffer
273 static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf,
274 size_t count, loff_t *ppos)
276 struct kernfs_open_file *of = kernfs_of(file);
277 const struct kernfs_ops *ops;
281 if (of->atomic_write_len) {
283 if (len > of->atomic_write_len)
286 len = min_t(size_t, count, PAGE_SIZE);
289 buf = of->prealloc_buf;
291 mutex_lock(&of->prealloc_mutex);
293 buf = kmalloc(len + 1, GFP_KERNEL);
297 if (copy_from_user(buf, user_buf, len)) {
301 buf[len] = '\0'; /* guarantee string termination */
304 * @of->mutex nests outside active ref and is used both to ensure that
305 * the ops aren't called concurrently for the same open file.
307 mutex_lock(&of->mutex);
308 if (!kernfs_get_active(of->kn)) {
309 mutex_unlock(&of->mutex);
314 ops = kernfs_ops(of->kn);
316 len = ops->write(of, buf, len, *ppos);
320 kernfs_put_active(of->kn);
321 mutex_unlock(&of->mutex);
327 if (buf == of->prealloc_buf)
328 mutex_unlock(&of->prealloc_mutex);
334 static void kernfs_vma_open(struct vm_area_struct *vma)
336 struct file *file = vma->vm_file;
337 struct kernfs_open_file *of = kernfs_of(file);
342 if (!kernfs_get_active(of->kn))
345 if (of->vm_ops->open)
346 of->vm_ops->open(vma);
348 kernfs_put_active(of->kn);
351 static int kernfs_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
353 struct file *file = vma->vm_file;
354 struct kernfs_open_file *of = kernfs_of(file);
358 return VM_FAULT_SIGBUS;
360 if (!kernfs_get_active(of->kn))
361 return VM_FAULT_SIGBUS;
363 ret = VM_FAULT_SIGBUS;
364 if (of->vm_ops->fault)
365 ret = of->vm_ops->fault(vma, vmf);
367 kernfs_put_active(of->kn);
371 static int kernfs_vma_page_mkwrite(struct vm_area_struct *vma,
372 struct vm_fault *vmf)
374 struct file *file = vma->vm_file;
375 struct kernfs_open_file *of = kernfs_of(file);
379 return VM_FAULT_SIGBUS;
381 if (!kernfs_get_active(of->kn))
382 return VM_FAULT_SIGBUS;
385 if (of->vm_ops->page_mkwrite)
386 ret = of->vm_ops->page_mkwrite(vma, vmf);
388 file_update_time(file);
390 kernfs_put_active(of->kn);
394 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
395 void *buf, int len, int write)
397 struct file *file = vma->vm_file;
398 struct kernfs_open_file *of = kernfs_of(file);
404 if (!kernfs_get_active(of->kn))
408 if (of->vm_ops->access)
409 ret = of->vm_ops->access(vma, addr, buf, len, write);
411 kernfs_put_active(of->kn);
416 static int kernfs_vma_set_policy(struct vm_area_struct *vma,
417 struct mempolicy *new)
419 struct file *file = vma->vm_file;
420 struct kernfs_open_file *of = kernfs_of(file);
426 if (!kernfs_get_active(of->kn))
430 if (of->vm_ops->set_policy)
431 ret = of->vm_ops->set_policy(vma, new);
433 kernfs_put_active(of->kn);
437 static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
440 struct file *file = vma->vm_file;
441 struct kernfs_open_file *of = kernfs_of(file);
442 struct mempolicy *pol;
445 return vma->vm_policy;
447 if (!kernfs_get_active(of->kn))
448 return vma->vm_policy;
450 pol = vma->vm_policy;
451 if (of->vm_ops->get_policy)
452 pol = of->vm_ops->get_policy(vma, addr);
454 kernfs_put_active(of->kn);
460 static const struct vm_operations_struct kernfs_vm_ops = {
461 .open = kernfs_vma_open,
462 .fault = kernfs_vma_fault,
463 .page_mkwrite = kernfs_vma_page_mkwrite,
464 .access = kernfs_vma_access,
466 .set_policy = kernfs_vma_set_policy,
467 .get_policy = kernfs_vma_get_policy,
471 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
473 struct kernfs_open_file *of = kernfs_of(file);
474 const struct kernfs_ops *ops;
478 * mmap path and of->mutex are prone to triggering spurious lockdep
479 * warnings and we don't want to add spurious locking dependency
480 * between the two. Check whether mmap is actually implemented
481 * without grabbing @of->mutex by testing HAS_MMAP flag. See the
482 * comment in kernfs_file_open() for more details.
484 if (!(of->kn->flags & KERNFS_HAS_MMAP))
487 mutex_lock(&of->mutex);
490 if (!kernfs_get_active(of->kn))
493 ops = kernfs_ops(of->kn);
494 rc = ops->mmap(of, vma);
499 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
500 * to satisfy versions of X which crash if the mmap fails: that
501 * substitutes a new vm_file, and we don't then want bin_vm_ops.
503 if (vma->vm_file != file)
507 if (of->mmapped && of->vm_ops != vma->vm_ops)
511 * It is not possible to successfully wrap close.
512 * So error if someone is trying to use close.
515 if (vma->vm_ops && vma->vm_ops->close)
520 of->vm_ops = vma->vm_ops;
521 vma->vm_ops = &kernfs_vm_ops;
523 kernfs_put_active(of->kn);
525 mutex_unlock(&of->mutex);
531 * kernfs_get_open_node - get or create kernfs_open_node
532 * @kn: target kernfs_node
533 * @of: kernfs_open_file for this instance of open
535 * If @kn->attr.open exists, increment its reference count; otherwise,
536 * create one. @of is chained to the files list.
539 * Kernel thread context (may sleep).
542 * 0 on success, -errno on failure.
544 static int kernfs_get_open_node(struct kernfs_node *kn,
545 struct kernfs_open_file *of)
547 struct kernfs_open_node *on, *new_on = NULL;
550 mutex_lock(&kernfs_open_file_mutex);
551 spin_lock_irq(&kernfs_open_node_lock);
553 if (!kn->attr.open && new_on) {
554 kn->attr.open = new_on;
560 atomic_inc(&on->refcnt);
561 list_add_tail(&of->list, &on->files);
564 spin_unlock_irq(&kernfs_open_node_lock);
565 mutex_unlock(&kernfs_open_file_mutex);
572 /* not there, initialize a new one and retry */
573 new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
577 atomic_set(&new_on->refcnt, 0);
578 atomic_set(&new_on->event, 1);
579 init_waitqueue_head(&new_on->poll);
580 INIT_LIST_HEAD(&new_on->files);
585 * kernfs_put_open_node - put kernfs_open_node
586 * @kn: target kernfs_nodet
587 * @of: associated kernfs_open_file
589 * Put @kn->attr.open and unlink @of from the files list. If
590 * reference count reaches zero, disassociate and free it.
595 static void kernfs_put_open_node(struct kernfs_node *kn,
596 struct kernfs_open_file *of)
598 struct kernfs_open_node *on = kn->attr.open;
601 mutex_lock(&kernfs_open_file_mutex);
602 spin_lock_irqsave(&kernfs_open_node_lock, flags);
607 if (atomic_dec_and_test(&on->refcnt))
608 kn->attr.open = NULL;
612 spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
613 mutex_unlock(&kernfs_open_file_mutex);
618 static int kernfs_fop_open(struct inode *inode, struct file *file)
620 struct kernfs_node *kn = file->f_path.dentry->d_fsdata;
621 struct kernfs_root *root = kernfs_root(kn);
622 const struct kernfs_ops *ops;
623 struct kernfs_open_file *of;
624 bool has_read, has_write, has_mmap;
627 if (!kernfs_get_active(kn))
630 ops = kernfs_ops(kn);
632 has_read = ops->seq_show || ops->read || ops->mmap;
633 has_write = ops->write || ops->mmap;
634 has_mmap = ops->mmap;
636 /* see the flag definition for details */
637 if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
638 if ((file->f_mode & FMODE_WRITE) &&
639 (!(inode->i_mode & S_IWUGO) || !has_write))
642 if ((file->f_mode & FMODE_READ) &&
643 (!(inode->i_mode & S_IRUGO) || !has_read))
647 /* allocate a kernfs_open_file for the file */
649 of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
654 * The following is done to give a different lockdep key to
655 * @of->mutex for files which implement mmap. This is a rather
656 * crude way to avoid false positive lockdep warning around
657 * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and
658 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
659 * which mm->mmap_sem nests, while holding @of->mutex. As each
660 * open file has a separate mutex, it's okay as long as those don't
661 * happen on the same file. At this point, we can't easily give
662 * each file a separate locking class. Let's differentiate on
663 * whether the file has mmap or not for now.
665 * Both paths of the branch look the same. They're supposed to
666 * look that way and give @of->mutex different static lockdep keys.
669 mutex_init(&of->mutex);
671 mutex_init(&of->mutex);
677 * Write path needs to atomic_write_len outside active reference.
678 * Cache it in open_file. See kernfs_fop_write() for details.
680 of->atomic_write_len = ops->atomic_write_len;
684 * ->seq_show is incompatible with ->prealloc,
685 * as seq_read does its own allocation.
686 * ->read must be used instead.
688 if (ops->prealloc && ops->seq_show)
691 int len = of->atomic_write_len ?: PAGE_SIZE;
692 of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
694 if (!of->prealloc_buf)
696 mutex_init(&of->prealloc_mutex);
700 * Always instantiate seq_file even if read access doesn't use
701 * seq_file or is not requested. This unifies private data access
702 * and readable regular files are the vast majority anyway.
705 error = seq_open(file, &kernfs_seq_ops);
707 error = seq_open(file, NULL);
711 ((struct seq_file *)file->private_data)->private = of;
713 /* seq_file clears PWRITE unconditionally, restore it if WRITE */
714 if (file->f_mode & FMODE_WRITE)
715 file->f_mode |= FMODE_PWRITE;
717 /* make sure we have open node struct */
718 error = kernfs_get_open_node(kn, of);
722 /* open succeeded, put active references */
723 kernfs_put_active(kn);
727 seq_release(inode, file);
729 kfree(of->prealloc_buf);
732 kernfs_put_active(kn);
736 static int kernfs_fop_release(struct inode *inode, struct file *filp)
738 struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
739 struct kernfs_open_file *of = kernfs_of(filp);
741 kernfs_put_open_node(kn, of);
742 seq_release(inode, filp);
743 kfree(of->prealloc_buf);
749 void kernfs_unmap_bin_file(struct kernfs_node *kn)
751 struct kernfs_open_node *on;
752 struct kernfs_open_file *of;
754 if (!(kn->flags & KERNFS_HAS_MMAP))
757 spin_lock_irq(&kernfs_open_node_lock);
760 atomic_inc(&on->refcnt);
761 spin_unlock_irq(&kernfs_open_node_lock);
765 mutex_lock(&kernfs_open_file_mutex);
766 list_for_each_entry(of, &on->files, list) {
767 struct inode *inode = file_inode(of->file);
768 unmap_mapping_range(inode->i_mapping, 0, 0, 1);
770 mutex_unlock(&kernfs_open_file_mutex);
772 kernfs_put_open_node(kn, NULL);
776 * Kernfs attribute files are pollable. The idea is that you read
777 * the content and then you use 'poll' or 'select' to wait for
778 * the content to change. When the content changes (assuming the
779 * manager for the kobject supports notification), poll will
780 * return POLLERR|POLLPRI, and select will return the fd whether
781 * it is waiting for read, write, or exceptions.
782 * Once poll/select indicates that the value has changed, you
783 * need to close and re-open the file, or seek to 0 and read again.
784 * Reminder: this only works for attributes which actively support
785 * it, and it is not possible to test an attribute from userspace
786 * to see if it supports poll (Neither 'poll' nor 'select' return
787 * an appropriate error code). When in doubt, set a suitable timeout value.
789 static unsigned int kernfs_fop_poll(struct file *filp, poll_table *wait)
791 struct kernfs_open_file *of = kernfs_of(filp);
792 struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
793 struct kernfs_open_node *on = kn->attr.open;
795 if (!kernfs_get_active(kn))
798 poll_wait(filp, &on->poll, wait);
800 kernfs_put_active(kn);
802 if (of->event != atomic_read(&on->event))
805 return DEFAULT_POLLMASK;
808 return DEFAULT_POLLMASK|POLLERR|POLLPRI;
811 static void kernfs_notify_workfn(struct work_struct *work)
813 struct kernfs_node *kn;
814 struct kernfs_open_node *on;
815 struct kernfs_super_info *info;
817 /* pop one off the notify_list */
818 spin_lock_irq(&kernfs_notify_lock);
819 kn = kernfs_notify_list;
820 if (kn == KERNFS_NOTIFY_EOL) {
821 spin_unlock_irq(&kernfs_notify_lock);
824 kernfs_notify_list = kn->attr.notify_next;
825 kn->attr.notify_next = NULL;
826 spin_unlock_irq(&kernfs_notify_lock);
829 spin_lock_irq(&kernfs_open_node_lock);
833 atomic_inc(&on->event);
834 wake_up_interruptible(&on->poll);
837 spin_unlock_irq(&kernfs_open_node_lock);
840 mutex_lock(&kernfs_mutex);
842 list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
843 struct kernfs_node *parent;
847 * We want fsnotify_modify() on @kn but as the
848 * modifications aren't originating from userland don't
849 * have the matching @file available. Look up the inodes
850 * and generate the events manually.
852 inode = ilookup(info->sb, kn->ino);
856 parent = kernfs_get_parent(kn);
858 struct inode *p_inode;
860 p_inode = ilookup(info->sb, parent->ino);
862 fsnotify(p_inode, FS_MODIFY | FS_EVENT_ON_CHILD,
863 inode, FSNOTIFY_EVENT_INODE, kn->name, 0);
870 fsnotify(inode, FS_MODIFY, inode, FSNOTIFY_EVENT_INODE,
875 mutex_unlock(&kernfs_mutex);
881 * kernfs_notify - notify a kernfs file
882 * @kn: file to notify
884 * Notify @kn such that poll(2) on @kn wakes up. Maybe be called from any
887 void kernfs_notify(struct kernfs_node *kn)
889 static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
892 if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
895 spin_lock_irqsave(&kernfs_notify_lock, flags);
896 if (!kn->attr.notify_next) {
898 kn->attr.notify_next = kernfs_notify_list;
899 kernfs_notify_list = kn;
900 schedule_work(&kernfs_notify_work);
902 spin_unlock_irqrestore(&kernfs_notify_lock, flags);
904 EXPORT_SYMBOL_GPL(kernfs_notify);
906 const struct file_operations kernfs_file_fops = {
907 .read = kernfs_fop_read,
908 .write = kernfs_fop_write,
909 .llseek = generic_file_llseek,
910 .mmap = kernfs_fop_mmap,
911 .open = kernfs_fop_open,
912 .release = kernfs_fop_release,
913 .poll = kernfs_fop_poll,
917 * __kernfs_create_file - kernfs internal function to create a file
918 * @parent: directory to create the file in
919 * @name: name of the file
920 * @mode: mode of the file
921 * @size: size of the file
922 * @ops: kernfs operations for the file
923 * @priv: private data for the file
924 * @ns: optional namespace tag of the file
925 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
927 * Returns the created node on success, ERR_PTR() value on error.
929 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
931 umode_t mode, loff_t size,
932 const struct kernfs_ops *ops,
933 void *priv, const void *ns,
934 struct lock_class_key *key)
936 struct kernfs_node *kn;
942 kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, flags);
944 return ERR_PTR(-ENOMEM);
947 kn->attr.size = size;
951 #ifdef CONFIG_DEBUG_LOCK_ALLOC
953 lockdep_init_map(&kn->dep_map, "s_active", key, 0);
954 kn->flags |= KERNFS_LOCKDEP;
959 * kn->attr.ops is accesible only while holding active ref. We
960 * need to know whether some ops are implemented outside active
961 * ref. Cache their existence in flags.
964 kn->flags |= KERNFS_HAS_SEQ_SHOW;
966 kn->flags |= KERNFS_HAS_MMAP;
968 rc = kernfs_add_one(kn);