MAINTAINERS: update the LSM maintainer info
[platform/kernel/linux-starfive.git] / fs / jbd2 / transaction.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39         J_ASSERT(!transaction_cache);
40         transaction_cache = kmem_cache_create("jbd2_transaction_s",
41                                         sizeof(transaction_t),
42                                         0,
43                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44                                         NULL);
45         if (!transaction_cache) {
46                 pr_emerg("JBD2: failed to create transaction cache\n");
47                 return -ENOMEM;
48         }
49         return 0;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         kmem_cache_destroy(transaction_cache);
55         transaction_cache = NULL;
56 }
57
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61                 return;
62         kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66  * Base amount of descriptor blocks we reserve for each transaction.
67  */
68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70         int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71         int tags_per_block;
72
73         /* Subtract UUID */
74         tag_space -= 16;
75         if (jbd2_journal_has_csum_v2or3(journal))
76                 tag_space -= sizeof(struct jbd2_journal_block_tail);
77         /* Commit code leaves a slack space of 16 bytes at the end of block */
78         tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79         /*
80          * Revoke descriptors are accounted separately so we need to reserve
81          * space for commit block and normal transaction descriptor blocks.
82          */
83         return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84                                 tags_per_block);
85 }
86
87 /*
88  * jbd2_get_transaction: obtain a new transaction_t object.
89  *
90  * Simply initialise a new transaction. Initialize it in
91  * RUNNING state and add it to the current journal (which should not
92  * have an existing running transaction: we only make a new transaction
93  * once we have started to commit the old one).
94  *
95  * Preconditions:
96  *      The journal MUST be locked.  We don't perform atomic mallocs on the
97  *      new transaction and we can't block without protecting against other
98  *      processes trying to touch the journal while it is in transition.
99  *
100  */
101
102 static void jbd2_get_transaction(journal_t *journal,
103                                 transaction_t *transaction)
104 {
105         transaction->t_journal = journal;
106         transaction->t_state = T_RUNNING;
107         transaction->t_start_time = ktime_get();
108         transaction->t_tid = journal->j_transaction_sequence++;
109         transaction->t_expires = jiffies + journal->j_commit_interval;
110         atomic_set(&transaction->t_updates, 0);
111         atomic_set(&transaction->t_outstanding_credits,
112                    jbd2_descriptor_blocks_per_trans(journal) +
113                    atomic_read(&journal->j_reserved_credits));
114         atomic_set(&transaction->t_outstanding_revokes, 0);
115         atomic_set(&transaction->t_handle_count, 0);
116         INIT_LIST_HEAD(&transaction->t_inode_list);
117         INIT_LIST_HEAD(&transaction->t_private_list);
118
119         /* Set up the commit timer for the new transaction. */
120         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
121         add_timer(&journal->j_commit_timer);
122
123         J_ASSERT(journal->j_running_transaction == NULL);
124         journal->j_running_transaction = transaction;
125         transaction->t_max_wait = 0;
126         transaction->t_start = jiffies;
127         transaction->t_requested = 0;
128 }
129
130 /*
131  * Handle management.
132  *
133  * A handle_t is an object which represents a single atomic update to a
134  * filesystem, and which tracks all of the modifications which form part
135  * of that one update.
136  */
137
138 /*
139  * Update transaction's maximum wait time, if debugging is enabled.
140  *
141  * t_max_wait is carefully updated here with use of atomic compare exchange.
142  * Note that there could be multiplre threads trying to do this simultaneously
143  * hence using cmpxchg to avoid any use of locks in this case.
144  * With this t_max_wait can be updated w/o enabling jbd2_journal_enable_debug.
145  */
146 static inline void update_t_max_wait(transaction_t *transaction,
147                                      unsigned long ts)
148 {
149         unsigned long oldts, newts;
150
151         if (time_after(transaction->t_start, ts)) {
152                 newts = jbd2_time_diff(ts, transaction->t_start);
153                 oldts = READ_ONCE(transaction->t_max_wait);
154                 while (oldts < newts)
155                         oldts = cmpxchg(&transaction->t_max_wait, oldts, newts);
156         }
157 }
158
159 /*
160  * Wait until running transaction passes to T_FLUSH state and new transaction
161  * can thus be started. Also starts the commit if needed. The function expects
162  * running transaction to exist and releases j_state_lock.
163  */
164 static void wait_transaction_locked(journal_t *journal)
165         __releases(journal->j_state_lock)
166 {
167         DEFINE_WAIT(wait);
168         int need_to_start;
169         tid_t tid = journal->j_running_transaction->t_tid;
170
171         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
172                         TASK_UNINTERRUPTIBLE);
173         need_to_start = !tid_geq(journal->j_commit_request, tid);
174         read_unlock(&journal->j_state_lock);
175         if (need_to_start)
176                 jbd2_log_start_commit(journal, tid);
177         jbd2_might_wait_for_commit(journal);
178         schedule();
179         finish_wait(&journal->j_wait_transaction_locked, &wait);
180 }
181
182 /*
183  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
184  * state and new transaction can thus be started. The function releases
185  * j_state_lock.
186  */
187 static void wait_transaction_switching(journal_t *journal)
188         __releases(journal->j_state_lock)
189 {
190         DEFINE_WAIT(wait);
191
192         if (WARN_ON(!journal->j_running_transaction ||
193                     journal->j_running_transaction->t_state != T_SWITCH)) {
194                 read_unlock(&journal->j_state_lock);
195                 return;
196         }
197         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
198                         TASK_UNINTERRUPTIBLE);
199         read_unlock(&journal->j_state_lock);
200         /*
201          * We don't call jbd2_might_wait_for_commit() here as there's no
202          * waiting for outstanding handles happening anymore in T_SWITCH state
203          * and handling of reserved handles actually relies on that for
204          * correctness.
205          */
206         schedule();
207         finish_wait(&journal->j_wait_transaction_locked, &wait);
208 }
209
210 static void sub_reserved_credits(journal_t *journal, int blocks)
211 {
212         atomic_sub(blocks, &journal->j_reserved_credits);
213         wake_up(&journal->j_wait_reserved);
214 }
215
216 /*
217  * Wait until we can add credits for handle to the running transaction.  Called
218  * with j_state_lock held for reading. Returns 0 if handle joined the running
219  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
220  * caller must retry.
221  *
222  * Note: because j_state_lock may be dropped depending on the return
223  * value, we need to fake out sparse so ti doesn't complain about a
224  * locking imbalance.  Callers of add_transaction_credits will need to
225  * make a similar accomodation.
226  */
227 static int add_transaction_credits(journal_t *journal, int blocks,
228                                    int rsv_blocks)
229 __must_hold(&journal->j_state_lock)
230 {
231         transaction_t *t = journal->j_running_transaction;
232         int needed;
233         int total = blocks + rsv_blocks;
234
235         /*
236          * If the current transaction is locked down for commit, wait
237          * for the lock to be released.
238          */
239         if (t->t_state != T_RUNNING) {
240                 WARN_ON_ONCE(t->t_state >= T_FLUSH);
241                 wait_transaction_locked(journal);
242                 __acquire(&journal->j_state_lock); /* fake out sparse */
243                 return 1;
244         }
245
246         /*
247          * If there is not enough space left in the log to write all
248          * potential buffers requested by this operation, we need to
249          * stall pending a log checkpoint to free some more log space.
250          */
251         needed = atomic_add_return(total, &t->t_outstanding_credits);
252         if (needed > journal->j_max_transaction_buffers) {
253                 /*
254                  * If the current transaction is already too large,
255                  * then start to commit it: we can then go back and
256                  * attach this handle to a new transaction.
257                  */
258                 atomic_sub(total, &t->t_outstanding_credits);
259
260                 /*
261                  * Is the number of reserved credits in the current transaction too
262                  * big to fit this handle? Wait until reserved credits are freed.
263                  */
264                 if (atomic_read(&journal->j_reserved_credits) + total >
265                     journal->j_max_transaction_buffers) {
266                         read_unlock(&journal->j_state_lock);
267                         jbd2_might_wait_for_commit(journal);
268                         wait_event(journal->j_wait_reserved,
269                                    atomic_read(&journal->j_reserved_credits) + total <=
270                                    journal->j_max_transaction_buffers);
271                         __acquire(&journal->j_state_lock); /* fake out sparse */
272                         return 1;
273                 }
274
275                 wait_transaction_locked(journal);
276                 __acquire(&journal->j_state_lock); /* fake out sparse */
277                 return 1;
278         }
279
280         /*
281          * The commit code assumes that it can get enough log space
282          * without forcing a checkpoint.  This is *critical* for
283          * correctness: a checkpoint of a buffer which is also
284          * associated with a committing transaction creates a deadlock,
285          * so commit simply cannot force through checkpoints.
286          *
287          * We must therefore ensure the necessary space in the journal
288          * *before* starting to dirty potentially checkpointed buffers
289          * in the new transaction.
290          */
291         if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
292                 atomic_sub(total, &t->t_outstanding_credits);
293                 read_unlock(&journal->j_state_lock);
294                 jbd2_might_wait_for_commit(journal);
295                 write_lock(&journal->j_state_lock);
296                 if (jbd2_log_space_left(journal) <
297                                         journal->j_max_transaction_buffers)
298                         __jbd2_log_wait_for_space(journal);
299                 write_unlock(&journal->j_state_lock);
300                 __acquire(&journal->j_state_lock); /* fake out sparse */
301                 return 1;
302         }
303
304         /* No reservation? We are done... */
305         if (!rsv_blocks)
306                 return 0;
307
308         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
309         /* We allow at most half of a transaction to be reserved */
310         if (needed > journal->j_max_transaction_buffers / 2) {
311                 sub_reserved_credits(journal, rsv_blocks);
312                 atomic_sub(total, &t->t_outstanding_credits);
313                 read_unlock(&journal->j_state_lock);
314                 jbd2_might_wait_for_commit(journal);
315                 wait_event(journal->j_wait_reserved,
316                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
317                          <= journal->j_max_transaction_buffers / 2);
318                 __acquire(&journal->j_state_lock); /* fake out sparse */
319                 return 1;
320         }
321         return 0;
322 }
323
324 /*
325  * start_this_handle: Given a handle, deal with any locking or stalling
326  * needed to make sure that there is enough journal space for the handle
327  * to begin.  Attach the handle to a transaction and set up the
328  * transaction's buffer credits.
329  */
330
331 static int start_this_handle(journal_t *journal, handle_t *handle,
332                              gfp_t gfp_mask)
333 {
334         transaction_t   *transaction, *new_transaction = NULL;
335         int             blocks = handle->h_total_credits;
336         int             rsv_blocks = 0;
337         unsigned long ts = jiffies;
338
339         if (handle->h_rsv_handle)
340                 rsv_blocks = handle->h_rsv_handle->h_total_credits;
341
342         /*
343          * Limit the number of reserved credits to 1/2 of maximum transaction
344          * size and limit the number of total credits to not exceed maximum
345          * transaction size per operation.
346          */
347         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
348             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
349                 printk(KERN_ERR "JBD2: %s wants too many credits "
350                        "credits:%d rsv_credits:%d max:%d\n",
351                        current->comm, blocks, rsv_blocks,
352                        journal->j_max_transaction_buffers);
353                 WARN_ON(1);
354                 return -ENOSPC;
355         }
356
357 alloc_transaction:
358         /*
359          * This check is racy but it is just an optimization of allocating new
360          * transaction early if there are high chances we'll need it. If we
361          * guess wrong, we'll retry or free unused transaction.
362          */
363         if (!data_race(journal->j_running_transaction)) {
364                 /*
365                  * If __GFP_FS is not present, then we may be being called from
366                  * inside the fs writeback layer, so we MUST NOT fail.
367                  */
368                 if ((gfp_mask & __GFP_FS) == 0)
369                         gfp_mask |= __GFP_NOFAIL;
370                 new_transaction = kmem_cache_zalloc(transaction_cache,
371                                                     gfp_mask);
372                 if (!new_transaction)
373                         return -ENOMEM;
374         }
375
376         jbd_debug(3, "New handle %p going live.\n", handle);
377
378         /*
379          * We need to hold j_state_lock until t_updates has been incremented,
380          * for proper journal barrier handling
381          */
382 repeat:
383         read_lock(&journal->j_state_lock);
384         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
385         if (is_journal_aborted(journal) ||
386             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
387                 read_unlock(&journal->j_state_lock);
388                 jbd2_journal_free_transaction(new_transaction);
389                 return -EROFS;
390         }
391
392         /*
393          * Wait on the journal's transaction barrier if necessary. Specifically
394          * we allow reserved handles to proceed because otherwise commit could
395          * deadlock on page writeback not being able to complete.
396          */
397         if (!handle->h_reserved && journal->j_barrier_count) {
398                 read_unlock(&journal->j_state_lock);
399                 wait_event(journal->j_wait_transaction_locked,
400                                 journal->j_barrier_count == 0);
401                 goto repeat;
402         }
403
404         if (!journal->j_running_transaction) {
405                 read_unlock(&journal->j_state_lock);
406                 if (!new_transaction)
407                         goto alloc_transaction;
408                 write_lock(&journal->j_state_lock);
409                 if (!journal->j_running_transaction &&
410                     (handle->h_reserved || !journal->j_barrier_count)) {
411                         jbd2_get_transaction(journal, new_transaction);
412                         new_transaction = NULL;
413                 }
414                 write_unlock(&journal->j_state_lock);
415                 goto repeat;
416         }
417
418         transaction = journal->j_running_transaction;
419
420         if (!handle->h_reserved) {
421                 /* We may have dropped j_state_lock - restart in that case */
422                 if (add_transaction_credits(journal, blocks, rsv_blocks)) {
423                         /*
424                          * add_transaction_credits releases
425                          * j_state_lock on a non-zero return
426                          */
427                         __release(&journal->j_state_lock);
428                         goto repeat;
429                 }
430         } else {
431                 /*
432                  * We have handle reserved so we are allowed to join T_LOCKED
433                  * transaction and we don't have to check for transaction size
434                  * and journal space. But we still have to wait while running
435                  * transaction is being switched to a committing one as it
436                  * won't wait for any handles anymore.
437                  */
438                 if (transaction->t_state == T_SWITCH) {
439                         wait_transaction_switching(journal);
440                         goto repeat;
441                 }
442                 sub_reserved_credits(journal, blocks);
443                 handle->h_reserved = 0;
444         }
445
446         /* OK, account for the buffers that this operation expects to
447          * use and add the handle to the running transaction.
448          */
449         update_t_max_wait(transaction, ts);
450         handle->h_transaction = transaction;
451         handle->h_requested_credits = blocks;
452         handle->h_revoke_credits_requested = handle->h_revoke_credits;
453         handle->h_start_jiffies = jiffies;
454         atomic_inc(&transaction->t_updates);
455         atomic_inc(&transaction->t_handle_count);
456         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
457                   handle, blocks,
458                   atomic_read(&transaction->t_outstanding_credits),
459                   jbd2_log_space_left(journal));
460         read_unlock(&journal->j_state_lock);
461         current->journal_info = handle;
462
463         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
464         jbd2_journal_free_transaction(new_transaction);
465         /*
466          * Ensure that no allocations done while the transaction is open are
467          * going to recurse back to the fs layer.
468          */
469         handle->saved_alloc_context = memalloc_nofs_save();
470         return 0;
471 }
472
473 /* Allocate a new handle.  This should probably be in a slab... */
474 static handle_t *new_handle(int nblocks)
475 {
476         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
477         if (!handle)
478                 return NULL;
479         handle->h_total_credits = nblocks;
480         handle->h_ref = 1;
481
482         return handle;
483 }
484
485 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
486                               int revoke_records, gfp_t gfp_mask,
487                               unsigned int type, unsigned int line_no)
488 {
489         handle_t *handle = journal_current_handle();
490         int err;
491
492         if (!journal)
493                 return ERR_PTR(-EROFS);
494
495         if (handle) {
496                 J_ASSERT(handle->h_transaction->t_journal == journal);
497                 handle->h_ref++;
498                 return handle;
499         }
500
501         nblocks += DIV_ROUND_UP(revoke_records,
502                                 journal->j_revoke_records_per_block);
503         handle = new_handle(nblocks);
504         if (!handle)
505                 return ERR_PTR(-ENOMEM);
506         if (rsv_blocks) {
507                 handle_t *rsv_handle;
508
509                 rsv_handle = new_handle(rsv_blocks);
510                 if (!rsv_handle) {
511                         jbd2_free_handle(handle);
512                         return ERR_PTR(-ENOMEM);
513                 }
514                 rsv_handle->h_reserved = 1;
515                 rsv_handle->h_journal = journal;
516                 handle->h_rsv_handle = rsv_handle;
517         }
518         handle->h_revoke_credits = revoke_records;
519
520         err = start_this_handle(journal, handle, gfp_mask);
521         if (err < 0) {
522                 if (handle->h_rsv_handle)
523                         jbd2_free_handle(handle->h_rsv_handle);
524                 jbd2_free_handle(handle);
525                 return ERR_PTR(err);
526         }
527         handle->h_type = type;
528         handle->h_line_no = line_no;
529         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
530                                 handle->h_transaction->t_tid, type,
531                                 line_no, nblocks);
532
533         return handle;
534 }
535 EXPORT_SYMBOL(jbd2__journal_start);
536
537
538 /**
539  * jbd2_journal_start() - Obtain a new handle.
540  * @journal: Journal to start transaction on.
541  * @nblocks: number of block buffer we might modify
542  *
543  * We make sure that the transaction can guarantee at least nblocks of
544  * modified buffers in the log.  We block until the log can guarantee
545  * that much space. Additionally, if rsv_blocks > 0, we also create another
546  * handle with rsv_blocks reserved blocks in the journal. This handle is
547  * stored in h_rsv_handle. It is not attached to any particular transaction
548  * and thus doesn't block transaction commit. If the caller uses this reserved
549  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
550  * on the parent handle will dispose the reserved one. Reserved handle has to
551  * be converted to a normal handle using jbd2_journal_start_reserved() before
552  * it can be used.
553  *
554  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
555  * on failure.
556  */
557 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
558 {
559         return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
560 }
561 EXPORT_SYMBOL(jbd2_journal_start);
562
563 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
564 {
565         journal_t *journal = handle->h_journal;
566
567         WARN_ON(!handle->h_reserved);
568         sub_reserved_credits(journal, handle->h_total_credits);
569         if (t)
570                 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
571 }
572
573 void jbd2_journal_free_reserved(handle_t *handle)
574 {
575         journal_t *journal = handle->h_journal;
576
577         /* Get j_state_lock to pin running transaction if it exists */
578         read_lock(&journal->j_state_lock);
579         __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
580         read_unlock(&journal->j_state_lock);
581         jbd2_free_handle(handle);
582 }
583 EXPORT_SYMBOL(jbd2_journal_free_reserved);
584
585 /**
586  * jbd2_journal_start_reserved() - start reserved handle
587  * @handle: handle to start
588  * @type: for handle statistics
589  * @line_no: for handle statistics
590  *
591  * Start handle that has been previously reserved with jbd2_journal_reserve().
592  * This attaches @handle to the running transaction (or creates one if there's
593  * not transaction running). Unlike jbd2_journal_start() this function cannot
594  * block on journal commit, checkpointing, or similar stuff. It can block on
595  * memory allocation or frozen journal though.
596  *
597  * Return 0 on success, non-zero on error - handle is freed in that case.
598  */
599 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
600                                 unsigned int line_no)
601 {
602         journal_t *journal = handle->h_journal;
603         int ret = -EIO;
604
605         if (WARN_ON(!handle->h_reserved)) {
606                 /* Someone passed in normal handle? Just stop it. */
607                 jbd2_journal_stop(handle);
608                 return ret;
609         }
610         /*
611          * Usefulness of mixing of reserved and unreserved handles is
612          * questionable. So far nobody seems to need it so just error out.
613          */
614         if (WARN_ON(current->journal_info)) {
615                 jbd2_journal_free_reserved(handle);
616                 return ret;
617         }
618
619         handle->h_journal = NULL;
620         /*
621          * GFP_NOFS is here because callers are likely from writeback or
622          * similarly constrained call sites
623          */
624         ret = start_this_handle(journal, handle, GFP_NOFS);
625         if (ret < 0) {
626                 handle->h_journal = journal;
627                 jbd2_journal_free_reserved(handle);
628                 return ret;
629         }
630         handle->h_type = type;
631         handle->h_line_no = line_no;
632         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
633                                 handle->h_transaction->t_tid, type,
634                                 line_no, handle->h_total_credits);
635         return 0;
636 }
637 EXPORT_SYMBOL(jbd2_journal_start_reserved);
638
639 /**
640  * jbd2_journal_extend() - extend buffer credits.
641  * @handle:  handle to 'extend'
642  * @nblocks: nr blocks to try to extend by.
643  * @revoke_records: number of revoke records to try to extend by.
644  *
645  * Some transactions, such as large extends and truncates, can be done
646  * atomically all at once or in several stages.  The operation requests
647  * a credit for a number of buffer modifications in advance, but can
648  * extend its credit if it needs more.
649  *
650  * jbd2_journal_extend tries to give the running handle more buffer credits.
651  * It does not guarantee that allocation - this is a best-effort only.
652  * The calling process MUST be able to deal cleanly with a failure to
653  * extend here.
654  *
655  * Return 0 on success, non-zero on failure.
656  *
657  * return code < 0 implies an error
658  * return code > 0 implies normal transaction-full status.
659  */
660 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
661 {
662         transaction_t *transaction = handle->h_transaction;
663         journal_t *journal;
664         int result;
665         int wanted;
666
667         if (is_handle_aborted(handle))
668                 return -EROFS;
669         journal = transaction->t_journal;
670
671         result = 1;
672
673         read_lock(&journal->j_state_lock);
674
675         /* Don't extend a locked-down transaction! */
676         if (transaction->t_state != T_RUNNING) {
677                 jbd_debug(3, "denied handle %p %d blocks: "
678                           "transaction not running\n", handle, nblocks);
679                 goto error_out;
680         }
681
682         nblocks += DIV_ROUND_UP(
683                         handle->h_revoke_credits_requested + revoke_records,
684                         journal->j_revoke_records_per_block) -
685                 DIV_ROUND_UP(
686                         handle->h_revoke_credits_requested,
687                         journal->j_revoke_records_per_block);
688         wanted = atomic_add_return(nblocks,
689                                    &transaction->t_outstanding_credits);
690
691         if (wanted > journal->j_max_transaction_buffers) {
692                 jbd_debug(3, "denied handle %p %d blocks: "
693                           "transaction too large\n", handle, nblocks);
694                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
695                 goto error_out;
696         }
697
698         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
699                                  transaction->t_tid,
700                                  handle->h_type, handle->h_line_no,
701                                  handle->h_total_credits,
702                                  nblocks);
703
704         handle->h_total_credits += nblocks;
705         handle->h_requested_credits += nblocks;
706         handle->h_revoke_credits += revoke_records;
707         handle->h_revoke_credits_requested += revoke_records;
708         result = 0;
709
710         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
711 error_out:
712         read_unlock(&journal->j_state_lock);
713         return result;
714 }
715
716 static void stop_this_handle(handle_t *handle)
717 {
718         transaction_t *transaction = handle->h_transaction;
719         journal_t *journal = transaction->t_journal;
720         int revokes;
721
722         J_ASSERT(journal_current_handle() == handle);
723         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
724         current->journal_info = NULL;
725         /*
726          * Subtract necessary revoke descriptor blocks from handle credits. We
727          * take care to account only for revoke descriptor blocks the
728          * transaction will really need as large sequences of transactions with
729          * small numbers of revokes are relatively common.
730          */
731         revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
732         if (revokes) {
733                 int t_revokes, revoke_descriptors;
734                 int rr_per_blk = journal->j_revoke_records_per_block;
735
736                 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
737                                 > handle->h_total_credits);
738                 t_revokes = atomic_add_return(revokes,
739                                 &transaction->t_outstanding_revokes);
740                 revoke_descriptors =
741                         DIV_ROUND_UP(t_revokes, rr_per_blk) -
742                         DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
743                 handle->h_total_credits -= revoke_descriptors;
744         }
745         atomic_sub(handle->h_total_credits,
746                    &transaction->t_outstanding_credits);
747         if (handle->h_rsv_handle)
748                 __jbd2_journal_unreserve_handle(handle->h_rsv_handle,
749                                                 transaction);
750         if (atomic_dec_and_test(&transaction->t_updates))
751                 wake_up(&journal->j_wait_updates);
752
753         rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
754         /*
755          * Scope of the GFP_NOFS context is over here and so we can restore the
756          * original alloc context.
757          */
758         memalloc_nofs_restore(handle->saved_alloc_context);
759 }
760
761 /**
762  * jbd2__journal_restart() - restart a handle .
763  * @handle:  handle to restart
764  * @nblocks: nr credits requested
765  * @revoke_records: number of revoke record credits requested
766  * @gfp_mask: memory allocation flags (for start_this_handle)
767  *
768  * Restart a handle for a multi-transaction filesystem
769  * operation.
770  *
771  * If the jbd2_journal_extend() call above fails to grant new buffer credits
772  * to a running handle, a call to jbd2_journal_restart will commit the
773  * handle's transaction so far and reattach the handle to a new
774  * transaction capable of guaranteeing the requested number of
775  * credits. We preserve reserved handle if there's any attached to the
776  * passed in handle.
777  */
778 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
779                           gfp_t gfp_mask)
780 {
781         transaction_t *transaction = handle->h_transaction;
782         journal_t *journal;
783         tid_t           tid;
784         int             need_to_start;
785         int             ret;
786
787         /* If we've had an abort of any type, don't even think about
788          * actually doing the restart! */
789         if (is_handle_aborted(handle))
790                 return 0;
791         journal = transaction->t_journal;
792         tid = transaction->t_tid;
793
794         /*
795          * First unlink the handle from its current transaction, and start the
796          * commit on that.
797          */
798         jbd_debug(2, "restarting handle %p\n", handle);
799         stop_this_handle(handle);
800         handle->h_transaction = NULL;
801
802         /*
803          * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
804          * get rid of pointless j_state_lock traffic like this.
805          */
806         read_lock(&journal->j_state_lock);
807         need_to_start = !tid_geq(journal->j_commit_request, tid);
808         read_unlock(&journal->j_state_lock);
809         if (need_to_start)
810                 jbd2_log_start_commit(journal, tid);
811         handle->h_total_credits = nblocks +
812                 DIV_ROUND_UP(revoke_records,
813                              journal->j_revoke_records_per_block);
814         handle->h_revoke_credits = revoke_records;
815         ret = start_this_handle(journal, handle, gfp_mask);
816         trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
817                                  ret ? 0 : handle->h_transaction->t_tid,
818                                  handle->h_type, handle->h_line_no,
819                                  handle->h_total_credits);
820         return ret;
821 }
822 EXPORT_SYMBOL(jbd2__journal_restart);
823
824
825 int jbd2_journal_restart(handle_t *handle, int nblocks)
826 {
827         return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
828 }
829 EXPORT_SYMBOL(jbd2_journal_restart);
830
831 /*
832  * Waits for any outstanding t_updates to finish.
833  * This is called with write j_state_lock held.
834  */
835 void jbd2_journal_wait_updates(journal_t *journal)
836 {
837         DEFINE_WAIT(wait);
838
839         while (1) {
840                 /*
841                  * Note that the running transaction can get freed under us if
842                  * this transaction is getting committed in
843                  * jbd2_journal_commit_transaction() ->
844                  * jbd2_journal_free_transaction(). This can only happen when we
845                  * release j_state_lock -> schedule() -> acquire j_state_lock.
846                  * Hence we should everytime retrieve new j_running_transaction
847                  * value (after j_state_lock release acquire cycle), else it may
848                  * lead to use-after-free of old freed transaction.
849                  */
850                 transaction_t *transaction = journal->j_running_transaction;
851
852                 if (!transaction)
853                         break;
854
855                 prepare_to_wait(&journal->j_wait_updates, &wait,
856                                 TASK_UNINTERRUPTIBLE);
857                 if (!atomic_read(&transaction->t_updates)) {
858                         finish_wait(&journal->j_wait_updates, &wait);
859                         break;
860                 }
861                 write_unlock(&journal->j_state_lock);
862                 schedule();
863                 finish_wait(&journal->j_wait_updates, &wait);
864                 write_lock(&journal->j_state_lock);
865         }
866 }
867
868 /**
869  * jbd2_journal_lock_updates () - establish a transaction barrier.
870  * @journal:  Journal to establish a barrier on.
871  *
872  * This locks out any further updates from being started, and blocks
873  * until all existing updates have completed, returning only once the
874  * journal is in a quiescent state with no updates running.
875  *
876  * The journal lock should not be held on entry.
877  */
878 void jbd2_journal_lock_updates(journal_t *journal)
879 {
880         jbd2_might_wait_for_commit(journal);
881
882         write_lock(&journal->j_state_lock);
883         ++journal->j_barrier_count;
884
885         /* Wait until there are no reserved handles */
886         if (atomic_read(&journal->j_reserved_credits)) {
887                 write_unlock(&journal->j_state_lock);
888                 wait_event(journal->j_wait_reserved,
889                            atomic_read(&journal->j_reserved_credits) == 0);
890                 write_lock(&journal->j_state_lock);
891         }
892
893         /* Wait until there are no running t_updates */
894         jbd2_journal_wait_updates(journal);
895
896         write_unlock(&journal->j_state_lock);
897
898         /*
899          * We have now established a barrier against other normal updates, but
900          * we also need to barrier against other jbd2_journal_lock_updates() calls
901          * to make sure that we serialise special journal-locked operations
902          * too.
903          */
904         mutex_lock(&journal->j_barrier);
905 }
906
907 /**
908  * jbd2_journal_unlock_updates () - release barrier
909  * @journal:  Journal to release the barrier on.
910  *
911  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
912  *
913  * Should be called without the journal lock held.
914  */
915 void jbd2_journal_unlock_updates (journal_t *journal)
916 {
917         J_ASSERT(journal->j_barrier_count != 0);
918
919         mutex_unlock(&journal->j_barrier);
920         write_lock(&journal->j_state_lock);
921         --journal->j_barrier_count;
922         write_unlock(&journal->j_state_lock);
923         wake_up(&journal->j_wait_transaction_locked);
924 }
925
926 static void warn_dirty_buffer(struct buffer_head *bh)
927 {
928         printk(KERN_WARNING
929                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
930                "There's a risk of filesystem corruption in case of system "
931                "crash.\n",
932                bh->b_bdev, (unsigned long long)bh->b_blocknr);
933 }
934
935 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
936 static void jbd2_freeze_jh_data(struct journal_head *jh)
937 {
938         struct page *page;
939         int offset;
940         char *source;
941         struct buffer_head *bh = jh2bh(jh);
942
943         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
944         page = bh->b_page;
945         offset = offset_in_page(bh->b_data);
946         source = kmap_atomic(page);
947         /* Fire data frozen trigger just before we copy the data */
948         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
949         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
950         kunmap_atomic(source);
951
952         /*
953          * Now that the frozen data is saved off, we need to store any matching
954          * triggers.
955          */
956         jh->b_frozen_triggers = jh->b_triggers;
957 }
958
959 /*
960  * If the buffer is already part of the current transaction, then there
961  * is nothing we need to do.  If it is already part of a prior
962  * transaction which we are still committing to disk, then we need to
963  * make sure that we do not overwrite the old copy: we do copy-out to
964  * preserve the copy going to disk.  We also account the buffer against
965  * the handle's metadata buffer credits (unless the buffer is already
966  * part of the transaction, that is).
967  *
968  */
969 static int
970 do_get_write_access(handle_t *handle, struct journal_head *jh,
971                         int force_copy)
972 {
973         struct buffer_head *bh;
974         transaction_t *transaction = handle->h_transaction;
975         journal_t *journal;
976         int error;
977         char *frozen_buffer = NULL;
978         unsigned long start_lock, time_lock;
979
980         journal = transaction->t_journal;
981
982         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
983
984         JBUFFER_TRACE(jh, "entry");
985 repeat:
986         bh = jh2bh(jh);
987
988         /* @@@ Need to check for errors here at some point. */
989
990         start_lock = jiffies;
991         lock_buffer(bh);
992         spin_lock(&jh->b_state_lock);
993
994         /* If it takes too long to lock the buffer, trace it */
995         time_lock = jbd2_time_diff(start_lock, jiffies);
996         if (time_lock > HZ/10)
997                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
998                         jiffies_to_msecs(time_lock));
999
1000         /* We now hold the buffer lock so it is safe to query the buffer
1001          * state.  Is the buffer dirty?
1002          *
1003          * If so, there are two possibilities.  The buffer may be
1004          * non-journaled, and undergoing a quite legitimate writeback.
1005          * Otherwise, it is journaled, and we don't expect dirty buffers
1006          * in that state (the buffers should be marked JBD_Dirty
1007          * instead.)  So either the IO is being done under our own
1008          * control and this is a bug, or it's a third party IO such as
1009          * dump(8) (which may leave the buffer scheduled for read ---
1010          * ie. locked but not dirty) or tune2fs (which may actually have
1011          * the buffer dirtied, ugh.)  */
1012
1013         if (buffer_dirty(bh)) {
1014                 /*
1015                  * First question: is this buffer already part of the current
1016                  * transaction or the existing committing transaction?
1017                  */
1018                 if (jh->b_transaction) {
1019                         J_ASSERT_JH(jh,
1020                                 jh->b_transaction == transaction ||
1021                                 jh->b_transaction ==
1022                                         journal->j_committing_transaction);
1023                         if (jh->b_next_transaction)
1024                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
1025                                                         transaction);
1026                         warn_dirty_buffer(bh);
1027                 }
1028                 /*
1029                  * In any case we need to clean the dirty flag and we must
1030                  * do it under the buffer lock to be sure we don't race
1031                  * with running write-out.
1032                  */
1033                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
1034                 clear_buffer_dirty(bh);
1035                 set_buffer_jbddirty(bh);
1036         }
1037
1038         unlock_buffer(bh);
1039
1040         error = -EROFS;
1041         if (is_handle_aborted(handle)) {
1042                 spin_unlock(&jh->b_state_lock);
1043                 goto out;
1044         }
1045         error = 0;
1046
1047         /*
1048          * The buffer is already part of this transaction if b_transaction or
1049          * b_next_transaction points to it
1050          */
1051         if (jh->b_transaction == transaction ||
1052             jh->b_next_transaction == transaction)
1053                 goto done;
1054
1055         /*
1056          * this is the first time this transaction is touching this buffer,
1057          * reset the modified flag
1058          */
1059         jh->b_modified = 0;
1060
1061         /*
1062          * If the buffer is not journaled right now, we need to make sure it
1063          * doesn't get written to disk before the caller actually commits the
1064          * new data
1065          */
1066         if (!jh->b_transaction) {
1067                 JBUFFER_TRACE(jh, "no transaction");
1068                 J_ASSERT_JH(jh, !jh->b_next_transaction);
1069                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1070                 /*
1071                  * Make sure all stores to jh (b_modified, b_frozen_data) are
1072                  * visible before attaching it to the running transaction.
1073                  * Paired with barrier in jbd2_write_access_granted()
1074                  */
1075                 smp_wmb();
1076                 spin_lock(&journal->j_list_lock);
1077                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1078                 spin_unlock(&journal->j_list_lock);
1079                 goto done;
1080         }
1081         /*
1082          * If there is already a copy-out version of this buffer, then we don't
1083          * need to make another one
1084          */
1085         if (jh->b_frozen_data) {
1086                 JBUFFER_TRACE(jh, "has frozen data");
1087                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1088                 goto attach_next;
1089         }
1090
1091         JBUFFER_TRACE(jh, "owned by older transaction");
1092         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1093         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1094
1095         /*
1096          * There is one case we have to be very careful about.  If the
1097          * committing transaction is currently writing this buffer out to disk
1098          * and has NOT made a copy-out, then we cannot modify the buffer
1099          * contents at all right now.  The essence of copy-out is that it is
1100          * the extra copy, not the primary copy, which gets journaled.  If the
1101          * primary copy is already going to disk then we cannot do copy-out
1102          * here.
1103          */
1104         if (buffer_shadow(bh)) {
1105                 JBUFFER_TRACE(jh, "on shadow: sleep");
1106                 spin_unlock(&jh->b_state_lock);
1107                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1108                 goto repeat;
1109         }
1110
1111         /*
1112          * Only do the copy if the currently-owning transaction still needs it.
1113          * If buffer isn't on BJ_Metadata list, the committing transaction is
1114          * past that stage (here we use the fact that BH_Shadow is set under
1115          * bh_state lock together with refiling to BJ_Shadow list and at this
1116          * point we know the buffer doesn't have BH_Shadow set).
1117          *
1118          * Subtle point, though: if this is a get_undo_access, then we will be
1119          * relying on the frozen_data to contain the new value of the
1120          * committed_data record after the transaction, so we HAVE to force the
1121          * frozen_data copy in that case.
1122          */
1123         if (jh->b_jlist == BJ_Metadata || force_copy) {
1124                 JBUFFER_TRACE(jh, "generate frozen data");
1125                 if (!frozen_buffer) {
1126                         JBUFFER_TRACE(jh, "allocate memory for buffer");
1127                         spin_unlock(&jh->b_state_lock);
1128                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1129                                                    GFP_NOFS | __GFP_NOFAIL);
1130                         goto repeat;
1131                 }
1132                 jh->b_frozen_data = frozen_buffer;
1133                 frozen_buffer = NULL;
1134                 jbd2_freeze_jh_data(jh);
1135         }
1136 attach_next:
1137         /*
1138          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1139          * before attaching it to the running transaction. Paired with barrier
1140          * in jbd2_write_access_granted()
1141          */
1142         smp_wmb();
1143         jh->b_next_transaction = transaction;
1144
1145 done:
1146         spin_unlock(&jh->b_state_lock);
1147
1148         /*
1149          * If we are about to journal a buffer, then any revoke pending on it is
1150          * no longer valid
1151          */
1152         jbd2_journal_cancel_revoke(handle, jh);
1153
1154 out:
1155         if (unlikely(frozen_buffer))    /* It's usually NULL */
1156                 jbd2_free(frozen_buffer, bh->b_size);
1157
1158         JBUFFER_TRACE(jh, "exit");
1159         return error;
1160 }
1161
1162 /* Fast check whether buffer is already attached to the required transaction */
1163 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1164                                                         bool undo)
1165 {
1166         struct journal_head *jh;
1167         bool ret = false;
1168
1169         /* Dirty buffers require special handling... */
1170         if (buffer_dirty(bh))
1171                 return false;
1172
1173         /*
1174          * RCU protects us from dereferencing freed pages. So the checks we do
1175          * are guaranteed not to oops. However the jh slab object can get freed
1176          * & reallocated while we work with it. So we have to be careful. When
1177          * we see jh attached to the running transaction, we know it must stay
1178          * so until the transaction is committed. Thus jh won't be freed and
1179          * will be attached to the same bh while we run.  However it can
1180          * happen jh gets freed, reallocated, and attached to the transaction
1181          * just after we get pointer to it from bh. So we have to be careful
1182          * and recheck jh still belongs to our bh before we return success.
1183          */
1184         rcu_read_lock();
1185         if (!buffer_jbd(bh))
1186                 goto out;
1187         /* This should be bh2jh() but that doesn't work with inline functions */
1188         jh = READ_ONCE(bh->b_private);
1189         if (!jh)
1190                 goto out;
1191         /* For undo access buffer must have data copied */
1192         if (undo && !jh->b_committed_data)
1193                 goto out;
1194         if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1195             READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1196                 goto out;
1197         /*
1198          * There are two reasons for the barrier here:
1199          * 1) Make sure to fetch b_bh after we did previous checks so that we
1200          * detect when jh went through free, realloc, attach to transaction
1201          * while we were checking. Paired with implicit barrier in that path.
1202          * 2) So that access to bh done after jbd2_write_access_granted()
1203          * doesn't get reordered and see inconsistent state of concurrent
1204          * do_get_write_access().
1205          */
1206         smp_mb();
1207         if (unlikely(jh->b_bh != bh))
1208                 goto out;
1209         ret = true;
1210 out:
1211         rcu_read_unlock();
1212         return ret;
1213 }
1214
1215 /**
1216  * jbd2_journal_get_write_access() - notify intent to modify a buffer
1217  *                                   for metadata (not data) update.
1218  * @handle: transaction to add buffer modifications to
1219  * @bh:     bh to be used for metadata writes
1220  *
1221  * Returns: error code or 0 on success.
1222  *
1223  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1224  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1225  */
1226
1227 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1228 {
1229         struct journal_head *jh;
1230         int rc;
1231
1232         if (is_handle_aborted(handle))
1233                 return -EROFS;
1234
1235         if (jbd2_write_access_granted(handle, bh, false))
1236                 return 0;
1237
1238         jh = jbd2_journal_add_journal_head(bh);
1239         /* We do not want to get caught playing with fields which the
1240          * log thread also manipulates.  Make sure that the buffer
1241          * completes any outstanding IO before proceeding. */
1242         rc = do_get_write_access(handle, jh, 0);
1243         jbd2_journal_put_journal_head(jh);
1244         return rc;
1245 }
1246
1247
1248 /*
1249  * When the user wants to journal a newly created buffer_head
1250  * (ie. getblk() returned a new buffer and we are going to populate it
1251  * manually rather than reading off disk), then we need to keep the
1252  * buffer_head locked until it has been completely filled with new
1253  * data.  In this case, we should be able to make the assertion that
1254  * the bh is not already part of an existing transaction.
1255  *
1256  * The buffer should already be locked by the caller by this point.
1257  * There is no lock ranking violation: it was a newly created,
1258  * unlocked buffer beforehand. */
1259
1260 /**
1261  * jbd2_journal_get_create_access () - notify intent to use newly created bh
1262  * @handle: transaction to new buffer to
1263  * @bh: new buffer.
1264  *
1265  * Call this if you create a new bh.
1266  */
1267 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1268 {
1269         transaction_t *transaction = handle->h_transaction;
1270         journal_t *journal;
1271         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1272         int err;
1273
1274         jbd_debug(5, "journal_head %p\n", jh);
1275         err = -EROFS;
1276         if (is_handle_aborted(handle))
1277                 goto out;
1278         journal = transaction->t_journal;
1279         err = 0;
1280
1281         JBUFFER_TRACE(jh, "entry");
1282         /*
1283          * The buffer may already belong to this transaction due to pre-zeroing
1284          * in the filesystem's new_block code.  It may also be on the previous,
1285          * committing transaction's lists, but it HAS to be in Forget state in
1286          * that case: the transaction must have deleted the buffer for it to be
1287          * reused here.
1288          */
1289         spin_lock(&jh->b_state_lock);
1290         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1291                 jh->b_transaction == NULL ||
1292                 (jh->b_transaction == journal->j_committing_transaction &&
1293                           jh->b_jlist == BJ_Forget)));
1294
1295         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1296         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1297
1298         if (jh->b_transaction == NULL) {
1299                 /*
1300                  * Previous jbd2_journal_forget() could have left the buffer
1301                  * with jbddirty bit set because it was being committed. When
1302                  * the commit finished, we've filed the buffer for
1303                  * checkpointing and marked it dirty. Now we are reallocating
1304                  * the buffer so the transaction freeing it must have
1305                  * committed and so it's safe to clear the dirty bit.
1306                  */
1307                 clear_buffer_dirty(jh2bh(jh));
1308                 /* first access by this transaction */
1309                 jh->b_modified = 0;
1310
1311                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1312                 spin_lock(&journal->j_list_lock);
1313                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1314                 spin_unlock(&journal->j_list_lock);
1315         } else if (jh->b_transaction == journal->j_committing_transaction) {
1316                 /* first access by this transaction */
1317                 jh->b_modified = 0;
1318
1319                 JBUFFER_TRACE(jh, "set next transaction");
1320                 spin_lock(&journal->j_list_lock);
1321                 jh->b_next_transaction = transaction;
1322                 spin_unlock(&journal->j_list_lock);
1323         }
1324         spin_unlock(&jh->b_state_lock);
1325
1326         /*
1327          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1328          * blocks which contain freed but then revoked metadata.  We need
1329          * to cancel the revoke in case we end up freeing it yet again
1330          * and the reallocating as data - this would cause a second revoke,
1331          * which hits an assertion error.
1332          */
1333         JBUFFER_TRACE(jh, "cancelling revoke");
1334         jbd2_journal_cancel_revoke(handle, jh);
1335 out:
1336         jbd2_journal_put_journal_head(jh);
1337         return err;
1338 }
1339
1340 /**
1341  * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1342  *     non-rewindable consequences
1343  * @handle: transaction
1344  * @bh: buffer to undo
1345  *
1346  * Sometimes there is a need to distinguish between metadata which has
1347  * been committed to disk and that which has not.  The ext3fs code uses
1348  * this for freeing and allocating space, we have to make sure that we
1349  * do not reuse freed space until the deallocation has been committed,
1350  * since if we overwrote that space we would make the delete
1351  * un-rewindable in case of a crash.
1352  *
1353  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1354  * buffer for parts of non-rewindable operations such as delete
1355  * operations on the bitmaps.  The journaling code must keep a copy of
1356  * the buffer's contents prior to the undo_access call until such time
1357  * as we know that the buffer has definitely been committed to disk.
1358  *
1359  * We never need to know which transaction the committed data is part
1360  * of, buffers touched here are guaranteed to be dirtied later and so
1361  * will be committed to a new transaction in due course, at which point
1362  * we can discard the old committed data pointer.
1363  *
1364  * Returns error number or 0 on success.
1365  */
1366 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1367 {
1368         int err;
1369         struct journal_head *jh;
1370         char *committed_data = NULL;
1371
1372         if (is_handle_aborted(handle))
1373                 return -EROFS;
1374
1375         if (jbd2_write_access_granted(handle, bh, true))
1376                 return 0;
1377
1378         jh = jbd2_journal_add_journal_head(bh);
1379         JBUFFER_TRACE(jh, "entry");
1380
1381         /*
1382          * Do this first --- it can drop the journal lock, so we want to
1383          * make sure that obtaining the committed_data is done
1384          * atomically wrt. completion of any outstanding commits.
1385          */
1386         err = do_get_write_access(handle, jh, 1);
1387         if (err)
1388                 goto out;
1389
1390 repeat:
1391         if (!jh->b_committed_data)
1392                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1393                                             GFP_NOFS|__GFP_NOFAIL);
1394
1395         spin_lock(&jh->b_state_lock);
1396         if (!jh->b_committed_data) {
1397                 /* Copy out the current buffer contents into the
1398                  * preserved, committed copy. */
1399                 JBUFFER_TRACE(jh, "generate b_committed data");
1400                 if (!committed_data) {
1401                         spin_unlock(&jh->b_state_lock);
1402                         goto repeat;
1403                 }
1404
1405                 jh->b_committed_data = committed_data;
1406                 committed_data = NULL;
1407                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1408         }
1409         spin_unlock(&jh->b_state_lock);
1410 out:
1411         jbd2_journal_put_journal_head(jh);
1412         if (unlikely(committed_data))
1413                 jbd2_free(committed_data, bh->b_size);
1414         return err;
1415 }
1416
1417 /**
1418  * jbd2_journal_set_triggers() - Add triggers for commit writeout
1419  * @bh: buffer to trigger on
1420  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1421  *
1422  * Set any triggers on this journal_head.  This is always safe, because
1423  * triggers for a committing buffer will be saved off, and triggers for
1424  * a running transaction will match the buffer in that transaction.
1425  *
1426  * Call with NULL to clear the triggers.
1427  */
1428 void jbd2_journal_set_triggers(struct buffer_head *bh,
1429                                struct jbd2_buffer_trigger_type *type)
1430 {
1431         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1432
1433         if (WARN_ON_ONCE(!jh))
1434                 return;
1435         jh->b_triggers = type;
1436         jbd2_journal_put_journal_head(jh);
1437 }
1438
1439 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1440                                 struct jbd2_buffer_trigger_type *triggers)
1441 {
1442         struct buffer_head *bh = jh2bh(jh);
1443
1444         if (!triggers || !triggers->t_frozen)
1445                 return;
1446
1447         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1448 }
1449
1450 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1451                                struct jbd2_buffer_trigger_type *triggers)
1452 {
1453         if (!triggers || !triggers->t_abort)
1454                 return;
1455
1456         triggers->t_abort(triggers, jh2bh(jh));
1457 }
1458
1459 /**
1460  * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1461  * @handle: transaction to add buffer to.
1462  * @bh: buffer to mark
1463  *
1464  * mark dirty metadata which needs to be journaled as part of the current
1465  * transaction.
1466  *
1467  * The buffer must have previously had jbd2_journal_get_write_access()
1468  * called so that it has a valid journal_head attached to the buffer
1469  * head.
1470  *
1471  * The buffer is placed on the transaction's metadata list and is marked
1472  * as belonging to the transaction.
1473  *
1474  * Returns error number or 0 on success.
1475  *
1476  * Special care needs to be taken if the buffer already belongs to the
1477  * current committing transaction (in which case we should have frozen
1478  * data present for that commit).  In that case, we don't relink the
1479  * buffer: that only gets done when the old transaction finally
1480  * completes its commit.
1481  */
1482 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1483 {
1484         transaction_t *transaction = handle->h_transaction;
1485         journal_t *journal;
1486         struct journal_head *jh;
1487         int ret = 0;
1488
1489         if (is_handle_aborted(handle))
1490                 return -EROFS;
1491         if (!buffer_jbd(bh))
1492                 return -EUCLEAN;
1493
1494         /*
1495          * We don't grab jh reference here since the buffer must be part
1496          * of the running transaction.
1497          */
1498         jh = bh2jh(bh);
1499         jbd_debug(5, "journal_head %p\n", jh);
1500         JBUFFER_TRACE(jh, "entry");
1501
1502         /*
1503          * This and the following assertions are unreliable since we may see jh
1504          * in inconsistent state unless we grab bh_state lock. But this is
1505          * crucial to catch bugs so let's do a reliable check until the
1506          * lockless handling is fully proven.
1507          */
1508         if (data_race(jh->b_transaction != transaction &&
1509             jh->b_next_transaction != transaction)) {
1510                 spin_lock(&jh->b_state_lock);
1511                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1512                                 jh->b_next_transaction == transaction);
1513                 spin_unlock(&jh->b_state_lock);
1514         }
1515         if (jh->b_modified == 1) {
1516                 /* If it's in our transaction it must be in BJ_Metadata list. */
1517                 if (data_race(jh->b_transaction == transaction &&
1518                     jh->b_jlist != BJ_Metadata)) {
1519                         spin_lock(&jh->b_state_lock);
1520                         if (jh->b_transaction == transaction &&
1521                             jh->b_jlist != BJ_Metadata)
1522                                 pr_err("JBD2: assertion failure: h_type=%u "
1523                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1524                                        handle->h_type, handle->h_line_no,
1525                                        (unsigned long long) bh->b_blocknr,
1526                                        jh->b_jlist);
1527                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1528                                         jh->b_jlist == BJ_Metadata);
1529                         spin_unlock(&jh->b_state_lock);
1530                 }
1531                 goto out;
1532         }
1533
1534         journal = transaction->t_journal;
1535         spin_lock(&jh->b_state_lock);
1536
1537         if (jh->b_modified == 0) {
1538                 /*
1539                  * This buffer's got modified and becoming part
1540                  * of the transaction. This needs to be done
1541                  * once a transaction -bzzz
1542                  */
1543                 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1544                         ret = -ENOSPC;
1545                         goto out_unlock_bh;
1546                 }
1547                 jh->b_modified = 1;
1548                 handle->h_total_credits--;
1549         }
1550
1551         /*
1552          * fastpath, to avoid expensive locking.  If this buffer is already
1553          * on the running transaction's metadata list there is nothing to do.
1554          * Nobody can take it off again because there is a handle open.
1555          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1556          * result in this test being false, so we go in and take the locks.
1557          */
1558         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1559                 JBUFFER_TRACE(jh, "fastpath");
1560                 if (unlikely(jh->b_transaction !=
1561                              journal->j_running_transaction)) {
1562                         printk(KERN_ERR "JBD2: %s: "
1563                                "jh->b_transaction (%llu, %p, %u) != "
1564                                "journal->j_running_transaction (%p, %u)\n",
1565                                journal->j_devname,
1566                                (unsigned long long) bh->b_blocknr,
1567                                jh->b_transaction,
1568                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1569                                journal->j_running_transaction,
1570                                journal->j_running_transaction ?
1571                                journal->j_running_transaction->t_tid : 0);
1572                         ret = -EINVAL;
1573                 }
1574                 goto out_unlock_bh;
1575         }
1576
1577         set_buffer_jbddirty(bh);
1578
1579         /*
1580          * Metadata already on the current transaction list doesn't
1581          * need to be filed.  Metadata on another transaction's list must
1582          * be committing, and will be refiled once the commit completes:
1583          * leave it alone for now.
1584          */
1585         if (jh->b_transaction != transaction) {
1586                 JBUFFER_TRACE(jh, "already on other transaction");
1587                 if (unlikely(((jh->b_transaction !=
1588                                journal->j_committing_transaction)) ||
1589                              (jh->b_next_transaction != transaction))) {
1590                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1591                                "bad jh for block %llu: "
1592                                "transaction (%p, %u), "
1593                                "jh->b_transaction (%p, %u), "
1594                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1595                                journal->j_devname,
1596                                (unsigned long long) bh->b_blocknr,
1597                                transaction, transaction->t_tid,
1598                                jh->b_transaction,
1599                                jh->b_transaction ?
1600                                jh->b_transaction->t_tid : 0,
1601                                jh->b_next_transaction,
1602                                jh->b_next_transaction ?
1603                                jh->b_next_transaction->t_tid : 0,
1604                                jh->b_jlist);
1605                         WARN_ON(1);
1606                         ret = -EINVAL;
1607                 }
1608                 /* And this case is illegal: we can't reuse another
1609                  * transaction's data buffer, ever. */
1610                 goto out_unlock_bh;
1611         }
1612
1613         /* That test should have eliminated the following case: */
1614         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1615
1616         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1617         spin_lock(&journal->j_list_lock);
1618         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1619         spin_unlock(&journal->j_list_lock);
1620 out_unlock_bh:
1621         spin_unlock(&jh->b_state_lock);
1622 out:
1623         JBUFFER_TRACE(jh, "exit");
1624         return ret;
1625 }
1626
1627 /**
1628  * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1629  * @handle: transaction handle
1630  * @bh:     bh to 'forget'
1631  *
1632  * We can only do the bforget if there are no commits pending against the
1633  * buffer.  If the buffer is dirty in the current running transaction we
1634  * can safely unlink it.
1635  *
1636  * bh may not be a journalled buffer at all - it may be a non-JBD
1637  * buffer which came off the hashtable.  Check for this.
1638  *
1639  * Decrements bh->b_count by one.
1640  *
1641  * Allow this call even if the handle has aborted --- it may be part of
1642  * the caller's cleanup after an abort.
1643  */
1644 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1645 {
1646         transaction_t *transaction = handle->h_transaction;
1647         journal_t *journal;
1648         struct journal_head *jh;
1649         int drop_reserve = 0;
1650         int err = 0;
1651         int was_modified = 0;
1652
1653         if (is_handle_aborted(handle))
1654                 return -EROFS;
1655         journal = transaction->t_journal;
1656
1657         BUFFER_TRACE(bh, "entry");
1658
1659         jh = jbd2_journal_grab_journal_head(bh);
1660         if (!jh) {
1661                 __bforget(bh);
1662                 return 0;
1663         }
1664
1665         spin_lock(&jh->b_state_lock);
1666
1667         /* Critical error: attempting to delete a bitmap buffer, maybe?
1668          * Don't do any jbd operations, and return an error. */
1669         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1670                          "inconsistent data on disk")) {
1671                 err = -EIO;
1672                 goto drop;
1673         }
1674
1675         /* keep track of whether or not this transaction modified us */
1676         was_modified = jh->b_modified;
1677
1678         /*
1679          * The buffer's going from the transaction, we must drop
1680          * all references -bzzz
1681          */
1682         jh->b_modified = 0;
1683
1684         if (jh->b_transaction == transaction) {
1685                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1686
1687                 /* If we are forgetting a buffer which is already part
1688                  * of this transaction, then we can just drop it from
1689                  * the transaction immediately. */
1690                 clear_buffer_dirty(bh);
1691                 clear_buffer_jbddirty(bh);
1692
1693                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1694
1695                 /*
1696                  * we only want to drop a reference if this transaction
1697                  * modified the buffer
1698                  */
1699                 if (was_modified)
1700                         drop_reserve = 1;
1701
1702                 /*
1703                  * We are no longer going to journal this buffer.
1704                  * However, the commit of this transaction is still
1705                  * important to the buffer: the delete that we are now
1706                  * processing might obsolete an old log entry, so by
1707                  * committing, we can satisfy the buffer's checkpoint.
1708                  *
1709                  * So, if we have a checkpoint on the buffer, we should
1710                  * now refile the buffer on our BJ_Forget list so that
1711                  * we know to remove the checkpoint after we commit.
1712                  */
1713
1714                 spin_lock(&journal->j_list_lock);
1715                 if (jh->b_cp_transaction) {
1716                         __jbd2_journal_temp_unlink_buffer(jh);
1717                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1718                 } else {
1719                         __jbd2_journal_unfile_buffer(jh);
1720                         jbd2_journal_put_journal_head(jh);
1721                 }
1722                 spin_unlock(&journal->j_list_lock);
1723         } else if (jh->b_transaction) {
1724                 J_ASSERT_JH(jh, (jh->b_transaction ==
1725                                  journal->j_committing_transaction));
1726                 /* However, if the buffer is still owned by a prior
1727                  * (committing) transaction, we can't drop it yet... */
1728                 JBUFFER_TRACE(jh, "belongs to older transaction");
1729                 /* ... but we CAN drop it from the new transaction through
1730                  * marking the buffer as freed and set j_next_transaction to
1731                  * the new transaction, so that not only the commit code
1732                  * knows it should clear dirty bits when it is done with the
1733                  * buffer, but also the buffer can be checkpointed only
1734                  * after the new transaction commits. */
1735
1736                 set_buffer_freed(bh);
1737
1738                 if (!jh->b_next_transaction) {
1739                         spin_lock(&journal->j_list_lock);
1740                         jh->b_next_transaction = transaction;
1741                         spin_unlock(&journal->j_list_lock);
1742                 } else {
1743                         J_ASSERT(jh->b_next_transaction == transaction);
1744
1745                         /*
1746                          * only drop a reference if this transaction modified
1747                          * the buffer
1748                          */
1749                         if (was_modified)
1750                                 drop_reserve = 1;
1751                 }
1752         } else {
1753                 /*
1754                  * Finally, if the buffer is not belongs to any
1755                  * transaction, we can just drop it now if it has no
1756                  * checkpoint.
1757                  */
1758                 spin_lock(&journal->j_list_lock);
1759                 if (!jh->b_cp_transaction) {
1760                         JBUFFER_TRACE(jh, "belongs to none transaction");
1761                         spin_unlock(&journal->j_list_lock);
1762                         goto drop;
1763                 }
1764
1765                 /*
1766                  * Otherwise, if the buffer has been written to disk,
1767                  * it is safe to remove the checkpoint and drop it.
1768                  */
1769                 if (!buffer_dirty(bh)) {
1770                         __jbd2_journal_remove_checkpoint(jh);
1771                         spin_unlock(&journal->j_list_lock);
1772                         goto drop;
1773                 }
1774
1775                 /*
1776                  * The buffer is still not written to disk, we should
1777                  * attach this buffer to current transaction so that the
1778                  * buffer can be checkpointed only after the current
1779                  * transaction commits.
1780                  */
1781                 clear_buffer_dirty(bh);
1782                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1783                 spin_unlock(&journal->j_list_lock);
1784         }
1785 drop:
1786         __brelse(bh);
1787         spin_unlock(&jh->b_state_lock);
1788         jbd2_journal_put_journal_head(jh);
1789         if (drop_reserve) {
1790                 /* no need to reserve log space for this block -bzzz */
1791                 handle->h_total_credits++;
1792         }
1793         return err;
1794 }
1795
1796 /**
1797  * jbd2_journal_stop() - complete a transaction
1798  * @handle: transaction to complete.
1799  *
1800  * All done for a particular handle.
1801  *
1802  * There is not much action needed here.  We just return any remaining
1803  * buffer credits to the transaction and remove the handle.  The only
1804  * complication is that we need to start a commit operation if the
1805  * filesystem is marked for synchronous update.
1806  *
1807  * jbd2_journal_stop itself will not usually return an error, but it may
1808  * do so in unusual circumstances.  In particular, expect it to
1809  * return -EIO if a jbd2_journal_abort has been executed since the
1810  * transaction began.
1811  */
1812 int jbd2_journal_stop(handle_t *handle)
1813 {
1814         transaction_t *transaction = handle->h_transaction;
1815         journal_t *journal;
1816         int err = 0, wait_for_commit = 0;
1817         tid_t tid;
1818         pid_t pid;
1819
1820         if (--handle->h_ref > 0) {
1821                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1822                                                  handle->h_ref);
1823                 if (is_handle_aborted(handle))
1824                         return -EIO;
1825                 return 0;
1826         }
1827         if (!transaction) {
1828                 /*
1829                  * Handle is already detached from the transaction so there is
1830                  * nothing to do other than free the handle.
1831                  */
1832                 memalloc_nofs_restore(handle->saved_alloc_context);
1833                 goto free_and_exit;
1834         }
1835         journal = transaction->t_journal;
1836         tid = transaction->t_tid;
1837
1838         if (is_handle_aborted(handle))
1839                 err = -EIO;
1840
1841         jbd_debug(4, "Handle %p going down\n", handle);
1842         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1843                                 tid, handle->h_type, handle->h_line_no,
1844                                 jiffies - handle->h_start_jiffies,
1845                                 handle->h_sync, handle->h_requested_credits,
1846                                 (handle->h_requested_credits -
1847                                  handle->h_total_credits));
1848
1849         /*
1850          * Implement synchronous transaction batching.  If the handle
1851          * was synchronous, don't force a commit immediately.  Let's
1852          * yield and let another thread piggyback onto this
1853          * transaction.  Keep doing that while new threads continue to
1854          * arrive.  It doesn't cost much - we're about to run a commit
1855          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1856          * operations by 30x or more...
1857          *
1858          * We try and optimize the sleep time against what the
1859          * underlying disk can do, instead of having a static sleep
1860          * time.  This is useful for the case where our storage is so
1861          * fast that it is more optimal to go ahead and force a flush
1862          * and wait for the transaction to be committed than it is to
1863          * wait for an arbitrary amount of time for new writers to
1864          * join the transaction.  We achieve this by measuring how
1865          * long it takes to commit a transaction, and compare it with
1866          * how long this transaction has been running, and if run time
1867          * < commit time then we sleep for the delta and commit.  This
1868          * greatly helps super fast disks that would see slowdowns as
1869          * more threads started doing fsyncs.
1870          *
1871          * But don't do this if this process was the most recent one
1872          * to perform a synchronous write.  We do this to detect the
1873          * case where a single process is doing a stream of sync
1874          * writes.  No point in waiting for joiners in that case.
1875          *
1876          * Setting max_batch_time to 0 disables this completely.
1877          */
1878         pid = current->pid;
1879         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1880             journal->j_max_batch_time) {
1881                 u64 commit_time, trans_time;
1882
1883                 journal->j_last_sync_writer = pid;
1884
1885                 read_lock(&journal->j_state_lock);
1886                 commit_time = journal->j_average_commit_time;
1887                 read_unlock(&journal->j_state_lock);
1888
1889                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1890                                                    transaction->t_start_time));
1891
1892                 commit_time = max_t(u64, commit_time,
1893                                     1000*journal->j_min_batch_time);
1894                 commit_time = min_t(u64, commit_time,
1895                                     1000*journal->j_max_batch_time);
1896
1897                 if (trans_time < commit_time) {
1898                         ktime_t expires = ktime_add_ns(ktime_get(),
1899                                                        commit_time);
1900                         set_current_state(TASK_UNINTERRUPTIBLE);
1901                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1902                 }
1903         }
1904
1905         if (handle->h_sync)
1906                 transaction->t_synchronous_commit = 1;
1907
1908         /*
1909          * If the handle is marked SYNC, we need to set another commit
1910          * going!  We also want to force a commit if the transaction is too
1911          * old now.
1912          */
1913         if (handle->h_sync ||
1914             time_after_eq(jiffies, transaction->t_expires)) {
1915                 /* Do this even for aborted journals: an abort still
1916                  * completes the commit thread, it just doesn't write
1917                  * anything to disk. */
1918
1919                 jbd_debug(2, "transaction too old, requesting commit for "
1920                                         "handle %p\n", handle);
1921                 /* This is non-blocking */
1922                 jbd2_log_start_commit(journal, tid);
1923
1924                 /*
1925                  * Special case: JBD2_SYNC synchronous updates require us
1926                  * to wait for the commit to complete.
1927                  */
1928                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1929                         wait_for_commit = 1;
1930         }
1931
1932         /*
1933          * Once stop_this_handle() drops t_updates, the transaction could start
1934          * committing on us and eventually disappear.  So we must not
1935          * dereference transaction pointer again after calling
1936          * stop_this_handle().
1937          */
1938         stop_this_handle(handle);
1939
1940         if (wait_for_commit)
1941                 err = jbd2_log_wait_commit(journal, tid);
1942
1943 free_and_exit:
1944         if (handle->h_rsv_handle)
1945                 jbd2_free_handle(handle->h_rsv_handle);
1946         jbd2_free_handle(handle);
1947         return err;
1948 }
1949
1950 /*
1951  *
1952  * List management code snippets: various functions for manipulating the
1953  * transaction buffer lists.
1954  *
1955  */
1956
1957 /*
1958  * Append a buffer to a transaction list, given the transaction's list head
1959  * pointer.
1960  *
1961  * j_list_lock is held.
1962  *
1963  * jh->b_state_lock is held.
1964  */
1965
1966 static inline void
1967 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1968 {
1969         if (!*list) {
1970                 jh->b_tnext = jh->b_tprev = jh;
1971                 *list = jh;
1972         } else {
1973                 /* Insert at the tail of the list to preserve order */
1974                 struct journal_head *first = *list, *last = first->b_tprev;
1975                 jh->b_tprev = last;
1976                 jh->b_tnext = first;
1977                 last->b_tnext = first->b_tprev = jh;
1978         }
1979 }
1980
1981 /*
1982  * Remove a buffer from a transaction list, given the transaction's list
1983  * head pointer.
1984  *
1985  * Called with j_list_lock held, and the journal may not be locked.
1986  *
1987  * jh->b_state_lock is held.
1988  */
1989
1990 static inline void
1991 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1992 {
1993         if (*list == jh) {
1994                 *list = jh->b_tnext;
1995                 if (*list == jh)
1996                         *list = NULL;
1997         }
1998         jh->b_tprev->b_tnext = jh->b_tnext;
1999         jh->b_tnext->b_tprev = jh->b_tprev;
2000 }
2001
2002 /*
2003  * Remove a buffer from the appropriate transaction list.
2004  *
2005  * Note that this function can *change* the value of
2006  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
2007  * t_reserved_list.  If the caller is holding onto a copy of one of these
2008  * pointers, it could go bad.  Generally the caller needs to re-read the
2009  * pointer from the transaction_t.
2010  *
2011  * Called under j_list_lock.
2012  */
2013 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2014 {
2015         struct journal_head **list = NULL;
2016         transaction_t *transaction;
2017         struct buffer_head *bh = jh2bh(jh);
2018
2019         lockdep_assert_held(&jh->b_state_lock);
2020         transaction = jh->b_transaction;
2021         if (transaction)
2022                 assert_spin_locked(&transaction->t_journal->j_list_lock);
2023
2024         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2025         if (jh->b_jlist != BJ_None)
2026                 J_ASSERT_JH(jh, transaction != NULL);
2027
2028         switch (jh->b_jlist) {
2029         case BJ_None:
2030                 return;
2031         case BJ_Metadata:
2032                 transaction->t_nr_buffers--;
2033                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2034                 list = &transaction->t_buffers;
2035                 break;
2036         case BJ_Forget:
2037                 list = &transaction->t_forget;
2038                 break;
2039         case BJ_Shadow:
2040                 list = &transaction->t_shadow_list;
2041                 break;
2042         case BJ_Reserved:
2043                 list = &transaction->t_reserved_list;
2044                 break;
2045         }
2046
2047         __blist_del_buffer(list, jh);
2048         jh->b_jlist = BJ_None;
2049         if (transaction && is_journal_aborted(transaction->t_journal))
2050                 clear_buffer_jbddirty(bh);
2051         else if (test_clear_buffer_jbddirty(bh))
2052                 mark_buffer_dirty(bh);  /* Expose it to the VM */
2053 }
2054
2055 /*
2056  * Remove buffer from all transactions. The caller is responsible for dropping
2057  * the jh reference that belonged to the transaction.
2058  *
2059  * Called with bh_state lock and j_list_lock
2060  */
2061 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2062 {
2063         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2064         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2065
2066         __jbd2_journal_temp_unlink_buffer(jh);
2067         jh->b_transaction = NULL;
2068 }
2069
2070 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2071 {
2072         struct buffer_head *bh = jh2bh(jh);
2073
2074         /* Get reference so that buffer cannot be freed before we unlock it */
2075         get_bh(bh);
2076         spin_lock(&jh->b_state_lock);
2077         spin_lock(&journal->j_list_lock);
2078         __jbd2_journal_unfile_buffer(jh);
2079         spin_unlock(&journal->j_list_lock);
2080         spin_unlock(&jh->b_state_lock);
2081         jbd2_journal_put_journal_head(jh);
2082         __brelse(bh);
2083 }
2084
2085 /*
2086  * Called from jbd2_journal_try_to_free_buffers().
2087  *
2088  * Called under jh->b_state_lock
2089  */
2090 static void
2091 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2092 {
2093         struct journal_head *jh;
2094
2095         jh = bh2jh(bh);
2096
2097         if (buffer_locked(bh) || buffer_dirty(bh))
2098                 goto out;
2099
2100         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2101                 goto out;
2102
2103         spin_lock(&journal->j_list_lock);
2104         if (jh->b_cp_transaction != NULL) {
2105                 /* written-back checkpointed metadata buffer */
2106                 JBUFFER_TRACE(jh, "remove from checkpoint list");
2107                 __jbd2_journal_remove_checkpoint(jh);
2108         }
2109         spin_unlock(&journal->j_list_lock);
2110 out:
2111         return;
2112 }
2113
2114 /**
2115  * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2116  * @journal: journal for operation
2117  * @page: to try and free
2118  *
2119  * For all the buffers on this page,
2120  * if they are fully written out ordered data, move them onto BUF_CLEAN
2121  * so try_to_free_buffers() can reap them.
2122  *
2123  * This function returns non-zero if we wish try_to_free_buffers()
2124  * to be called. We do this if the page is releasable by try_to_free_buffers().
2125  * We also do it if the page has locked or dirty buffers and the caller wants
2126  * us to perform sync or async writeout.
2127  *
2128  * This complicates JBD locking somewhat.  We aren't protected by the
2129  * BKL here.  We wish to remove the buffer from its committing or
2130  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2131  *
2132  * This may *change* the value of transaction_t->t_datalist, so anyone
2133  * who looks at t_datalist needs to lock against this function.
2134  *
2135  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2136  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2137  * will come out of the lock with the buffer dirty, which makes it
2138  * ineligible for release here.
2139  *
2140  * Who else is affected by this?  hmm...  Really the only contender
2141  * is do_get_write_access() - it could be looking at the buffer while
2142  * journal_try_to_free_buffer() is changing its state.  But that
2143  * cannot happen because we never reallocate freed data as metadata
2144  * while the data is part of a transaction.  Yes?
2145  *
2146  * Return false on failure, true on success
2147  */
2148 bool jbd2_journal_try_to_free_buffers(journal_t *journal, struct folio *folio)
2149 {
2150         struct buffer_head *head;
2151         struct buffer_head *bh;
2152         bool ret = false;
2153
2154         J_ASSERT(folio_test_locked(folio));
2155
2156         head = folio_buffers(folio);
2157         bh = head;
2158         do {
2159                 struct journal_head *jh;
2160
2161                 /*
2162                  * We take our own ref against the journal_head here to avoid
2163                  * having to add tons of locking around each instance of
2164                  * jbd2_journal_put_journal_head().
2165                  */
2166                 jh = jbd2_journal_grab_journal_head(bh);
2167                 if (!jh)
2168                         continue;
2169
2170                 spin_lock(&jh->b_state_lock);
2171                 __journal_try_to_free_buffer(journal, bh);
2172                 spin_unlock(&jh->b_state_lock);
2173                 jbd2_journal_put_journal_head(jh);
2174                 if (buffer_jbd(bh))
2175                         goto busy;
2176         } while ((bh = bh->b_this_page) != head);
2177
2178         ret = try_to_free_buffers(folio);
2179 busy:
2180         return ret;
2181 }
2182
2183 /*
2184  * This buffer is no longer needed.  If it is on an older transaction's
2185  * checkpoint list we need to record it on this transaction's forget list
2186  * to pin this buffer (and hence its checkpointing transaction) down until
2187  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2188  * release it.
2189  * Returns non-zero if JBD no longer has an interest in the buffer.
2190  *
2191  * Called under j_list_lock.
2192  *
2193  * Called under jh->b_state_lock.
2194  */
2195 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2196 {
2197         int may_free = 1;
2198         struct buffer_head *bh = jh2bh(jh);
2199
2200         if (jh->b_cp_transaction) {
2201                 JBUFFER_TRACE(jh, "on running+cp transaction");
2202                 __jbd2_journal_temp_unlink_buffer(jh);
2203                 /*
2204                  * We don't want to write the buffer anymore, clear the
2205                  * bit so that we don't confuse checks in
2206                  * __journal_file_buffer
2207                  */
2208                 clear_buffer_dirty(bh);
2209                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2210                 may_free = 0;
2211         } else {
2212                 JBUFFER_TRACE(jh, "on running transaction");
2213                 __jbd2_journal_unfile_buffer(jh);
2214                 jbd2_journal_put_journal_head(jh);
2215         }
2216         return may_free;
2217 }
2218
2219 /*
2220  * jbd2_journal_invalidate_folio
2221  *
2222  * This code is tricky.  It has a number of cases to deal with.
2223  *
2224  * There are two invariants which this code relies on:
2225  *
2226  * i_size must be updated on disk before we start calling invalidate_folio
2227  * on the data.
2228  *
2229  *  This is done in ext3 by defining an ext3_setattr method which
2230  *  updates i_size before truncate gets going.  By maintaining this
2231  *  invariant, we can be sure that it is safe to throw away any buffers
2232  *  attached to the current transaction: once the transaction commits,
2233  *  we know that the data will not be needed.
2234  *
2235  *  Note however that we can *not* throw away data belonging to the
2236  *  previous, committing transaction!
2237  *
2238  * Any disk blocks which *are* part of the previous, committing
2239  * transaction (and which therefore cannot be discarded immediately) are
2240  * not going to be reused in the new running transaction
2241  *
2242  *  The bitmap committed_data images guarantee this: any block which is
2243  *  allocated in one transaction and removed in the next will be marked
2244  *  as in-use in the committed_data bitmap, so cannot be reused until
2245  *  the next transaction to delete the block commits.  This means that
2246  *  leaving committing buffers dirty is quite safe: the disk blocks
2247  *  cannot be reallocated to a different file and so buffer aliasing is
2248  *  not possible.
2249  *
2250  *
2251  * The above applies mainly to ordered data mode.  In writeback mode we
2252  * don't make guarantees about the order in which data hits disk --- in
2253  * particular we don't guarantee that new dirty data is flushed before
2254  * transaction commit --- so it is always safe just to discard data
2255  * immediately in that mode.  --sct
2256  */
2257
2258 /*
2259  * The journal_unmap_buffer helper function returns zero if the buffer
2260  * concerned remains pinned as an anonymous buffer belonging to an older
2261  * transaction.
2262  *
2263  * We're outside-transaction here.  Either or both of j_running_transaction
2264  * and j_committing_transaction may be NULL.
2265  */
2266 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2267                                 int partial_page)
2268 {
2269         transaction_t *transaction;
2270         struct journal_head *jh;
2271         int may_free = 1;
2272
2273         BUFFER_TRACE(bh, "entry");
2274
2275         /*
2276          * It is safe to proceed here without the j_list_lock because the
2277          * buffers cannot be stolen by try_to_free_buffers as long as we are
2278          * holding the page lock. --sct
2279          */
2280
2281         jh = jbd2_journal_grab_journal_head(bh);
2282         if (!jh)
2283                 goto zap_buffer_unlocked;
2284
2285         /* OK, we have data buffer in journaled mode */
2286         write_lock(&journal->j_state_lock);
2287         spin_lock(&jh->b_state_lock);
2288         spin_lock(&journal->j_list_lock);
2289
2290         /*
2291          * We cannot remove the buffer from checkpoint lists until the
2292          * transaction adding inode to orphan list (let's call it T)
2293          * is committed.  Otherwise if the transaction changing the
2294          * buffer would be cleaned from the journal before T is
2295          * committed, a crash will cause that the correct contents of
2296          * the buffer will be lost.  On the other hand we have to
2297          * clear the buffer dirty bit at latest at the moment when the
2298          * transaction marking the buffer as freed in the filesystem
2299          * structures is committed because from that moment on the
2300          * block can be reallocated and used by a different page.
2301          * Since the block hasn't been freed yet but the inode has
2302          * already been added to orphan list, it is safe for us to add
2303          * the buffer to BJ_Forget list of the newest transaction.
2304          *
2305          * Also we have to clear buffer_mapped flag of a truncated buffer
2306          * because the buffer_head may be attached to the page straddling
2307          * i_size (can happen only when blocksize < pagesize) and thus the
2308          * buffer_head can be reused when the file is extended again. So we end
2309          * up keeping around invalidated buffers attached to transactions'
2310          * BJ_Forget list just to stop checkpointing code from cleaning up
2311          * the transaction this buffer was modified in.
2312          */
2313         transaction = jh->b_transaction;
2314         if (transaction == NULL) {
2315                 /* First case: not on any transaction.  If it
2316                  * has no checkpoint link, then we can zap it:
2317                  * it's a writeback-mode buffer so we don't care
2318                  * if it hits disk safely. */
2319                 if (!jh->b_cp_transaction) {
2320                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2321                         goto zap_buffer;
2322                 }
2323
2324                 if (!buffer_dirty(bh)) {
2325                         /* bdflush has written it.  We can drop it now */
2326                         __jbd2_journal_remove_checkpoint(jh);
2327                         goto zap_buffer;
2328                 }
2329
2330                 /* OK, it must be in the journal but still not
2331                  * written fully to disk: it's metadata or
2332                  * journaled data... */
2333
2334                 if (journal->j_running_transaction) {
2335                         /* ... and once the current transaction has
2336                          * committed, the buffer won't be needed any
2337                          * longer. */
2338                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2339                         may_free = __dispose_buffer(jh,
2340                                         journal->j_running_transaction);
2341                         goto zap_buffer;
2342                 } else {
2343                         /* There is no currently-running transaction. So the
2344                          * orphan record which we wrote for this file must have
2345                          * passed into commit.  We must attach this buffer to
2346                          * the committing transaction, if it exists. */
2347                         if (journal->j_committing_transaction) {
2348                                 JBUFFER_TRACE(jh, "give to committing trans");
2349                                 may_free = __dispose_buffer(jh,
2350                                         journal->j_committing_transaction);
2351                                 goto zap_buffer;
2352                         } else {
2353                                 /* The orphan record's transaction has
2354                                  * committed.  We can cleanse this buffer */
2355                                 clear_buffer_jbddirty(bh);
2356                                 __jbd2_journal_remove_checkpoint(jh);
2357                                 goto zap_buffer;
2358                         }
2359                 }
2360         } else if (transaction == journal->j_committing_transaction) {
2361                 JBUFFER_TRACE(jh, "on committing transaction");
2362                 /*
2363                  * The buffer is committing, we simply cannot touch
2364                  * it. If the page is straddling i_size we have to wait
2365                  * for commit and try again.
2366                  */
2367                 if (partial_page) {
2368                         spin_unlock(&journal->j_list_lock);
2369                         spin_unlock(&jh->b_state_lock);
2370                         write_unlock(&journal->j_state_lock);
2371                         jbd2_journal_put_journal_head(jh);
2372                         return -EBUSY;
2373                 }
2374                 /*
2375                  * OK, buffer won't be reachable after truncate. We just clear
2376                  * b_modified to not confuse transaction credit accounting, and
2377                  * set j_next_transaction to the running transaction (if there
2378                  * is one) and mark buffer as freed so that commit code knows
2379                  * it should clear dirty bits when it is done with the buffer.
2380                  */
2381                 set_buffer_freed(bh);
2382                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2383                         jh->b_next_transaction = journal->j_running_transaction;
2384                 jh->b_modified = 0;
2385                 spin_unlock(&journal->j_list_lock);
2386                 spin_unlock(&jh->b_state_lock);
2387                 write_unlock(&journal->j_state_lock);
2388                 jbd2_journal_put_journal_head(jh);
2389                 return 0;
2390         } else {
2391                 /* Good, the buffer belongs to the running transaction.
2392                  * We are writing our own transaction's data, not any
2393                  * previous one's, so it is safe to throw it away
2394                  * (remember that we expect the filesystem to have set
2395                  * i_size already for this truncate so recovery will not
2396                  * expose the disk blocks we are discarding here.) */
2397                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2398                 JBUFFER_TRACE(jh, "on running transaction");
2399                 may_free = __dispose_buffer(jh, transaction);
2400         }
2401
2402 zap_buffer:
2403         /*
2404          * This is tricky. Although the buffer is truncated, it may be reused
2405          * if blocksize < pagesize and it is attached to the page straddling
2406          * EOF. Since the buffer might have been added to BJ_Forget list of the
2407          * running transaction, journal_get_write_access() won't clear
2408          * b_modified and credit accounting gets confused. So clear b_modified
2409          * here.
2410          */
2411         jh->b_modified = 0;
2412         spin_unlock(&journal->j_list_lock);
2413         spin_unlock(&jh->b_state_lock);
2414         write_unlock(&journal->j_state_lock);
2415         jbd2_journal_put_journal_head(jh);
2416 zap_buffer_unlocked:
2417         clear_buffer_dirty(bh);
2418         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2419         clear_buffer_mapped(bh);
2420         clear_buffer_req(bh);
2421         clear_buffer_new(bh);
2422         clear_buffer_delay(bh);
2423         clear_buffer_unwritten(bh);
2424         bh->b_bdev = NULL;
2425         return may_free;
2426 }
2427
2428 /**
2429  * jbd2_journal_invalidate_folio()
2430  * @journal: journal to use for flush...
2431  * @folio:    folio to flush
2432  * @offset:  start of the range to invalidate
2433  * @length:  length of the range to invalidate
2434  *
2435  * Reap page buffers containing data after in the specified range in page.
2436  * Can return -EBUSY if buffers are part of the committing transaction and
2437  * the page is straddling i_size. Caller then has to wait for current commit
2438  * and try again.
2439  */
2440 int jbd2_journal_invalidate_folio(journal_t *journal, struct folio *folio,
2441                                 size_t offset, size_t length)
2442 {
2443         struct buffer_head *head, *bh, *next;
2444         unsigned int stop = offset + length;
2445         unsigned int curr_off = 0;
2446         int partial_page = (offset || length < folio_size(folio));
2447         int may_free = 1;
2448         int ret = 0;
2449
2450         if (!folio_test_locked(folio))
2451                 BUG();
2452         head = folio_buffers(folio);
2453         if (!head)
2454                 return 0;
2455
2456         BUG_ON(stop > folio_size(folio) || stop < length);
2457
2458         /* We will potentially be playing with lists other than just the
2459          * data lists (especially for journaled data mode), so be
2460          * cautious in our locking. */
2461
2462         bh = head;
2463         do {
2464                 unsigned int next_off = curr_off + bh->b_size;
2465                 next = bh->b_this_page;
2466
2467                 if (next_off > stop)
2468                         return 0;
2469
2470                 if (offset <= curr_off) {
2471                         /* This block is wholly outside the truncation point */
2472                         lock_buffer(bh);
2473                         ret = journal_unmap_buffer(journal, bh, partial_page);
2474                         unlock_buffer(bh);
2475                         if (ret < 0)
2476                                 return ret;
2477                         may_free &= ret;
2478                 }
2479                 curr_off = next_off;
2480                 bh = next;
2481
2482         } while (bh != head);
2483
2484         if (!partial_page) {
2485                 if (may_free && try_to_free_buffers(folio))
2486                         J_ASSERT(!folio_buffers(folio));
2487         }
2488         return 0;
2489 }
2490
2491 /*
2492  * File a buffer on the given transaction list.
2493  */
2494 void __jbd2_journal_file_buffer(struct journal_head *jh,
2495                         transaction_t *transaction, int jlist)
2496 {
2497         struct journal_head **list = NULL;
2498         int was_dirty = 0;
2499         struct buffer_head *bh = jh2bh(jh);
2500
2501         lockdep_assert_held(&jh->b_state_lock);
2502         assert_spin_locked(&transaction->t_journal->j_list_lock);
2503
2504         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2505         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2506                                 jh->b_transaction == NULL);
2507
2508         if (jh->b_transaction && jh->b_jlist == jlist)
2509                 return;
2510
2511         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2512             jlist == BJ_Shadow || jlist == BJ_Forget) {
2513                 /*
2514                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2515                  * instead of buffer_dirty. We should not see a dirty bit set
2516                  * here because we clear it in do_get_write_access but e.g.
2517                  * tune2fs can modify the sb and set the dirty bit at any time
2518                  * so we try to gracefully handle that.
2519                  */
2520                 if (buffer_dirty(bh))
2521                         warn_dirty_buffer(bh);
2522                 if (test_clear_buffer_dirty(bh) ||
2523                     test_clear_buffer_jbddirty(bh))
2524                         was_dirty = 1;
2525         }
2526
2527         if (jh->b_transaction)
2528                 __jbd2_journal_temp_unlink_buffer(jh);
2529         else
2530                 jbd2_journal_grab_journal_head(bh);
2531         jh->b_transaction = transaction;
2532
2533         switch (jlist) {
2534         case BJ_None:
2535                 J_ASSERT_JH(jh, !jh->b_committed_data);
2536                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2537                 return;
2538         case BJ_Metadata:
2539                 transaction->t_nr_buffers++;
2540                 list = &transaction->t_buffers;
2541                 break;
2542         case BJ_Forget:
2543                 list = &transaction->t_forget;
2544                 break;
2545         case BJ_Shadow:
2546                 list = &transaction->t_shadow_list;
2547                 break;
2548         case BJ_Reserved:
2549                 list = &transaction->t_reserved_list;
2550                 break;
2551         }
2552
2553         __blist_add_buffer(list, jh);
2554         jh->b_jlist = jlist;
2555
2556         if (was_dirty)
2557                 set_buffer_jbddirty(bh);
2558 }
2559
2560 void jbd2_journal_file_buffer(struct journal_head *jh,
2561                                 transaction_t *transaction, int jlist)
2562 {
2563         spin_lock(&jh->b_state_lock);
2564         spin_lock(&transaction->t_journal->j_list_lock);
2565         __jbd2_journal_file_buffer(jh, transaction, jlist);
2566         spin_unlock(&transaction->t_journal->j_list_lock);
2567         spin_unlock(&jh->b_state_lock);
2568 }
2569
2570 /*
2571  * Remove a buffer from its current buffer list in preparation for
2572  * dropping it from its current transaction entirely.  If the buffer has
2573  * already started to be used by a subsequent transaction, refile the
2574  * buffer on that transaction's metadata list.
2575  *
2576  * Called under j_list_lock
2577  * Called under jh->b_state_lock
2578  *
2579  * When this function returns true, there's no next transaction to refile to
2580  * and the caller has to drop jh reference through
2581  * jbd2_journal_put_journal_head().
2582  */
2583 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2584 {
2585         int was_dirty, jlist;
2586         struct buffer_head *bh = jh2bh(jh);
2587
2588         lockdep_assert_held(&jh->b_state_lock);
2589         if (jh->b_transaction)
2590                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2591
2592         /* If the buffer is now unused, just drop it. */
2593         if (jh->b_next_transaction == NULL) {
2594                 __jbd2_journal_unfile_buffer(jh);
2595                 return true;
2596         }
2597
2598         /*
2599          * It has been modified by a later transaction: add it to the new
2600          * transaction's metadata list.
2601          */
2602
2603         was_dirty = test_clear_buffer_jbddirty(bh);
2604         __jbd2_journal_temp_unlink_buffer(jh);
2605
2606         /*
2607          * b_transaction must be set, otherwise the new b_transaction won't
2608          * be holding jh reference
2609          */
2610         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2611
2612         /*
2613          * We set b_transaction here because b_next_transaction will inherit
2614          * our jh reference and thus __jbd2_journal_file_buffer() must not
2615          * take a new one.
2616          */
2617         WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2618         WRITE_ONCE(jh->b_next_transaction, NULL);
2619         if (buffer_freed(bh))
2620                 jlist = BJ_Forget;
2621         else if (jh->b_modified)
2622                 jlist = BJ_Metadata;
2623         else
2624                 jlist = BJ_Reserved;
2625         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2626         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2627
2628         if (was_dirty)
2629                 set_buffer_jbddirty(bh);
2630         return false;
2631 }
2632
2633 /*
2634  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2635  * bh reference so that we can safely unlock bh.
2636  *
2637  * The jh and bh may be freed by this call.
2638  */
2639 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2640 {
2641         bool drop;
2642
2643         spin_lock(&jh->b_state_lock);
2644         spin_lock(&journal->j_list_lock);
2645         drop = __jbd2_journal_refile_buffer(jh);
2646         spin_unlock(&jh->b_state_lock);
2647         spin_unlock(&journal->j_list_lock);
2648         if (drop)
2649                 jbd2_journal_put_journal_head(jh);
2650 }
2651
2652 /*
2653  * File inode in the inode list of the handle's transaction
2654  */
2655 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2656                 unsigned long flags, loff_t start_byte, loff_t end_byte)
2657 {
2658         transaction_t *transaction = handle->h_transaction;
2659         journal_t *journal;
2660
2661         if (is_handle_aborted(handle))
2662                 return -EROFS;
2663         journal = transaction->t_journal;
2664
2665         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2666                         transaction->t_tid);
2667
2668         spin_lock(&journal->j_list_lock);
2669         jinode->i_flags |= flags;
2670
2671         if (jinode->i_dirty_end) {
2672                 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2673                 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2674         } else {
2675                 jinode->i_dirty_start = start_byte;
2676                 jinode->i_dirty_end = end_byte;
2677         }
2678
2679         /* Is inode already attached where we need it? */
2680         if (jinode->i_transaction == transaction ||
2681             jinode->i_next_transaction == transaction)
2682                 goto done;
2683
2684         /*
2685          * We only ever set this variable to 1 so the test is safe. Since
2686          * t_need_data_flush is likely to be set, we do the test to save some
2687          * cacheline bouncing
2688          */
2689         if (!transaction->t_need_data_flush)
2690                 transaction->t_need_data_flush = 1;
2691         /* On some different transaction's list - should be
2692          * the committing one */
2693         if (jinode->i_transaction) {
2694                 J_ASSERT(jinode->i_next_transaction == NULL);
2695                 J_ASSERT(jinode->i_transaction ==
2696                                         journal->j_committing_transaction);
2697                 jinode->i_next_transaction = transaction;
2698                 goto done;
2699         }
2700         /* Not on any transaction list... */
2701         J_ASSERT(!jinode->i_next_transaction);
2702         jinode->i_transaction = transaction;
2703         list_add(&jinode->i_list, &transaction->t_inode_list);
2704 done:
2705         spin_unlock(&journal->j_list_lock);
2706
2707         return 0;
2708 }
2709
2710 int jbd2_journal_inode_ranged_write(handle_t *handle,
2711                 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2712 {
2713         return jbd2_journal_file_inode(handle, jinode,
2714                         JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2715                         start_byte + length - 1);
2716 }
2717
2718 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2719                 loff_t start_byte, loff_t length)
2720 {
2721         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2722                         start_byte, start_byte + length - 1);
2723 }
2724
2725 /*
2726  * File truncate and transaction commit interact with each other in a
2727  * non-trivial way.  If a transaction writing data block A is
2728  * committing, we cannot discard the data by truncate until we have
2729  * written them.  Otherwise if we crashed after the transaction with
2730  * write has committed but before the transaction with truncate has
2731  * committed, we could see stale data in block A.  This function is a
2732  * helper to solve this problem.  It starts writeout of the truncated
2733  * part in case it is in the committing transaction.
2734  *
2735  * Filesystem code must call this function when inode is journaled in
2736  * ordered mode before truncation happens and after the inode has been
2737  * placed on orphan list with the new inode size. The second condition
2738  * avoids the race that someone writes new data and we start
2739  * committing the transaction after this function has been called but
2740  * before a transaction for truncate is started (and furthermore it
2741  * allows us to optimize the case where the addition to orphan list
2742  * happens in the same transaction as write --- we don't have to write
2743  * any data in such case).
2744  */
2745 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2746                                         struct jbd2_inode *jinode,
2747                                         loff_t new_size)
2748 {
2749         transaction_t *inode_trans, *commit_trans;
2750         int ret = 0;
2751
2752         /* This is a quick check to avoid locking if not necessary */
2753         if (!jinode->i_transaction)
2754                 goto out;
2755         /* Locks are here just to force reading of recent values, it is
2756          * enough that the transaction was not committing before we started
2757          * a transaction adding the inode to orphan list */
2758         read_lock(&journal->j_state_lock);
2759         commit_trans = journal->j_committing_transaction;
2760         read_unlock(&journal->j_state_lock);
2761         spin_lock(&journal->j_list_lock);
2762         inode_trans = jinode->i_transaction;
2763         spin_unlock(&journal->j_list_lock);
2764         if (inode_trans == commit_trans) {
2765                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2766                         new_size, LLONG_MAX);
2767                 if (ret)
2768                         jbd2_journal_abort(journal, ret);
2769         }
2770 out:
2771         return ret;
2772 }