Merge tag 'pinctrl-v6.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[platform/kernel/linux-rpi.git] / fs / jbd2 / transaction.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39         J_ASSERT(!transaction_cache);
40         transaction_cache = kmem_cache_create("jbd2_transaction_s",
41                                         sizeof(transaction_t),
42                                         0,
43                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44                                         NULL);
45         if (!transaction_cache) {
46                 pr_emerg("JBD2: failed to create transaction cache\n");
47                 return -ENOMEM;
48         }
49         return 0;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         kmem_cache_destroy(transaction_cache);
55         transaction_cache = NULL;
56 }
57
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61                 return;
62         kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66  * Base amount of descriptor blocks we reserve for each transaction.
67  */
68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70         int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71         int tags_per_block;
72
73         /* Subtract UUID */
74         tag_space -= 16;
75         if (jbd2_journal_has_csum_v2or3(journal))
76                 tag_space -= sizeof(struct jbd2_journal_block_tail);
77         /* Commit code leaves a slack space of 16 bytes at the end of block */
78         tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79         /*
80          * Revoke descriptors are accounted separately so we need to reserve
81          * space for commit block and normal transaction descriptor blocks.
82          */
83         return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84                                 tags_per_block);
85 }
86
87 /*
88  * jbd2_get_transaction: obtain a new transaction_t object.
89  *
90  * Simply initialise a new transaction. Initialize it in
91  * RUNNING state and add it to the current journal (which should not
92  * have an existing running transaction: we only make a new transaction
93  * once we have started to commit the old one).
94  *
95  * Preconditions:
96  *      The journal MUST be locked.  We don't perform atomic mallocs on the
97  *      new transaction and we can't block without protecting against other
98  *      processes trying to touch the journal while it is in transition.
99  *
100  */
101
102 static void jbd2_get_transaction(journal_t *journal,
103                                 transaction_t *transaction)
104 {
105         transaction->t_journal = journal;
106         transaction->t_state = T_RUNNING;
107         transaction->t_start_time = ktime_get();
108         transaction->t_tid = journal->j_transaction_sequence++;
109         transaction->t_expires = jiffies + journal->j_commit_interval;
110         atomic_set(&transaction->t_updates, 0);
111         atomic_set(&transaction->t_outstanding_credits,
112                    jbd2_descriptor_blocks_per_trans(journal) +
113                    atomic_read(&journal->j_reserved_credits));
114         atomic_set(&transaction->t_outstanding_revokes, 0);
115         atomic_set(&transaction->t_handle_count, 0);
116         INIT_LIST_HEAD(&transaction->t_inode_list);
117         INIT_LIST_HEAD(&transaction->t_private_list);
118
119         /* Set up the commit timer for the new transaction. */
120         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
121         add_timer(&journal->j_commit_timer);
122
123         J_ASSERT(journal->j_running_transaction == NULL);
124         journal->j_running_transaction = transaction;
125         transaction->t_max_wait = 0;
126         transaction->t_start = jiffies;
127         transaction->t_requested = 0;
128 }
129
130 /*
131  * Handle management.
132  *
133  * A handle_t is an object which represents a single atomic update to a
134  * filesystem, and which tracks all of the modifications which form part
135  * of that one update.
136  */
137
138 /*
139  * Update transaction's maximum wait time, if debugging is enabled.
140  *
141  * t_max_wait is carefully updated here with use of atomic compare exchange.
142  * Note that there could be multiplre threads trying to do this simultaneously
143  * hence using cmpxchg to avoid any use of locks in this case.
144  * With this t_max_wait can be updated w/o enabling jbd2_journal_enable_debug.
145  */
146 static inline void update_t_max_wait(transaction_t *transaction,
147                                      unsigned long ts)
148 {
149         unsigned long oldts, newts;
150
151         if (time_after(transaction->t_start, ts)) {
152                 newts = jbd2_time_diff(ts, transaction->t_start);
153                 oldts = READ_ONCE(transaction->t_max_wait);
154                 while (oldts < newts)
155                         oldts = cmpxchg(&transaction->t_max_wait, oldts, newts);
156         }
157 }
158
159 /*
160  * Wait until running transaction passes to T_FLUSH state and new transaction
161  * can thus be started. Also starts the commit if needed. The function expects
162  * running transaction to exist and releases j_state_lock.
163  */
164 static void wait_transaction_locked(journal_t *journal)
165         __releases(journal->j_state_lock)
166 {
167         DEFINE_WAIT(wait);
168         int need_to_start;
169         tid_t tid = journal->j_running_transaction->t_tid;
170
171         prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
172                         TASK_UNINTERRUPTIBLE);
173         need_to_start = !tid_geq(journal->j_commit_request, tid);
174         read_unlock(&journal->j_state_lock);
175         if (need_to_start)
176                 jbd2_log_start_commit(journal, tid);
177         jbd2_might_wait_for_commit(journal);
178         schedule();
179         finish_wait(&journal->j_wait_transaction_locked, &wait);
180 }
181
182 /*
183  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
184  * state and new transaction can thus be started. The function releases
185  * j_state_lock.
186  */
187 static void wait_transaction_switching(journal_t *journal)
188         __releases(journal->j_state_lock)
189 {
190         DEFINE_WAIT(wait);
191
192         if (WARN_ON(!journal->j_running_transaction ||
193                     journal->j_running_transaction->t_state != T_SWITCH)) {
194                 read_unlock(&journal->j_state_lock);
195                 return;
196         }
197         prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
198                         TASK_UNINTERRUPTIBLE);
199         read_unlock(&journal->j_state_lock);
200         /*
201          * We don't call jbd2_might_wait_for_commit() here as there's no
202          * waiting for outstanding handles happening anymore in T_SWITCH state
203          * and handling of reserved handles actually relies on that for
204          * correctness.
205          */
206         schedule();
207         finish_wait(&journal->j_wait_transaction_locked, &wait);
208 }
209
210 static void sub_reserved_credits(journal_t *journal, int blocks)
211 {
212         atomic_sub(blocks, &journal->j_reserved_credits);
213         wake_up(&journal->j_wait_reserved);
214 }
215
216 /*
217  * Wait until we can add credits for handle to the running transaction.  Called
218  * with j_state_lock held for reading. Returns 0 if handle joined the running
219  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
220  * caller must retry.
221  *
222  * Note: because j_state_lock may be dropped depending on the return
223  * value, we need to fake out sparse so ti doesn't complain about a
224  * locking imbalance.  Callers of add_transaction_credits will need to
225  * make a similar accomodation.
226  */
227 static int add_transaction_credits(journal_t *journal, int blocks,
228                                    int rsv_blocks)
229 __must_hold(&journal->j_state_lock)
230 {
231         transaction_t *t = journal->j_running_transaction;
232         int needed;
233         int total = blocks + rsv_blocks;
234
235         /*
236          * If the current transaction is locked down for commit, wait
237          * for the lock to be released.
238          */
239         if (t->t_state != T_RUNNING) {
240                 WARN_ON_ONCE(t->t_state >= T_FLUSH);
241                 wait_transaction_locked(journal);
242                 __acquire(&journal->j_state_lock); /* fake out sparse */
243                 return 1;
244         }
245
246         /*
247          * If there is not enough space left in the log to write all
248          * potential buffers requested by this operation, we need to
249          * stall pending a log checkpoint to free some more log space.
250          */
251         needed = atomic_add_return(total, &t->t_outstanding_credits);
252         if (needed > journal->j_max_transaction_buffers) {
253                 /*
254                  * If the current transaction is already too large,
255                  * then start to commit it: we can then go back and
256                  * attach this handle to a new transaction.
257                  */
258                 atomic_sub(total, &t->t_outstanding_credits);
259
260                 /*
261                  * Is the number of reserved credits in the current transaction too
262                  * big to fit this handle? Wait until reserved credits are freed.
263                  */
264                 if (atomic_read(&journal->j_reserved_credits) + total >
265                     journal->j_max_transaction_buffers) {
266                         read_unlock(&journal->j_state_lock);
267                         jbd2_might_wait_for_commit(journal);
268                         wait_event(journal->j_wait_reserved,
269                                    atomic_read(&journal->j_reserved_credits) + total <=
270                                    journal->j_max_transaction_buffers);
271                         __acquire(&journal->j_state_lock); /* fake out sparse */
272                         return 1;
273                 }
274
275                 wait_transaction_locked(journal);
276                 __acquire(&journal->j_state_lock); /* fake out sparse */
277                 return 1;
278         }
279
280         /*
281          * The commit code assumes that it can get enough log space
282          * without forcing a checkpoint.  This is *critical* for
283          * correctness: a checkpoint of a buffer which is also
284          * associated with a committing transaction creates a deadlock,
285          * so commit simply cannot force through checkpoints.
286          *
287          * We must therefore ensure the necessary space in the journal
288          * *before* starting to dirty potentially checkpointed buffers
289          * in the new transaction.
290          */
291         if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
292                 atomic_sub(total, &t->t_outstanding_credits);
293                 read_unlock(&journal->j_state_lock);
294                 jbd2_might_wait_for_commit(journal);
295                 write_lock(&journal->j_state_lock);
296                 if (jbd2_log_space_left(journal) <
297                                         journal->j_max_transaction_buffers)
298                         __jbd2_log_wait_for_space(journal);
299                 write_unlock(&journal->j_state_lock);
300                 __acquire(&journal->j_state_lock); /* fake out sparse */
301                 return 1;
302         }
303
304         /* No reservation? We are done... */
305         if (!rsv_blocks)
306                 return 0;
307
308         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
309         /* We allow at most half of a transaction to be reserved */
310         if (needed > journal->j_max_transaction_buffers / 2) {
311                 sub_reserved_credits(journal, rsv_blocks);
312                 atomic_sub(total, &t->t_outstanding_credits);
313                 read_unlock(&journal->j_state_lock);
314                 jbd2_might_wait_for_commit(journal);
315                 wait_event(journal->j_wait_reserved,
316                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
317                          <= journal->j_max_transaction_buffers / 2);
318                 __acquire(&journal->j_state_lock); /* fake out sparse */
319                 return 1;
320         }
321         return 0;
322 }
323
324 /*
325  * start_this_handle: Given a handle, deal with any locking or stalling
326  * needed to make sure that there is enough journal space for the handle
327  * to begin.  Attach the handle to a transaction and set up the
328  * transaction's buffer credits.
329  */
330
331 static int start_this_handle(journal_t *journal, handle_t *handle,
332                              gfp_t gfp_mask)
333 {
334         transaction_t   *transaction, *new_transaction = NULL;
335         int             blocks = handle->h_total_credits;
336         int             rsv_blocks = 0;
337         unsigned long ts = jiffies;
338
339         if (handle->h_rsv_handle)
340                 rsv_blocks = handle->h_rsv_handle->h_total_credits;
341
342         /*
343          * Limit the number of reserved credits to 1/2 of maximum transaction
344          * size and limit the number of total credits to not exceed maximum
345          * transaction size per operation.
346          */
347         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
348             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
349                 printk(KERN_ERR "JBD2: %s wants too many credits "
350                        "credits:%d rsv_credits:%d max:%d\n",
351                        current->comm, blocks, rsv_blocks,
352                        journal->j_max_transaction_buffers);
353                 WARN_ON(1);
354                 return -ENOSPC;
355         }
356
357 alloc_transaction:
358         /*
359          * This check is racy but it is just an optimization of allocating new
360          * transaction early if there are high chances we'll need it. If we
361          * guess wrong, we'll retry or free unused transaction.
362          */
363         if (!data_race(journal->j_running_transaction)) {
364                 /*
365                  * If __GFP_FS is not present, then we may be being called from
366                  * inside the fs writeback layer, so we MUST NOT fail.
367                  */
368                 if ((gfp_mask & __GFP_FS) == 0)
369                         gfp_mask |= __GFP_NOFAIL;
370                 new_transaction = kmem_cache_zalloc(transaction_cache,
371                                                     gfp_mask);
372                 if (!new_transaction)
373                         return -ENOMEM;
374         }
375
376         jbd2_debug(3, "New handle %p going live.\n", handle);
377
378         /*
379          * We need to hold j_state_lock until t_updates has been incremented,
380          * for proper journal barrier handling
381          */
382 repeat:
383         read_lock(&journal->j_state_lock);
384         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
385         if (is_journal_aborted(journal) ||
386             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
387                 read_unlock(&journal->j_state_lock);
388                 jbd2_journal_free_transaction(new_transaction);
389                 return -EROFS;
390         }
391
392         /*
393          * Wait on the journal's transaction barrier if necessary. Specifically
394          * we allow reserved handles to proceed because otherwise commit could
395          * deadlock on page writeback not being able to complete.
396          */
397         if (!handle->h_reserved && journal->j_barrier_count) {
398                 read_unlock(&journal->j_state_lock);
399                 wait_event(journal->j_wait_transaction_locked,
400                                 journal->j_barrier_count == 0);
401                 goto repeat;
402         }
403
404         if (!journal->j_running_transaction) {
405                 read_unlock(&journal->j_state_lock);
406                 if (!new_transaction)
407                         goto alloc_transaction;
408                 write_lock(&journal->j_state_lock);
409                 if (!journal->j_running_transaction &&
410                     (handle->h_reserved || !journal->j_barrier_count)) {
411                         jbd2_get_transaction(journal, new_transaction);
412                         new_transaction = NULL;
413                 }
414                 write_unlock(&journal->j_state_lock);
415                 goto repeat;
416         }
417
418         transaction = journal->j_running_transaction;
419
420         if (!handle->h_reserved) {
421                 /* We may have dropped j_state_lock - restart in that case */
422                 if (add_transaction_credits(journal, blocks, rsv_blocks)) {
423                         /*
424                          * add_transaction_credits releases
425                          * j_state_lock on a non-zero return
426                          */
427                         __release(&journal->j_state_lock);
428                         goto repeat;
429                 }
430         } else {
431                 /*
432                  * We have handle reserved so we are allowed to join T_LOCKED
433                  * transaction and we don't have to check for transaction size
434                  * and journal space. But we still have to wait while running
435                  * transaction is being switched to a committing one as it
436                  * won't wait for any handles anymore.
437                  */
438                 if (transaction->t_state == T_SWITCH) {
439                         wait_transaction_switching(journal);
440                         goto repeat;
441                 }
442                 sub_reserved_credits(journal, blocks);
443                 handle->h_reserved = 0;
444         }
445
446         /* OK, account for the buffers that this operation expects to
447          * use and add the handle to the running transaction.
448          */
449         update_t_max_wait(transaction, ts);
450         handle->h_transaction = transaction;
451         handle->h_requested_credits = blocks;
452         handle->h_revoke_credits_requested = handle->h_revoke_credits;
453         handle->h_start_jiffies = jiffies;
454         atomic_inc(&transaction->t_updates);
455         atomic_inc(&transaction->t_handle_count);
456         jbd2_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
457                   handle, blocks,
458                   atomic_read(&transaction->t_outstanding_credits),
459                   jbd2_log_space_left(journal));
460         read_unlock(&journal->j_state_lock);
461         current->journal_info = handle;
462
463         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
464         jbd2_journal_free_transaction(new_transaction);
465         /*
466          * Ensure that no allocations done while the transaction is open are
467          * going to recurse back to the fs layer.
468          */
469         handle->saved_alloc_context = memalloc_nofs_save();
470         return 0;
471 }
472
473 /* Allocate a new handle.  This should probably be in a slab... */
474 static handle_t *new_handle(int nblocks)
475 {
476         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
477         if (!handle)
478                 return NULL;
479         handle->h_total_credits = nblocks;
480         handle->h_ref = 1;
481
482         return handle;
483 }
484
485 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
486                               int revoke_records, gfp_t gfp_mask,
487                               unsigned int type, unsigned int line_no)
488 {
489         handle_t *handle = journal_current_handle();
490         int err;
491
492         if (!journal)
493                 return ERR_PTR(-EROFS);
494
495         if (handle) {
496                 J_ASSERT(handle->h_transaction->t_journal == journal);
497                 handle->h_ref++;
498                 return handle;
499         }
500
501         nblocks += DIV_ROUND_UP(revoke_records,
502                                 journal->j_revoke_records_per_block);
503         handle = new_handle(nblocks);
504         if (!handle)
505                 return ERR_PTR(-ENOMEM);
506         if (rsv_blocks) {
507                 handle_t *rsv_handle;
508
509                 rsv_handle = new_handle(rsv_blocks);
510                 if (!rsv_handle) {
511                         jbd2_free_handle(handle);
512                         return ERR_PTR(-ENOMEM);
513                 }
514                 rsv_handle->h_reserved = 1;
515                 rsv_handle->h_journal = journal;
516                 handle->h_rsv_handle = rsv_handle;
517         }
518         handle->h_revoke_credits = revoke_records;
519
520         err = start_this_handle(journal, handle, gfp_mask);
521         if (err < 0) {
522                 if (handle->h_rsv_handle)
523                         jbd2_free_handle(handle->h_rsv_handle);
524                 jbd2_free_handle(handle);
525                 return ERR_PTR(err);
526         }
527         handle->h_type = type;
528         handle->h_line_no = line_no;
529         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
530                                 handle->h_transaction->t_tid, type,
531                                 line_no, nblocks);
532
533         return handle;
534 }
535 EXPORT_SYMBOL(jbd2__journal_start);
536
537
538 /**
539  * jbd2_journal_start() - Obtain a new handle.
540  * @journal: Journal to start transaction on.
541  * @nblocks: number of block buffer we might modify
542  *
543  * We make sure that the transaction can guarantee at least nblocks of
544  * modified buffers in the log.  We block until the log can guarantee
545  * that much space. Additionally, if rsv_blocks > 0, we also create another
546  * handle with rsv_blocks reserved blocks in the journal. This handle is
547  * stored in h_rsv_handle. It is not attached to any particular transaction
548  * and thus doesn't block transaction commit. If the caller uses this reserved
549  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
550  * on the parent handle will dispose the reserved one. Reserved handle has to
551  * be converted to a normal handle using jbd2_journal_start_reserved() before
552  * it can be used.
553  *
554  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
555  * on failure.
556  */
557 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
558 {
559         return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
560 }
561 EXPORT_SYMBOL(jbd2_journal_start);
562
563 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
564 {
565         journal_t *journal = handle->h_journal;
566
567         WARN_ON(!handle->h_reserved);
568         sub_reserved_credits(journal, handle->h_total_credits);
569         if (t)
570                 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
571 }
572
573 void jbd2_journal_free_reserved(handle_t *handle)
574 {
575         journal_t *journal = handle->h_journal;
576
577         /* Get j_state_lock to pin running transaction if it exists */
578         read_lock(&journal->j_state_lock);
579         __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
580         read_unlock(&journal->j_state_lock);
581         jbd2_free_handle(handle);
582 }
583 EXPORT_SYMBOL(jbd2_journal_free_reserved);
584
585 /**
586  * jbd2_journal_start_reserved() - start reserved handle
587  * @handle: handle to start
588  * @type: for handle statistics
589  * @line_no: for handle statistics
590  *
591  * Start handle that has been previously reserved with jbd2_journal_reserve().
592  * This attaches @handle to the running transaction (or creates one if there's
593  * not transaction running). Unlike jbd2_journal_start() this function cannot
594  * block on journal commit, checkpointing, or similar stuff. It can block on
595  * memory allocation or frozen journal though.
596  *
597  * Return 0 on success, non-zero on error - handle is freed in that case.
598  */
599 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
600                                 unsigned int line_no)
601 {
602         journal_t *journal = handle->h_journal;
603         int ret = -EIO;
604
605         if (WARN_ON(!handle->h_reserved)) {
606                 /* Someone passed in normal handle? Just stop it. */
607                 jbd2_journal_stop(handle);
608                 return ret;
609         }
610         /*
611          * Usefulness of mixing of reserved and unreserved handles is
612          * questionable. So far nobody seems to need it so just error out.
613          */
614         if (WARN_ON(current->journal_info)) {
615                 jbd2_journal_free_reserved(handle);
616                 return ret;
617         }
618
619         handle->h_journal = NULL;
620         /*
621          * GFP_NOFS is here because callers are likely from writeback or
622          * similarly constrained call sites
623          */
624         ret = start_this_handle(journal, handle, GFP_NOFS);
625         if (ret < 0) {
626                 handle->h_journal = journal;
627                 jbd2_journal_free_reserved(handle);
628                 return ret;
629         }
630         handle->h_type = type;
631         handle->h_line_no = line_no;
632         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
633                                 handle->h_transaction->t_tid, type,
634                                 line_no, handle->h_total_credits);
635         return 0;
636 }
637 EXPORT_SYMBOL(jbd2_journal_start_reserved);
638
639 /**
640  * jbd2_journal_extend() - extend buffer credits.
641  * @handle:  handle to 'extend'
642  * @nblocks: nr blocks to try to extend by.
643  * @revoke_records: number of revoke records to try to extend by.
644  *
645  * Some transactions, such as large extends and truncates, can be done
646  * atomically all at once or in several stages.  The operation requests
647  * a credit for a number of buffer modifications in advance, but can
648  * extend its credit if it needs more.
649  *
650  * jbd2_journal_extend tries to give the running handle more buffer credits.
651  * It does not guarantee that allocation - this is a best-effort only.
652  * The calling process MUST be able to deal cleanly with a failure to
653  * extend here.
654  *
655  * Return 0 on success, non-zero on failure.
656  *
657  * return code < 0 implies an error
658  * return code > 0 implies normal transaction-full status.
659  */
660 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
661 {
662         transaction_t *transaction = handle->h_transaction;
663         journal_t *journal;
664         int result;
665         int wanted;
666
667         if (is_handle_aborted(handle))
668                 return -EROFS;
669         journal = transaction->t_journal;
670
671         result = 1;
672
673         read_lock(&journal->j_state_lock);
674
675         /* Don't extend a locked-down transaction! */
676         if (transaction->t_state != T_RUNNING) {
677                 jbd2_debug(3, "denied handle %p %d blocks: "
678                           "transaction not running\n", handle, nblocks);
679                 goto error_out;
680         }
681
682         nblocks += DIV_ROUND_UP(
683                         handle->h_revoke_credits_requested + revoke_records,
684                         journal->j_revoke_records_per_block) -
685                 DIV_ROUND_UP(
686                         handle->h_revoke_credits_requested,
687                         journal->j_revoke_records_per_block);
688         wanted = atomic_add_return(nblocks,
689                                    &transaction->t_outstanding_credits);
690
691         if (wanted > journal->j_max_transaction_buffers) {
692                 jbd2_debug(3, "denied handle %p %d blocks: "
693                           "transaction too large\n", handle, nblocks);
694                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
695                 goto error_out;
696         }
697
698         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
699                                  transaction->t_tid,
700                                  handle->h_type, handle->h_line_no,
701                                  handle->h_total_credits,
702                                  nblocks);
703
704         handle->h_total_credits += nblocks;
705         handle->h_requested_credits += nblocks;
706         handle->h_revoke_credits += revoke_records;
707         handle->h_revoke_credits_requested += revoke_records;
708         result = 0;
709
710         jbd2_debug(3, "extended handle %p by %d\n", handle, nblocks);
711 error_out:
712         read_unlock(&journal->j_state_lock);
713         return result;
714 }
715
716 static void stop_this_handle(handle_t *handle)
717 {
718         transaction_t *transaction = handle->h_transaction;
719         journal_t *journal = transaction->t_journal;
720         int revokes;
721
722         J_ASSERT(journal_current_handle() == handle);
723         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
724         current->journal_info = NULL;
725         /*
726          * Subtract necessary revoke descriptor blocks from handle credits. We
727          * take care to account only for revoke descriptor blocks the
728          * transaction will really need as large sequences of transactions with
729          * small numbers of revokes are relatively common.
730          */
731         revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
732         if (revokes) {
733                 int t_revokes, revoke_descriptors;
734                 int rr_per_blk = journal->j_revoke_records_per_block;
735
736                 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
737                                 > handle->h_total_credits);
738                 t_revokes = atomic_add_return(revokes,
739                                 &transaction->t_outstanding_revokes);
740                 revoke_descriptors =
741                         DIV_ROUND_UP(t_revokes, rr_per_blk) -
742                         DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
743                 handle->h_total_credits -= revoke_descriptors;
744         }
745         atomic_sub(handle->h_total_credits,
746                    &transaction->t_outstanding_credits);
747         if (handle->h_rsv_handle)
748                 __jbd2_journal_unreserve_handle(handle->h_rsv_handle,
749                                                 transaction);
750         if (atomic_dec_and_test(&transaction->t_updates))
751                 wake_up(&journal->j_wait_updates);
752
753         rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
754         /*
755          * Scope of the GFP_NOFS context is over here and so we can restore the
756          * original alloc context.
757          */
758         memalloc_nofs_restore(handle->saved_alloc_context);
759 }
760
761 /**
762  * jbd2__journal_restart() - restart a handle .
763  * @handle:  handle to restart
764  * @nblocks: nr credits requested
765  * @revoke_records: number of revoke record credits requested
766  * @gfp_mask: memory allocation flags (for start_this_handle)
767  *
768  * Restart a handle for a multi-transaction filesystem
769  * operation.
770  *
771  * If the jbd2_journal_extend() call above fails to grant new buffer credits
772  * to a running handle, a call to jbd2_journal_restart will commit the
773  * handle's transaction so far and reattach the handle to a new
774  * transaction capable of guaranteeing the requested number of
775  * credits. We preserve reserved handle if there's any attached to the
776  * passed in handle.
777  */
778 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
779                           gfp_t gfp_mask)
780 {
781         transaction_t *transaction = handle->h_transaction;
782         journal_t *journal;
783         tid_t           tid;
784         int             need_to_start;
785         int             ret;
786
787         /* If we've had an abort of any type, don't even think about
788          * actually doing the restart! */
789         if (is_handle_aborted(handle))
790                 return 0;
791         journal = transaction->t_journal;
792         tid = transaction->t_tid;
793
794         /*
795          * First unlink the handle from its current transaction, and start the
796          * commit on that.
797          */
798         jbd2_debug(2, "restarting handle %p\n", handle);
799         stop_this_handle(handle);
800         handle->h_transaction = NULL;
801
802         /*
803          * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
804          * get rid of pointless j_state_lock traffic like this.
805          */
806         read_lock(&journal->j_state_lock);
807         need_to_start = !tid_geq(journal->j_commit_request, tid);
808         read_unlock(&journal->j_state_lock);
809         if (need_to_start)
810                 jbd2_log_start_commit(journal, tid);
811         handle->h_total_credits = nblocks +
812                 DIV_ROUND_UP(revoke_records,
813                              journal->j_revoke_records_per_block);
814         handle->h_revoke_credits = revoke_records;
815         ret = start_this_handle(journal, handle, gfp_mask);
816         trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
817                                  ret ? 0 : handle->h_transaction->t_tid,
818                                  handle->h_type, handle->h_line_no,
819                                  handle->h_total_credits);
820         return ret;
821 }
822 EXPORT_SYMBOL(jbd2__journal_restart);
823
824
825 int jbd2_journal_restart(handle_t *handle, int nblocks)
826 {
827         return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
828 }
829 EXPORT_SYMBOL(jbd2_journal_restart);
830
831 /*
832  * Waits for any outstanding t_updates to finish.
833  * This is called with write j_state_lock held.
834  */
835 void jbd2_journal_wait_updates(journal_t *journal)
836 {
837         DEFINE_WAIT(wait);
838
839         while (1) {
840                 /*
841                  * Note that the running transaction can get freed under us if
842                  * this transaction is getting committed in
843                  * jbd2_journal_commit_transaction() ->
844                  * jbd2_journal_free_transaction(). This can only happen when we
845                  * release j_state_lock -> schedule() -> acquire j_state_lock.
846                  * Hence we should everytime retrieve new j_running_transaction
847                  * value (after j_state_lock release acquire cycle), else it may
848                  * lead to use-after-free of old freed transaction.
849                  */
850                 transaction_t *transaction = journal->j_running_transaction;
851
852                 if (!transaction)
853                         break;
854
855                 prepare_to_wait(&journal->j_wait_updates, &wait,
856                                 TASK_UNINTERRUPTIBLE);
857                 if (!atomic_read(&transaction->t_updates)) {
858                         finish_wait(&journal->j_wait_updates, &wait);
859                         break;
860                 }
861                 write_unlock(&journal->j_state_lock);
862                 schedule();
863                 finish_wait(&journal->j_wait_updates, &wait);
864                 write_lock(&journal->j_state_lock);
865         }
866 }
867
868 /**
869  * jbd2_journal_lock_updates () - establish a transaction barrier.
870  * @journal:  Journal to establish a barrier on.
871  *
872  * This locks out any further updates from being started, and blocks
873  * until all existing updates have completed, returning only once the
874  * journal is in a quiescent state with no updates running.
875  *
876  * The journal lock should not be held on entry.
877  */
878 void jbd2_journal_lock_updates(journal_t *journal)
879 {
880         jbd2_might_wait_for_commit(journal);
881
882         write_lock(&journal->j_state_lock);
883         ++journal->j_barrier_count;
884
885         /* Wait until there are no reserved handles */
886         if (atomic_read(&journal->j_reserved_credits)) {
887                 write_unlock(&journal->j_state_lock);
888                 wait_event(journal->j_wait_reserved,
889                            atomic_read(&journal->j_reserved_credits) == 0);
890                 write_lock(&journal->j_state_lock);
891         }
892
893         /* Wait until there are no running t_updates */
894         jbd2_journal_wait_updates(journal);
895
896         write_unlock(&journal->j_state_lock);
897
898         /*
899          * We have now established a barrier against other normal updates, but
900          * we also need to barrier against other jbd2_journal_lock_updates() calls
901          * to make sure that we serialise special journal-locked operations
902          * too.
903          */
904         mutex_lock(&journal->j_barrier);
905 }
906
907 /**
908  * jbd2_journal_unlock_updates () - release barrier
909  * @journal:  Journal to release the barrier on.
910  *
911  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
912  *
913  * Should be called without the journal lock held.
914  */
915 void jbd2_journal_unlock_updates (journal_t *journal)
916 {
917         J_ASSERT(journal->j_barrier_count != 0);
918
919         mutex_unlock(&journal->j_barrier);
920         write_lock(&journal->j_state_lock);
921         --journal->j_barrier_count;
922         write_unlock(&journal->j_state_lock);
923         wake_up_all(&journal->j_wait_transaction_locked);
924 }
925
926 static void warn_dirty_buffer(struct buffer_head *bh)
927 {
928         printk(KERN_WARNING
929                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
930                "There's a risk of filesystem corruption in case of system "
931                "crash.\n",
932                bh->b_bdev, (unsigned long long)bh->b_blocknr);
933 }
934
935 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
936 static void jbd2_freeze_jh_data(struct journal_head *jh)
937 {
938         struct page *page;
939         int offset;
940         char *source;
941         struct buffer_head *bh = jh2bh(jh);
942
943         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
944         page = bh->b_page;
945         offset = offset_in_page(bh->b_data);
946         source = kmap_atomic(page);
947         /* Fire data frozen trigger just before we copy the data */
948         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
949         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
950         kunmap_atomic(source);
951
952         /*
953          * Now that the frozen data is saved off, we need to store any matching
954          * triggers.
955          */
956         jh->b_frozen_triggers = jh->b_triggers;
957 }
958
959 /*
960  * If the buffer is already part of the current transaction, then there
961  * is nothing we need to do.  If it is already part of a prior
962  * transaction which we are still committing to disk, then we need to
963  * make sure that we do not overwrite the old copy: we do copy-out to
964  * preserve the copy going to disk.  We also account the buffer against
965  * the handle's metadata buffer credits (unless the buffer is already
966  * part of the transaction, that is).
967  *
968  */
969 static int
970 do_get_write_access(handle_t *handle, struct journal_head *jh,
971                         int force_copy)
972 {
973         struct buffer_head *bh;
974         transaction_t *transaction = handle->h_transaction;
975         journal_t *journal;
976         int error;
977         char *frozen_buffer = NULL;
978         unsigned long start_lock, time_lock;
979
980         journal = transaction->t_journal;
981
982         jbd2_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
983
984         JBUFFER_TRACE(jh, "entry");
985 repeat:
986         bh = jh2bh(jh);
987
988         /* @@@ Need to check for errors here at some point. */
989
990         start_lock = jiffies;
991         lock_buffer(bh);
992         spin_lock(&jh->b_state_lock);
993
994         /* If it takes too long to lock the buffer, trace it */
995         time_lock = jbd2_time_diff(start_lock, jiffies);
996         if (time_lock > HZ/10)
997                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
998                         jiffies_to_msecs(time_lock));
999
1000         /* We now hold the buffer lock so it is safe to query the buffer
1001          * state.  Is the buffer dirty?
1002          *
1003          * If so, there are two possibilities.  The buffer may be
1004          * non-journaled, and undergoing a quite legitimate writeback.
1005          * Otherwise, it is journaled, and we don't expect dirty buffers
1006          * in that state (the buffers should be marked JBD_Dirty
1007          * instead.)  So either the IO is being done under our own
1008          * control and this is a bug, or it's a third party IO such as
1009          * dump(8) (which may leave the buffer scheduled for read ---
1010          * ie. locked but not dirty) or tune2fs (which may actually have
1011          * the buffer dirtied, ugh.)  */
1012
1013         if (buffer_dirty(bh) && jh->b_transaction) {
1014                 warn_dirty_buffer(bh);
1015                 /*
1016                  * We need to clean the dirty flag and we must do it under the
1017                  * buffer lock to be sure we don't race with running write-out.
1018                  */
1019                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
1020                 clear_buffer_dirty(bh);
1021                 /*
1022                  * The buffer is going to be added to BJ_Reserved list now and
1023                  * nothing guarantees jbd2_journal_dirty_metadata() will be
1024                  * ever called for it. So we need to set jbddirty bit here to
1025                  * make sure the buffer is dirtied and written out when the
1026                  * journaling machinery is done with it.
1027                  */
1028                 set_buffer_jbddirty(bh);
1029         }
1030
1031         error = -EROFS;
1032         if (is_handle_aborted(handle)) {
1033                 spin_unlock(&jh->b_state_lock);
1034                 unlock_buffer(bh);
1035                 goto out;
1036         }
1037         error = 0;
1038
1039         /*
1040          * The buffer is already part of this transaction if b_transaction or
1041          * b_next_transaction points to it
1042          */
1043         if (jh->b_transaction == transaction ||
1044             jh->b_next_transaction == transaction) {
1045                 unlock_buffer(bh);
1046                 goto done;
1047         }
1048
1049         /*
1050          * this is the first time this transaction is touching this buffer,
1051          * reset the modified flag
1052          */
1053         jh->b_modified = 0;
1054
1055         /*
1056          * If the buffer is not journaled right now, we need to make sure it
1057          * doesn't get written to disk before the caller actually commits the
1058          * new data
1059          */
1060         if (!jh->b_transaction) {
1061                 JBUFFER_TRACE(jh, "no transaction");
1062                 J_ASSERT_JH(jh, !jh->b_next_transaction);
1063                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1064                 /*
1065                  * Make sure all stores to jh (b_modified, b_frozen_data) are
1066                  * visible before attaching it to the running transaction.
1067                  * Paired with barrier in jbd2_write_access_granted()
1068                  */
1069                 smp_wmb();
1070                 spin_lock(&journal->j_list_lock);
1071                 if (test_clear_buffer_dirty(bh)) {
1072                         /*
1073                          * Execute buffer dirty clearing and jh->b_transaction
1074                          * assignment under journal->j_list_lock locked to
1075                          * prevent bh being removed from checkpoint list if
1076                          * the buffer is in an intermediate state (not dirty
1077                          * and jh->b_transaction is NULL).
1078                          */
1079                         JBUFFER_TRACE(jh, "Journalling dirty buffer");
1080                         set_buffer_jbddirty(bh);
1081                 }
1082                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1083                 spin_unlock(&journal->j_list_lock);
1084                 unlock_buffer(bh);
1085                 goto done;
1086         }
1087         unlock_buffer(bh);
1088
1089         /*
1090          * If there is already a copy-out version of this buffer, then we don't
1091          * need to make another one
1092          */
1093         if (jh->b_frozen_data) {
1094                 JBUFFER_TRACE(jh, "has frozen data");
1095                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1096                 goto attach_next;
1097         }
1098
1099         JBUFFER_TRACE(jh, "owned by older transaction");
1100         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1101         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1102
1103         /*
1104          * There is one case we have to be very careful about.  If the
1105          * committing transaction is currently writing this buffer out to disk
1106          * and has NOT made a copy-out, then we cannot modify the buffer
1107          * contents at all right now.  The essence of copy-out is that it is
1108          * the extra copy, not the primary copy, which gets journaled.  If the
1109          * primary copy is already going to disk then we cannot do copy-out
1110          * here.
1111          */
1112         if (buffer_shadow(bh)) {
1113                 JBUFFER_TRACE(jh, "on shadow: sleep");
1114                 spin_unlock(&jh->b_state_lock);
1115                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1116                 goto repeat;
1117         }
1118
1119         /*
1120          * Only do the copy if the currently-owning transaction still needs it.
1121          * If buffer isn't on BJ_Metadata list, the committing transaction is
1122          * past that stage (here we use the fact that BH_Shadow is set under
1123          * bh_state lock together with refiling to BJ_Shadow list and at this
1124          * point we know the buffer doesn't have BH_Shadow set).
1125          *
1126          * Subtle point, though: if this is a get_undo_access, then we will be
1127          * relying on the frozen_data to contain the new value of the
1128          * committed_data record after the transaction, so we HAVE to force the
1129          * frozen_data copy in that case.
1130          */
1131         if (jh->b_jlist == BJ_Metadata || force_copy) {
1132                 JBUFFER_TRACE(jh, "generate frozen data");
1133                 if (!frozen_buffer) {
1134                         JBUFFER_TRACE(jh, "allocate memory for buffer");
1135                         spin_unlock(&jh->b_state_lock);
1136                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1137                                                    GFP_NOFS | __GFP_NOFAIL);
1138                         goto repeat;
1139                 }
1140                 jh->b_frozen_data = frozen_buffer;
1141                 frozen_buffer = NULL;
1142                 jbd2_freeze_jh_data(jh);
1143         }
1144 attach_next:
1145         /*
1146          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1147          * before attaching it to the running transaction. Paired with barrier
1148          * in jbd2_write_access_granted()
1149          */
1150         smp_wmb();
1151         jh->b_next_transaction = transaction;
1152
1153 done:
1154         spin_unlock(&jh->b_state_lock);
1155
1156         /*
1157          * If we are about to journal a buffer, then any revoke pending on it is
1158          * no longer valid
1159          */
1160         jbd2_journal_cancel_revoke(handle, jh);
1161
1162 out:
1163         if (unlikely(frozen_buffer))    /* It's usually NULL */
1164                 jbd2_free(frozen_buffer, bh->b_size);
1165
1166         JBUFFER_TRACE(jh, "exit");
1167         return error;
1168 }
1169
1170 /* Fast check whether buffer is already attached to the required transaction */
1171 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1172                                                         bool undo)
1173 {
1174         struct journal_head *jh;
1175         bool ret = false;
1176
1177         /* Dirty buffers require special handling... */
1178         if (buffer_dirty(bh))
1179                 return false;
1180
1181         /*
1182          * RCU protects us from dereferencing freed pages. So the checks we do
1183          * are guaranteed not to oops. However the jh slab object can get freed
1184          * & reallocated while we work with it. So we have to be careful. When
1185          * we see jh attached to the running transaction, we know it must stay
1186          * so until the transaction is committed. Thus jh won't be freed and
1187          * will be attached to the same bh while we run.  However it can
1188          * happen jh gets freed, reallocated, and attached to the transaction
1189          * just after we get pointer to it from bh. So we have to be careful
1190          * and recheck jh still belongs to our bh before we return success.
1191          */
1192         rcu_read_lock();
1193         if (!buffer_jbd(bh))
1194                 goto out;
1195         /* This should be bh2jh() but that doesn't work with inline functions */
1196         jh = READ_ONCE(bh->b_private);
1197         if (!jh)
1198                 goto out;
1199         /* For undo access buffer must have data copied */
1200         if (undo && !jh->b_committed_data)
1201                 goto out;
1202         if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1203             READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1204                 goto out;
1205         /*
1206          * There are two reasons for the barrier here:
1207          * 1) Make sure to fetch b_bh after we did previous checks so that we
1208          * detect when jh went through free, realloc, attach to transaction
1209          * while we were checking. Paired with implicit barrier in that path.
1210          * 2) So that access to bh done after jbd2_write_access_granted()
1211          * doesn't get reordered and see inconsistent state of concurrent
1212          * do_get_write_access().
1213          */
1214         smp_mb();
1215         if (unlikely(jh->b_bh != bh))
1216                 goto out;
1217         ret = true;
1218 out:
1219         rcu_read_unlock();
1220         return ret;
1221 }
1222
1223 /**
1224  * jbd2_journal_get_write_access() - notify intent to modify a buffer
1225  *                                   for metadata (not data) update.
1226  * @handle: transaction to add buffer modifications to
1227  * @bh:     bh to be used for metadata writes
1228  *
1229  * Returns: error code or 0 on success.
1230  *
1231  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1232  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1233  */
1234
1235 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1236 {
1237         struct journal_head *jh;
1238         int rc;
1239
1240         if (is_handle_aborted(handle))
1241                 return -EROFS;
1242
1243         if (jbd2_write_access_granted(handle, bh, false))
1244                 return 0;
1245
1246         jh = jbd2_journal_add_journal_head(bh);
1247         /* We do not want to get caught playing with fields which the
1248          * log thread also manipulates.  Make sure that the buffer
1249          * completes any outstanding IO before proceeding. */
1250         rc = do_get_write_access(handle, jh, 0);
1251         jbd2_journal_put_journal_head(jh);
1252         return rc;
1253 }
1254
1255
1256 /*
1257  * When the user wants to journal a newly created buffer_head
1258  * (ie. getblk() returned a new buffer and we are going to populate it
1259  * manually rather than reading off disk), then we need to keep the
1260  * buffer_head locked until it has been completely filled with new
1261  * data.  In this case, we should be able to make the assertion that
1262  * the bh is not already part of an existing transaction.
1263  *
1264  * The buffer should already be locked by the caller by this point.
1265  * There is no lock ranking violation: it was a newly created,
1266  * unlocked buffer beforehand. */
1267
1268 /**
1269  * jbd2_journal_get_create_access () - notify intent to use newly created bh
1270  * @handle: transaction to new buffer to
1271  * @bh: new buffer.
1272  *
1273  * Call this if you create a new bh.
1274  */
1275 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1276 {
1277         transaction_t *transaction = handle->h_transaction;
1278         journal_t *journal;
1279         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1280         int err;
1281
1282         jbd2_debug(5, "journal_head %p\n", jh);
1283         err = -EROFS;
1284         if (is_handle_aborted(handle))
1285                 goto out;
1286         journal = transaction->t_journal;
1287         err = 0;
1288
1289         JBUFFER_TRACE(jh, "entry");
1290         /*
1291          * The buffer may already belong to this transaction due to pre-zeroing
1292          * in the filesystem's new_block code.  It may also be on the previous,
1293          * committing transaction's lists, but it HAS to be in Forget state in
1294          * that case: the transaction must have deleted the buffer for it to be
1295          * reused here.
1296          */
1297         spin_lock(&jh->b_state_lock);
1298         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1299                 jh->b_transaction == NULL ||
1300                 (jh->b_transaction == journal->j_committing_transaction &&
1301                           jh->b_jlist == BJ_Forget)));
1302
1303         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1304         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1305
1306         if (jh->b_transaction == NULL) {
1307                 /*
1308                  * Previous jbd2_journal_forget() could have left the buffer
1309                  * with jbddirty bit set because it was being committed. When
1310                  * the commit finished, we've filed the buffer for
1311                  * checkpointing and marked it dirty. Now we are reallocating
1312                  * the buffer so the transaction freeing it must have
1313                  * committed and so it's safe to clear the dirty bit.
1314                  */
1315                 clear_buffer_dirty(jh2bh(jh));
1316                 /* first access by this transaction */
1317                 jh->b_modified = 0;
1318
1319                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1320                 spin_lock(&journal->j_list_lock);
1321                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1322                 spin_unlock(&journal->j_list_lock);
1323         } else if (jh->b_transaction == journal->j_committing_transaction) {
1324                 /* first access by this transaction */
1325                 jh->b_modified = 0;
1326
1327                 JBUFFER_TRACE(jh, "set next transaction");
1328                 spin_lock(&journal->j_list_lock);
1329                 jh->b_next_transaction = transaction;
1330                 spin_unlock(&journal->j_list_lock);
1331         }
1332         spin_unlock(&jh->b_state_lock);
1333
1334         /*
1335          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1336          * blocks which contain freed but then revoked metadata.  We need
1337          * to cancel the revoke in case we end up freeing it yet again
1338          * and the reallocating as data - this would cause a second revoke,
1339          * which hits an assertion error.
1340          */
1341         JBUFFER_TRACE(jh, "cancelling revoke");
1342         jbd2_journal_cancel_revoke(handle, jh);
1343 out:
1344         jbd2_journal_put_journal_head(jh);
1345         return err;
1346 }
1347
1348 /**
1349  * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1350  *     non-rewindable consequences
1351  * @handle: transaction
1352  * @bh: buffer to undo
1353  *
1354  * Sometimes there is a need to distinguish between metadata which has
1355  * been committed to disk and that which has not.  The ext3fs code uses
1356  * this for freeing and allocating space, we have to make sure that we
1357  * do not reuse freed space until the deallocation has been committed,
1358  * since if we overwrote that space we would make the delete
1359  * un-rewindable in case of a crash.
1360  *
1361  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1362  * buffer for parts of non-rewindable operations such as delete
1363  * operations on the bitmaps.  The journaling code must keep a copy of
1364  * the buffer's contents prior to the undo_access call until such time
1365  * as we know that the buffer has definitely been committed to disk.
1366  *
1367  * We never need to know which transaction the committed data is part
1368  * of, buffers touched here are guaranteed to be dirtied later and so
1369  * will be committed to a new transaction in due course, at which point
1370  * we can discard the old committed data pointer.
1371  *
1372  * Returns error number or 0 on success.
1373  */
1374 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1375 {
1376         int err;
1377         struct journal_head *jh;
1378         char *committed_data = NULL;
1379
1380         if (is_handle_aborted(handle))
1381                 return -EROFS;
1382
1383         if (jbd2_write_access_granted(handle, bh, true))
1384                 return 0;
1385
1386         jh = jbd2_journal_add_journal_head(bh);
1387         JBUFFER_TRACE(jh, "entry");
1388
1389         /*
1390          * Do this first --- it can drop the journal lock, so we want to
1391          * make sure that obtaining the committed_data is done
1392          * atomically wrt. completion of any outstanding commits.
1393          */
1394         err = do_get_write_access(handle, jh, 1);
1395         if (err)
1396                 goto out;
1397
1398 repeat:
1399         if (!jh->b_committed_data)
1400                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1401                                             GFP_NOFS|__GFP_NOFAIL);
1402
1403         spin_lock(&jh->b_state_lock);
1404         if (!jh->b_committed_data) {
1405                 /* Copy out the current buffer contents into the
1406                  * preserved, committed copy. */
1407                 JBUFFER_TRACE(jh, "generate b_committed data");
1408                 if (!committed_data) {
1409                         spin_unlock(&jh->b_state_lock);
1410                         goto repeat;
1411                 }
1412
1413                 jh->b_committed_data = committed_data;
1414                 committed_data = NULL;
1415                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1416         }
1417         spin_unlock(&jh->b_state_lock);
1418 out:
1419         jbd2_journal_put_journal_head(jh);
1420         if (unlikely(committed_data))
1421                 jbd2_free(committed_data, bh->b_size);
1422         return err;
1423 }
1424
1425 /**
1426  * jbd2_journal_set_triggers() - Add triggers for commit writeout
1427  * @bh: buffer to trigger on
1428  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1429  *
1430  * Set any triggers on this journal_head.  This is always safe, because
1431  * triggers for a committing buffer will be saved off, and triggers for
1432  * a running transaction will match the buffer in that transaction.
1433  *
1434  * Call with NULL to clear the triggers.
1435  */
1436 void jbd2_journal_set_triggers(struct buffer_head *bh,
1437                                struct jbd2_buffer_trigger_type *type)
1438 {
1439         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1440
1441         if (WARN_ON_ONCE(!jh))
1442                 return;
1443         jh->b_triggers = type;
1444         jbd2_journal_put_journal_head(jh);
1445 }
1446
1447 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1448                                 struct jbd2_buffer_trigger_type *triggers)
1449 {
1450         struct buffer_head *bh = jh2bh(jh);
1451
1452         if (!triggers || !triggers->t_frozen)
1453                 return;
1454
1455         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1456 }
1457
1458 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1459                                struct jbd2_buffer_trigger_type *triggers)
1460 {
1461         if (!triggers || !triggers->t_abort)
1462                 return;
1463
1464         triggers->t_abort(triggers, jh2bh(jh));
1465 }
1466
1467 /**
1468  * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1469  * @handle: transaction to add buffer to.
1470  * @bh: buffer to mark
1471  *
1472  * mark dirty metadata which needs to be journaled as part of the current
1473  * transaction.
1474  *
1475  * The buffer must have previously had jbd2_journal_get_write_access()
1476  * called so that it has a valid journal_head attached to the buffer
1477  * head.
1478  *
1479  * The buffer is placed on the transaction's metadata list and is marked
1480  * as belonging to the transaction.
1481  *
1482  * Returns error number or 0 on success.
1483  *
1484  * Special care needs to be taken if the buffer already belongs to the
1485  * current committing transaction (in which case we should have frozen
1486  * data present for that commit).  In that case, we don't relink the
1487  * buffer: that only gets done when the old transaction finally
1488  * completes its commit.
1489  */
1490 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1491 {
1492         transaction_t *transaction = handle->h_transaction;
1493         journal_t *journal;
1494         struct journal_head *jh;
1495         int ret = 0;
1496
1497         if (!buffer_jbd(bh))
1498                 return -EUCLEAN;
1499
1500         /*
1501          * We don't grab jh reference here since the buffer must be part
1502          * of the running transaction.
1503          */
1504         jh = bh2jh(bh);
1505         jbd2_debug(5, "journal_head %p\n", jh);
1506         JBUFFER_TRACE(jh, "entry");
1507
1508         /*
1509          * This and the following assertions are unreliable since we may see jh
1510          * in inconsistent state unless we grab bh_state lock. But this is
1511          * crucial to catch bugs so let's do a reliable check until the
1512          * lockless handling is fully proven.
1513          */
1514         if (data_race(jh->b_transaction != transaction &&
1515             jh->b_next_transaction != transaction)) {
1516                 spin_lock(&jh->b_state_lock);
1517                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1518                                 jh->b_next_transaction == transaction);
1519                 spin_unlock(&jh->b_state_lock);
1520         }
1521         if (jh->b_modified == 1) {
1522                 /* If it's in our transaction it must be in BJ_Metadata list. */
1523                 if (data_race(jh->b_transaction == transaction &&
1524                     jh->b_jlist != BJ_Metadata)) {
1525                         spin_lock(&jh->b_state_lock);
1526                         if (jh->b_transaction == transaction &&
1527                             jh->b_jlist != BJ_Metadata)
1528                                 pr_err("JBD2: assertion failure: h_type=%u "
1529                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1530                                        handle->h_type, handle->h_line_no,
1531                                        (unsigned long long) bh->b_blocknr,
1532                                        jh->b_jlist);
1533                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1534                                         jh->b_jlist == BJ_Metadata);
1535                         spin_unlock(&jh->b_state_lock);
1536                 }
1537                 goto out;
1538         }
1539
1540         journal = transaction->t_journal;
1541         spin_lock(&jh->b_state_lock);
1542
1543         if (is_handle_aborted(handle)) {
1544                 /*
1545                  * Check journal aborting with @jh->b_state_lock locked,
1546                  * since 'jh->b_transaction' could be replaced with
1547                  * 'jh->b_next_transaction' during old transaction
1548                  * committing if journal aborted, which may fail
1549                  * assertion on 'jh->b_frozen_data == NULL'.
1550                  */
1551                 ret = -EROFS;
1552                 goto out_unlock_bh;
1553         }
1554
1555         if (jh->b_modified == 0) {
1556                 /*
1557                  * This buffer's got modified and becoming part
1558                  * of the transaction. This needs to be done
1559                  * once a transaction -bzzz
1560                  */
1561                 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1562                         ret = -ENOSPC;
1563                         goto out_unlock_bh;
1564                 }
1565                 jh->b_modified = 1;
1566                 handle->h_total_credits--;
1567         }
1568
1569         /*
1570          * fastpath, to avoid expensive locking.  If this buffer is already
1571          * on the running transaction's metadata list there is nothing to do.
1572          * Nobody can take it off again because there is a handle open.
1573          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1574          * result in this test being false, so we go in and take the locks.
1575          */
1576         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1577                 JBUFFER_TRACE(jh, "fastpath");
1578                 if (unlikely(jh->b_transaction !=
1579                              journal->j_running_transaction)) {
1580                         printk(KERN_ERR "JBD2: %s: "
1581                                "jh->b_transaction (%llu, %p, %u) != "
1582                                "journal->j_running_transaction (%p, %u)\n",
1583                                journal->j_devname,
1584                                (unsigned long long) bh->b_blocknr,
1585                                jh->b_transaction,
1586                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1587                                journal->j_running_transaction,
1588                                journal->j_running_transaction ?
1589                                journal->j_running_transaction->t_tid : 0);
1590                         ret = -EINVAL;
1591                 }
1592                 goto out_unlock_bh;
1593         }
1594
1595         set_buffer_jbddirty(bh);
1596
1597         /*
1598          * Metadata already on the current transaction list doesn't
1599          * need to be filed.  Metadata on another transaction's list must
1600          * be committing, and will be refiled once the commit completes:
1601          * leave it alone for now.
1602          */
1603         if (jh->b_transaction != transaction) {
1604                 JBUFFER_TRACE(jh, "already on other transaction");
1605                 if (unlikely(((jh->b_transaction !=
1606                                journal->j_committing_transaction)) ||
1607                              (jh->b_next_transaction != transaction))) {
1608                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1609                                "bad jh for block %llu: "
1610                                "transaction (%p, %u), "
1611                                "jh->b_transaction (%p, %u), "
1612                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1613                                journal->j_devname,
1614                                (unsigned long long) bh->b_blocknr,
1615                                transaction, transaction->t_tid,
1616                                jh->b_transaction,
1617                                jh->b_transaction ?
1618                                jh->b_transaction->t_tid : 0,
1619                                jh->b_next_transaction,
1620                                jh->b_next_transaction ?
1621                                jh->b_next_transaction->t_tid : 0,
1622                                jh->b_jlist);
1623                         WARN_ON(1);
1624                         ret = -EINVAL;
1625                 }
1626                 /* And this case is illegal: we can't reuse another
1627                  * transaction's data buffer, ever. */
1628                 goto out_unlock_bh;
1629         }
1630
1631         /* That test should have eliminated the following case: */
1632         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1633
1634         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1635         spin_lock(&journal->j_list_lock);
1636         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1637         spin_unlock(&journal->j_list_lock);
1638 out_unlock_bh:
1639         spin_unlock(&jh->b_state_lock);
1640 out:
1641         JBUFFER_TRACE(jh, "exit");
1642         return ret;
1643 }
1644
1645 /**
1646  * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1647  * @handle: transaction handle
1648  * @bh:     bh to 'forget'
1649  *
1650  * We can only do the bforget if there are no commits pending against the
1651  * buffer.  If the buffer is dirty in the current running transaction we
1652  * can safely unlink it.
1653  *
1654  * bh may not be a journalled buffer at all - it may be a non-JBD
1655  * buffer which came off the hashtable.  Check for this.
1656  *
1657  * Decrements bh->b_count by one.
1658  *
1659  * Allow this call even if the handle has aborted --- it may be part of
1660  * the caller's cleanup after an abort.
1661  */
1662 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1663 {
1664         transaction_t *transaction = handle->h_transaction;
1665         journal_t *journal;
1666         struct journal_head *jh;
1667         int drop_reserve = 0;
1668         int err = 0;
1669         int was_modified = 0;
1670
1671         if (is_handle_aborted(handle))
1672                 return -EROFS;
1673         journal = transaction->t_journal;
1674
1675         BUFFER_TRACE(bh, "entry");
1676
1677         jh = jbd2_journal_grab_journal_head(bh);
1678         if (!jh) {
1679                 __bforget(bh);
1680                 return 0;
1681         }
1682
1683         spin_lock(&jh->b_state_lock);
1684
1685         /* Critical error: attempting to delete a bitmap buffer, maybe?
1686          * Don't do any jbd operations, and return an error. */
1687         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1688                          "inconsistent data on disk")) {
1689                 err = -EIO;
1690                 goto drop;
1691         }
1692
1693         /* keep track of whether or not this transaction modified us */
1694         was_modified = jh->b_modified;
1695
1696         /*
1697          * The buffer's going from the transaction, we must drop
1698          * all references -bzzz
1699          */
1700         jh->b_modified = 0;
1701
1702         if (jh->b_transaction == transaction) {
1703                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1704
1705                 /* If we are forgetting a buffer which is already part
1706                  * of this transaction, then we can just drop it from
1707                  * the transaction immediately. */
1708                 clear_buffer_dirty(bh);
1709                 clear_buffer_jbddirty(bh);
1710
1711                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1712
1713                 /*
1714                  * we only want to drop a reference if this transaction
1715                  * modified the buffer
1716                  */
1717                 if (was_modified)
1718                         drop_reserve = 1;
1719
1720                 /*
1721                  * We are no longer going to journal this buffer.
1722                  * However, the commit of this transaction is still
1723                  * important to the buffer: the delete that we are now
1724                  * processing might obsolete an old log entry, so by
1725                  * committing, we can satisfy the buffer's checkpoint.
1726                  *
1727                  * So, if we have a checkpoint on the buffer, we should
1728                  * now refile the buffer on our BJ_Forget list so that
1729                  * we know to remove the checkpoint after we commit.
1730                  */
1731
1732                 spin_lock(&journal->j_list_lock);
1733                 if (jh->b_cp_transaction) {
1734                         __jbd2_journal_temp_unlink_buffer(jh);
1735                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1736                 } else {
1737                         __jbd2_journal_unfile_buffer(jh);
1738                         jbd2_journal_put_journal_head(jh);
1739                 }
1740                 spin_unlock(&journal->j_list_lock);
1741         } else if (jh->b_transaction) {
1742                 J_ASSERT_JH(jh, (jh->b_transaction ==
1743                                  journal->j_committing_transaction));
1744                 /* However, if the buffer is still owned by a prior
1745                  * (committing) transaction, we can't drop it yet... */
1746                 JBUFFER_TRACE(jh, "belongs to older transaction");
1747                 /* ... but we CAN drop it from the new transaction through
1748                  * marking the buffer as freed and set j_next_transaction to
1749                  * the new transaction, so that not only the commit code
1750                  * knows it should clear dirty bits when it is done with the
1751                  * buffer, but also the buffer can be checkpointed only
1752                  * after the new transaction commits. */
1753
1754                 set_buffer_freed(bh);
1755
1756                 if (!jh->b_next_transaction) {
1757                         spin_lock(&journal->j_list_lock);
1758                         jh->b_next_transaction = transaction;
1759                         spin_unlock(&journal->j_list_lock);
1760                 } else {
1761                         J_ASSERT(jh->b_next_transaction == transaction);
1762
1763                         /*
1764                          * only drop a reference if this transaction modified
1765                          * the buffer
1766                          */
1767                         if (was_modified)
1768                                 drop_reserve = 1;
1769                 }
1770         } else {
1771                 /*
1772                  * Finally, if the buffer is not belongs to any
1773                  * transaction, we can just drop it now if it has no
1774                  * checkpoint.
1775                  */
1776                 spin_lock(&journal->j_list_lock);
1777                 if (!jh->b_cp_transaction) {
1778                         JBUFFER_TRACE(jh, "belongs to none transaction");
1779                         spin_unlock(&journal->j_list_lock);
1780                         goto drop;
1781                 }
1782
1783                 /*
1784                  * Otherwise, if the buffer has been written to disk,
1785                  * it is safe to remove the checkpoint and drop it.
1786                  */
1787                 if (!buffer_dirty(bh)) {
1788                         __jbd2_journal_remove_checkpoint(jh);
1789                         spin_unlock(&journal->j_list_lock);
1790                         goto drop;
1791                 }
1792
1793                 /*
1794                  * The buffer is still not written to disk, we should
1795                  * attach this buffer to current transaction so that the
1796                  * buffer can be checkpointed only after the current
1797                  * transaction commits.
1798                  */
1799                 clear_buffer_dirty(bh);
1800                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1801                 spin_unlock(&journal->j_list_lock);
1802         }
1803 drop:
1804         __brelse(bh);
1805         spin_unlock(&jh->b_state_lock);
1806         jbd2_journal_put_journal_head(jh);
1807         if (drop_reserve) {
1808                 /* no need to reserve log space for this block -bzzz */
1809                 handle->h_total_credits++;
1810         }
1811         return err;
1812 }
1813
1814 /**
1815  * jbd2_journal_stop() - complete a transaction
1816  * @handle: transaction to complete.
1817  *
1818  * All done for a particular handle.
1819  *
1820  * There is not much action needed here.  We just return any remaining
1821  * buffer credits to the transaction and remove the handle.  The only
1822  * complication is that we need to start a commit operation if the
1823  * filesystem is marked for synchronous update.
1824  *
1825  * jbd2_journal_stop itself will not usually return an error, but it may
1826  * do so in unusual circumstances.  In particular, expect it to
1827  * return -EIO if a jbd2_journal_abort has been executed since the
1828  * transaction began.
1829  */
1830 int jbd2_journal_stop(handle_t *handle)
1831 {
1832         transaction_t *transaction = handle->h_transaction;
1833         journal_t *journal;
1834         int err = 0, wait_for_commit = 0;
1835         tid_t tid;
1836         pid_t pid;
1837
1838         if (--handle->h_ref > 0) {
1839                 jbd2_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1840                                                  handle->h_ref);
1841                 if (is_handle_aborted(handle))
1842                         return -EIO;
1843                 return 0;
1844         }
1845         if (!transaction) {
1846                 /*
1847                  * Handle is already detached from the transaction so there is
1848                  * nothing to do other than free the handle.
1849                  */
1850                 memalloc_nofs_restore(handle->saved_alloc_context);
1851                 goto free_and_exit;
1852         }
1853         journal = transaction->t_journal;
1854         tid = transaction->t_tid;
1855
1856         if (is_handle_aborted(handle))
1857                 err = -EIO;
1858
1859         jbd2_debug(4, "Handle %p going down\n", handle);
1860         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1861                                 tid, handle->h_type, handle->h_line_no,
1862                                 jiffies - handle->h_start_jiffies,
1863                                 handle->h_sync, handle->h_requested_credits,
1864                                 (handle->h_requested_credits -
1865                                  handle->h_total_credits));
1866
1867         /*
1868          * Implement synchronous transaction batching.  If the handle
1869          * was synchronous, don't force a commit immediately.  Let's
1870          * yield and let another thread piggyback onto this
1871          * transaction.  Keep doing that while new threads continue to
1872          * arrive.  It doesn't cost much - we're about to run a commit
1873          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1874          * operations by 30x or more...
1875          *
1876          * We try and optimize the sleep time against what the
1877          * underlying disk can do, instead of having a static sleep
1878          * time.  This is useful for the case where our storage is so
1879          * fast that it is more optimal to go ahead and force a flush
1880          * and wait for the transaction to be committed than it is to
1881          * wait for an arbitrary amount of time for new writers to
1882          * join the transaction.  We achieve this by measuring how
1883          * long it takes to commit a transaction, and compare it with
1884          * how long this transaction has been running, and if run time
1885          * < commit time then we sleep for the delta and commit.  This
1886          * greatly helps super fast disks that would see slowdowns as
1887          * more threads started doing fsyncs.
1888          *
1889          * But don't do this if this process was the most recent one
1890          * to perform a synchronous write.  We do this to detect the
1891          * case where a single process is doing a stream of sync
1892          * writes.  No point in waiting for joiners in that case.
1893          *
1894          * Setting max_batch_time to 0 disables this completely.
1895          */
1896         pid = current->pid;
1897         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1898             journal->j_max_batch_time) {
1899                 u64 commit_time, trans_time;
1900
1901                 journal->j_last_sync_writer = pid;
1902
1903                 read_lock(&journal->j_state_lock);
1904                 commit_time = journal->j_average_commit_time;
1905                 read_unlock(&journal->j_state_lock);
1906
1907                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1908                                                    transaction->t_start_time));
1909
1910                 commit_time = max_t(u64, commit_time,
1911                                     1000*journal->j_min_batch_time);
1912                 commit_time = min_t(u64, commit_time,
1913                                     1000*journal->j_max_batch_time);
1914
1915                 if (trans_time < commit_time) {
1916                         ktime_t expires = ktime_add_ns(ktime_get(),
1917                                                        commit_time);
1918                         set_current_state(TASK_UNINTERRUPTIBLE);
1919                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1920                 }
1921         }
1922
1923         if (handle->h_sync)
1924                 transaction->t_synchronous_commit = 1;
1925
1926         /*
1927          * If the handle is marked SYNC, we need to set another commit
1928          * going!  We also want to force a commit if the transaction is too
1929          * old now.
1930          */
1931         if (handle->h_sync ||
1932             time_after_eq(jiffies, transaction->t_expires)) {
1933                 /* Do this even for aborted journals: an abort still
1934                  * completes the commit thread, it just doesn't write
1935                  * anything to disk. */
1936
1937                 jbd2_debug(2, "transaction too old, requesting commit for "
1938                                         "handle %p\n", handle);
1939                 /* This is non-blocking */
1940                 jbd2_log_start_commit(journal, tid);
1941
1942                 /*
1943                  * Special case: JBD2_SYNC synchronous updates require us
1944                  * to wait for the commit to complete.
1945                  */
1946                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1947                         wait_for_commit = 1;
1948         }
1949
1950         /*
1951          * Once stop_this_handle() drops t_updates, the transaction could start
1952          * committing on us and eventually disappear.  So we must not
1953          * dereference transaction pointer again after calling
1954          * stop_this_handle().
1955          */
1956         stop_this_handle(handle);
1957
1958         if (wait_for_commit)
1959                 err = jbd2_log_wait_commit(journal, tid);
1960
1961 free_and_exit:
1962         if (handle->h_rsv_handle)
1963                 jbd2_free_handle(handle->h_rsv_handle);
1964         jbd2_free_handle(handle);
1965         return err;
1966 }
1967
1968 /*
1969  *
1970  * List management code snippets: various functions for manipulating the
1971  * transaction buffer lists.
1972  *
1973  */
1974
1975 /*
1976  * Append a buffer to a transaction list, given the transaction's list head
1977  * pointer.
1978  *
1979  * j_list_lock is held.
1980  *
1981  * jh->b_state_lock is held.
1982  */
1983
1984 static inline void
1985 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1986 {
1987         if (!*list) {
1988                 jh->b_tnext = jh->b_tprev = jh;
1989                 *list = jh;
1990         } else {
1991                 /* Insert at the tail of the list to preserve order */
1992                 struct journal_head *first = *list, *last = first->b_tprev;
1993                 jh->b_tprev = last;
1994                 jh->b_tnext = first;
1995                 last->b_tnext = first->b_tprev = jh;
1996         }
1997 }
1998
1999 /*
2000  * Remove a buffer from a transaction list, given the transaction's list
2001  * head pointer.
2002  *
2003  * Called with j_list_lock held, and the journal may not be locked.
2004  *
2005  * jh->b_state_lock is held.
2006  */
2007
2008 static inline void
2009 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
2010 {
2011         if (*list == jh) {
2012                 *list = jh->b_tnext;
2013                 if (*list == jh)
2014                         *list = NULL;
2015         }
2016         jh->b_tprev->b_tnext = jh->b_tnext;
2017         jh->b_tnext->b_tprev = jh->b_tprev;
2018 }
2019
2020 /*
2021  * Remove a buffer from the appropriate transaction list.
2022  *
2023  * Note that this function can *change* the value of
2024  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
2025  * t_reserved_list.  If the caller is holding onto a copy of one of these
2026  * pointers, it could go bad.  Generally the caller needs to re-read the
2027  * pointer from the transaction_t.
2028  *
2029  * Called under j_list_lock.
2030  */
2031 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2032 {
2033         struct journal_head **list = NULL;
2034         transaction_t *transaction;
2035         struct buffer_head *bh = jh2bh(jh);
2036
2037         lockdep_assert_held(&jh->b_state_lock);
2038         transaction = jh->b_transaction;
2039         if (transaction)
2040                 assert_spin_locked(&transaction->t_journal->j_list_lock);
2041
2042         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2043         if (jh->b_jlist != BJ_None)
2044                 J_ASSERT_JH(jh, transaction != NULL);
2045
2046         switch (jh->b_jlist) {
2047         case BJ_None:
2048                 return;
2049         case BJ_Metadata:
2050                 transaction->t_nr_buffers--;
2051                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2052                 list = &transaction->t_buffers;
2053                 break;
2054         case BJ_Forget:
2055                 list = &transaction->t_forget;
2056                 break;
2057         case BJ_Shadow:
2058                 list = &transaction->t_shadow_list;
2059                 break;
2060         case BJ_Reserved:
2061                 list = &transaction->t_reserved_list;
2062                 break;
2063         }
2064
2065         __blist_del_buffer(list, jh);
2066         jh->b_jlist = BJ_None;
2067         if (transaction && is_journal_aborted(transaction->t_journal))
2068                 clear_buffer_jbddirty(bh);
2069         else if (test_clear_buffer_jbddirty(bh))
2070                 mark_buffer_dirty(bh);  /* Expose it to the VM */
2071 }
2072
2073 /*
2074  * Remove buffer from all transactions. The caller is responsible for dropping
2075  * the jh reference that belonged to the transaction.
2076  *
2077  * Called with bh_state lock and j_list_lock
2078  */
2079 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2080 {
2081         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2082         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2083
2084         __jbd2_journal_temp_unlink_buffer(jh);
2085         jh->b_transaction = NULL;
2086 }
2087
2088 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2089 {
2090         struct buffer_head *bh = jh2bh(jh);
2091
2092         /* Get reference so that buffer cannot be freed before we unlock it */
2093         get_bh(bh);
2094         spin_lock(&jh->b_state_lock);
2095         spin_lock(&journal->j_list_lock);
2096         __jbd2_journal_unfile_buffer(jh);
2097         spin_unlock(&journal->j_list_lock);
2098         spin_unlock(&jh->b_state_lock);
2099         jbd2_journal_put_journal_head(jh);
2100         __brelse(bh);
2101 }
2102
2103 /*
2104  * Called from jbd2_journal_try_to_free_buffers().
2105  *
2106  * Called under jh->b_state_lock
2107  */
2108 static void
2109 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2110 {
2111         struct journal_head *jh;
2112
2113         jh = bh2jh(bh);
2114
2115         if (buffer_locked(bh) || buffer_dirty(bh))
2116                 goto out;
2117
2118         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2119                 goto out;
2120
2121         spin_lock(&journal->j_list_lock);
2122         if (jh->b_cp_transaction != NULL) {
2123                 /* written-back checkpointed metadata buffer */
2124                 JBUFFER_TRACE(jh, "remove from checkpoint list");
2125                 __jbd2_journal_remove_checkpoint(jh);
2126         }
2127         spin_unlock(&journal->j_list_lock);
2128 out:
2129         return;
2130 }
2131
2132 /**
2133  * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2134  * @journal: journal for operation
2135  * @folio: Folio to detach data from.
2136  *
2137  * For all the buffers on this page,
2138  * if they are fully written out ordered data, move them onto BUF_CLEAN
2139  * so try_to_free_buffers() can reap them.
2140  *
2141  * This function returns non-zero if we wish try_to_free_buffers()
2142  * to be called. We do this if the page is releasable by try_to_free_buffers().
2143  * We also do it if the page has locked or dirty buffers and the caller wants
2144  * us to perform sync or async writeout.
2145  *
2146  * This complicates JBD locking somewhat.  We aren't protected by the
2147  * BKL here.  We wish to remove the buffer from its committing or
2148  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2149  *
2150  * This may *change* the value of transaction_t->t_datalist, so anyone
2151  * who looks at t_datalist needs to lock against this function.
2152  *
2153  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2154  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2155  * will come out of the lock with the buffer dirty, which makes it
2156  * ineligible for release here.
2157  *
2158  * Who else is affected by this?  hmm...  Really the only contender
2159  * is do_get_write_access() - it could be looking at the buffer while
2160  * journal_try_to_free_buffer() is changing its state.  But that
2161  * cannot happen because we never reallocate freed data as metadata
2162  * while the data is part of a transaction.  Yes?
2163  *
2164  * Return false on failure, true on success
2165  */
2166 bool jbd2_journal_try_to_free_buffers(journal_t *journal, struct folio *folio)
2167 {
2168         struct buffer_head *head;
2169         struct buffer_head *bh;
2170         bool ret = false;
2171
2172         J_ASSERT(folio_test_locked(folio));
2173
2174         head = folio_buffers(folio);
2175         bh = head;
2176         do {
2177                 struct journal_head *jh;
2178
2179                 /*
2180                  * We take our own ref against the journal_head here to avoid
2181                  * having to add tons of locking around each instance of
2182                  * jbd2_journal_put_journal_head().
2183                  */
2184                 jh = jbd2_journal_grab_journal_head(bh);
2185                 if (!jh)
2186                         continue;
2187
2188                 spin_lock(&jh->b_state_lock);
2189                 __journal_try_to_free_buffer(journal, bh);
2190                 spin_unlock(&jh->b_state_lock);
2191                 jbd2_journal_put_journal_head(jh);
2192                 if (buffer_jbd(bh))
2193                         goto busy;
2194         } while ((bh = bh->b_this_page) != head);
2195
2196         ret = try_to_free_buffers(folio);
2197 busy:
2198         return ret;
2199 }
2200
2201 /*
2202  * This buffer is no longer needed.  If it is on an older transaction's
2203  * checkpoint list we need to record it on this transaction's forget list
2204  * to pin this buffer (and hence its checkpointing transaction) down until
2205  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2206  * release it.
2207  * Returns non-zero if JBD no longer has an interest in the buffer.
2208  *
2209  * Called under j_list_lock.
2210  *
2211  * Called under jh->b_state_lock.
2212  */
2213 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2214 {
2215         int may_free = 1;
2216         struct buffer_head *bh = jh2bh(jh);
2217
2218         if (jh->b_cp_transaction) {
2219                 JBUFFER_TRACE(jh, "on running+cp transaction");
2220                 __jbd2_journal_temp_unlink_buffer(jh);
2221                 /*
2222                  * We don't want to write the buffer anymore, clear the
2223                  * bit so that we don't confuse checks in
2224                  * __journal_file_buffer
2225                  */
2226                 clear_buffer_dirty(bh);
2227                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2228                 may_free = 0;
2229         } else {
2230                 JBUFFER_TRACE(jh, "on running transaction");
2231                 __jbd2_journal_unfile_buffer(jh);
2232                 jbd2_journal_put_journal_head(jh);
2233         }
2234         return may_free;
2235 }
2236
2237 /*
2238  * jbd2_journal_invalidate_folio
2239  *
2240  * This code is tricky.  It has a number of cases to deal with.
2241  *
2242  * There are two invariants which this code relies on:
2243  *
2244  * i_size must be updated on disk before we start calling invalidate_folio
2245  * on the data.
2246  *
2247  *  This is done in ext3 by defining an ext3_setattr method which
2248  *  updates i_size before truncate gets going.  By maintaining this
2249  *  invariant, we can be sure that it is safe to throw away any buffers
2250  *  attached to the current transaction: once the transaction commits,
2251  *  we know that the data will not be needed.
2252  *
2253  *  Note however that we can *not* throw away data belonging to the
2254  *  previous, committing transaction!
2255  *
2256  * Any disk blocks which *are* part of the previous, committing
2257  * transaction (and which therefore cannot be discarded immediately) are
2258  * not going to be reused in the new running transaction
2259  *
2260  *  The bitmap committed_data images guarantee this: any block which is
2261  *  allocated in one transaction and removed in the next will be marked
2262  *  as in-use in the committed_data bitmap, so cannot be reused until
2263  *  the next transaction to delete the block commits.  This means that
2264  *  leaving committing buffers dirty is quite safe: the disk blocks
2265  *  cannot be reallocated to a different file and so buffer aliasing is
2266  *  not possible.
2267  *
2268  *
2269  * The above applies mainly to ordered data mode.  In writeback mode we
2270  * don't make guarantees about the order in which data hits disk --- in
2271  * particular we don't guarantee that new dirty data is flushed before
2272  * transaction commit --- so it is always safe just to discard data
2273  * immediately in that mode.  --sct
2274  */
2275
2276 /*
2277  * The journal_unmap_buffer helper function returns zero if the buffer
2278  * concerned remains pinned as an anonymous buffer belonging to an older
2279  * transaction.
2280  *
2281  * We're outside-transaction here.  Either or both of j_running_transaction
2282  * and j_committing_transaction may be NULL.
2283  */
2284 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2285                                 int partial_page)
2286 {
2287         transaction_t *transaction;
2288         struct journal_head *jh;
2289         int may_free = 1;
2290
2291         BUFFER_TRACE(bh, "entry");
2292
2293         /*
2294          * It is safe to proceed here without the j_list_lock because the
2295          * buffers cannot be stolen by try_to_free_buffers as long as we are
2296          * holding the page lock. --sct
2297          */
2298
2299         jh = jbd2_journal_grab_journal_head(bh);
2300         if (!jh)
2301                 goto zap_buffer_unlocked;
2302
2303         /* OK, we have data buffer in journaled mode */
2304         write_lock(&journal->j_state_lock);
2305         spin_lock(&jh->b_state_lock);
2306         spin_lock(&journal->j_list_lock);
2307
2308         /*
2309          * We cannot remove the buffer from checkpoint lists until the
2310          * transaction adding inode to orphan list (let's call it T)
2311          * is committed.  Otherwise if the transaction changing the
2312          * buffer would be cleaned from the journal before T is
2313          * committed, a crash will cause that the correct contents of
2314          * the buffer will be lost.  On the other hand we have to
2315          * clear the buffer dirty bit at latest at the moment when the
2316          * transaction marking the buffer as freed in the filesystem
2317          * structures is committed because from that moment on the
2318          * block can be reallocated and used by a different page.
2319          * Since the block hasn't been freed yet but the inode has
2320          * already been added to orphan list, it is safe for us to add
2321          * the buffer to BJ_Forget list of the newest transaction.
2322          *
2323          * Also we have to clear buffer_mapped flag of a truncated buffer
2324          * because the buffer_head may be attached to the page straddling
2325          * i_size (can happen only when blocksize < pagesize) and thus the
2326          * buffer_head can be reused when the file is extended again. So we end
2327          * up keeping around invalidated buffers attached to transactions'
2328          * BJ_Forget list just to stop checkpointing code from cleaning up
2329          * the transaction this buffer was modified in.
2330          */
2331         transaction = jh->b_transaction;
2332         if (transaction == NULL) {
2333                 /* First case: not on any transaction.  If it
2334                  * has no checkpoint link, then we can zap it:
2335                  * it's a writeback-mode buffer so we don't care
2336                  * if it hits disk safely. */
2337                 if (!jh->b_cp_transaction) {
2338                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2339                         goto zap_buffer;
2340                 }
2341
2342                 if (!buffer_dirty(bh)) {
2343                         /* bdflush has written it.  We can drop it now */
2344                         __jbd2_journal_remove_checkpoint(jh);
2345                         goto zap_buffer;
2346                 }
2347
2348                 /* OK, it must be in the journal but still not
2349                  * written fully to disk: it's metadata or
2350                  * journaled data... */
2351
2352                 if (journal->j_running_transaction) {
2353                         /* ... and once the current transaction has
2354                          * committed, the buffer won't be needed any
2355                          * longer. */
2356                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2357                         may_free = __dispose_buffer(jh,
2358                                         journal->j_running_transaction);
2359                         goto zap_buffer;
2360                 } else {
2361                         /* There is no currently-running transaction. So the
2362                          * orphan record which we wrote for this file must have
2363                          * passed into commit.  We must attach this buffer to
2364                          * the committing transaction, if it exists. */
2365                         if (journal->j_committing_transaction) {
2366                                 JBUFFER_TRACE(jh, "give to committing trans");
2367                                 may_free = __dispose_buffer(jh,
2368                                         journal->j_committing_transaction);
2369                                 goto zap_buffer;
2370                         } else {
2371                                 /* The orphan record's transaction has
2372                                  * committed.  We can cleanse this buffer */
2373                                 clear_buffer_jbddirty(bh);
2374                                 __jbd2_journal_remove_checkpoint(jh);
2375                                 goto zap_buffer;
2376                         }
2377                 }
2378         } else if (transaction == journal->j_committing_transaction) {
2379                 JBUFFER_TRACE(jh, "on committing transaction");
2380                 /*
2381                  * The buffer is committing, we simply cannot touch
2382                  * it. If the page is straddling i_size we have to wait
2383                  * for commit and try again.
2384                  */
2385                 if (partial_page) {
2386                         spin_unlock(&journal->j_list_lock);
2387                         spin_unlock(&jh->b_state_lock);
2388                         write_unlock(&journal->j_state_lock);
2389                         jbd2_journal_put_journal_head(jh);
2390                         /* Already zapped buffer? Nothing to do... */
2391                         if (!bh->b_bdev)
2392                                 return 0;
2393                         return -EBUSY;
2394                 }
2395                 /*
2396                  * OK, buffer won't be reachable after truncate. We just clear
2397                  * b_modified to not confuse transaction credit accounting, and
2398                  * set j_next_transaction to the running transaction (if there
2399                  * is one) and mark buffer as freed so that commit code knows
2400                  * it should clear dirty bits when it is done with the buffer.
2401                  */
2402                 set_buffer_freed(bh);
2403                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2404                         jh->b_next_transaction = journal->j_running_transaction;
2405                 jh->b_modified = 0;
2406                 spin_unlock(&journal->j_list_lock);
2407                 spin_unlock(&jh->b_state_lock);
2408                 write_unlock(&journal->j_state_lock);
2409                 jbd2_journal_put_journal_head(jh);
2410                 return 0;
2411         } else {
2412                 /* Good, the buffer belongs to the running transaction.
2413                  * We are writing our own transaction's data, not any
2414                  * previous one's, so it is safe to throw it away
2415                  * (remember that we expect the filesystem to have set
2416                  * i_size already for this truncate so recovery will not
2417                  * expose the disk blocks we are discarding here.) */
2418                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2419                 JBUFFER_TRACE(jh, "on running transaction");
2420                 may_free = __dispose_buffer(jh, transaction);
2421         }
2422
2423 zap_buffer:
2424         /*
2425          * This is tricky. Although the buffer is truncated, it may be reused
2426          * if blocksize < pagesize and it is attached to the page straddling
2427          * EOF. Since the buffer might have been added to BJ_Forget list of the
2428          * running transaction, journal_get_write_access() won't clear
2429          * b_modified and credit accounting gets confused. So clear b_modified
2430          * here.
2431          */
2432         jh->b_modified = 0;
2433         spin_unlock(&journal->j_list_lock);
2434         spin_unlock(&jh->b_state_lock);
2435         write_unlock(&journal->j_state_lock);
2436         jbd2_journal_put_journal_head(jh);
2437 zap_buffer_unlocked:
2438         clear_buffer_dirty(bh);
2439         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2440         clear_buffer_mapped(bh);
2441         clear_buffer_req(bh);
2442         clear_buffer_new(bh);
2443         clear_buffer_delay(bh);
2444         clear_buffer_unwritten(bh);
2445         bh->b_bdev = NULL;
2446         return may_free;
2447 }
2448
2449 /**
2450  * jbd2_journal_invalidate_folio()
2451  * @journal: journal to use for flush...
2452  * @folio:    folio to flush
2453  * @offset:  start of the range to invalidate
2454  * @length:  length of the range to invalidate
2455  *
2456  * Reap page buffers containing data after in the specified range in page.
2457  * Can return -EBUSY if buffers are part of the committing transaction and
2458  * the page is straddling i_size. Caller then has to wait for current commit
2459  * and try again.
2460  */
2461 int jbd2_journal_invalidate_folio(journal_t *journal, struct folio *folio,
2462                                 size_t offset, size_t length)
2463 {
2464         struct buffer_head *head, *bh, *next;
2465         unsigned int stop = offset + length;
2466         unsigned int curr_off = 0;
2467         int partial_page = (offset || length < folio_size(folio));
2468         int may_free = 1;
2469         int ret = 0;
2470
2471         if (!folio_test_locked(folio))
2472                 BUG();
2473         head = folio_buffers(folio);
2474         if (!head)
2475                 return 0;
2476
2477         BUG_ON(stop > folio_size(folio) || stop < length);
2478
2479         /* We will potentially be playing with lists other than just the
2480          * data lists (especially for journaled data mode), so be
2481          * cautious in our locking. */
2482
2483         bh = head;
2484         do {
2485                 unsigned int next_off = curr_off + bh->b_size;
2486                 next = bh->b_this_page;
2487
2488                 if (next_off > stop)
2489                         return 0;
2490
2491                 if (offset <= curr_off) {
2492                         /* This block is wholly outside the truncation point */
2493                         lock_buffer(bh);
2494                         ret = journal_unmap_buffer(journal, bh, partial_page);
2495                         unlock_buffer(bh);
2496                         if (ret < 0)
2497                                 return ret;
2498                         may_free &= ret;
2499                 }
2500                 curr_off = next_off;
2501                 bh = next;
2502
2503         } while (bh != head);
2504
2505         if (!partial_page) {
2506                 if (may_free && try_to_free_buffers(folio))
2507                         J_ASSERT(!folio_buffers(folio));
2508         }
2509         return 0;
2510 }
2511
2512 /*
2513  * File a buffer on the given transaction list.
2514  */
2515 void __jbd2_journal_file_buffer(struct journal_head *jh,
2516                         transaction_t *transaction, int jlist)
2517 {
2518         struct journal_head **list = NULL;
2519         int was_dirty = 0;
2520         struct buffer_head *bh = jh2bh(jh);
2521
2522         lockdep_assert_held(&jh->b_state_lock);
2523         assert_spin_locked(&transaction->t_journal->j_list_lock);
2524
2525         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2526         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2527                                 jh->b_transaction == NULL);
2528
2529         if (jh->b_transaction && jh->b_jlist == jlist)
2530                 return;
2531
2532         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2533             jlist == BJ_Shadow || jlist == BJ_Forget) {
2534                 /*
2535                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2536                  * instead of buffer_dirty. We should not see a dirty bit set
2537                  * here because we clear it in do_get_write_access but e.g.
2538                  * tune2fs can modify the sb and set the dirty bit at any time
2539                  * so we try to gracefully handle that.
2540                  */
2541                 if (buffer_dirty(bh))
2542                         warn_dirty_buffer(bh);
2543                 if (test_clear_buffer_dirty(bh) ||
2544                     test_clear_buffer_jbddirty(bh))
2545                         was_dirty = 1;
2546         }
2547
2548         if (jh->b_transaction)
2549                 __jbd2_journal_temp_unlink_buffer(jh);
2550         else
2551                 jbd2_journal_grab_journal_head(bh);
2552         jh->b_transaction = transaction;
2553
2554         switch (jlist) {
2555         case BJ_None:
2556                 J_ASSERT_JH(jh, !jh->b_committed_data);
2557                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2558                 return;
2559         case BJ_Metadata:
2560                 transaction->t_nr_buffers++;
2561                 list = &transaction->t_buffers;
2562                 break;
2563         case BJ_Forget:
2564                 list = &transaction->t_forget;
2565                 break;
2566         case BJ_Shadow:
2567                 list = &transaction->t_shadow_list;
2568                 break;
2569         case BJ_Reserved:
2570                 list = &transaction->t_reserved_list;
2571                 break;
2572         }
2573
2574         __blist_add_buffer(list, jh);
2575         jh->b_jlist = jlist;
2576
2577         if (was_dirty)
2578                 set_buffer_jbddirty(bh);
2579 }
2580
2581 void jbd2_journal_file_buffer(struct journal_head *jh,
2582                                 transaction_t *transaction, int jlist)
2583 {
2584         spin_lock(&jh->b_state_lock);
2585         spin_lock(&transaction->t_journal->j_list_lock);
2586         __jbd2_journal_file_buffer(jh, transaction, jlist);
2587         spin_unlock(&transaction->t_journal->j_list_lock);
2588         spin_unlock(&jh->b_state_lock);
2589 }
2590
2591 /*
2592  * Remove a buffer from its current buffer list in preparation for
2593  * dropping it from its current transaction entirely.  If the buffer has
2594  * already started to be used by a subsequent transaction, refile the
2595  * buffer on that transaction's metadata list.
2596  *
2597  * Called under j_list_lock
2598  * Called under jh->b_state_lock
2599  *
2600  * When this function returns true, there's no next transaction to refile to
2601  * and the caller has to drop jh reference through
2602  * jbd2_journal_put_journal_head().
2603  */
2604 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2605 {
2606         int was_dirty, jlist;
2607         struct buffer_head *bh = jh2bh(jh);
2608
2609         lockdep_assert_held(&jh->b_state_lock);
2610         if (jh->b_transaction)
2611                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2612
2613         /* If the buffer is now unused, just drop it. */
2614         if (jh->b_next_transaction == NULL) {
2615                 __jbd2_journal_unfile_buffer(jh);
2616                 return true;
2617         }
2618
2619         /*
2620          * It has been modified by a later transaction: add it to the new
2621          * transaction's metadata list.
2622          */
2623
2624         was_dirty = test_clear_buffer_jbddirty(bh);
2625         __jbd2_journal_temp_unlink_buffer(jh);
2626
2627         /*
2628          * b_transaction must be set, otherwise the new b_transaction won't
2629          * be holding jh reference
2630          */
2631         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2632
2633         /*
2634          * We set b_transaction here because b_next_transaction will inherit
2635          * our jh reference and thus __jbd2_journal_file_buffer() must not
2636          * take a new one.
2637          */
2638         WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2639         WRITE_ONCE(jh->b_next_transaction, NULL);
2640         if (buffer_freed(bh))
2641                 jlist = BJ_Forget;
2642         else if (jh->b_modified)
2643                 jlist = BJ_Metadata;
2644         else
2645                 jlist = BJ_Reserved;
2646         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2647         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2648
2649         if (was_dirty)
2650                 set_buffer_jbddirty(bh);
2651         return false;
2652 }
2653
2654 /*
2655  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2656  * bh reference so that we can safely unlock bh.
2657  *
2658  * The jh and bh may be freed by this call.
2659  */
2660 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2661 {
2662         bool drop;
2663
2664         spin_lock(&jh->b_state_lock);
2665         spin_lock(&journal->j_list_lock);
2666         drop = __jbd2_journal_refile_buffer(jh);
2667         spin_unlock(&jh->b_state_lock);
2668         spin_unlock(&journal->j_list_lock);
2669         if (drop)
2670                 jbd2_journal_put_journal_head(jh);
2671 }
2672
2673 /*
2674  * File inode in the inode list of the handle's transaction
2675  */
2676 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2677                 unsigned long flags, loff_t start_byte, loff_t end_byte)
2678 {
2679         transaction_t *transaction = handle->h_transaction;
2680         journal_t *journal;
2681
2682         if (is_handle_aborted(handle))
2683                 return -EROFS;
2684         journal = transaction->t_journal;
2685
2686         jbd2_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2687                         transaction->t_tid);
2688
2689         spin_lock(&journal->j_list_lock);
2690         jinode->i_flags |= flags;
2691
2692         if (jinode->i_dirty_end) {
2693                 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2694                 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2695         } else {
2696                 jinode->i_dirty_start = start_byte;
2697                 jinode->i_dirty_end = end_byte;
2698         }
2699
2700         /* Is inode already attached where we need it? */
2701         if (jinode->i_transaction == transaction ||
2702             jinode->i_next_transaction == transaction)
2703                 goto done;
2704
2705         /*
2706          * We only ever set this variable to 1 so the test is safe. Since
2707          * t_need_data_flush is likely to be set, we do the test to save some
2708          * cacheline bouncing
2709          */
2710         if (!transaction->t_need_data_flush)
2711                 transaction->t_need_data_flush = 1;
2712         /* On some different transaction's list - should be
2713          * the committing one */
2714         if (jinode->i_transaction) {
2715                 J_ASSERT(jinode->i_next_transaction == NULL);
2716                 J_ASSERT(jinode->i_transaction ==
2717                                         journal->j_committing_transaction);
2718                 jinode->i_next_transaction = transaction;
2719                 goto done;
2720         }
2721         /* Not on any transaction list... */
2722         J_ASSERT(!jinode->i_next_transaction);
2723         jinode->i_transaction = transaction;
2724         list_add(&jinode->i_list, &transaction->t_inode_list);
2725 done:
2726         spin_unlock(&journal->j_list_lock);
2727
2728         return 0;
2729 }
2730
2731 int jbd2_journal_inode_ranged_write(handle_t *handle,
2732                 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2733 {
2734         return jbd2_journal_file_inode(handle, jinode,
2735                         JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2736                         start_byte + length - 1);
2737 }
2738
2739 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2740                 loff_t start_byte, loff_t length)
2741 {
2742         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2743                         start_byte, start_byte + length - 1);
2744 }
2745
2746 /*
2747  * File truncate and transaction commit interact with each other in a
2748  * non-trivial way.  If a transaction writing data block A is
2749  * committing, we cannot discard the data by truncate until we have
2750  * written them.  Otherwise if we crashed after the transaction with
2751  * write has committed but before the transaction with truncate has
2752  * committed, we could see stale data in block A.  This function is a
2753  * helper to solve this problem.  It starts writeout of the truncated
2754  * part in case it is in the committing transaction.
2755  *
2756  * Filesystem code must call this function when inode is journaled in
2757  * ordered mode before truncation happens and after the inode has been
2758  * placed on orphan list with the new inode size. The second condition
2759  * avoids the race that someone writes new data and we start
2760  * committing the transaction after this function has been called but
2761  * before a transaction for truncate is started (and furthermore it
2762  * allows us to optimize the case where the addition to orphan list
2763  * happens in the same transaction as write --- we don't have to write
2764  * any data in such case).
2765  */
2766 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2767                                         struct jbd2_inode *jinode,
2768                                         loff_t new_size)
2769 {
2770         transaction_t *inode_trans, *commit_trans;
2771         int ret = 0;
2772
2773         /* This is a quick check to avoid locking if not necessary */
2774         if (!jinode->i_transaction)
2775                 goto out;
2776         /* Locks are here just to force reading of recent values, it is
2777          * enough that the transaction was not committing before we started
2778          * a transaction adding the inode to orphan list */
2779         read_lock(&journal->j_state_lock);
2780         commit_trans = journal->j_committing_transaction;
2781         read_unlock(&journal->j_state_lock);
2782         spin_lock(&journal->j_list_lock);
2783         inode_trans = jinode->i_transaction;
2784         spin_unlock(&journal->j_list_lock);
2785         if (inode_trans == commit_trans) {
2786                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2787                         new_size, LLONG_MAX);
2788                 if (ret)
2789                         jbd2_journal_abort(journal, ret);
2790         }
2791 out:
2792         return ret;
2793 }