ext4: force inode writes when nfsd calls commit_metadata()
[platform/kernel/linux-exynos.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 #include <linux/sched/mm.h>
33
34 #include <trace/events/jbd2.h>
35
36 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
37 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
38
39 static struct kmem_cache *transaction_cache;
40 int __init jbd2_journal_init_transaction_cache(void)
41 {
42         J_ASSERT(!transaction_cache);
43         transaction_cache = kmem_cache_create("jbd2_transaction_s",
44                                         sizeof(transaction_t),
45                                         0,
46                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
47                                         NULL);
48         if (transaction_cache)
49                 return 0;
50         return -ENOMEM;
51 }
52
53 void jbd2_journal_destroy_transaction_cache(void)
54 {
55         if (transaction_cache) {
56                 kmem_cache_destroy(transaction_cache);
57                 transaction_cache = NULL;
58         }
59 }
60
61 void jbd2_journal_free_transaction(transaction_t *transaction)
62 {
63         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
64                 return;
65         kmem_cache_free(transaction_cache, transaction);
66 }
67
68 /*
69  * jbd2_get_transaction: obtain a new transaction_t object.
70  *
71  * Simply allocate and initialise a new transaction.  Create it in
72  * RUNNING state and add it to the current journal (which should not
73  * have an existing running transaction: we only make a new transaction
74  * once we have started to commit the old one).
75  *
76  * Preconditions:
77  *      The journal MUST be locked.  We don't perform atomic mallocs on the
78  *      new transaction and we can't block without protecting against other
79  *      processes trying to touch the journal while it is in transition.
80  *
81  */
82
83 static transaction_t *
84 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
85 {
86         transaction->t_journal = journal;
87         transaction->t_state = T_RUNNING;
88         transaction->t_start_time = ktime_get();
89         transaction->t_tid = journal->j_transaction_sequence++;
90         transaction->t_expires = jiffies + journal->j_commit_interval;
91         spin_lock_init(&transaction->t_handle_lock);
92         atomic_set(&transaction->t_updates, 0);
93         atomic_set(&transaction->t_outstanding_credits,
94                    atomic_read(&journal->j_reserved_credits));
95         atomic_set(&transaction->t_handle_count, 0);
96         INIT_LIST_HEAD(&transaction->t_inode_list);
97         INIT_LIST_HEAD(&transaction->t_private_list);
98
99         /* Set up the commit timer for the new transaction. */
100         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
101         add_timer(&journal->j_commit_timer);
102
103         J_ASSERT(journal->j_running_transaction == NULL);
104         journal->j_running_transaction = transaction;
105         transaction->t_max_wait = 0;
106         transaction->t_start = jiffies;
107         transaction->t_requested = 0;
108
109         return transaction;
110 }
111
112 /*
113  * Handle management.
114  *
115  * A handle_t is an object which represents a single atomic update to a
116  * filesystem, and which tracks all of the modifications which form part
117  * of that one update.
118  */
119
120 /*
121  * Update transaction's maximum wait time, if debugging is enabled.
122  *
123  * In order for t_max_wait to be reliable, it must be protected by a
124  * lock.  But doing so will mean that start_this_handle() can not be
125  * run in parallel on SMP systems, which limits our scalability.  So
126  * unless debugging is enabled, we no longer update t_max_wait, which
127  * means that maximum wait time reported by the jbd2_run_stats
128  * tracepoint will always be zero.
129  */
130 static inline void update_t_max_wait(transaction_t *transaction,
131                                      unsigned long ts)
132 {
133 #ifdef CONFIG_JBD2_DEBUG
134         if (jbd2_journal_enable_debug &&
135             time_after(transaction->t_start, ts)) {
136                 ts = jbd2_time_diff(ts, transaction->t_start);
137                 spin_lock(&transaction->t_handle_lock);
138                 if (ts > transaction->t_max_wait)
139                         transaction->t_max_wait = ts;
140                 spin_unlock(&transaction->t_handle_lock);
141         }
142 #endif
143 }
144
145 /*
146  * Wait until running transaction passes T_LOCKED state. Also starts the commit
147  * if needed. The function expects running transaction to exist and releases
148  * j_state_lock.
149  */
150 static void wait_transaction_locked(journal_t *journal)
151         __releases(journal->j_state_lock)
152 {
153         DEFINE_WAIT(wait);
154         int need_to_start;
155         tid_t tid = journal->j_running_transaction->t_tid;
156
157         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
158                         TASK_UNINTERRUPTIBLE);
159         need_to_start = !tid_geq(journal->j_commit_request, tid);
160         read_unlock(&journal->j_state_lock);
161         if (need_to_start)
162                 jbd2_log_start_commit(journal, tid);
163         jbd2_might_wait_for_commit(journal);
164         schedule();
165         finish_wait(&journal->j_wait_transaction_locked, &wait);
166 }
167
168 static void sub_reserved_credits(journal_t *journal, int blocks)
169 {
170         atomic_sub(blocks, &journal->j_reserved_credits);
171         wake_up(&journal->j_wait_reserved);
172 }
173
174 /*
175  * Wait until we can add credits for handle to the running transaction.  Called
176  * with j_state_lock held for reading. Returns 0 if handle joined the running
177  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
178  * caller must retry.
179  */
180 static int add_transaction_credits(journal_t *journal, int blocks,
181                                    int rsv_blocks)
182 {
183         transaction_t *t = journal->j_running_transaction;
184         int needed;
185         int total = blocks + rsv_blocks;
186
187         /*
188          * If the current transaction is locked down for commit, wait
189          * for the lock to be released.
190          */
191         if (t->t_state == T_LOCKED) {
192                 wait_transaction_locked(journal);
193                 return 1;
194         }
195
196         /*
197          * If there is not enough space left in the log to write all
198          * potential buffers requested by this operation, we need to
199          * stall pending a log checkpoint to free some more log space.
200          */
201         needed = atomic_add_return(total, &t->t_outstanding_credits);
202         if (needed > journal->j_max_transaction_buffers) {
203                 /*
204                  * If the current transaction is already too large,
205                  * then start to commit it: we can then go back and
206                  * attach this handle to a new transaction.
207                  */
208                 atomic_sub(total, &t->t_outstanding_credits);
209
210                 /*
211                  * Is the number of reserved credits in the current transaction too
212                  * big to fit this handle? Wait until reserved credits are freed.
213                  */
214                 if (atomic_read(&journal->j_reserved_credits) + total >
215                     journal->j_max_transaction_buffers) {
216                         read_unlock(&journal->j_state_lock);
217                         jbd2_might_wait_for_commit(journal);
218                         wait_event(journal->j_wait_reserved,
219                                    atomic_read(&journal->j_reserved_credits) + total <=
220                                    journal->j_max_transaction_buffers);
221                         return 1;
222                 }
223
224                 wait_transaction_locked(journal);
225                 return 1;
226         }
227
228         /*
229          * The commit code assumes that it can get enough log space
230          * without forcing a checkpoint.  This is *critical* for
231          * correctness: a checkpoint of a buffer which is also
232          * associated with a committing transaction creates a deadlock,
233          * so commit simply cannot force through checkpoints.
234          *
235          * We must therefore ensure the necessary space in the journal
236          * *before* starting to dirty potentially checkpointed buffers
237          * in the new transaction.
238          */
239         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
240                 atomic_sub(total, &t->t_outstanding_credits);
241                 read_unlock(&journal->j_state_lock);
242                 jbd2_might_wait_for_commit(journal);
243                 write_lock(&journal->j_state_lock);
244                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
245                         __jbd2_log_wait_for_space(journal);
246                 write_unlock(&journal->j_state_lock);
247                 return 1;
248         }
249
250         /* No reservation? We are done... */
251         if (!rsv_blocks)
252                 return 0;
253
254         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
255         /* We allow at most half of a transaction to be reserved */
256         if (needed > journal->j_max_transaction_buffers / 2) {
257                 sub_reserved_credits(journal, rsv_blocks);
258                 atomic_sub(total, &t->t_outstanding_credits);
259                 read_unlock(&journal->j_state_lock);
260                 jbd2_might_wait_for_commit(journal);
261                 wait_event(journal->j_wait_reserved,
262                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
263                          <= journal->j_max_transaction_buffers / 2);
264                 return 1;
265         }
266         return 0;
267 }
268
269 /*
270  * start_this_handle: Given a handle, deal with any locking or stalling
271  * needed to make sure that there is enough journal space for the handle
272  * to begin.  Attach the handle to a transaction and set up the
273  * transaction's buffer credits.
274  */
275
276 static int start_this_handle(journal_t *journal, handle_t *handle,
277                              gfp_t gfp_mask)
278 {
279         transaction_t   *transaction, *new_transaction = NULL;
280         int             blocks = handle->h_buffer_credits;
281         int             rsv_blocks = 0;
282         unsigned long ts = jiffies;
283
284         if (handle->h_rsv_handle)
285                 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
286
287         /*
288          * Limit the number of reserved credits to 1/2 of maximum transaction
289          * size and limit the number of total credits to not exceed maximum
290          * transaction size per operation.
291          */
292         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
293             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
294                 printk(KERN_ERR "JBD2: %s wants too many credits "
295                        "credits:%d rsv_credits:%d max:%d\n",
296                        current->comm, blocks, rsv_blocks,
297                        journal->j_max_transaction_buffers);
298                 WARN_ON(1);
299                 return -ENOSPC;
300         }
301
302 alloc_transaction:
303         if (!journal->j_running_transaction) {
304                 /*
305                  * If __GFP_FS is not present, then we may be being called from
306                  * inside the fs writeback layer, so we MUST NOT fail.
307                  */
308                 if ((gfp_mask & __GFP_FS) == 0)
309                         gfp_mask |= __GFP_NOFAIL;
310                 new_transaction = kmem_cache_zalloc(transaction_cache,
311                                                     gfp_mask);
312                 if (!new_transaction)
313                         return -ENOMEM;
314         }
315
316         jbd_debug(3, "New handle %p going live.\n", handle);
317
318         /*
319          * We need to hold j_state_lock until t_updates has been incremented,
320          * for proper journal barrier handling
321          */
322 repeat:
323         read_lock(&journal->j_state_lock);
324         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
325         if (is_journal_aborted(journal) ||
326             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
327                 read_unlock(&journal->j_state_lock);
328                 jbd2_journal_free_transaction(new_transaction);
329                 return -EROFS;
330         }
331
332         /*
333          * Wait on the journal's transaction barrier if necessary. Specifically
334          * we allow reserved handles to proceed because otherwise commit could
335          * deadlock on page writeback not being able to complete.
336          */
337         if (!handle->h_reserved && journal->j_barrier_count) {
338                 read_unlock(&journal->j_state_lock);
339                 wait_event(journal->j_wait_transaction_locked,
340                                 journal->j_barrier_count == 0);
341                 goto repeat;
342         }
343
344         if (!journal->j_running_transaction) {
345                 read_unlock(&journal->j_state_lock);
346                 if (!new_transaction)
347                         goto alloc_transaction;
348                 write_lock(&journal->j_state_lock);
349                 if (!journal->j_running_transaction &&
350                     (handle->h_reserved || !journal->j_barrier_count)) {
351                         jbd2_get_transaction(journal, new_transaction);
352                         new_transaction = NULL;
353                 }
354                 write_unlock(&journal->j_state_lock);
355                 goto repeat;
356         }
357
358         transaction = journal->j_running_transaction;
359
360         if (!handle->h_reserved) {
361                 /* We may have dropped j_state_lock - restart in that case */
362                 if (add_transaction_credits(journal, blocks, rsv_blocks))
363                         goto repeat;
364         } else {
365                 /*
366                  * We have handle reserved so we are allowed to join T_LOCKED
367                  * transaction and we don't have to check for transaction size
368                  * and journal space.
369                  */
370                 sub_reserved_credits(journal, blocks);
371                 handle->h_reserved = 0;
372         }
373
374         /* OK, account for the buffers that this operation expects to
375          * use and add the handle to the running transaction. 
376          */
377         update_t_max_wait(transaction, ts);
378         handle->h_transaction = transaction;
379         handle->h_requested_credits = blocks;
380         handle->h_start_jiffies = jiffies;
381         atomic_inc(&transaction->t_updates);
382         atomic_inc(&transaction->t_handle_count);
383         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
384                   handle, blocks,
385                   atomic_read(&transaction->t_outstanding_credits),
386                   jbd2_log_space_left(journal));
387         read_unlock(&journal->j_state_lock);
388         current->journal_info = handle;
389
390         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
391         jbd2_journal_free_transaction(new_transaction);
392         /*
393          * Ensure that no allocations done while the transaction is open are
394          * going to recurse back to the fs layer.
395          */
396         handle->saved_alloc_context = memalloc_nofs_save();
397         return 0;
398 }
399
400 /* Allocate a new handle.  This should probably be in a slab... */
401 static handle_t *new_handle(int nblocks)
402 {
403         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
404         if (!handle)
405                 return NULL;
406         handle->h_buffer_credits = nblocks;
407         handle->h_ref = 1;
408
409         return handle;
410 }
411
412 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
413                               gfp_t gfp_mask, unsigned int type,
414                               unsigned int line_no)
415 {
416         handle_t *handle = journal_current_handle();
417         int err;
418
419         if (!journal)
420                 return ERR_PTR(-EROFS);
421
422         if (handle) {
423                 J_ASSERT(handle->h_transaction->t_journal == journal);
424                 handle->h_ref++;
425                 return handle;
426         }
427
428         handle = new_handle(nblocks);
429         if (!handle)
430                 return ERR_PTR(-ENOMEM);
431         if (rsv_blocks) {
432                 handle_t *rsv_handle;
433
434                 rsv_handle = new_handle(rsv_blocks);
435                 if (!rsv_handle) {
436                         jbd2_free_handle(handle);
437                         return ERR_PTR(-ENOMEM);
438                 }
439                 rsv_handle->h_reserved = 1;
440                 rsv_handle->h_journal = journal;
441                 handle->h_rsv_handle = rsv_handle;
442         }
443
444         err = start_this_handle(journal, handle, gfp_mask);
445         if (err < 0) {
446                 if (handle->h_rsv_handle)
447                         jbd2_free_handle(handle->h_rsv_handle);
448                 jbd2_free_handle(handle);
449                 return ERR_PTR(err);
450         }
451         handle->h_type = type;
452         handle->h_line_no = line_no;
453         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
454                                 handle->h_transaction->t_tid, type,
455                                 line_no, nblocks);
456
457         return handle;
458 }
459 EXPORT_SYMBOL(jbd2__journal_start);
460
461
462 /**
463  * handle_t *jbd2_journal_start() - Obtain a new handle.
464  * @journal: Journal to start transaction on.
465  * @nblocks: number of block buffer we might modify
466  *
467  * We make sure that the transaction can guarantee at least nblocks of
468  * modified buffers in the log.  We block until the log can guarantee
469  * that much space. Additionally, if rsv_blocks > 0, we also create another
470  * handle with rsv_blocks reserved blocks in the journal. This handle is
471  * is stored in h_rsv_handle. It is not attached to any particular transaction
472  * and thus doesn't block transaction commit. If the caller uses this reserved
473  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
474  * on the parent handle will dispose the reserved one. Reserved handle has to
475  * be converted to a normal handle using jbd2_journal_start_reserved() before
476  * it can be used.
477  *
478  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
479  * on failure.
480  */
481 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
482 {
483         return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
484 }
485 EXPORT_SYMBOL(jbd2_journal_start);
486
487 void jbd2_journal_free_reserved(handle_t *handle)
488 {
489         journal_t *journal = handle->h_journal;
490
491         WARN_ON(!handle->h_reserved);
492         sub_reserved_credits(journal, handle->h_buffer_credits);
493         jbd2_free_handle(handle);
494 }
495 EXPORT_SYMBOL(jbd2_journal_free_reserved);
496
497 /**
498  * int jbd2_journal_start_reserved() - start reserved handle
499  * @handle: handle to start
500  * @type: for handle statistics
501  * @line_no: for handle statistics
502  *
503  * Start handle that has been previously reserved with jbd2_journal_reserve().
504  * This attaches @handle to the running transaction (or creates one if there's
505  * not transaction running). Unlike jbd2_journal_start() this function cannot
506  * block on journal commit, checkpointing, or similar stuff. It can block on
507  * memory allocation or frozen journal though.
508  *
509  * Return 0 on success, non-zero on error - handle is freed in that case.
510  */
511 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
512                                 unsigned int line_no)
513 {
514         journal_t *journal = handle->h_journal;
515         int ret = -EIO;
516
517         if (WARN_ON(!handle->h_reserved)) {
518                 /* Someone passed in normal handle? Just stop it. */
519                 jbd2_journal_stop(handle);
520                 return ret;
521         }
522         /*
523          * Usefulness of mixing of reserved and unreserved handles is
524          * questionable. So far nobody seems to need it so just error out.
525          */
526         if (WARN_ON(current->journal_info)) {
527                 jbd2_journal_free_reserved(handle);
528                 return ret;
529         }
530
531         handle->h_journal = NULL;
532         /*
533          * GFP_NOFS is here because callers are likely from writeback or
534          * similarly constrained call sites
535          */
536         ret = start_this_handle(journal, handle, GFP_NOFS);
537         if (ret < 0) {
538                 handle->h_journal = journal;
539                 jbd2_journal_free_reserved(handle);
540                 return ret;
541         }
542         handle->h_type = type;
543         handle->h_line_no = line_no;
544         return 0;
545 }
546 EXPORT_SYMBOL(jbd2_journal_start_reserved);
547
548 /**
549  * int jbd2_journal_extend() - extend buffer credits.
550  * @handle:  handle to 'extend'
551  * @nblocks: nr blocks to try to extend by.
552  *
553  * Some transactions, such as large extends and truncates, can be done
554  * atomically all at once or in several stages.  The operation requests
555  * a credit for a number of buffer modifications in advance, but can
556  * extend its credit if it needs more.
557  *
558  * jbd2_journal_extend tries to give the running handle more buffer credits.
559  * It does not guarantee that allocation - this is a best-effort only.
560  * The calling process MUST be able to deal cleanly with a failure to
561  * extend here.
562  *
563  * Return 0 on success, non-zero on failure.
564  *
565  * return code < 0 implies an error
566  * return code > 0 implies normal transaction-full status.
567  */
568 int jbd2_journal_extend(handle_t *handle, int nblocks)
569 {
570         transaction_t *transaction = handle->h_transaction;
571         journal_t *journal;
572         int result;
573         int wanted;
574
575         if (is_handle_aborted(handle))
576                 return -EROFS;
577         journal = transaction->t_journal;
578
579         result = 1;
580
581         read_lock(&journal->j_state_lock);
582
583         /* Don't extend a locked-down transaction! */
584         if (transaction->t_state != T_RUNNING) {
585                 jbd_debug(3, "denied handle %p %d blocks: "
586                           "transaction not running\n", handle, nblocks);
587                 goto error_out;
588         }
589
590         spin_lock(&transaction->t_handle_lock);
591         wanted = atomic_add_return(nblocks,
592                                    &transaction->t_outstanding_credits);
593
594         if (wanted > journal->j_max_transaction_buffers) {
595                 jbd_debug(3, "denied handle %p %d blocks: "
596                           "transaction too large\n", handle, nblocks);
597                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
598                 goto unlock;
599         }
600
601         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
602             jbd2_log_space_left(journal)) {
603                 jbd_debug(3, "denied handle %p %d blocks: "
604                           "insufficient log space\n", handle, nblocks);
605                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
606                 goto unlock;
607         }
608
609         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
610                                  transaction->t_tid,
611                                  handle->h_type, handle->h_line_no,
612                                  handle->h_buffer_credits,
613                                  nblocks);
614
615         handle->h_buffer_credits += nblocks;
616         handle->h_requested_credits += nblocks;
617         result = 0;
618
619         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
620 unlock:
621         spin_unlock(&transaction->t_handle_lock);
622 error_out:
623         read_unlock(&journal->j_state_lock);
624         return result;
625 }
626
627
628 /**
629  * int jbd2_journal_restart() - restart a handle .
630  * @handle:  handle to restart
631  * @nblocks: nr credits requested
632  * @gfp_mask: memory allocation flags (for start_this_handle)
633  *
634  * Restart a handle for a multi-transaction filesystem
635  * operation.
636  *
637  * If the jbd2_journal_extend() call above fails to grant new buffer credits
638  * to a running handle, a call to jbd2_journal_restart will commit the
639  * handle's transaction so far and reattach the handle to a new
640  * transaction capable of guaranteeing the requested number of
641  * credits. We preserve reserved handle if there's any attached to the
642  * passed in handle.
643  */
644 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
645 {
646         transaction_t *transaction = handle->h_transaction;
647         journal_t *journal;
648         tid_t           tid;
649         int             need_to_start, ret;
650
651         /* If we've had an abort of any type, don't even think about
652          * actually doing the restart! */
653         if (is_handle_aborted(handle))
654                 return 0;
655         journal = transaction->t_journal;
656
657         /*
658          * First unlink the handle from its current transaction, and start the
659          * commit on that.
660          */
661         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
662         J_ASSERT(journal_current_handle() == handle);
663
664         read_lock(&journal->j_state_lock);
665         spin_lock(&transaction->t_handle_lock);
666         atomic_sub(handle->h_buffer_credits,
667                    &transaction->t_outstanding_credits);
668         if (handle->h_rsv_handle) {
669                 sub_reserved_credits(journal,
670                                      handle->h_rsv_handle->h_buffer_credits);
671         }
672         if (atomic_dec_and_test(&transaction->t_updates))
673                 wake_up(&journal->j_wait_updates);
674         tid = transaction->t_tid;
675         spin_unlock(&transaction->t_handle_lock);
676         handle->h_transaction = NULL;
677         current->journal_info = NULL;
678
679         jbd_debug(2, "restarting handle %p\n", handle);
680         need_to_start = !tid_geq(journal->j_commit_request, tid);
681         read_unlock(&journal->j_state_lock);
682         if (need_to_start)
683                 jbd2_log_start_commit(journal, tid);
684
685         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
686         handle->h_buffer_credits = nblocks;
687         /*
688          * Restore the original nofs context because the journal restart
689          * is basically the same thing as journal stop and start.
690          * start_this_handle will start a new nofs context.
691          */
692         memalloc_nofs_restore(handle->saved_alloc_context);
693         ret = start_this_handle(journal, handle, gfp_mask);
694         return ret;
695 }
696 EXPORT_SYMBOL(jbd2__journal_restart);
697
698
699 int jbd2_journal_restart(handle_t *handle, int nblocks)
700 {
701         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
702 }
703 EXPORT_SYMBOL(jbd2_journal_restart);
704
705 /**
706  * void jbd2_journal_lock_updates () - establish a transaction barrier.
707  * @journal:  Journal to establish a barrier on.
708  *
709  * This locks out any further updates from being started, and blocks
710  * until all existing updates have completed, returning only once the
711  * journal is in a quiescent state with no updates running.
712  *
713  * The journal lock should not be held on entry.
714  */
715 void jbd2_journal_lock_updates(journal_t *journal)
716 {
717         DEFINE_WAIT(wait);
718
719         jbd2_might_wait_for_commit(journal);
720
721         write_lock(&journal->j_state_lock);
722         ++journal->j_barrier_count;
723
724         /* Wait until there are no reserved handles */
725         if (atomic_read(&journal->j_reserved_credits)) {
726                 write_unlock(&journal->j_state_lock);
727                 wait_event(journal->j_wait_reserved,
728                            atomic_read(&journal->j_reserved_credits) == 0);
729                 write_lock(&journal->j_state_lock);
730         }
731
732         /* Wait until there are no running updates */
733         while (1) {
734                 transaction_t *transaction = journal->j_running_transaction;
735
736                 if (!transaction)
737                         break;
738
739                 spin_lock(&transaction->t_handle_lock);
740                 prepare_to_wait(&journal->j_wait_updates, &wait,
741                                 TASK_UNINTERRUPTIBLE);
742                 if (!atomic_read(&transaction->t_updates)) {
743                         spin_unlock(&transaction->t_handle_lock);
744                         finish_wait(&journal->j_wait_updates, &wait);
745                         break;
746                 }
747                 spin_unlock(&transaction->t_handle_lock);
748                 write_unlock(&journal->j_state_lock);
749                 schedule();
750                 finish_wait(&journal->j_wait_updates, &wait);
751                 write_lock(&journal->j_state_lock);
752         }
753         write_unlock(&journal->j_state_lock);
754
755         /*
756          * We have now established a barrier against other normal updates, but
757          * we also need to barrier against other jbd2_journal_lock_updates() calls
758          * to make sure that we serialise special journal-locked operations
759          * too.
760          */
761         mutex_lock(&journal->j_barrier);
762 }
763
764 /**
765  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
766  * @journal:  Journal to release the barrier on.
767  *
768  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
769  *
770  * Should be called without the journal lock held.
771  */
772 void jbd2_journal_unlock_updates (journal_t *journal)
773 {
774         J_ASSERT(journal->j_barrier_count != 0);
775
776         mutex_unlock(&journal->j_barrier);
777         write_lock(&journal->j_state_lock);
778         --journal->j_barrier_count;
779         write_unlock(&journal->j_state_lock);
780         wake_up(&journal->j_wait_transaction_locked);
781 }
782
783 static void warn_dirty_buffer(struct buffer_head *bh)
784 {
785         printk(KERN_WARNING
786                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
787                "There's a risk of filesystem corruption in case of system "
788                "crash.\n",
789                bh->b_bdev, (unsigned long long)bh->b_blocknr);
790 }
791
792 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
793 static void jbd2_freeze_jh_data(struct journal_head *jh)
794 {
795         struct page *page;
796         int offset;
797         char *source;
798         struct buffer_head *bh = jh2bh(jh);
799
800         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
801         page = bh->b_page;
802         offset = offset_in_page(bh->b_data);
803         source = kmap_atomic(page);
804         /* Fire data frozen trigger just before we copy the data */
805         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
806         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
807         kunmap_atomic(source);
808
809         /*
810          * Now that the frozen data is saved off, we need to store any matching
811          * triggers.
812          */
813         jh->b_frozen_triggers = jh->b_triggers;
814 }
815
816 /*
817  * If the buffer is already part of the current transaction, then there
818  * is nothing we need to do.  If it is already part of a prior
819  * transaction which we are still committing to disk, then we need to
820  * make sure that we do not overwrite the old copy: we do copy-out to
821  * preserve the copy going to disk.  We also account the buffer against
822  * the handle's metadata buffer credits (unless the buffer is already
823  * part of the transaction, that is).
824  *
825  */
826 static int
827 do_get_write_access(handle_t *handle, struct journal_head *jh,
828                         int force_copy)
829 {
830         struct buffer_head *bh;
831         transaction_t *transaction = handle->h_transaction;
832         journal_t *journal;
833         int error;
834         char *frozen_buffer = NULL;
835         unsigned long start_lock, time_lock;
836
837         if (is_handle_aborted(handle))
838                 return -EROFS;
839         journal = transaction->t_journal;
840
841         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
842
843         JBUFFER_TRACE(jh, "entry");
844 repeat:
845         bh = jh2bh(jh);
846
847         /* @@@ Need to check for errors here at some point. */
848
849         start_lock = jiffies;
850         lock_buffer(bh);
851         jbd_lock_bh_state(bh);
852
853         /* If it takes too long to lock the buffer, trace it */
854         time_lock = jbd2_time_diff(start_lock, jiffies);
855         if (time_lock > HZ/10)
856                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
857                         jiffies_to_msecs(time_lock));
858
859         /* We now hold the buffer lock so it is safe to query the buffer
860          * state.  Is the buffer dirty?
861          *
862          * If so, there are two possibilities.  The buffer may be
863          * non-journaled, and undergoing a quite legitimate writeback.
864          * Otherwise, it is journaled, and we don't expect dirty buffers
865          * in that state (the buffers should be marked JBD_Dirty
866          * instead.)  So either the IO is being done under our own
867          * control and this is a bug, or it's a third party IO such as
868          * dump(8) (which may leave the buffer scheduled for read ---
869          * ie. locked but not dirty) or tune2fs (which may actually have
870          * the buffer dirtied, ugh.)  */
871
872         if (buffer_dirty(bh)) {
873                 /*
874                  * First question: is this buffer already part of the current
875                  * transaction or the existing committing transaction?
876                  */
877                 if (jh->b_transaction) {
878                         J_ASSERT_JH(jh,
879                                 jh->b_transaction == transaction ||
880                                 jh->b_transaction ==
881                                         journal->j_committing_transaction);
882                         if (jh->b_next_transaction)
883                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
884                                                         transaction);
885                         warn_dirty_buffer(bh);
886                 }
887                 /*
888                  * In any case we need to clean the dirty flag and we must
889                  * do it under the buffer lock to be sure we don't race
890                  * with running write-out.
891                  */
892                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
893                 clear_buffer_dirty(bh);
894                 set_buffer_jbddirty(bh);
895         }
896
897         unlock_buffer(bh);
898
899         error = -EROFS;
900         if (is_handle_aborted(handle)) {
901                 jbd_unlock_bh_state(bh);
902                 goto out;
903         }
904         error = 0;
905
906         /*
907          * The buffer is already part of this transaction if b_transaction or
908          * b_next_transaction points to it
909          */
910         if (jh->b_transaction == transaction ||
911             jh->b_next_transaction == transaction)
912                 goto done;
913
914         /*
915          * this is the first time this transaction is touching this buffer,
916          * reset the modified flag
917          */
918        jh->b_modified = 0;
919
920         /*
921          * If the buffer is not journaled right now, we need to make sure it
922          * doesn't get written to disk before the caller actually commits the
923          * new data
924          */
925         if (!jh->b_transaction) {
926                 JBUFFER_TRACE(jh, "no transaction");
927                 J_ASSERT_JH(jh, !jh->b_next_transaction);
928                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
929                 /*
930                  * Make sure all stores to jh (b_modified, b_frozen_data) are
931                  * visible before attaching it to the running transaction.
932                  * Paired with barrier in jbd2_write_access_granted()
933                  */
934                 smp_wmb();
935                 spin_lock(&journal->j_list_lock);
936                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
937                 spin_unlock(&journal->j_list_lock);
938                 goto done;
939         }
940         /*
941          * If there is already a copy-out version of this buffer, then we don't
942          * need to make another one
943          */
944         if (jh->b_frozen_data) {
945                 JBUFFER_TRACE(jh, "has frozen data");
946                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
947                 goto attach_next;
948         }
949
950         JBUFFER_TRACE(jh, "owned by older transaction");
951         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
952         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
953
954         /*
955          * There is one case we have to be very careful about.  If the
956          * committing transaction is currently writing this buffer out to disk
957          * and has NOT made a copy-out, then we cannot modify the buffer
958          * contents at all right now.  The essence of copy-out is that it is
959          * the extra copy, not the primary copy, which gets journaled.  If the
960          * primary copy is already going to disk then we cannot do copy-out
961          * here.
962          */
963         if (buffer_shadow(bh)) {
964                 JBUFFER_TRACE(jh, "on shadow: sleep");
965                 jbd_unlock_bh_state(bh);
966                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
967                 goto repeat;
968         }
969
970         /*
971          * Only do the copy if the currently-owning transaction still needs it.
972          * If buffer isn't on BJ_Metadata list, the committing transaction is
973          * past that stage (here we use the fact that BH_Shadow is set under
974          * bh_state lock together with refiling to BJ_Shadow list and at this
975          * point we know the buffer doesn't have BH_Shadow set).
976          *
977          * Subtle point, though: if this is a get_undo_access, then we will be
978          * relying on the frozen_data to contain the new value of the
979          * committed_data record after the transaction, so we HAVE to force the
980          * frozen_data copy in that case.
981          */
982         if (jh->b_jlist == BJ_Metadata || force_copy) {
983                 JBUFFER_TRACE(jh, "generate frozen data");
984                 if (!frozen_buffer) {
985                         JBUFFER_TRACE(jh, "allocate memory for buffer");
986                         jbd_unlock_bh_state(bh);
987                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
988                                                    GFP_NOFS | __GFP_NOFAIL);
989                         goto repeat;
990                 }
991                 jh->b_frozen_data = frozen_buffer;
992                 frozen_buffer = NULL;
993                 jbd2_freeze_jh_data(jh);
994         }
995 attach_next:
996         /*
997          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
998          * before attaching it to the running transaction. Paired with barrier
999          * in jbd2_write_access_granted()
1000          */
1001         smp_wmb();
1002         jh->b_next_transaction = transaction;
1003
1004 done:
1005         jbd_unlock_bh_state(bh);
1006
1007         /*
1008          * If we are about to journal a buffer, then any revoke pending on it is
1009          * no longer valid
1010          */
1011         jbd2_journal_cancel_revoke(handle, jh);
1012
1013 out:
1014         if (unlikely(frozen_buffer))    /* It's usually NULL */
1015                 jbd2_free(frozen_buffer, bh->b_size);
1016
1017         JBUFFER_TRACE(jh, "exit");
1018         return error;
1019 }
1020
1021 /* Fast check whether buffer is already attached to the required transaction */
1022 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1023                                                         bool undo)
1024 {
1025         struct journal_head *jh;
1026         bool ret = false;
1027
1028         /* Dirty buffers require special handling... */
1029         if (buffer_dirty(bh))
1030                 return false;
1031
1032         /*
1033          * RCU protects us from dereferencing freed pages. So the checks we do
1034          * are guaranteed not to oops. However the jh slab object can get freed
1035          * & reallocated while we work with it. So we have to be careful. When
1036          * we see jh attached to the running transaction, we know it must stay
1037          * so until the transaction is committed. Thus jh won't be freed and
1038          * will be attached to the same bh while we run.  However it can
1039          * happen jh gets freed, reallocated, and attached to the transaction
1040          * just after we get pointer to it from bh. So we have to be careful
1041          * and recheck jh still belongs to our bh before we return success.
1042          */
1043         rcu_read_lock();
1044         if (!buffer_jbd(bh))
1045                 goto out;
1046         /* This should be bh2jh() but that doesn't work with inline functions */
1047         jh = READ_ONCE(bh->b_private);
1048         if (!jh)
1049                 goto out;
1050         /* For undo access buffer must have data copied */
1051         if (undo && !jh->b_committed_data)
1052                 goto out;
1053         if (jh->b_transaction != handle->h_transaction &&
1054             jh->b_next_transaction != handle->h_transaction)
1055                 goto out;
1056         /*
1057          * There are two reasons for the barrier here:
1058          * 1) Make sure to fetch b_bh after we did previous checks so that we
1059          * detect when jh went through free, realloc, attach to transaction
1060          * while we were checking. Paired with implicit barrier in that path.
1061          * 2) So that access to bh done after jbd2_write_access_granted()
1062          * doesn't get reordered and see inconsistent state of concurrent
1063          * do_get_write_access().
1064          */
1065         smp_mb();
1066         if (unlikely(jh->b_bh != bh))
1067                 goto out;
1068         ret = true;
1069 out:
1070         rcu_read_unlock();
1071         return ret;
1072 }
1073
1074 /**
1075  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1076  * @handle: transaction to add buffer modifications to
1077  * @bh:     bh to be used for metadata writes
1078  *
1079  * Returns: error code or 0 on success.
1080  *
1081  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1082  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1083  */
1084
1085 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1086 {
1087         struct journal_head *jh;
1088         int rc;
1089
1090         if (jbd2_write_access_granted(handle, bh, false))
1091                 return 0;
1092
1093         jh = jbd2_journal_add_journal_head(bh);
1094         /* We do not want to get caught playing with fields which the
1095          * log thread also manipulates.  Make sure that the buffer
1096          * completes any outstanding IO before proceeding. */
1097         rc = do_get_write_access(handle, jh, 0);
1098         jbd2_journal_put_journal_head(jh);
1099         return rc;
1100 }
1101
1102
1103 /*
1104  * When the user wants to journal a newly created buffer_head
1105  * (ie. getblk() returned a new buffer and we are going to populate it
1106  * manually rather than reading off disk), then we need to keep the
1107  * buffer_head locked until it has been completely filled with new
1108  * data.  In this case, we should be able to make the assertion that
1109  * the bh is not already part of an existing transaction.
1110  *
1111  * The buffer should already be locked by the caller by this point.
1112  * There is no lock ranking violation: it was a newly created,
1113  * unlocked buffer beforehand. */
1114
1115 /**
1116  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1117  * @handle: transaction to new buffer to
1118  * @bh: new buffer.
1119  *
1120  * Call this if you create a new bh.
1121  */
1122 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1123 {
1124         transaction_t *transaction = handle->h_transaction;
1125         journal_t *journal;
1126         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1127         int err;
1128
1129         jbd_debug(5, "journal_head %p\n", jh);
1130         err = -EROFS;
1131         if (is_handle_aborted(handle))
1132                 goto out;
1133         journal = transaction->t_journal;
1134         err = 0;
1135
1136         JBUFFER_TRACE(jh, "entry");
1137         /*
1138          * The buffer may already belong to this transaction due to pre-zeroing
1139          * in the filesystem's new_block code.  It may also be on the previous,
1140          * committing transaction's lists, but it HAS to be in Forget state in
1141          * that case: the transaction must have deleted the buffer for it to be
1142          * reused here.
1143          */
1144         jbd_lock_bh_state(bh);
1145         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1146                 jh->b_transaction == NULL ||
1147                 (jh->b_transaction == journal->j_committing_transaction &&
1148                           jh->b_jlist == BJ_Forget)));
1149
1150         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1151         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1152
1153         if (jh->b_transaction == NULL) {
1154                 /*
1155                  * Previous jbd2_journal_forget() could have left the buffer
1156                  * with jbddirty bit set because it was being committed. When
1157                  * the commit finished, we've filed the buffer for
1158                  * checkpointing and marked it dirty. Now we are reallocating
1159                  * the buffer so the transaction freeing it must have
1160                  * committed and so it's safe to clear the dirty bit.
1161                  */
1162                 clear_buffer_dirty(jh2bh(jh));
1163                 /* first access by this transaction */
1164                 jh->b_modified = 0;
1165
1166                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1167                 spin_lock(&journal->j_list_lock);
1168                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1169                 spin_unlock(&journal->j_list_lock);
1170         } else if (jh->b_transaction == journal->j_committing_transaction) {
1171                 /* first access by this transaction */
1172                 jh->b_modified = 0;
1173
1174                 JBUFFER_TRACE(jh, "set next transaction");
1175                 spin_lock(&journal->j_list_lock);
1176                 jh->b_next_transaction = transaction;
1177                 spin_unlock(&journal->j_list_lock);
1178         }
1179         jbd_unlock_bh_state(bh);
1180
1181         /*
1182          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1183          * blocks which contain freed but then revoked metadata.  We need
1184          * to cancel the revoke in case we end up freeing it yet again
1185          * and the reallocating as data - this would cause a second revoke,
1186          * which hits an assertion error.
1187          */
1188         JBUFFER_TRACE(jh, "cancelling revoke");
1189         jbd2_journal_cancel_revoke(handle, jh);
1190 out:
1191         jbd2_journal_put_journal_head(jh);
1192         return err;
1193 }
1194
1195 /**
1196  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1197  *     non-rewindable consequences
1198  * @handle: transaction
1199  * @bh: buffer to undo
1200  *
1201  * Sometimes there is a need to distinguish between metadata which has
1202  * been committed to disk and that which has not.  The ext3fs code uses
1203  * this for freeing and allocating space, we have to make sure that we
1204  * do not reuse freed space until the deallocation has been committed,
1205  * since if we overwrote that space we would make the delete
1206  * un-rewindable in case of a crash.
1207  *
1208  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1209  * buffer for parts of non-rewindable operations such as delete
1210  * operations on the bitmaps.  The journaling code must keep a copy of
1211  * the buffer's contents prior to the undo_access call until such time
1212  * as we know that the buffer has definitely been committed to disk.
1213  *
1214  * We never need to know which transaction the committed data is part
1215  * of, buffers touched here are guaranteed to be dirtied later and so
1216  * will be committed to a new transaction in due course, at which point
1217  * we can discard the old committed data pointer.
1218  *
1219  * Returns error number or 0 on success.
1220  */
1221 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1222 {
1223         int err;
1224         struct journal_head *jh;
1225         char *committed_data = NULL;
1226
1227         JBUFFER_TRACE(jh, "entry");
1228         if (jbd2_write_access_granted(handle, bh, true))
1229                 return 0;
1230
1231         jh = jbd2_journal_add_journal_head(bh);
1232         /*
1233          * Do this first --- it can drop the journal lock, so we want to
1234          * make sure that obtaining the committed_data is done
1235          * atomically wrt. completion of any outstanding commits.
1236          */
1237         err = do_get_write_access(handle, jh, 1);
1238         if (err)
1239                 goto out;
1240
1241 repeat:
1242         if (!jh->b_committed_data)
1243                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1244                                             GFP_NOFS|__GFP_NOFAIL);
1245
1246         jbd_lock_bh_state(bh);
1247         if (!jh->b_committed_data) {
1248                 /* Copy out the current buffer contents into the
1249                  * preserved, committed copy. */
1250                 JBUFFER_TRACE(jh, "generate b_committed data");
1251                 if (!committed_data) {
1252                         jbd_unlock_bh_state(bh);
1253                         goto repeat;
1254                 }
1255
1256                 jh->b_committed_data = committed_data;
1257                 committed_data = NULL;
1258                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1259         }
1260         jbd_unlock_bh_state(bh);
1261 out:
1262         jbd2_journal_put_journal_head(jh);
1263         if (unlikely(committed_data))
1264                 jbd2_free(committed_data, bh->b_size);
1265         return err;
1266 }
1267
1268 /**
1269  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1270  * @bh: buffer to trigger on
1271  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1272  *
1273  * Set any triggers on this journal_head.  This is always safe, because
1274  * triggers for a committing buffer will be saved off, and triggers for
1275  * a running transaction will match the buffer in that transaction.
1276  *
1277  * Call with NULL to clear the triggers.
1278  */
1279 void jbd2_journal_set_triggers(struct buffer_head *bh,
1280                                struct jbd2_buffer_trigger_type *type)
1281 {
1282         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1283
1284         if (WARN_ON(!jh))
1285                 return;
1286         jh->b_triggers = type;
1287         jbd2_journal_put_journal_head(jh);
1288 }
1289
1290 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1291                                 struct jbd2_buffer_trigger_type *triggers)
1292 {
1293         struct buffer_head *bh = jh2bh(jh);
1294
1295         if (!triggers || !triggers->t_frozen)
1296                 return;
1297
1298         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1299 }
1300
1301 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1302                                struct jbd2_buffer_trigger_type *triggers)
1303 {
1304         if (!triggers || !triggers->t_abort)
1305                 return;
1306
1307         triggers->t_abort(triggers, jh2bh(jh));
1308 }
1309
1310 /**
1311  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1312  * @handle: transaction to add buffer to.
1313  * @bh: buffer to mark
1314  *
1315  * mark dirty metadata which needs to be journaled as part of the current
1316  * transaction.
1317  *
1318  * The buffer must have previously had jbd2_journal_get_write_access()
1319  * called so that it has a valid journal_head attached to the buffer
1320  * head.
1321  *
1322  * The buffer is placed on the transaction's metadata list and is marked
1323  * as belonging to the transaction.
1324  *
1325  * Returns error number or 0 on success.
1326  *
1327  * Special care needs to be taken if the buffer already belongs to the
1328  * current committing transaction (in which case we should have frozen
1329  * data present for that commit).  In that case, we don't relink the
1330  * buffer: that only gets done when the old transaction finally
1331  * completes its commit.
1332  */
1333 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1334 {
1335         transaction_t *transaction = handle->h_transaction;
1336         journal_t *journal;
1337         struct journal_head *jh;
1338         int ret = 0;
1339
1340         if (is_handle_aborted(handle))
1341                 return -EROFS;
1342         if (!buffer_jbd(bh)) {
1343                 ret = -EUCLEAN;
1344                 goto out;
1345         }
1346         /*
1347          * We don't grab jh reference here since the buffer must be part
1348          * of the running transaction.
1349          */
1350         jh = bh2jh(bh);
1351         /*
1352          * This and the following assertions are unreliable since we may see jh
1353          * in inconsistent state unless we grab bh_state lock. But this is
1354          * crucial to catch bugs so let's do a reliable check until the
1355          * lockless handling is fully proven.
1356          */
1357         if (jh->b_transaction != transaction &&
1358             jh->b_next_transaction != transaction) {
1359                 jbd_lock_bh_state(bh);
1360                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1361                                 jh->b_next_transaction == transaction);
1362                 jbd_unlock_bh_state(bh);
1363         }
1364         if (jh->b_modified == 1) {
1365                 /* If it's in our transaction it must be in BJ_Metadata list. */
1366                 if (jh->b_transaction == transaction &&
1367                     jh->b_jlist != BJ_Metadata) {
1368                         jbd_lock_bh_state(bh);
1369                         if (jh->b_transaction == transaction &&
1370                             jh->b_jlist != BJ_Metadata)
1371                                 pr_err("JBD2: assertion failure: h_type=%u "
1372                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1373                                        handle->h_type, handle->h_line_no,
1374                                        (unsigned long long) bh->b_blocknr,
1375                                        jh->b_jlist);
1376                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1377                                         jh->b_jlist == BJ_Metadata);
1378                         jbd_unlock_bh_state(bh);
1379                 }
1380                 goto out;
1381         }
1382
1383         journal = transaction->t_journal;
1384         jbd_debug(5, "journal_head %p\n", jh);
1385         JBUFFER_TRACE(jh, "entry");
1386
1387         jbd_lock_bh_state(bh);
1388
1389         if (jh->b_modified == 0) {
1390                 /*
1391                  * This buffer's got modified and becoming part
1392                  * of the transaction. This needs to be done
1393                  * once a transaction -bzzz
1394                  */
1395                 if (handle->h_buffer_credits <= 0) {
1396                         ret = -ENOSPC;
1397                         goto out_unlock_bh;
1398                 }
1399                 jh->b_modified = 1;
1400                 handle->h_buffer_credits--;
1401         }
1402
1403         /*
1404          * fastpath, to avoid expensive locking.  If this buffer is already
1405          * on the running transaction's metadata list there is nothing to do.
1406          * Nobody can take it off again because there is a handle open.
1407          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1408          * result in this test being false, so we go in and take the locks.
1409          */
1410         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1411                 JBUFFER_TRACE(jh, "fastpath");
1412                 if (unlikely(jh->b_transaction !=
1413                              journal->j_running_transaction)) {
1414                         printk(KERN_ERR "JBD2: %s: "
1415                                "jh->b_transaction (%llu, %p, %u) != "
1416                                "journal->j_running_transaction (%p, %u)\n",
1417                                journal->j_devname,
1418                                (unsigned long long) bh->b_blocknr,
1419                                jh->b_transaction,
1420                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1421                                journal->j_running_transaction,
1422                                journal->j_running_transaction ?
1423                                journal->j_running_transaction->t_tid : 0);
1424                         ret = -EINVAL;
1425                 }
1426                 goto out_unlock_bh;
1427         }
1428
1429         set_buffer_jbddirty(bh);
1430
1431         /*
1432          * Metadata already on the current transaction list doesn't
1433          * need to be filed.  Metadata on another transaction's list must
1434          * be committing, and will be refiled once the commit completes:
1435          * leave it alone for now.
1436          */
1437         if (jh->b_transaction != transaction) {
1438                 JBUFFER_TRACE(jh, "already on other transaction");
1439                 if (unlikely(((jh->b_transaction !=
1440                                journal->j_committing_transaction)) ||
1441                              (jh->b_next_transaction != transaction))) {
1442                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1443                                "bad jh for block %llu: "
1444                                "transaction (%p, %u), "
1445                                "jh->b_transaction (%p, %u), "
1446                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1447                                journal->j_devname,
1448                                (unsigned long long) bh->b_blocknr,
1449                                transaction, transaction->t_tid,
1450                                jh->b_transaction,
1451                                jh->b_transaction ?
1452                                jh->b_transaction->t_tid : 0,
1453                                jh->b_next_transaction,
1454                                jh->b_next_transaction ?
1455                                jh->b_next_transaction->t_tid : 0,
1456                                jh->b_jlist);
1457                         WARN_ON(1);
1458                         ret = -EINVAL;
1459                 }
1460                 /* And this case is illegal: we can't reuse another
1461                  * transaction's data buffer, ever. */
1462                 goto out_unlock_bh;
1463         }
1464
1465         /* That test should have eliminated the following case: */
1466         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1467
1468         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1469         spin_lock(&journal->j_list_lock);
1470         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1471         spin_unlock(&journal->j_list_lock);
1472 out_unlock_bh:
1473         jbd_unlock_bh_state(bh);
1474 out:
1475         JBUFFER_TRACE(jh, "exit");
1476         return ret;
1477 }
1478
1479 /**
1480  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1481  * @handle: transaction handle
1482  * @bh:     bh to 'forget'
1483  *
1484  * We can only do the bforget if there are no commits pending against the
1485  * buffer.  If the buffer is dirty in the current running transaction we
1486  * can safely unlink it.
1487  *
1488  * bh may not be a journalled buffer at all - it may be a non-JBD
1489  * buffer which came off the hashtable.  Check for this.
1490  *
1491  * Decrements bh->b_count by one.
1492  *
1493  * Allow this call even if the handle has aborted --- it may be part of
1494  * the caller's cleanup after an abort.
1495  */
1496 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1497 {
1498         transaction_t *transaction = handle->h_transaction;
1499         journal_t *journal;
1500         struct journal_head *jh;
1501         int drop_reserve = 0;
1502         int err = 0;
1503         int was_modified = 0;
1504
1505         if (is_handle_aborted(handle))
1506                 return -EROFS;
1507         journal = transaction->t_journal;
1508
1509         BUFFER_TRACE(bh, "entry");
1510
1511         jbd_lock_bh_state(bh);
1512
1513         if (!buffer_jbd(bh))
1514                 goto not_jbd;
1515         jh = bh2jh(bh);
1516
1517         /* Critical error: attempting to delete a bitmap buffer, maybe?
1518          * Don't do any jbd operations, and return an error. */
1519         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1520                          "inconsistent data on disk")) {
1521                 err = -EIO;
1522                 goto not_jbd;
1523         }
1524
1525         /* keep track of whether or not this transaction modified us */
1526         was_modified = jh->b_modified;
1527
1528         /*
1529          * The buffer's going from the transaction, we must drop
1530          * all references -bzzz
1531          */
1532         jh->b_modified = 0;
1533
1534         if (jh->b_transaction == transaction) {
1535                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1536
1537                 /* If we are forgetting a buffer which is already part
1538                  * of this transaction, then we can just drop it from
1539                  * the transaction immediately. */
1540                 clear_buffer_dirty(bh);
1541                 clear_buffer_jbddirty(bh);
1542
1543                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1544
1545                 /*
1546                  * we only want to drop a reference if this transaction
1547                  * modified the buffer
1548                  */
1549                 if (was_modified)
1550                         drop_reserve = 1;
1551
1552                 /*
1553                  * We are no longer going to journal this buffer.
1554                  * However, the commit of this transaction is still
1555                  * important to the buffer: the delete that we are now
1556                  * processing might obsolete an old log entry, so by
1557                  * committing, we can satisfy the buffer's checkpoint.
1558                  *
1559                  * So, if we have a checkpoint on the buffer, we should
1560                  * now refile the buffer on our BJ_Forget list so that
1561                  * we know to remove the checkpoint after we commit.
1562                  */
1563
1564                 spin_lock(&journal->j_list_lock);
1565                 if (jh->b_cp_transaction) {
1566                         __jbd2_journal_temp_unlink_buffer(jh);
1567                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1568                 } else {
1569                         __jbd2_journal_unfile_buffer(jh);
1570                         if (!buffer_jbd(bh)) {
1571                                 spin_unlock(&journal->j_list_lock);
1572                                 jbd_unlock_bh_state(bh);
1573                                 __bforget(bh);
1574                                 goto drop;
1575                         }
1576                 }
1577                 spin_unlock(&journal->j_list_lock);
1578         } else if (jh->b_transaction) {
1579                 J_ASSERT_JH(jh, (jh->b_transaction ==
1580                                  journal->j_committing_transaction));
1581                 /* However, if the buffer is still owned by a prior
1582                  * (committing) transaction, we can't drop it yet... */
1583                 JBUFFER_TRACE(jh, "belongs to older transaction");
1584                 /* ... but we CAN drop it from the new transaction if we
1585                  * have also modified it since the original commit. */
1586
1587                 if (jh->b_next_transaction) {
1588                         J_ASSERT(jh->b_next_transaction == transaction);
1589                         spin_lock(&journal->j_list_lock);
1590                         jh->b_next_transaction = NULL;
1591                         spin_unlock(&journal->j_list_lock);
1592
1593                         /*
1594                          * only drop a reference if this transaction modified
1595                          * the buffer
1596                          */
1597                         if (was_modified)
1598                                 drop_reserve = 1;
1599                 }
1600         }
1601
1602 not_jbd:
1603         jbd_unlock_bh_state(bh);
1604         __brelse(bh);
1605 drop:
1606         if (drop_reserve) {
1607                 /* no need to reserve log space for this block -bzzz */
1608                 handle->h_buffer_credits++;
1609         }
1610         return err;
1611 }
1612
1613 /**
1614  * int jbd2_journal_stop() - complete a transaction
1615  * @handle: transaction to complete.
1616  *
1617  * All done for a particular handle.
1618  *
1619  * There is not much action needed here.  We just return any remaining
1620  * buffer credits to the transaction and remove the handle.  The only
1621  * complication is that we need to start a commit operation if the
1622  * filesystem is marked for synchronous update.
1623  *
1624  * jbd2_journal_stop itself will not usually return an error, but it may
1625  * do so in unusual circumstances.  In particular, expect it to
1626  * return -EIO if a jbd2_journal_abort has been executed since the
1627  * transaction began.
1628  */
1629 int jbd2_journal_stop(handle_t *handle)
1630 {
1631         transaction_t *transaction = handle->h_transaction;
1632         journal_t *journal;
1633         int err = 0, wait_for_commit = 0;
1634         tid_t tid;
1635         pid_t pid;
1636
1637         if (!transaction) {
1638                 /*
1639                  * Handle is already detached from the transaction so
1640                  * there is nothing to do other than decrease a refcount,
1641                  * or free the handle if refcount drops to zero
1642                  */
1643                 if (--handle->h_ref > 0) {
1644                         jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1645                                                          handle->h_ref);
1646                         return err;
1647                 } else {
1648                         if (handle->h_rsv_handle)
1649                                 jbd2_free_handle(handle->h_rsv_handle);
1650                         goto free_and_exit;
1651                 }
1652         }
1653         journal = transaction->t_journal;
1654
1655         J_ASSERT(journal_current_handle() == handle);
1656
1657         if (is_handle_aborted(handle))
1658                 err = -EIO;
1659         else
1660                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1661
1662         if (--handle->h_ref > 0) {
1663                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1664                           handle->h_ref);
1665                 return err;
1666         }
1667
1668         jbd_debug(4, "Handle %p going down\n", handle);
1669         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1670                                 transaction->t_tid,
1671                                 handle->h_type, handle->h_line_no,
1672                                 jiffies - handle->h_start_jiffies,
1673                                 handle->h_sync, handle->h_requested_credits,
1674                                 (handle->h_requested_credits -
1675                                  handle->h_buffer_credits));
1676
1677         /*
1678          * Implement synchronous transaction batching.  If the handle
1679          * was synchronous, don't force a commit immediately.  Let's
1680          * yield and let another thread piggyback onto this
1681          * transaction.  Keep doing that while new threads continue to
1682          * arrive.  It doesn't cost much - we're about to run a commit
1683          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1684          * operations by 30x or more...
1685          *
1686          * We try and optimize the sleep time against what the
1687          * underlying disk can do, instead of having a static sleep
1688          * time.  This is useful for the case where our storage is so
1689          * fast that it is more optimal to go ahead and force a flush
1690          * and wait for the transaction to be committed than it is to
1691          * wait for an arbitrary amount of time for new writers to
1692          * join the transaction.  We achieve this by measuring how
1693          * long it takes to commit a transaction, and compare it with
1694          * how long this transaction has been running, and if run time
1695          * < commit time then we sleep for the delta and commit.  This
1696          * greatly helps super fast disks that would see slowdowns as
1697          * more threads started doing fsyncs.
1698          *
1699          * But don't do this if this process was the most recent one
1700          * to perform a synchronous write.  We do this to detect the
1701          * case where a single process is doing a stream of sync
1702          * writes.  No point in waiting for joiners in that case.
1703          *
1704          * Setting max_batch_time to 0 disables this completely.
1705          */
1706         pid = current->pid;
1707         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1708             journal->j_max_batch_time) {
1709                 u64 commit_time, trans_time;
1710
1711                 journal->j_last_sync_writer = pid;
1712
1713                 read_lock(&journal->j_state_lock);
1714                 commit_time = journal->j_average_commit_time;
1715                 read_unlock(&journal->j_state_lock);
1716
1717                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1718                                                    transaction->t_start_time));
1719
1720                 commit_time = max_t(u64, commit_time,
1721                                     1000*journal->j_min_batch_time);
1722                 commit_time = min_t(u64, commit_time,
1723                                     1000*journal->j_max_batch_time);
1724
1725                 if (trans_time < commit_time) {
1726                         ktime_t expires = ktime_add_ns(ktime_get(),
1727                                                        commit_time);
1728                         set_current_state(TASK_UNINTERRUPTIBLE);
1729                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1730                 }
1731         }
1732
1733         if (handle->h_sync)
1734                 transaction->t_synchronous_commit = 1;
1735         current->journal_info = NULL;
1736         atomic_sub(handle->h_buffer_credits,
1737                    &transaction->t_outstanding_credits);
1738
1739         /*
1740          * If the handle is marked SYNC, we need to set another commit
1741          * going!  We also want to force a commit if the current
1742          * transaction is occupying too much of the log, or if the
1743          * transaction is too old now.
1744          */
1745         if (handle->h_sync ||
1746             (atomic_read(&transaction->t_outstanding_credits) >
1747              journal->j_max_transaction_buffers) ||
1748             time_after_eq(jiffies, transaction->t_expires)) {
1749                 /* Do this even for aborted journals: an abort still
1750                  * completes the commit thread, it just doesn't write
1751                  * anything to disk. */
1752
1753                 jbd_debug(2, "transaction too old, requesting commit for "
1754                                         "handle %p\n", handle);
1755                 /* This is non-blocking */
1756                 jbd2_log_start_commit(journal, transaction->t_tid);
1757
1758                 /*
1759                  * Special case: JBD2_SYNC synchronous updates require us
1760                  * to wait for the commit to complete.
1761                  */
1762                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1763                         wait_for_commit = 1;
1764         }
1765
1766         /*
1767          * Once we drop t_updates, if it goes to zero the transaction
1768          * could start committing on us and eventually disappear.  So
1769          * once we do this, we must not dereference transaction
1770          * pointer again.
1771          */
1772         tid = transaction->t_tid;
1773         if (atomic_dec_and_test(&transaction->t_updates)) {
1774                 wake_up(&journal->j_wait_updates);
1775                 if (journal->j_barrier_count)
1776                         wake_up(&journal->j_wait_transaction_locked);
1777         }
1778
1779         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1780
1781         if (wait_for_commit)
1782                 err = jbd2_log_wait_commit(journal, tid);
1783
1784         if (handle->h_rsv_handle)
1785                 jbd2_journal_free_reserved(handle->h_rsv_handle);
1786 free_and_exit:
1787         /*
1788          * Scope of the GFP_NOFS context is over here and so we can restore the
1789          * original alloc context.
1790          */
1791         memalloc_nofs_restore(handle->saved_alloc_context);
1792         jbd2_free_handle(handle);
1793         return err;
1794 }
1795
1796 /*
1797  *
1798  * List management code snippets: various functions for manipulating the
1799  * transaction buffer lists.
1800  *
1801  */
1802
1803 /*
1804  * Append a buffer to a transaction list, given the transaction's list head
1805  * pointer.
1806  *
1807  * j_list_lock is held.
1808  *
1809  * jbd_lock_bh_state(jh2bh(jh)) is held.
1810  */
1811
1812 static inline void
1813 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1814 {
1815         if (!*list) {
1816                 jh->b_tnext = jh->b_tprev = jh;
1817                 *list = jh;
1818         } else {
1819                 /* Insert at the tail of the list to preserve order */
1820                 struct journal_head *first = *list, *last = first->b_tprev;
1821                 jh->b_tprev = last;
1822                 jh->b_tnext = first;
1823                 last->b_tnext = first->b_tprev = jh;
1824         }
1825 }
1826
1827 /*
1828  * Remove a buffer from a transaction list, given the transaction's list
1829  * head pointer.
1830  *
1831  * Called with j_list_lock held, and the journal may not be locked.
1832  *
1833  * jbd_lock_bh_state(jh2bh(jh)) is held.
1834  */
1835
1836 static inline void
1837 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1838 {
1839         if (*list == jh) {
1840                 *list = jh->b_tnext;
1841                 if (*list == jh)
1842                         *list = NULL;
1843         }
1844         jh->b_tprev->b_tnext = jh->b_tnext;
1845         jh->b_tnext->b_tprev = jh->b_tprev;
1846 }
1847
1848 /*
1849  * Remove a buffer from the appropriate transaction list.
1850  *
1851  * Note that this function can *change* the value of
1852  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1853  * t_reserved_list.  If the caller is holding onto a copy of one of these
1854  * pointers, it could go bad.  Generally the caller needs to re-read the
1855  * pointer from the transaction_t.
1856  *
1857  * Called under j_list_lock.
1858  */
1859 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1860 {
1861         struct journal_head **list = NULL;
1862         transaction_t *transaction;
1863         struct buffer_head *bh = jh2bh(jh);
1864
1865         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1866         transaction = jh->b_transaction;
1867         if (transaction)
1868                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1869
1870         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1871         if (jh->b_jlist != BJ_None)
1872                 J_ASSERT_JH(jh, transaction != NULL);
1873
1874         switch (jh->b_jlist) {
1875         case BJ_None:
1876                 return;
1877         case BJ_Metadata:
1878                 transaction->t_nr_buffers--;
1879                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1880                 list = &transaction->t_buffers;
1881                 break;
1882         case BJ_Forget:
1883                 list = &transaction->t_forget;
1884                 break;
1885         case BJ_Shadow:
1886                 list = &transaction->t_shadow_list;
1887                 break;
1888         case BJ_Reserved:
1889                 list = &transaction->t_reserved_list;
1890                 break;
1891         }
1892
1893         __blist_del_buffer(list, jh);
1894         jh->b_jlist = BJ_None;
1895         if (transaction && is_journal_aborted(transaction->t_journal))
1896                 clear_buffer_jbddirty(bh);
1897         else if (test_clear_buffer_jbddirty(bh))
1898                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1899 }
1900
1901 /*
1902  * Remove buffer from all transactions.
1903  *
1904  * Called with bh_state lock and j_list_lock
1905  *
1906  * jh and bh may be already freed when this function returns.
1907  */
1908 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1909 {
1910         __jbd2_journal_temp_unlink_buffer(jh);
1911         jh->b_transaction = NULL;
1912         jbd2_journal_put_journal_head(jh);
1913 }
1914
1915 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1916 {
1917         struct buffer_head *bh = jh2bh(jh);
1918
1919         /* Get reference so that buffer cannot be freed before we unlock it */
1920         get_bh(bh);
1921         jbd_lock_bh_state(bh);
1922         spin_lock(&journal->j_list_lock);
1923         __jbd2_journal_unfile_buffer(jh);
1924         spin_unlock(&journal->j_list_lock);
1925         jbd_unlock_bh_state(bh);
1926         __brelse(bh);
1927 }
1928
1929 /*
1930  * Called from jbd2_journal_try_to_free_buffers().
1931  *
1932  * Called under jbd_lock_bh_state(bh)
1933  */
1934 static void
1935 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1936 {
1937         struct journal_head *jh;
1938
1939         jh = bh2jh(bh);
1940
1941         if (buffer_locked(bh) || buffer_dirty(bh))
1942                 goto out;
1943
1944         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1945                 goto out;
1946
1947         spin_lock(&journal->j_list_lock);
1948         if (jh->b_cp_transaction != NULL) {
1949                 /* written-back checkpointed metadata buffer */
1950                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1951                 __jbd2_journal_remove_checkpoint(jh);
1952         }
1953         spin_unlock(&journal->j_list_lock);
1954 out:
1955         return;
1956 }
1957
1958 /**
1959  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1960  * @journal: journal for operation
1961  * @page: to try and free
1962  * @gfp_mask: we use the mask to detect how hard should we try to release
1963  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1964  * code to release the buffers.
1965  *
1966  *
1967  * For all the buffers on this page,
1968  * if they are fully written out ordered data, move them onto BUF_CLEAN
1969  * so try_to_free_buffers() can reap them.
1970  *
1971  * This function returns non-zero if we wish try_to_free_buffers()
1972  * to be called. We do this if the page is releasable by try_to_free_buffers().
1973  * We also do it if the page has locked or dirty buffers and the caller wants
1974  * us to perform sync or async writeout.
1975  *
1976  * This complicates JBD locking somewhat.  We aren't protected by the
1977  * BKL here.  We wish to remove the buffer from its committing or
1978  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1979  *
1980  * This may *change* the value of transaction_t->t_datalist, so anyone
1981  * who looks at t_datalist needs to lock against this function.
1982  *
1983  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1984  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1985  * will come out of the lock with the buffer dirty, which makes it
1986  * ineligible for release here.
1987  *
1988  * Who else is affected by this?  hmm...  Really the only contender
1989  * is do_get_write_access() - it could be looking at the buffer while
1990  * journal_try_to_free_buffer() is changing its state.  But that
1991  * cannot happen because we never reallocate freed data as metadata
1992  * while the data is part of a transaction.  Yes?
1993  *
1994  * Return 0 on failure, 1 on success
1995  */
1996 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1997                                 struct page *page, gfp_t gfp_mask)
1998 {
1999         struct buffer_head *head;
2000         struct buffer_head *bh;
2001         int ret = 0;
2002
2003         J_ASSERT(PageLocked(page));
2004
2005         head = page_buffers(page);
2006         bh = head;
2007         do {
2008                 struct journal_head *jh;
2009
2010                 /*
2011                  * We take our own ref against the journal_head here to avoid
2012                  * having to add tons of locking around each instance of
2013                  * jbd2_journal_put_journal_head().
2014                  */
2015                 jh = jbd2_journal_grab_journal_head(bh);
2016                 if (!jh)
2017                         continue;
2018
2019                 jbd_lock_bh_state(bh);
2020                 __journal_try_to_free_buffer(journal, bh);
2021                 jbd2_journal_put_journal_head(jh);
2022                 jbd_unlock_bh_state(bh);
2023                 if (buffer_jbd(bh))
2024                         goto busy;
2025         } while ((bh = bh->b_this_page) != head);
2026
2027         ret = try_to_free_buffers(page);
2028
2029 busy:
2030         return ret;
2031 }
2032
2033 /*
2034  * This buffer is no longer needed.  If it is on an older transaction's
2035  * checkpoint list we need to record it on this transaction's forget list
2036  * to pin this buffer (and hence its checkpointing transaction) down until
2037  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2038  * release it.
2039  * Returns non-zero if JBD no longer has an interest in the buffer.
2040  *
2041  * Called under j_list_lock.
2042  *
2043  * Called under jbd_lock_bh_state(bh).
2044  */
2045 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2046 {
2047         int may_free = 1;
2048         struct buffer_head *bh = jh2bh(jh);
2049
2050         if (jh->b_cp_transaction) {
2051                 JBUFFER_TRACE(jh, "on running+cp transaction");
2052                 __jbd2_journal_temp_unlink_buffer(jh);
2053                 /*
2054                  * We don't want to write the buffer anymore, clear the
2055                  * bit so that we don't confuse checks in
2056                  * __journal_file_buffer
2057                  */
2058                 clear_buffer_dirty(bh);
2059                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2060                 may_free = 0;
2061         } else {
2062                 JBUFFER_TRACE(jh, "on running transaction");
2063                 __jbd2_journal_unfile_buffer(jh);
2064         }
2065         return may_free;
2066 }
2067
2068 /*
2069  * jbd2_journal_invalidatepage
2070  *
2071  * This code is tricky.  It has a number of cases to deal with.
2072  *
2073  * There are two invariants which this code relies on:
2074  *
2075  * i_size must be updated on disk before we start calling invalidatepage on the
2076  * data.
2077  *
2078  *  This is done in ext3 by defining an ext3_setattr method which
2079  *  updates i_size before truncate gets going.  By maintaining this
2080  *  invariant, we can be sure that it is safe to throw away any buffers
2081  *  attached to the current transaction: once the transaction commits,
2082  *  we know that the data will not be needed.
2083  *
2084  *  Note however that we can *not* throw away data belonging to the
2085  *  previous, committing transaction!
2086  *
2087  * Any disk blocks which *are* part of the previous, committing
2088  * transaction (and which therefore cannot be discarded immediately) are
2089  * not going to be reused in the new running transaction
2090  *
2091  *  The bitmap committed_data images guarantee this: any block which is
2092  *  allocated in one transaction and removed in the next will be marked
2093  *  as in-use in the committed_data bitmap, so cannot be reused until
2094  *  the next transaction to delete the block commits.  This means that
2095  *  leaving committing buffers dirty is quite safe: the disk blocks
2096  *  cannot be reallocated to a different file and so buffer aliasing is
2097  *  not possible.
2098  *
2099  *
2100  * The above applies mainly to ordered data mode.  In writeback mode we
2101  * don't make guarantees about the order in which data hits disk --- in
2102  * particular we don't guarantee that new dirty data is flushed before
2103  * transaction commit --- so it is always safe just to discard data
2104  * immediately in that mode.  --sct
2105  */
2106
2107 /*
2108  * The journal_unmap_buffer helper function returns zero if the buffer
2109  * concerned remains pinned as an anonymous buffer belonging to an older
2110  * transaction.
2111  *
2112  * We're outside-transaction here.  Either or both of j_running_transaction
2113  * and j_committing_transaction may be NULL.
2114  */
2115 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2116                                 int partial_page)
2117 {
2118         transaction_t *transaction;
2119         struct journal_head *jh;
2120         int may_free = 1;
2121
2122         BUFFER_TRACE(bh, "entry");
2123
2124         /*
2125          * It is safe to proceed here without the j_list_lock because the
2126          * buffers cannot be stolen by try_to_free_buffers as long as we are
2127          * holding the page lock. --sct
2128          */
2129
2130         if (!buffer_jbd(bh))
2131                 goto zap_buffer_unlocked;
2132
2133         /* OK, we have data buffer in journaled mode */
2134         write_lock(&journal->j_state_lock);
2135         jbd_lock_bh_state(bh);
2136         spin_lock(&journal->j_list_lock);
2137
2138         jh = jbd2_journal_grab_journal_head(bh);
2139         if (!jh)
2140                 goto zap_buffer_no_jh;
2141
2142         /*
2143          * We cannot remove the buffer from checkpoint lists until the
2144          * transaction adding inode to orphan list (let's call it T)
2145          * is committed.  Otherwise if the transaction changing the
2146          * buffer would be cleaned from the journal before T is
2147          * committed, a crash will cause that the correct contents of
2148          * the buffer will be lost.  On the other hand we have to
2149          * clear the buffer dirty bit at latest at the moment when the
2150          * transaction marking the buffer as freed in the filesystem
2151          * structures is committed because from that moment on the
2152          * block can be reallocated and used by a different page.
2153          * Since the block hasn't been freed yet but the inode has
2154          * already been added to orphan list, it is safe for us to add
2155          * the buffer to BJ_Forget list of the newest transaction.
2156          *
2157          * Also we have to clear buffer_mapped flag of a truncated buffer
2158          * because the buffer_head may be attached to the page straddling
2159          * i_size (can happen only when blocksize < pagesize) and thus the
2160          * buffer_head can be reused when the file is extended again. So we end
2161          * up keeping around invalidated buffers attached to transactions'
2162          * BJ_Forget list just to stop checkpointing code from cleaning up
2163          * the transaction this buffer was modified in.
2164          */
2165         transaction = jh->b_transaction;
2166         if (transaction == NULL) {
2167                 /* First case: not on any transaction.  If it
2168                  * has no checkpoint link, then we can zap it:
2169                  * it's a writeback-mode buffer so we don't care
2170                  * if it hits disk safely. */
2171                 if (!jh->b_cp_transaction) {
2172                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2173                         goto zap_buffer;
2174                 }
2175
2176                 if (!buffer_dirty(bh)) {
2177                         /* bdflush has written it.  We can drop it now */
2178                         __jbd2_journal_remove_checkpoint(jh);
2179                         goto zap_buffer;
2180                 }
2181
2182                 /* OK, it must be in the journal but still not
2183                  * written fully to disk: it's metadata or
2184                  * journaled data... */
2185
2186                 if (journal->j_running_transaction) {
2187                         /* ... and once the current transaction has
2188                          * committed, the buffer won't be needed any
2189                          * longer. */
2190                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2191                         may_free = __dispose_buffer(jh,
2192                                         journal->j_running_transaction);
2193                         goto zap_buffer;
2194                 } else {
2195                         /* There is no currently-running transaction. So the
2196                          * orphan record which we wrote for this file must have
2197                          * passed into commit.  We must attach this buffer to
2198                          * the committing transaction, if it exists. */
2199                         if (journal->j_committing_transaction) {
2200                                 JBUFFER_TRACE(jh, "give to committing trans");
2201                                 may_free = __dispose_buffer(jh,
2202                                         journal->j_committing_transaction);
2203                                 goto zap_buffer;
2204                         } else {
2205                                 /* The orphan record's transaction has
2206                                  * committed.  We can cleanse this buffer */
2207                                 clear_buffer_jbddirty(bh);
2208                                 __jbd2_journal_remove_checkpoint(jh);
2209                                 goto zap_buffer;
2210                         }
2211                 }
2212         } else if (transaction == journal->j_committing_transaction) {
2213                 JBUFFER_TRACE(jh, "on committing transaction");
2214                 /*
2215                  * The buffer is committing, we simply cannot touch
2216                  * it. If the page is straddling i_size we have to wait
2217                  * for commit and try again.
2218                  */
2219                 if (partial_page) {
2220                         jbd2_journal_put_journal_head(jh);
2221                         spin_unlock(&journal->j_list_lock);
2222                         jbd_unlock_bh_state(bh);
2223                         write_unlock(&journal->j_state_lock);
2224                         return -EBUSY;
2225                 }
2226                 /*
2227                  * OK, buffer won't be reachable after truncate. We just set
2228                  * j_next_transaction to the running transaction (if there is
2229                  * one) and mark buffer as freed so that commit code knows it
2230                  * should clear dirty bits when it is done with the buffer.
2231                  */
2232                 set_buffer_freed(bh);
2233                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2234                         jh->b_next_transaction = journal->j_running_transaction;
2235                 jbd2_journal_put_journal_head(jh);
2236                 spin_unlock(&journal->j_list_lock);
2237                 jbd_unlock_bh_state(bh);
2238                 write_unlock(&journal->j_state_lock);
2239                 return 0;
2240         } else {
2241                 /* Good, the buffer belongs to the running transaction.
2242                  * We are writing our own transaction's data, not any
2243                  * previous one's, so it is safe to throw it away
2244                  * (remember that we expect the filesystem to have set
2245                  * i_size already for this truncate so recovery will not
2246                  * expose the disk blocks we are discarding here.) */
2247                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2248                 JBUFFER_TRACE(jh, "on running transaction");
2249                 may_free = __dispose_buffer(jh, transaction);
2250         }
2251
2252 zap_buffer:
2253         /*
2254          * This is tricky. Although the buffer is truncated, it may be reused
2255          * if blocksize < pagesize and it is attached to the page straddling
2256          * EOF. Since the buffer might have been added to BJ_Forget list of the
2257          * running transaction, journal_get_write_access() won't clear
2258          * b_modified and credit accounting gets confused. So clear b_modified
2259          * here.
2260          */
2261         jh->b_modified = 0;
2262         jbd2_journal_put_journal_head(jh);
2263 zap_buffer_no_jh:
2264         spin_unlock(&journal->j_list_lock);
2265         jbd_unlock_bh_state(bh);
2266         write_unlock(&journal->j_state_lock);
2267 zap_buffer_unlocked:
2268         clear_buffer_dirty(bh);
2269         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2270         clear_buffer_mapped(bh);
2271         clear_buffer_req(bh);
2272         clear_buffer_new(bh);
2273         clear_buffer_delay(bh);
2274         clear_buffer_unwritten(bh);
2275         bh->b_bdev = NULL;
2276         return may_free;
2277 }
2278
2279 /**
2280  * void jbd2_journal_invalidatepage()
2281  * @journal: journal to use for flush...
2282  * @page:    page to flush
2283  * @offset:  start of the range to invalidate
2284  * @length:  length of the range to invalidate
2285  *
2286  * Reap page buffers containing data after in the specified range in page.
2287  * Can return -EBUSY if buffers are part of the committing transaction and
2288  * the page is straddling i_size. Caller then has to wait for current commit
2289  * and try again.
2290  */
2291 int jbd2_journal_invalidatepage(journal_t *journal,
2292                                 struct page *page,
2293                                 unsigned int offset,
2294                                 unsigned int length)
2295 {
2296         struct buffer_head *head, *bh, *next;
2297         unsigned int stop = offset + length;
2298         unsigned int curr_off = 0;
2299         int partial_page = (offset || length < PAGE_SIZE);
2300         int may_free = 1;
2301         int ret = 0;
2302
2303         if (!PageLocked(page))
2304                 BUG();
2305         if (!page_has_buffers(page))
2306                 return 0;
2307
2308         BUG_ON(stop > PAGE_SIZE || stop < length);
2309
2310         /* We will potentially be playing with lists other than just the
2311          * data lists (especially for journaled data mode), so be
2312          * cautious in our locking. */
2313
2314         head = bh = page_buffers(page);
2315         do {
2316                 unsigned int next_off = curr_off + bh->b_size;
2317                 next = bh->b_this_page;
2318
2319                 if (next_off > stop)
2320                         return 0;
2321
2322                 if (offset <= curr_off) {
2323                         /* This block is wholly outside the truncation point */
2324                         lock_buffer(bh);
2325                         ret = journal_unmap_buffer(journal, bh, partial_page);
2326                         unlock_buffer(bh);
2327                         if (ret < 0)
2328                                 return ret;
2329                         may_free &= ret;
2330                 }
2331                 curr_off = next_off;
2332                 bh = next;
2333
2334         } while (bh != head);
2335
2336         if (!partial_page) {
2337                 if (may_free && try_to_free_buffers(page))
2338                         J_ASSERT(!page_has_buffers(page));
2339         }
2340         return 0;
2341 }
2342
2343 /*
2344  * File a buffer on the given transaction list.
2345  */
2346 void __jbd2_journal_file_buffer(struct journal_head *jh,
2347                         transaction_t *transaction, int jlist)
2348 {
2349         struct journal_head **list = NULL;
2350         int was_dirty = 0;
2351         struct buffer_head *bh = jh2bh(jh);
2352
2353         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2354         assert_spin_locked(&transaction->t_journal->j_list_lock);
2355
2356         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2357         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2358                                 jh->b_transaction == NULL);
2359
2360         if (jh->b_transaction && jh->b_jlist == jlist)
2361                 return;
2362
2363         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2364             jlist == BJ_Shadow || jlist == BJ_Forget) {
2365                 /*
2366                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2367                  * instead of buffer_dirty. We should not see a dirty bit set
2368                  * here because we clear it in do_get_write_access but e.g.
2369                  * tune2fs can modify the sb and set the dirty bit at any time
2370                  * so we try to gracefully handle that.
2371                  */
2372                 if (buffer_dirty(bh))
2373                         warn_dirty_buffer(bh);
2374                 if (test_clear_buffer_dirty(bh) ||
2375                     test_clear_buffer_jbddirty(bh))
2376                         was_dirty = 1;
2377         }
2378
2379         if (jh->b_transaction)
2380                 __jbd2_journal_temp_unlink_buffer(jh);
2381         else
2382                 jbd2_journal_grab_journal_head(bh);
2383         jh->b_transaction = transaction;
2384
2385         switch (jlist) {
2386         case BJ_None:
2387                 J_ASSERT_JH(jh, !jh->b_committed_data);
2388                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2389                 return;
2390         case BJ_Metadata:
2391                 transaction->t_nr_buffers++;
2392                 list = &transaction->t_buffers;
2393                 break;
2394         case BJ_Forget:
2395                 list = &transaction->t_forget;
2396                 break;
2397         case BJ_Shadow:
2398                 list = &transaction->t_shadow_list;
2399                 break;
2400         case BJ_Reserved:
2401                 list = &transaction->t_reserved_list;
2402                 break;
2403         }
2404
2405         __blist_add_buffer(list, jh);
2406         jh->b_jlist = jlist;
2407
2408         if (was_dirty)
2409                 set_buffer_jbddirty(bh);
2410 }
2411
2412 void jbd2_journal_file_buffer(struct journal_head *jh,
2413                                 transaction_t *transaction, int jlist)
2414 {
2415         jbd_lock_bh_state(jh2bh(jh));
2416         spin_lock(&transaction->t_journal->j_list_lock);
2417         __jbd2_journal_file_buffer(jh, transaction, jlist);
2418         spin_unlock(&transaction->t_journal->j_list_lock);
2419         jbd_unlock_bh_state(jh2bh(jh));
2420 }
2421
2422 /*
2423  * Remove a buffer from its current buffer list in preparation for
2424  * dropping it from its current transaction entirely.  If the buffer has
2425  * already started to be used by a subsequent transaction, refile the
2426  * buffer on that transaction's metadata list.
2427  *
2428  * Called under j_list_lock
2429  * Called under jbd_lock_bh_state(jh2bh(jh))
2430  *
2431  * jh and bh may be already free when this function returns
2432  */
2433 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2434 {
2435         int was_dirty, jlist;
2436         struct buffer_head *bh = jh2bh(jh);
2437
2438         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2439         if (jh->b_transaction)
2440                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2441
2442         /* If the buffer is now unused, just drop it. */
2443         if (jh->b_next_transaction == NULL) {
2444                 __jbd2_journal_unfile_buffer(jh);
2445                 return;
2446         }
2447
2448         /*
2449          * It has been modified by a later transaction: add it to the new
2450          * transaction's metadata list.
2451          */
2452
2453         was_dirty = test_clear_buffer_jbddirty(bh);
2454         __jbd2_journal_temp_unlink_buffer(jh);
2455         /*
2456          * We set b_transaction here because b_next_transaction will inherit
2457          * our jh reference and thus __jbd2_journal_file_buffer() must not
2458          * take a new one.
2459          */
2460         jh->b_transaction = jh->b_next_transaction;
2461         jh->b_next_transaction = NULL;
2462         if (buffer_freed(bh))
2463                 jlist = BJ_Forget;
2464         else if (jh->b_modified)
2465                 jlist = BJ_Metadata;
2466         else
2467                 jlist = BJ_Reserved;
2468         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2469         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2470
2471         if (was_dirty)
2472                 set_buffer_jbddirty(bh);
2473 }
2474
2475 /*
2476  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2477  * bh reference so that we can safely unlock bh.
2478  *
2479  * The jh and bh may be freed by this call.
2480  */
2481 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2482 {
2483         struct buffer_head *bh = jh2bh(jh);
2484
2485         /* Get reference so that buffer cannot be freed before we unlock it */
2486         get_bh(bh);
2487         jbd_lock_bh_state(bh);
2488         spin_lock(&journal->j_list_lock);
2489         __jbd2_journal_refile_buffer(jh);
2490         jbd_unlock_bh_state(bh);
2491         spin_unlock(&journal->j_list_lock);
2492         __brelse(bh);
2493 }
2494
2495 /*
2496  * File inode in the inode list of the handle's transaction
2497  */
2498 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2499                                    unsigned long flags)
2500 {
2501         transaction_t *transaction = handle->h_transaction;
2502         journal_t *journal;
2503
2504         if (is_handle_aborted(handle))
2505                 return -EROFS;
2506         journal = transaction->t_journal;
2507
2508         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2509                         transaction->t_tid);
2510
2511         /*
2512          * First check whether inode isn't already on the transaction's
2513          * lists without taking the lock. Note that this check is safe
2514          * without the lock as we cannot race with somebody removing inode
2515          * from the transaction. The reason is that we remove inode from the
2516          * transaction only in journal_release_jbd_inode() and when we commit
2517          * the transaction. We are guarded from the first case by holding
2518          * a reference to the inode. We are safe against the second case
2519          * because if jinode->i_transaction == transaction, commit code
2520          * cannot touch the transaction because we hold reference to it,
2521          * and if jinode->i_next_transaction == transaction, commit code
2522          * will only file the inode where we want it.
2523          */
2524         if ((jinode->i_transaction == transaction ||
2525             jinode->i_next_transaction == transaction) &&
2526             (jinode->i_flags & flags) == flags)
2527                 return 0;
2528
2529         spin_lock(&journal->j_list_lock);
2530         jinode->i_flags |= flags;
2531         /* Is inode already attached where we need it? */
2532         if (jinode->i_transaction == transaction ||
2533             jinode->i_next_transaction == transaction)
2534                 goto done;
2535
2536         /*
2537          * We only ever set this variable to 1 so the test is safe. Since
2538          * t_need_data_flush is likely to be set, we do the test to save some
2539          * cacheline bouncing
2540          */
2541         if (!transaction->t_need_data_flush)
2542                 transaction->t_need_data_flush = 1;
2543         /* On some different transaction's list - should be
2544          * the committing one */
2545         if (jinode->i_transaction) {
2546                 J_ASSERT(jinode->i_next_transaction == NULL);
2547                 J_ASSERT(jinode->i_transaction ==
2548                                         journal->j_committing_transaction);
2549                 jinode->i_next_transaction = transaction;
2550                 goto done;
2551         }
2552         /* Not on any transaction list... */
2553         J_ASSERT(!jinode->i_next_transaction);
2554         jinode->i_transaction = transaction;
2555         list_add(&jinode->i_list, &transaction->t_inode_list);
2556 done:
2557         spin_unlock(&journal->j_list_lock);
2558
2559         return 0;
2560 }
2561
2562 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2563 {
2564         return jbd2_journal_file_inode(handle, jinode,
2565                                        JI_WRITE_DATA | JI_WAIT_DATA);
2566 }
2567
2568 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2569 {
2570         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2571 }
2572
2573 /*
2574  * File truncate and transaction commit interact with each other in a
2575  * non-trivial way.  If a transaction writing data block A is
2576  * committing, we cannot discard the data by truncate until we have
2577  * written them.  Otherwise if we crashed after the transaction with
2578  * write has committed but before the transaction with truncate has
2579  * committed, we could see stale data in block A.  This function is a
2580  * helper to solve this problem.  It starts writeout of the truncated
2581  * part in case it is in the committing transaction.
2582  *
2583  * Filesystem code must call this function when inode is journaled in
2584  * ordered mode before truncation happens and after the inode has been
2585  * placed on orphan list with the new inode size. The second condition
2586  * avoids the race that someone writes new data and we start
2587  * committing the transaction after this function has been called but
2588  * before a transaction for truncate is started (and furthermore it
2589  * allows us to optimize the case where the addition to orphan list
2590  * happens in the same transaction as write --- we don't have to write
2591  * any data in such case).
2592  */
2593 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2594                                         struct jbd2_inode *jinode,
2595                                         loff_t new_size)
2596 {
2597         transaction_t *inode_trans, *commit_trans;
2598         int ret = 0;
2599
2600         /* This is a quick check to avoid locking if not necessary */
2601         if (!jinode->i_transaction)
2602                 goto out;
2603         /* Locks are here just to force reading of recent values, it is
2604          * enough that the transaction was not committing before we started
2605          * a transaction adding the inode to orphan list */
2606         read_lock(&journal->j_state_lock);
2607         commit_trans = journal->j_committing_transaction;
2608         read_unlock(&journal->j_state_lock);
2609         spin_lock(&journal->j_list_lock);
2610         inode_trans = jinode->i_transaction;
2611         spin_unlock(&journal->j_list_lock);
2612         if (inode_trans == commit_trans) {
2613                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2614                         new_size, LLONG_MAX);
2615                 if (ret)
2616                         jbd2_journal_abort(journal, ret);
2617         }
2618 out:
2619         return ret;
2620 }