jbd2: refine waiting for shadow buffers
[platform/upstream/kernel-adaptation-pc.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32
33 #include <trace/events/jbd2.h>
34
35 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38 static struct kmem_cache *transaction_cache;
39 int __init jbd2_journal_init_transaction_cache(void)
40 {
41         J_ASSERT(!transaction_cache);
42         transaction_cache = kmem_cache_create("jbd2_transaction_s",
43                                         sizeof(transaction_t),
44                                         0,
45                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46                                         NULL);
47         if (transaction_cache)
48                 return 0;
49         return -ENOMEM;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         if (transaction_cache) {
55                 kmem_cache_destroy(transaction_cache);
56                 transaction_cache = NULL;
57         }
58 }
59
60 void jbd2_journal_free_transaction(transaction_t *transaction)
61 {
62         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63                 return;
64         kmem_cache_free(transaction_cache, transaction);
65 }
66
67 /*
68  * jbd2_get_transaction: obtain a new transaction_t object.
69  *
70  * Simply allocate and initialise a new transaction.  Create it in
71  * RUNNING state and add it to the current journal (which should not
72  * have an existing running transaction: we only make a new transaction
73  * once we have started to commit the old one).
74  *
75  * Preconditions:
76  *      The journal MUST be locked.  We don't perform atomic mallocs on the
77  *      new transaction and we can't block without protecting against other
78  *      processes trying to touch the journal while it is in transition.
79  *
80  */
81
82 static transaction_t *
83 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84 {
85         transaction->t_journal = journal;
86         transaction->t_state = T_RUNNING;
87         transaction->t_start_time = ktime_get();
88         transaction->t_tid = journal->j_transaction_sequence++;
89         transaction->t_expires = jiffies + journal->j_commit_interval;
90         spin_lock_init(&transaction->t_handle_lock);
91         atomic_set(&transaction->t_updates, 0);
92         atomic_set(&transaction->t_outstanding_credits, 0);
93         atomic_set(&transaction->t_handle_count, 0);
94         INIT_LIST_HEAD(&transaction->t_inode_list);
95         INIT_LIST_HEAD(&transaction->t_private_list);
96
97         /* Set up the commit timer for the new transaction. */
98         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
99         add_timer(&journal->j_commit_timer);
100
101         J_ASSERT(journal->j_running_transaction == NULL);
102         journal->j_running_transaction = transaction;
103         transaction->t_max_wait = 0;
104         transaction->t_start = jiffies;
105         transaction->t_requested = 0;
106
107         return transaction;
108 }
109
110 /*
111  * Handle management.
112  *
113  * A handle_t is an object which represents a single atomic update to a
114  * filesystem, and which tracks all of the modifications which form part
115  * of that one update.
116  */
117
118 /*
119  * Update transaction's maximum wait time, if debugging is enabled.
120  *
121  * In order for t_max_wait to be reliable, it must be protected by a
122  * lock.  But doing so will mean that start_this_handle() can not be
123  * run in parallel on SMP systems, which limits our scalability.  So
124  * unless debugging is enabled, we no longer update t_max_wait, which
125  * means that maximum wait time reported by the jbd2_run_stats
126  * tracepoint will always be zero.
127  */
128 static inline void update_t_max_wait(transaction_t *transaction,
129                                      unsigned long ts)
130 {
131 #ifdef CONFIG_JBD2_DEBUG
132         if (jbd2_journal_enable_debug &&
133             time_after(transaction->t_start, ts)) {
134                 ts = jbd2_time_diff(ts, transaction->t_start);
135                 spin_lock(&transaction->t_handle_lock);
136                 if (ts > transaction->t_max_wait)
137                         transaction->t_max_wait = ts;
138                 spin_unlock(&transaction->t_handle_lock);
139         }
140 #endif
141 }
142
143 /*
144  * start_this_handle: Given a handle, deal with any locking or stalling
145  * needed to make sure that there is enough journal space for the handle
146  * to begin.  Attach the handle to a transaction and set up the
147  * transaction's buffer credits.
148  */
149
150 static int start_this_handle(journal_t *journal, handle_t *handle,
151                              gfp_t gfp_mask)
152 {
153         transaction_t   *transaction, *new_transaction = NULL;
154         tid_t           tid;
155         int             needed, need_to_start;
156         int             nblocks = handle->h_buffer_credits;
157         unsigned long ts = jiffies;
158
159         if (nblocks > journal->j_max_transaction_buffers) {
160                 printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
161                        current->comm, nblocks,
162                        journal->j_max_transaction_buffers);
163                 return -ENOSPC;
164         }
165
166 alloc_transaction:
167         if (!journal->j_running_transaction) {
168                 new_transaction = kmem_cache_zalloc(transaction_cache,
169                                                     gfp_mask);
170                 if (!new_transaction) {
171                         /*
172                          * If __GFP_FS is not present, then we may be
173                          * being called from inside the fs writeback
174                          * layer, so we MUST NOT fail.  Since
175                          * __GFP_NOFAIL is going away, we will arrange
176                          * to retry the allocation ourselves.
177                          */
178                         if ((gfp_mask & __GFP_FS) == 0) {
179                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
180                                 goto alloc_transaction;
181                         }
182                         return -ENOMEM;
183                 }
184         }
185
186         jbd_debug(3, "New handle %p going live.\n", handle);
187
188         /*
189          * We need to hold j_state_lock until t_updates has been incremented,
190          * for proper journal barrier handling
191          */
192 repeat:
193         read_lock(&journal->j_state_lock);
194         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
195         if (is_journal_aborted(journal) ||
196             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
197                 read_unlock(&journal->j_state_lock);
198                 jbd2_journal_free_transaction(new_transaction);
199                 return -EROFS;
200         }
201
202         /* Wait on the journal's transaction barrier if necessary */
203         if (journal->j_barrier_count) {
204                 read_unlock(&journal->j_state_lock);
205                 wait_event(journal->j_wait_transaction_locked,
206                                 journal->j_barrier_count == 0);
207                 goto repeat;
208         }
209
210         if (!journal->j_running_transaction) {
211                 read_unlock(&journal->j_state_lock);
212                 if (!new_transaction)
213                         goto alloc_transaction;
214                 write_lock(&journal->j_state_lock);
215                 if (!journal->j_running_transaction &&
216                     !journal->j_barrier_count) {
217                         jbd2_get_transaction(journal, new_transaction);
218                         new_transaction = NULL;
219                 }
220                 write_unlock(&journal->j_state_lock);
221                 goto repeat;
222         }
223
224         transaction = journal->j_running_transaction;
225
226         /*
227          * If the current transaction is locked down for commit, wait for the
228          * lock to be released.
229          */
230         if (transaction->t_state == T_LOCKED) {
231                 DEFINE_WAIT(wait);
232
233                 prepare_to_wait(&journal->j_wait_transaction_locked,
234                                         &wait, TASK_UNINTERRUPTIBLE);
235                 read_unlock(&journal->j_state_lock);
236                 schedule();
237                 finish_wait(&journal->j_wait_transaction_locked, &wait);
238                 goto repeat;
239         }
240
241         /*
242          * If there is not enough space left in the log to write all potential
243          * buffers requested by this operation, we need to stall pending a log
244          * checkpoint to free some more log space.
245          */
246         needed = atomic_add_return(nblocks,
247                                    &transaction->t_outstanding_credits);
248
249         if (needed > journal->j_max_transaction_buffers) {
250                 /*
251                  * If the current transaction is already too large, then start
252                  * to commit it: we can then go back and attach this handle to
253                  * a new transaction.
254                  */
255                 DEFINE_WAIT(wait);
256
257                 jbd_debug(2, "Handle %p starting new commit...\n", handle);
258                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
259                 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
260                                 TASK_UNINTERRUPTIBLE);
261                 tid = transaction->t_tid;
262                 need_to_start = !tid_geq(journal->j_commit_request, tid);
263                 read_unlock(&journal->j_state_lock);
264                 if (need_to_start)
265                         jbd2_log_start_commit(journal, tid);
266                 schedule();
267                 finish_wait(&journal->j_wait_transaction_locked, &wait);
268                 goto repeat;
269         }
270
271         /*
272          * The commit code assumes that it can get enough log space
273          * without forcing a checkpoint.  This is *critical* for
274          * correctness: a checkpoint of a buffer which is also
275          * associated with a committing transaction creates a deadlock,
276          * so commit simply cannot force through checkpoints.
277          *
278          * We must therefore ensure the necessary space in the journal
279          * *before* starting to dirty potentially checkpointed buffers
280          * in the new transaction.
281          *
282          * The worst part is, any transaction currently committing can
283          * reduce the free space arbitrarily.  Be careful to account for
284          * those buffers when checkpointing.
285          */
286
287         /*
288          * @@@ AKPM: This seems rather over-defensive.  We're giving commit
289          * a _lot_ of headroom: 1/4 of the journal plus the size of
290          * the committing transaction.  Really, we only need to give it
291          * committing_transaction->t_outstanding_credits plus "enough" for
292          * the log control blocks.
293          * Also, this test is inconsistent with the matching one in
294          * jbd2_journal_extend().
295          */
296         if (__jbd2_log_space_left(journal) < jbd_space_needed(journal)) {
297                 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle);
298                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
299                 read_unlock(&journal->j_state_lock);
300                 write_lock(&journal->j_state_lock);
301                 if (__jbd2_log_space_left(journal) < jbd_space_needed(journal))
302                         __jbd2_log_wait_for_space(journal);
303                 write_unlock(&journal->j_state_lock);
304                 goto repeat;
305         }
306
307         /* OK, account for the buffers that this operation expects to
308          * use and add the handle to the running transaction. 
309          */
310         update_t_max_wait(transaction, ts);
311         handle->h_transaction = transaction;
312         handle->h_requested_credits = nblocks;
313         handle->h_start_jiffies = jiffies;
314         atomic_inc(&transaction->t_updates);
315         atomic_inc(&transaction->t_handle_count);
316         jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
317                   handle, nblocks,
318                   atomic_read(&transaction->t_outstanding_credits),
319                   __jbd2_log_space_left(journal));
320         read_unlock(&journal->j_state_lock);
321
322         lock_map_acquire(&handle->h_lockdep_map);
323         jbd2_journal_free_transaction(new_transaction);
324         return 0;
325 }
326
327 static struct lock_class_key jbd2_handle_key;
328
329 /* Allocate a new handle.  This should probably be in a slab... */
330 static handle_t *new_handle(int nblocks)
331 {
332         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
333         if (!handle)
334                 return NULL;
335         handle->h_buffer_credits = nblocks;
336         handle->h_ref = 1;
337
338         lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
339                                                 &jbd2_handle_key, 0);
340
341         return handle;
342 }
343
344 /**
345  * handle_t *jbd2_journal_start() - Obtain a new handle.
346  * @journal: Journal to start transaction on.
347  * @nblocks: number of block buffer we might modify
348  *
349  * We make sure that the transaction can guarantee at least nblocks of
350  * modified buffers in the log.  We block until the log can guarantee
351  * that much space.
352  *
353  * This function is visible to journal users (like ext3fs), so is not
354  * called with the journal already locked.
355  *
356  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
357  * on failure.
358  */
359 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, gfp_t gfp_mask,
360                               unsigned int type, unsigned int line_no)
361 {
362         handle_t *handle = journal_current_handle();
363         int err;
364
365         if (!journal)
366                 return ERR_PTR(-EROFS);
367
368         if (handle) {
369                 J_ASSERT(handle->h_transaction->t_journal == journal);
370                 handle->h_ref++;
371                 return handle;
372         }
373
374         handle = new_handle(nblocks);
375         if (!handle)
376                 return ERR_PTR(-ENOMEM);
377
378         current->journal_info = handle;
379
380         err = start_this_handle(journal, handle, gfp_mask);
381         if (err < 0) {
382                 jbd2_free_handle(handle);
383                 current->journal_info = NULL;
384                 return ERR_PTR(err);
385         }
386         handle->h_type = type;
387         handle->h_line_no = line_no;
388         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
389                                 handle->h_transaction->t_tid, type,
390                                 line_no, nblocks);
391         return handle;
392 }
393 EXPORT_SYMBOL(jbd2__journal_start);
394
395
396 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
397 {
398         return jbd2__journal_start(journal, nblocks, GFP_NOFS, 0, 0);
399 }
400 EXPORT_SYMBOL(jbd2_journal_start);
401
402
403 /**
404  * int jbd2_journal_extend() - extend buffer credits.
405  * @handle:  handle to 'extend'
406  * @nblocks: nr blocks to try to extend by.
407  *
408  * Some transactions, such as large extends and truncates, can be done
409  * atomically all at once or in several stages.  The operation requests
410  * a credit for a number of buffer modications in advance, but can
411  * extend its credit if it needs more.
412  *
413  * jbd2_journal_extend tries to give the running handle more buffer credits.
414  * It does not guarantee that allocation - this is a best-effort only.
415  * The calling process MUST be able to deal cleanly with a failure to
416  * extend here.
417  *
418  * Return 0 on success, non-zero on failure.
419  *
420  * return code < 0 implies an error
421  * return code > 0 implies normal transaction-full status.
422  */
423 int jbd2_journal_extend(handle_t *handle, int nblocks)
424 {
425         transaction_t *transaction = handle->h_transaction;
426         journal_t *journal = transaction->t_journal;
427         int result;
428         int wanted;
429
430         result = -EIO;
431         if (is_handle_aborted(handle))
432                 goto out;
433
434         result = 1;
435
436         read_lock(&journal->j_state_lock);
437
438         /* Don't extend a locked-down transaction! */
439         if (handle->h_transaction->t_state != T_RUNNING) {
440                 jbd_debug(3, "denied handle %p %d blocks: "
441                           "transaction not running\n", handle, nblocks);
442                 goto error_out;
443         }
444
445         spin_lock(&transaction->t_handle_lock);
446         wanted = atomic_read(&transaction->t_outstanding_credits) + nblocks;
447
448         if (wanted > journal->j_max_transaction_buffers) {
449                 jbd_debug(3, "denied handle %p %d blocks: "
450                           "transaction too large\n", handle, nblocks);
451                 goto unlock;
452         }
453
454         if (wanted > __jbd2_log_space_left(journal)) {
455                 jbd_debug(3, "denied handle %p %d blocks: "
456                           "insufficient log space\n", handle, nblocks);
457                 goto unlock;
458         }
459
460         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
461                                  handle->h_transaction->t_tid,
462                                  handle->h_type, handle->h_line_no,
463                                  handle->h_buffer_credits,
464                                  nblocks);
465
466         handle->h_buffer_credits += nblocks;
467         handle->h_requested_credits += nblocks;
468         atomic_add(nblocks, &transaction->t_outstanding_credits);
469         result = 0;
470
471         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
472 unlock:
473         spin_unlock(&transaction->t_handle_lock);
474 error_out:
475         read_unlock(&journal->j_state_lock);
476 out:
477         return result;
478 }
479
480
481 /**
482  * int jbd2_journal_restart() - restart a handle .
483  * @handle:  handle to restart
484  * @nblocks: nr credits requested
485  *
486  * Restart a handle for a multi-transaction filesystem
487  * operation.
488  *
489  * If the jbd2_journal_extend() call above fails to grant new buffer credits
490  * to a running handle, a call to jbd2_journal_restart will commit the
491  * handle's transaction so far and reattach the handle to a new
492  * transaction capabable of guaranteeing the requested number of
493  * credits.
494  */
495 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
496 {
497         transaction_t *transaction = handle->h_transaction;
498         journal_t *journal = transaction->t_journal;
499         tid_t           tid;
500         int             need_to_start, ret;
501
502         /* If we've had an abort of any type, don't even think about
503          * actually doing the restart! */
504         if (is_handle_aborted(handle))
505                 return 0;
506
507         /*
508          * First unlink the handle from its current transaction, and start the
509          * commit on that.
510          */
511         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
512         J_ASSERT(journal_current_handle() == handle);
513
514         read_lock(&journal->j_state_lock);
515         spin_lock(&transaction->t_handle_lock);
516         atomic_sub(handle->h_buffer_credits,
517                    &transaction->t_outstanding_credits);
518         if (atomic_dec_and_test(&transaction->t_updates))
519                 wake_up(&journal->j_wait_updates);
520         spin_unlock(&transaction->t_handle_lock);
521
522         jbd_debug(2, "restarting handle %p\n", handle);
523         tid = transaction->t_tid;
524         need_to_start = !tid_geq(journal->j_commit_request, tid);
525         read_unlock(&journal->j_state_lock);
526         if (need_to_start)
527                 jbd2_log_start_commit(journal, tid);
528
529         lock_map_release(&handle->h_lockdep_map);
530         handle->h_buffer_credits = nblocks;
531         ret = start_this_handle(journal, handle, gfp_mask);
532         return ret;
533 }
534 EXPORT_SYMBOL(jbd2__journal_restart);
535
536
537 int jbd2_journal_restart(handle_t *handle, int nblocks)
538 {
539         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
540 }
541 EXPORT_SYMBOL(jbd2_journal_restart);
542
543 /**
544  * void jbd2_journal_lock_updates () - establish a transaction barrier.
545  * @journal:  Journal to establish a barrier on.
546  *
547  * This locks out any further updates from being started, and blocks
548  * until all existing updates have completed, returning only once the
549  * journal is in a quiescent state with no updates running.
550  *
551  * The journal lock should not be held on entry.
552  */
553 void jbd2_journal_lock_updates(journal_t *journal)
554 {
555         DEFINE_WAIT(wait);
556
557         write_lock(&journal->j_state_lock);
558         ++journal->j_barrier_count;
559
560         /* Wait until there are no running updates */
561         while (1) {
562                 transaction_t *transaction = journal->j_running_transaction;
563
564                 if (!transaction)
565                         break;
566
567                 spin_lock(&transaction->t_handle_lock);
568                 prepare_to_wait(&journal->j_wait_updates, &wait,
569                                 TASK_UNINTERRUPTIBLE);
570                 if (!atomic_read(&transaction->t_updates)) {
571                         spin_unlock(&transaction->t_handle_lock);
572                         finish_wait(&journal->j_wait_updates, &wait);
573                         break;
574                 }
575                 spin_unlock(&transaction->t_handle_lock);
576                 write_unlock(&journal->j_state_lock);
577                 schedule();
578                 finish_wait(&journal->j_wait_updates, &wait);
579                 write_lock(&journal->j_state_lock);
580         }
581         write_unlock(&journal->j_state_lock);
582
583         /*
584          * We have now established a barrier against other normal updates, but
585          * we also need to barrier against other jbd2_journal_lock_updates() calls
586          * to make sure that we serialise special journal-locked operations
587          * too.
588          */
589         mutex_lock(&journal->j_barrier);
590 }
591
592 /**
593  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
594  * @journal:  Journal to release the barrier on.
595  *
596  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
597  *
598  * Should be called without the journal lock held.
599  */
600 void jbd2_journal_unlock_updates (journal_t *journal)
601 {
602         J_ASSERT(journal->j_barrier_count != 0);
603
604         mutex_unlock(&journal->j_barrier);
605         write_lock(&journal->j_state_lock);
606         --journal->j_barrier_count;
607         write_unlock(&journal->j_state_lock);
608         wake_up(&journal->j_wait_transaction_locked);
609 }
610
611 static void warn_dirty_buffer(struct buffer_head *bh)
612 {
613         char b[BDEVNAME_SIZE];
614
615         printk(KERN_WARNING
616                "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
617                "There's a risk of filesystem corruption in case of system "
618                "crash.\n",
619                bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
620 }
621
622 static int sleep_on_shadow_bh(void *word)
623 {
624         io_schedule();
625         return 0;
626 }
627
628 /*
629  * If the buffer is already part of the current transaction, then there
630  * is nothing we need to do.  If it is already part of a prior
631  * transaction which we are still committing to disk, then we need to
632  * make sure that we do not overwrite the old copy: we do copy-out to
633  * preserve the copy going to disk.  We also account the buffer against
634  * the handle's metadata buffer credits (unless the buffer is already
635  * part of the transaction, that is).
636  *
637  */
638 static int
639 do_get_write_access(handle_t *handle, struct journal_head *jh,
640                         int force_copy)
641 {
642         struct buffer_head *bh;
643         transaction_t *transaction;
644         journal_t *journal;
645         int error;
646         char *frozen_buffer = NULL;
647         int need_copy = 0;
648         unsigned long start_lock, time_lock;
649
650         if (is_handle_aborted(handle))
651                 return -EROFS;
652
653         transaction = handle->h_transaction;
654         journal = transaction->t_journal;
655
656         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
657
658         JBUFFER_TRACE(jh, "entry");
659 repeat:
660         bh = jh2bh(jh);
661
662         /* @@@ Need to check for errors here at some point. */
663
664         start_lock = jiffies;
665         lock_buffer(bh);
666         jbd_lock_bh_state(bh);
667
668         /* If it takes too long to lock the buffer, trace it */
669         time_lock = jbd2_time_diff(start_lock, jiffies);
670         if (time_lock > HZ/10)
671                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
672                         jiffies_to_msecs(time_lock));
673
674         /* We now hold the buffer lock so it is safe to query the buffer
675          * state.  Is the buffer dirty?
676          *
677          * If so, there are two possibilities.  The buffer may be
678          * non-journaled, and undergoing a quite legitimate writeback.
679          * Otherwise, it is journaled, and we don't expect dirty buffers
680          * in that state (the buffers should be marked JBD_Dirty
681          * instead.)  So either the IO is being done under our own
682          * control and this is a bug, or it's a third party IO such as
683          * dump(8) (which may leave the buffer scheduled for read ---
684          * ie. locked but not dirty) or tune2fs (which may actually have
685          * the buffer dirtied, ugh.)  */
686
687         if (buffer_dirty(bh)) {
688                 /*
689                  * First question: is this buffer already part of the current
690                  * transaction or the existing committing transaction?
691                  */
692                 if (jh->b_transaction) {
693                         J_ASSERT_JH(jh,
694                                 jh->b_transaction == transaction ||
695                                 jh->b_transaction ==
696                                         journal->j_committing_transaction);
697                         if (jh->b_next_transaction)
698                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
699                                                         transaction);
700                         warn_dirty_buffer(bh);
701                 }
702                 /*
703                  * In any case we need to clean the dirty flag and we must
704                  * do it under the buffer lock to be sure we don't race
705                  * with running write-out.
706                  */
707                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
708                 clear_buffer_dirty(bh);
709                 set_buffer_jbddirty(bh);
710         }
711
712         unlock_buffer(bh);
713
714         error = -EROFS;
715         if (is_handle_aborted(handle)) {
716                 jbd_unlock_bh_state(bh);
717                 goto out;
718         }
719         error = 0;
720
721         /*
722          * The buffer is already part of this transaction if b_transaction or
723          * b_next_transaction points to it
724          */
725         if (jh->b_transaction == transaction ||
726             jh->b_next_transaction == transaction)
727                 goto done;
728
729         /*
730          * this is the first time this transaction is touching this buffer,
731          * reset the modified flag
732          */
733        jh->b_modified = 0;
734
735         /*
736          * If there is already a copy-out version of this buffer, then we don't
737          * need to make another one
738          */
739         if (jh->b_frozen_data) {
740                 JBUFFER_TRACE(jh, "has frozen data");
741                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
742                 jh->b_next_transaction = transaction;
743                 goto done;
744         }
745
746         /* Is there data here we need to preserve? */
747
748         if (jh->b_transaction && jh->b_transaction != transaction) {
749                 JBUFFER_TRACE(jh, "owned by older transaction");
750                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
751                 J_ASSERT_JH(jh, jh->b_transaction ==
752                                         journal->j_committing_transaction);
753
754                 /* There is one case we have to be very careful about.
755                  * If the committing transaction is currently writing
756                  * this buffer out to disk and has NOT made a copy-out,
757                  * then we cannot modify the buffer contents at all
758                  * right now.  The essence of copy-out is that it is the
759                  * extra copy, not the primary copy, which gets
760                  * journaled.  If the primary copy is already going to
761                  * disk then we cannot do copy-out here. */
762
763                 if (buffer_shadow(bh)) {
764                         JBUFFER_TRACE(jh, "on shadow: sleep");
765                         jbd_unlock_bh_state(bh);
766                         wait_on_bit(&bh->b_state, BH_Shadow,
767                                     sleep_on_shadow_bh, TASK_UNINTERRUPTIBLE);
768                         goto repeat;
769                 }
770
771                 /*
772                  * Only do the copy if the currently-owning transaction still
773                  * needs it. If buffer isn't on BJ_Metadata list, the
774                  * committing transaction is past that stage (here we use the
775                  * fact that BH_Shadow is set under bh_state lock together with
776                  * refiling to BJ_Shadow list and at this point we know the
777                  * buffer doesn't have BH_Shadow set).
778                  *
779                  * Subtle point, though: if this is a get_undo_access,
780                  * then we will be relying on the frozen_data to contain
781                  * the new value of the committed_data record after the
782                  * transaction, so we HAVE to force the frozen_data copy
783                  * in that case.
784                  */
785                 if (jh->b_jlist == BJ_Metadata || force_copy) {
786                         JBUFFER_TRACE(jh, "generate frozen data");
787                         if (!frozen_buffer) {
788                                 JBUFFER_TRACE(jh, "allocate memory for buffer");
789                                 jbd_unlock_bh_state(bh);
790                                 frozen_buffer =
791                                         jbd2_alloc(jh2bh(jh)->b_size,
792                                                          GFP_NOFS);
793                                 if (!frozen_buffer) {
794                                         printk(KERN_EMERG
795                                                "%s: OOM for frozen_buffer\n",
796                                                __func__);
797                                         JBUFFER_TRACE(jh, "oom!");
798                                         error = -ENOMEM;
799                                         jbd_lock_bh_state(bh);
800                                         goto done;
801                                 }
802                                 goto repeat;
803                         }
804                         jh->b_frozen_data = frozen_buffer;
805                         frozen_buffer = NULL;
806                         need_copy = 1;
807                 }
808                 jh->b_next_transaction = transaction;
809         }
810
811
812         /*
813          * Finally, if the buffer is not journaled right now, we need to make
814          * sure it doesn't get written to disk before the caller actually
815          * commits the new data
816          */
817         if (!jh->b_transaction) {
818                 JBUFFER_TRACE(jh, "no transaction");
819                 J_ASSERT_JH(jh, !jh->b_next_transaction);
820                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
821                 spin_lock(&journal->j_list_lock);
822                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
823                 spin_unlock(&journal->j_list_lock);
824         }
825
826 done:
827         if (need_copy) {
828                 struct page *page;
829                 int offset;
830                 char *source;
831
832                 J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
833                             "Possible IO failure.\n");
834                 page = jh2bh(jh)->b_page;
835                 offset = offset_in_page(jh2bh(jh)->b_data);
836                 source = kmap_atomic(page);
837                 /* Fire data frozen trigger just before we copy the data */
838                 jbd2_buffer_frozen_trigger(jh, source + offset,
839                                            jh->b_triggers);
840                 memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
841                 kunmap_atomic(source);
842
843                 /*
844                  * Now that the frozen data is saved off, we need to store
845                  * any matching triggers.
846                  */
847                 jh->b_frozen_triggers = jh->b_triggers;
848         }
849         jbd_unlock_bh_state(bh);
850
851         /*
852          * If we are about to journal a buffer, then any revoke pending on it is
853          * no longer valid
854          */
855         jbd2_journal_cancel_revoke(handle, jh);
856
857 out:
858         if (unlikely(frozen_buffer))    /* It's usually NULL */
859                 jbd2_free(frozen_buffer, bh->b_size);
860
861         JBUFFER_TRACE(jh, "exit");
862         return error;
863 }
864
865 /**
866  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
867  * @handle: transaction to add buffer modifications to
868  * @bh:     bh to be used for metadata writes
869  *
870  * Returns an error code or 0 on success.
871  *
872  * In full data journalling mode the buffer may be of type BJ_AsyncData,
873  * because we're write()ing a buffer which is also part of a shared mapping.
874  */
875
876 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
877 {
878         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
879         int rc;
880
881         /* We do not want to get caught playing with fields which the
882          * log thread also manipulates.  Make sure that the buffer
883          * completes any outstanding IO before proceeding. */
884         rc = do_get_write_access(handle, jh, 0);
885         jbd2_journal_put_journal_head(jh);
886         return rc;
887 }
888
889
890 /*
891  * When the user wants to journal a newly created buffer_head
892  * (ie. getblk() returned a new buffer and we are going to populate it
893  * manually rather than reading off disk), then we need to keep the
894  * buffer_head locked until it has been completely filled with new
895  * data.  In this case, we should be able to make the assertion that
896  * the bh is not already part of an existing transaction.
897  *
898  * The buffer should already be locked by the caller by this point.
899  * There is no lock ranking violation: it was a newly created,
900  * unlocked buffer beforehand. */
901
902 /**
903  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
904  * @handle: transaction to new buffer to
905  * @bh: new buffer.
906  *
907  * Call this if you create a new bh.
908  */
909 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
910 {
911         transaction_t *transaction = handle->h_transaction;
912         journal_t *journal = transaction->t_journal;
913         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
914         int err;
915
916         jbd_debug(5, "journal_head %p\n", jh);
917         err = -EROFS;
918         if (is_handle_aborted(handle))
919                 goto out;
920         err = 0;
921
922         JBUFFER_TRACE(jh, "entry");
923         /*
924          * The buffer may already belong to this transaction due to pre-zeroing
925          * in the filesystem's new_block code.  It may also be on the previous,
926          * committing transaction's lists, but it HAS to be in Forget state in
927          * that case: the transaction must have deleted the buffer for it to be
928          * reused here.
929          */
930         jbd_lock_bh_state(bh);
931         spin_lock(&journal->j_list_lock);
932         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
933                 jh->b_transaction == NULL ||
934                 (jh->b_transaction == journal->j_committing_transaction &&
935                           jh->b_jlist == BJ_Forget)));
936
937         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
938         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
939
940         if (jh->b_transaction == NULL) {
941                 /*
942                  * Previous jbd2_journal_forget() could have left the buffer
943                  * with jbddirty bit set because it was being committed. When
944                  * the commit finished, we've filed the buffer for
945                  * checkpointing and marked it dirty. Now we are reallocating
946                  * the buffer so the transaction freeing it must have
947                  * committed and so it's safe to clear the dirty bit.
948                  */
949                 clear_buffer_dirty(jh2bh(jh));
950                 /* first access by this transaction */
951                 jh->b_modified = 0;
952
953                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
954                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
955         } else if (jh->b_transaction == journal->j_committing_transaction) {
956                 /* first access by this transaction */
957                 jh->b_modified = 0;
958
959                 JBUFFER_TRACE(jh, "set next transaction");
960                 jh->b_next_transaction = transaction;
961         }
962         spin_unlock(&journal->j_list_lock);
963         jbd_unlock_bh_state(bh);
964
965         /*
966          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
967          * blocks which contain freed but then revoked metadata.  We need
968          * to cancel the revoke in case we end up freeing it yet again
969          * and the reallocating as data - this would cause a second revoke,
970          * which hits an assertion error.
971          */
972         JBUFFER_TRACE(jh, "cancelling revoke");
973         jbd2_journal_cancel_revoke(handle, jh);
974 out:
975         jbd2_journal_put_journal_head(jh);
976         return err;
977 }
978
979 /**
980  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
981  *     non-rewindable consequences
982  * @handle: transaction
983  * @bh: buffer to undo
984  *
985  * Sometimes there is a need to distinguish between metadata which has
986  * been committed to disk and that which has not.  The ext3fs code uses
987  * this for freeing and allocating space, we have to make sure that we
988  * do not reuse freed space until the deallocation has been committed,
989  * since if we overwrote that space we would make the delete
990  * un-rewindable in case of a crash.
991  *
992  * To deal with that, jbd2_journal_get_undo_access requests write access to a
993  * buffer for parts of non-rewindable operations such as delete
994  * operations on the bitmaps.  The journaling code must keep a copy of
995  * the buffer's contents prior to the undo_access call until such time
996  * as we know that the buffer has definitely been committed to disk.
997  *
998  * We never need to know which transaction the committed data is part
999  * of, buffers touched here are guaranteed to be dirtied later and so
1000  * will be committed to a new transaction in due course, at which point
1001  * we can discard the old committed data pointer.
1002  *
1003  * Returns error number or 0 on success.
1004  */
1005 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1006 {
1007         int err;
1008         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1009         char *committed_data = NULL;
1010
1011         JBUFFER_TRACE(jh, "entry");
1012
1013         /*
1014          * Do this first --- it can drop the journal lock, so we want to
1015          * make sure that obtaining the committed_data is done
1016          * atomically wrt. completion of any outstanding commits.
1017          */
1018         err = do_get_write_access(handle, jh, 1);
1019         if (err)
1020                 goto out;
1021
1022 repeat:
1023         if (!jh->b_committed_data) {
1024                 committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1025                 if (!committed_data) {
1026                         printk(KERN_EMERG "%s: No memory for committed data\n",
1027                                 __func__);
1028                         err = -ENOMEM;
1029                         goto out;
1030                 }
1031         }
1032
1033         jbd_lock_bh_state(bh);
1034         if (!jh->b_committed_data) {
1035                 /* Copy out the current buffer contents into the
1036                  * preserved, committed copy. */
1037                 JBUFFER_TRACE(jh, "generate b_committed data");
1038                 if (!committed_data) {
1039                         jbd_unlock_bh_state(bh);
1040                         goto repeat;
1041                 }
1042
1043                 jh->b_committed_data = committed_data;
1044                 committed_data = NULL;
1045                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1046         }
1047         jbd_unlock_bh_state(bh);
1048 out:
1049         jbd2_journal_put_journal_head(jh);
1050         if (unlikely(committed_data))
1051                 jbd2_free(committed_data, bh->b_size);
1052         return err;
1053 }
1054
1055 /**
1056  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1057  * @bh: buffer to trigger on
1058  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1059  *
1060  * Set any triggers on this journal_head.  This is always safe, because
1061  * triggers for a committing buffer will be saved off, and triggers for
1062  * a running transaction will match the buffer in that transaction.
1063  *
1064  * Call with NULL to clear the triggers.
1065  */
1066 void jbd2_journal_set_triggers(struct buffer_head *bh,
1067                                struct jbd2_buffer_trigger_type *type)
1068 {
1069         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1070
1071         if (WARN_ON(!jh))
1072                 return;
1073         jh->b_triggers = type;
1074         jbd2_journal_put_journal_head(jh);
1075 }
1076
1077 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1078                                 struct jbd2_buffer_trigger_type *triggers)
1079 {
1080         struct buffer_head *bh = jh2bh(jh);
1081
1082         if (!triggers || !triggers->t_frozen)
1083                 return;
1084
1085         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1086 }
1087
1088 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1089                                struct jbd2_buffer_trigger_type *triggers)
1090 {
1091         if (!triggers || !triggers->t_abort)
1092                 return;
1093
1094         triggers->t_abort(triggers, jh2bh(jh));
1095 }
1096
1097
1098
1099 /**
1100  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1101  * @handle: transaction to add buffer to.
1102  * @bh: buffer to mark
1103  *
1104  * mark dirty metadata which needs to be journaled as part of the current
1105  * transaction.
1106  *
1107  * The buffer must have previously had jbd2_journal_get_write_access()
1108  * called so that it has a valid journal_head attached to the buffer
1109  * head.
1110  *
1111  * The buffer is placed on the transaction's metadata list and is marked
1112  * as belonging to the transaction.
1113  *
1114  * Returns error number or 0 on success.
1115  *
1116  * Special care needs to be taken if the buffer already belongs to the
1117  * current committing transaction (in which case we should have frozen
1118  * data present for that commit).  In that case, we don't relink the
1119  * buffer: that only gets done when the old transaction finally
1120  * completes its commit.
1121  */
1122 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1123 {
1124         transaction_t *transaction = handle->h_transaction;
1125         journal_t *journal = transaction->t_journal;
1126         struct journal_head *jh;
1127         int ret = 0;
1128
1129         if (is_handle_aborted(handle))
1130                 goto out;
1131         jh = jbd2_journal_grab_journal_head(bh);
1132         if (!jh) {
1133                 ret = -EUCLEAN;
1134                 goto out;
1135         }
1136         jbd_debug(5, "journal_head %p\n", jh);
1137         JBUFFER_TRACE(jh, "entry");
1138
1139         jbd_lock_bh_state(bh);
1140
1141         if (jh->b_modified == 0) {
1142                 /*
1143                  * This buffer's got modified and becoming part
1144                  * of the transaction. This needs to be done
1145                  * once a transaction -bzzz
1146                  */
1147                 jh->b_modified = 1;
1148                 J_ASSERT_JH(jh, handle->h_buffer_credits > 0);
1149                 handle->h_buffer_credits--;
1150         }
1151
1152         /*
1153          * fastpath, to avoid expensive locking.  If this buffer is already
1154          * on the running transaction's metadata list there is nothing to do.
1155          * Nobody can take it off again because there is a handle open.
1156          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1157          * result in this test being false, so we go in and take the locks.
1158          */
1159         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1160                 JBUFFER_TRACE(jh, "fastpath");
1161                 if (unlikely(jh->b_transaction !=
1162                              journal->j_running_transaction)) {
1163                         printk(KERN_EMERG "JBD: %s: "
1164                                "jh->b_transaction (%llu, %p, %u) != "
1165                                "journal->j_running_transaction (%p, %u)",
1166                                journal->j_devname,
1167                                (unsigned long long) bh->b_blocknr,
1168                                jh->b_transaction,
1169                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1170                                journal->j_running_transaction,
1171                                journal->j_running_transaction ?
1172                                journal->j_running_transaction->t_tid : 0);
1173                         ret = -EINVAL;
1174                 }
1175                 goto out_unlock_bh;
1176         }
1177
1178         set_buffer_jbddirty(bh);
1179
1180         /*
1181          * Metadata already on the current transaction list doesn't
1182          * need to be filed.  Metadata on another transaction's list must
1183          * be committing, and will be refiled once the commit completes:
1184          * leave it alone for now.
1185          */
1186         if (jh->b_transaction != transaction) {
1187                 JBUFFER_TRACE(jh, "already on other transaction");
1188                 if (unlikely(jh->b_transaction !=
1189                              journal->j_committing_transaction)) {
1190                         printk(KERN_EMERG "JBD: %s: "
1191                                "jh->b_transaction (%llu, %p, %u) != "
1192                                "journal->j_committing_transaction (%p, %u)",
1193                                journal->j_devname,
1194                                (unsigned long long) bh->b_blocknr,
1195                                jh->b_transaction,
1196                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1197                                journal->j_committing_transaction,
1198                                journal->j_committing_transaction ?
1199                                journal->j_committing_transaction->t_tid : 0);
1200                         ret = -EINVAL;
1201                 }
1202                 if (unlikely(jh->b_next_transaction != transaction)) {
1203                         printk(KERN_EMERG "JBD: %s: "
1204                                "jh->b_next_transaction (%llu, %p, %u) != "
1205                                "transaction (%p, %u)",
1206                                journal->j_devname,
1207                                (unsigned long long) bh->b_blocknr,
1208                                jh->b_next_transaction,
1209                                jh->b_next_transaction ?
1210                                jh->b_next_transaction->t_tid : 0,
1211                                transaction, transaction->t_tid);
1212                         ret = -EINVAL;
1213                 }
1214                 /* And this case is illegal: we can't reuse another
1215                  * transaction's data buffer, ever. */
1216                 goto out_unlock_bh;
1217         }
1218
1219         /* That test should have eliminated the following case: */
1220         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1221
1222         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1223         spin_lock(&journal->j_list_lock);
1224         __jbd2_journal_file_buffer(jh, handle->h_transaction, BJ_Metadata);
1225         spin_unlock(&journal->j_list_lock);
1226 out_unlock_bh:
1227         jbd_unlock_bh_state(bh);
1228         jbd2_journal_put_journal_head(jh);
1229 out:
1230         JBUFFER_TRACE(jh, "exit");
1231         WARN_ON(ret);   /* All errors are bugs, so dump the stack */
1232         return ret;
1233 }
1234
1235 /**
1236  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1237  * @handle: transaction handle
1238  * @bh:     bh to 'forget'
1239  *
1240  * We can only do the bforget if there are no commits pending against the
1241  * buffer.  If the buffer is dirty in the current running transaction we
1242  * can safely unlink it.
1243  *
1244  * bh may not be a journalled buffer at all - it may be a non-JBD
1245  * buffer which came off the hashtable.  Check for this.
1246  *
1247  * Decrements bh->b_count by one.
1248  *
1249  * Allow this call even if the handle has aborted --- it may be part of
1250  * the caller's cleanup after an abort.
1251  */
1252 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1253 {
1254         transaction_t *transaction = handle->h_transaction;
1255         journal_t *journal = transaction->t_journal;
1256         struct journal_head *jh;
1257         int drop_reserve = 0;
1258         int err = 0;
1259         int was_modified = 0;
1260
1261         BUFFER_TRACE(bh, "entry");
1262
1263         jbd_lock_bh_state(bh);
1264         spin_lock(&journal->j_list_lock);
1265
1266         if (!buffer_jbd(bh))
1267                 goto not_jbd;
1268         jh = bh2jh(bh);
1269
1270         /* Critical error: attempting to delete a bitmap buffer, maybe?
1271          * Don't do any jbd operations, and return an error. */
1272         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1273                          "inconsistent data on disk")) {
1274                 err = -EIO;
1275                 goto not_jbd;
1276         }
1277
1278         /* keep track of whether or not this transaction modified us */
1279         was_modified = jh->b_modified;
1280
1281         /*
1282          * The buffer's going from the transaction, we must drop
1283          * all references -bzzz
1284          */
1285         jh->b_modified = 0;
1286
1287         if (jh->b_transaction == handle->h_transaction) {
1288                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1289
1290                 /* If we are forgetting a buffer which is already part
1291                  * of this transaction, then we can just drop it from
1292                  * the transaction immediately. */
1293                 clear_buffer_dirty(bh);
1294                 clear_buffer_jbddirty(bh);
1295
1296                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1297
1298                 /*
1299                  * we only want to drop a reference if this transaction
1300                  * modified the buffer
1301                  */
1302                 if (was_modified)
1303                         drop_reserve = 1;
1304
1305                 /*
1306                  * We are no longer going to journal this buffer.
1307                  * However, the commit of this transaction is still
1308                  * important to the buffer: the delete that we are now
1309                  * processing might obsolete an old log entry, so by
1310                  * committing, we can satisfy the buffer's checkpoint.
1311                  *
1312                  * So, if we have a checkpoint on the buffer, we should
1313                  * now refile the buffer on our BJ_Forget list so that
1314                  * we know to remove the checkpoint after we commit.
1315                  */
1316
1317                 if (jh->b_cp_transaction) {
1318                         __jbd2_journal_temp_unlink_buffer(jh);
1319                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1320                 } else {
1321                         __jbd2_journal_unfile_buffer(jh);
1322                         if (!buffer_jbd(bh)) {
1323                                 spin_unlock(&journal->j_list_lock);
1324                                 jbd_unlock_bh_state(bh);
1325                                 __bforget(bh);
1326                                 goto drop;
1327                         }
1328                 }
1329         } else if (jh->b_transaction) {
1330                 J_ASSERT_JH(jh, (jh->b_transaction ==
1331                                  journal->j_committing_transaction));
1332                 /* However, if the buffer is still owned by a prior
1333                  * (committing) transaction, we can't drop it yet... */
1334                 JBUFFER_TRACE(jh, "belongs to older transaction");
1335                 /* ... but we CAN drop it from the new transaction if we
1336                  * have also modified it since the original commit. */
1337
1338                 if (jh->b_next_transaction) {
1339                         J_ASSERT(jh->b_next_transaction == transaction);
1340                         jh->b_next_transaction = NULL;
1341
1342                         /*
1343                          * only drop a reference if this transaction modified
1344                          * the buffer
1345                          */
1346                         if (was_modified)
1347                                 drop_reserve = 1;
1348                 }
1349         }
1350
1351 not_jbd:
1352         spin_unlock(&journal->j_list_lock);
1353         jbd_unlock_bh_state(bh);
1354         __brelse(bh);
1355 drop:
1356         if (drop_reserve) {
1357                 /* no need to reserve log space for this block -bzzz */
1358                 handle->h_buffer_credits++;
1359         }
1360         return err;
1361 }
1362
1363 /**
1364  * int jbd2_journal_stop() - complete a transaction
1365  * @handle: tranaction to complete.
1366  *
1367  * All done for a particular handle.
1368  *
1369  * There is not much action needed here.  We just return any remaining
1370  * buffer credits to the transaction and remove the handle.  The only
1371  * complication is that we need to start a commit operation if the
1372  * filesystem is marked for synchronous update.
1373  *
1374  * jbd2_journal_stop itself will not usually return an error, but it may
1375  * do so in unusual circumstances.  In particular, expect it to
1376  * return -EIO if a jbd2_journal_abort has been executed since the
1377  * transaction began.
1378  */
1379 int jbd2_journal_stop(handle_t *handle)
1380 {
1381         transaction_t *transaction = handle->h_transaction;
1382         journal_t *journal = transaction->t_journal;
1383         int err, wait_for_commit = 0;
1384         tid_t tid;
1385         pid_t pid;
1386
1387         J_ASSERT(journal_current_handle() == handle);
1388
1389         if (is_handle_aborted(handle))
1390                 err = -EIO;
1391         else {
1392                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1393                 err = 0;
1394         }
1395
1396         if (--handle->h_ref > 0) {
1397                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1398                           handle->h_ref);
1399                 return err;
1400         }
1401
1402         jbd_debug(4, "Handle %p going down\n", handle);
1403         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1404                                 handle->h_transaction->t_tid,
1405                                 handle->h_type, handle->h_line_no,
1406                                 jiffies - handle->h_start_jiffies,
1407                                 handle->h_sync, handle->h_requested_credits,
1408                                 (handle->h_requested_credits -
1409                                  handle->h_buffer_credits));
1410
1411         /*
1412          * Implement synchronous transaction batching.  If the handle
1413          * was synchronous, don't force a commit immediately.  Let's
1414          * yield and let another thread piggyback onto this
1415          * transaction.  Keep doing that while new threads continue to
1416          * arrive.  It doesn't cost much - we're about to run a commit
1417          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1418          * operations by 30x or more...
1419          *
1420          * We try and optimize the sleep time against what the
1421          * underlying disk can do, instead of having a static sleep
1422          * time.  This is useful for the case where our storage is so
1423          * fast that it is more optimal to go ahead and force a flush
1424          * and wait for the transaction to be committed than it is to
1425          * wait for an arbitrary amount of time for new writers to
1426          * join the transaction.  We achieve this by measuring how
1427          * long it takes to commit a transaction, and compare it with
1428          * how long this transaction has been running, and if run time
1429          * < commit time then we sleep for the delta and commit.  This
1430          * greatly helps super fast disks that would see slowdowns as
1431          * more threads started doing fsyncs.
1432          *
1433          * But don't do this if this process was the most recent one
1434          * to perform a synchronous write.  We do this to detect the
1435          * case where a single process is doing a stream of sync
1436          * writes.  No point in waiting for joiners in that case.
1437          */
1438         pid = current->pid;
1439         if (handle->h_sync && journal->j_last_sync_writer != pid) {
1440                 u64 commit_time, trans_time;
1441
1442                 journal->j_last_sync_writer = pid;
1443
1444                 read_lock(&journal->j_state_lock);
1445                 commit_time = journal->j_average_commit_time;
1446                 read_unlock(&journal->j_state_lock);
1447
1448                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1449                                                    transaction->t_start_time));
1450
1451                 commit_time = max_t(u64, commit_time,
1452                                     1000*journal->j_min_batch_time);
1453                 commit_time = min_t(u64, commit_time,
1454                                     1000*journal->j_max_batch_time);
1455
1456                 if (trans_time < commit_time) {
1457                         ktime_t expires = ktime_add_ns(ktime_get(),
1458                                                        commit_time);
1459                         set_current_state(TASK_UNINTERRUPTIBLE);
1460                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1461                 }
1462         }
1463
1464         if (handle->h_sync)
1465                 transaction->t_synchronous_commit = 1;
1466         current->journal_info = NULL;
1467         atomic_sub(handle->h_buffer_credits,
1468                    &transaction->t_outstanding_credits);
1469
1470         /*
1471          * If the handle is marked SYNC, we need to set another commit
1472          * going!  We also want to force a commit if the current
1473          * transaction is occupying too much of the log, or if the
1474          * transaction is too old now.
1475          */
1476         if (handle->h_sync ||
1477             (atomic_read(&transaction->t_outstanding_credits) >
1478              journal->j_max_transaction_buffers) ||
1479             time_after_eq(jiffies, transaction->t_expires)) {
1480                 /* Do this even for aborted journals: an abort still
1481                  * completes the commit thread, it just doesn't write
1482                  * anything to disk. */
1483
1484                 jbd_debug(2, "transaction too old, requesting commit for "
1485                                         "handle %p\n", handle);
1486                 /* This is non-blocking */
1487                 jbd2_log_start_commit(journal, transaction->t_tid);
1488
1489                 /*
1490                  * Special case: JBD2_SYNC synchronous updates require us
1491                  * to wait for the commit to complete.
1492                  */
1493                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1494                         wait_for_commit = 1;
1495         }
1496
1497         /*
1498          * Once we drop t_updates, if it goes to zero the transaction
1499          * could start committing on us and eventually disappear.  So
1500          * once we do this, we must not dereference transaction
1501          * pointer again.
1502          */
1503         tid = transaction->t_tid;
1504         if (atomic_dec_and_test(&transaction->t_updates)) {
1505                 wake_up(&journal->j_wait_updates);
1506                 if (journal->j_barrier_count)
1507                         wake_up(&journal->j_wait_transaction_locked);
1508         }
1509
1510         if (wait_for_commit)
1511                 err = jbd2_log_wait_commit(journal, tid);
1512
1513         lock_map_release(&handle->h_lockdep_map);
1514
1515         jbd2_free_handle(handle);
1516         return err;
1517 }
1518
1519 /**
1520  * int jbd2_journal_force_commit() - force any uncommitted transactions
1521  * @journal: journal to force
1522  *
1523  * For synchronous operations: force any uncommitted transactions
1524  * to disk.  May seem kludgy, but it reuses all the handle batching
1525  * code in a very simple manner.
1526  */
1527 int jbd2_journal_force_commit(journal_t *journal)
1528 {
1529         handle_t *handle;
1530         int ret;
1531
1532         handle = jbd2_journal_start(journal, 1);
1533         if (IS_ERR(handle)) {
1534                 ret = PTR_ERR(handle);
1535         } else {
1536                 handle->h_sync = 1;
1537                 ret = jbd2_journal_stop(handle);
1538         }
1539         return ret;
1540 }
1541
1542 /*
1543  *
1544  * List management code snippets: various functions for manipulating the
1545  * transaction buffer lists.
1546  *
1547  */
1548
1549 /*
1550  * Append a buffer to a transaction list, given the transaction's list head
1551  * pointer.
1552  *
1553  * j_list_lock is held.
1554  *
1555  * jbd_lock_bh_state(jh2bh(jh)) is held.
1556  */
1557
1558 static inline void
1559 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1560 {
1561         if (!*list) {
1562                 jh->b_tnext = jh->b_tprev = jh;
1563                 *list = jh;
1564         } else {
1565                 /* Insert at the tail of the list to preserve order */
1566                 struct journal_head *first = *list, *last = first->b_tprev;
1567                 jh->b_tprev = last;
1568                 jh->b_tnext = first;
1569                 last->b_tnext = first->b_tprev = jh;
1570         }
1571 }
1572
1573 /*
1574  * Remove a buffer from a transaction list, given the transaction's list
1575  * head pointer.
1576  *
1577  * Called with j_list_lock held, and the journal may not be locked.
1578  *
1579  * jbd_lock_bh_state(jh2bh(jh)) is held.
1580  */
1581
1582 static inline void
1583 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1584 {
1585         if (*list == jh) {
1586                 *list = jh->b_tnext;
1587                 if (*list == jh)
1588                         *list = NULL;
1589         }
1590         jh->b_tprev->b_tnext = jh->b_tnext;
1591         jh->b_tnext->b_tprev = jh->b_tprev;
1592 }
1593
1594 /*
1595  * Remove a buffer from the appropriate transaction list.
1596  *
1597  * Note that this function can *change* the value of
1598  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1599  * t_reserved_list.  If the caller is holding onto a copy of one of these
1600  * pointers, it could go bad.  Generally the caller needs to re-read the
1601  * pointer from the transaction_t.
1602  *
1603  * Called under j_list_lock.
1604  */
1605 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1606 {
1607         struct journal_head **list = NULL;
1608         transaction_t *transaction;
1609         struct buffer_head *bh = jh2bh(jh);
1610
1611         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1612         transaction = jh->b_transaction;
1613         if (transaction)
1614                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1615
1616         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1617         if (jh->b_jlist != BJ_None)
1618                 J_ASSERT_JH(jh, transaction != NULL);
1619
1620         switch (jh->b_jlist) {
1621         case BJ_None:
1622                 return;
1623         case BJ_Metadata:
1624                 transaction->t_nr_buffers--;
1625                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1626                 list = &transaction->t_buffers;
1627                 break;
1628         case BJ_Forget:
1629                 list = &transaction->t_forget;
1630                 break;
1631         case BJ_Shadow:
1632                 list = &transaction->t_shadow_list;
1633                 break;
1634         case BJ_Reserved:
1635                 list = &transaction->t_reserved_list;
1636                 break;
1637         }
1638
1639         __blist_del_buffer(list, jh);
1640         jh->b_jlist = BJ_None;
1641         if (test_clear_buffer_jbddirty(bh))
1642                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1643 }
1644
1645 /*
1646  * Remove buffer from all transactions.
1647  *
1648  * Called with bh_state lock and j_list_lock
1649  *
1650  * jh and bh may be already freed when this function returns.
1651  */
1652 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1653 {
1654         __jbd2_journal_temp_unlink_buffer(jh);
1655         jh->b_transaction = NULL;
1656         jbd2_journal_put_journal_head(jh);
1657 }
1658
1659 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1660 {
1661         struct buffer_head *bh = jh2bh(jh);
1662
1663         /* Get reference so that buffer cannot be freed before we unlock it */
1664         get_bh(bh);
1665         jbd_lock_bh_state(bh);
1666         spin_lock(&journal->j_list_lock);
1667         __jbd2_journal_unfile_buffer(jh);
1668         spin_unlock(&journal->j_list_lock);
1669         jbd_unlock_bh_state(bh);
1670         __brelse(bh);
1671 }
1672
1673 /*
1674  * Called from jbd2_journal_try_to_free_buffers().
1675  *
1676  * Called under jbd_lock_bh_state(bh)
1677  */
1678 static void
1679 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1680 {
1681         struct journal_head *jh;
1682
1683         jh = bh2jh(bh);
1684
1685         if (buffer_locked(bh) || buffer_dirty(bh))
1686                 goto out;
1687
1688         if (jh->b_next_transaction != NULL)
1689                 goto out;
1690
1691         spin_lock(&journal->j_list_lock);
1692         if (jh->b_cp_transaction != NULL && jh->b_transaction == NULL) {
1693                 /* written-back checkpointed metadata buffer */
1694                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1695                 __jbd2_journal_remove_checkpoint(jh);
1696         }
1697         spin_unlock(&journal->j_list_lock);
1698 out:
1699         return;
1700 }
1701
1702 /**
1703  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1704  * @journal: journal for operation
1705  * @page: to try and free
1706  * @gfp_mask: we use the mask to detect how hard should we try to release
1707  * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1708  * release the buffers.
1709  *
1710  *
1711  * For all the buffers on this page,
1712  * if they are fully written out ordered data, move them onto BUF_CLEAN
1713  * so try_to_free_buffers() can reap them.
1714  *
1715  * This function returns non-zero if we wish try_to_free_buffers()
1716  * to be called. We do this if the page is releasable by try_to_free_buffers().
1717  * We also do it if the page has locked or dirty buffers and the caller wants
1718  * us to perform sync or async writeout.
1719  *
1720  * This complicates JBD locking somewhat.  We aren't protected by the
1721  * BKL here.  We wish to remove the buffer from its committing or
1722  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1723  *
1724  * This may *change* the value of transaction_t->t_datalist, so anyone
1725  * who looks at t_datalist needs to lock against this function.
1726  *
1727  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1728  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1729  * will come out of the lock with the buffer dirty, which makes it
1730  * ineligible for release here.
1731  *
1732  * Who else is affected by this?  hmm...  Really the only contender
1733  * is do_get_write_access() - it could be looking at the buffer while
1734  * journal_try_to_free_buffer() is changing its state.  But that
1735  * cannot happen because we never reallocate freed data as metadata
1736  * while the data is part of a transaction.  Yes?
1737  *
1738  * Return 0 on failure, 1 on success
1739  */
1740 int jbd2_journal_try_to_free_buffers(journal_t *journal,
1741                                 struct page *page, gfp_t gfp_mask)
1742 {
1743         struct buffer_head *head;
1744         struct buffer_head *bh;
1745         int ret = 0;
1746
1747         J_ASSERT(PageLocked(page));
1748
1749         head = page_buffers(page);
1750         bh = head;
1751         do {
1752                 struct journal_head *jh;
1753
1754                 /*
1755                  * We take our own ref against the journal_head here to avoid
1756                  * having to add tons of locking around each instance of
1757                  * jbd2_journal_put_journal_head().
1758                  */
1759                 jh = jbd2_journal_grab_journal_head(bh);
1760                 if (!jh)
1761                         continue;
1762
1763                 jbd_lock_bh_state(bh);
1764                 __journal_try_to_free_buffer(journal, bh);
1765                 jbd2_journal_put_journal_head(jh);
1766                 jbd_unlock_bh_state(bh);
1767                 if (buffer_jbd(bh))
1768                         goto busy;
1769         } while ((bh = bh->b_this_page) != head);
1770
1771         ret = try_to_free_buffers(page);
1772
1773 busy:
1774         return ret;
1775 }
1776
1777 /*
1778  * This buffer is no longer needed.  If it is on an older transaction's
1779  * checkpoint list we need to record it on this transaction's forget list
1780  * to pin this buffer (and hence its checkpointing transaction) down until
1781  * this transaction commits.  If the buffer isn't on a checkpoint list, we
1782  * release it.
1783  * Returns non-zero if JBD no longer has an interest in the buffer.
1784  *
1785  * Called under j_list_lock.
1786  *
1787  * Called under jbd_lock_bh_state(bh).
1788  */
1789 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1790 {
1791         int may_free = 1;
1792         struct buffer_head *bh = jh2bh(jh);
1793
1794         if (jh->b_cp_transaction) {
1795                 JBUFFER_TRACE(jh, "on running+cp transaction");
1796                 __jbd2_journal_temp_unlink_buffer(jh);
1797                 /*
1798                  * We don't want to write the buffer anymore, clear the
1799                  * bit so that we don't confuse checks in
1800                  * __journal_file_buffer
1801                  */
1802                 clear_buffer_dirty(bh);
1803                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1804                 may_free = 0;
1805         } else {
1806                 JBUFFER_TRACE(jh, "on running transaction");
1807                 __jbd2_journal_unfile_buffer(jh);
1808         }
1809         return may_free;
1810 }
1811
1812 /*
1813  * jbd2_journal_invalidatepage
1814  *
1815  * This code is tricky.  It has a number of cases to deal with.
1816  *
1817  * There are two invariants which this code relies on:
1818  *
1819  * i_size must be updated on disk before we start calling invalidatepage on the
1820  * data.
1821  *
1822  *  This is done in ext3 by defining an ext3_setattr method which
1823  *  updates i_size before truncate gets going.  By maintaining this
1824  *  invariant, we can be sure that it is safe to throw away any buffers
1825  *  attached to the current transaction: once the transaction commits,
1826  *  we know that the data will not be needed.
1827  *
1828  *  Note however that we can *not* throw away data belonging to the
1829  *  previous, committing transaction!
1830  *
1831  * Any disk blocks which *are* part of the previous, committing
1832  * transaction (and which therefore cannot be discarded immediately) are
1833  * not going to be reused in the new running transaction
1834  *
1835  *  The bitmap committed_data images guarantee this: any block which is
1836  *  allocated in one transaction and removed in the next will be marked
1837  *  as in-use in the committed_data bitmap, so cannot be reused until
1838  *  the next transaction to delete the block commits.  This means that
1839  *  leaving committing buffers dirty is quite safe: the disk blocks
1840  *  cannot be reallocated to a different file and so buffer aliasing is
1841  *  not possible.
1842  *
1843  *
1844  * The above applies mainly to ordered data mode.  In writeback mode we
1845  * don't make guarantees about the order in which data hits disk --- in
1846  * particular we don't guarantee that new dirty data is flushed before
1847  * transaction commit --- so it is always safe just to discard data
1848  * immediately in that mode.  --sct
1849  */
1850
1851 /*
1852  * The journal_unmap_buffer helper function returns zero if the buffer
1853  * concerned remains pinned as an anonymous buffer belonging to an older
1854  * transaction.
1855  *
1856  * We're outside-transaction here.  Either or both of j_running_transaction
1857  * and j_committing_transaction may be NULL.
1858  */
1859 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1860                                 int partial_page)
1861 {
1862         transaction_t *transaction;
1863         struct journal_head *jh;
1864         int may_free = 1;
1865
1866         BUFFER_TRACE(bh, "entry");
1867
1868         /*
1869          * It is safe to proceed here without the j_list_lock because the
1870          * buffers cannot be stolen by try_to_free_buffers as long as we are
1871          * holding the page lock. --sct
1872          */
1873
1874         if (!buffer_jbd(bh))
1875                 goto zap_buffer_unlocked;
1876
1877         /* OK, we have data buffer in journaled mode */
1878         write_lock(&journal->j_state_lock);
1879         jbd_lock_bh_state(bh);
1880         spin_lock(&journal->j_list_lock);
1881
1882         jh = jbd2_journal_grab_journal_head(bh);
1883         if (!jh)
1884                 goto zap_buffer_no_jh;
1885
1886         /*
1887          * We cannot remove the buffer from checkpoint lists until the
1888          * transaction adding inode to orphan list (let's call it T)
1889          * is committed.  Otherwise if the transaction changing the
1890          * buffer would be cleaned from the journal before T is
1891          * committed, a crash will cause that the correct contents of
1892          * the buffer will be lost.  On the other hand we have to
1893          * clear the buffer dirty bit at latest at the moment when the
1894          * transaction marking the buffer as freed in the filesystem
1895          * structures is committed because from that moment on the
1896          * block can be reallocated and used by a different page.
1897          * Since the block hasn't been freed yet but the inode has
1898          * already been added to orphan list, it is safe for us to add
1899          * the buffer to BJ_Forget list of the newest transaction.
1900          *
1901          * Also we have to clear buffer_mapped flag of a truncated buffer
1902          * because the buffer_head may be attached to the page straddling
1903          * i_size (can happen only when blocksize < pagesize) and thus the
1904          * buffer_head can be reused when the file is extended again. So we end
1905          * up keeping around invalidated buffers attached to transactions'
1906          * BJ_Forget list just to stop checkpointing code from cleaning up
1907          * the transaction this buffer was modified in.
1908          */
1909         transaction = jh->b_transaction;
1910         if (transaction == NULL) {
1911                 /* First case: not on any transaction.  If it
1912                  * has no checkpoint link, then we can zap it:
1913                  * it's a writeback-mode buffer so we don't care
1914                  * if it hits disk safely. */
1915                 if (!jh->b_cp_transaction) {
1916                         JBUFFER_TRACE(jh, "not on any transaction: zap");
1917                         goto zap_buffer;
1918                 }
1919
1920                 if (!buffer_dirty(bh)) {
1921                         /* bdflush has written it.  We can drop it now */
1922                         goto zap_buffer;
1923                 }
1924
1925                 /* OK, it must be in the journal but still not
1926                  * written fully to disk: it's metadata or
1927                  * journaled data... */
1928
1929                 if (journal->j_running_transaction) {
1930                         /* ... and once the current transaction has
1931                          * committed, the buffer won't be needed any
1932                          * longer. */
1933                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
1934                         may_free = __dispose_buffer(jh,
1935                                         journal->j_running_transaction);
1936                         goto zap_buffer;
1937                 } else {
1938                         /* There is no currently-running transaction. So the
1939                          * orphan record which we wrote for this file must have
1940                          * passed into commit.  We must attach this buffer to
1941                          * the committing transaction, if it exists. */
1942                         if (journal->j_committing_transaction) {
1943                                 JBUFFER_TRACE(jh, "give to committing trans");
1944                                 may_free = __dispose_buffer(jh,
1945                                         journal->j_committing_transaction);
1946                                 goto zap_buffer;
1947                         } else {
1948                                 /* The orphan record's transaction has
1949                                  * committed.  We can cleanse this buffer */
1950                                 clear_buffer_jbddirty(bh);
1951                                 goto zap_buffer;
1952                         }
1953                 }
1954         } else if (transaction == journal->j_committing_transaction) {
1955                 JBUFFER_TRACE(jh, "on committing transaction");
1956                 /*
1957                  * The buffer is committing, we simply cannot touch
1958                  * it. If the page is straddling i_size we have to wait
1959                  * for commit and try again.
1960                  */
1961                 if (partial_page) {
1962                         jbd2_journal_put_journal_head(jh);
1963                         spin_unlock(&journal->j_list_lock);
1964                         jbd_unlock_bh_state(bh);
1965                         write_unlock(&journal->j_state_lock);
1966                         return -EBUSY;
1967                 }
1968                 /*
1969                  * OK, buffer won't be reachable after truncate. We just set
1970                  * j_next_transaction to the running transaction (if there is
1971                  * one) and mark buffer as freed so that commit code knows it
1972                  * should clear dirty bits when it is done with the buffer.
1973                  */
1974                 set_buffer_freed(bh);
1975                 if (journal->j_running_transaction && buffer_jbddirty(bh))
1976                         jh->b_next_transaction = journal->j_running_transaction;
1977                 jbd2_journal_put_journal_head(jh);
1978                 spin_unlock(&journal->j_list_lock);
1979                 jbd_unlock_bh_state(bh);
1980                 write_unlock(&journal->j_state_lock);
1981                 return 0;
1982         } else {
1983                 /* Good, the buffer belongs to the running transaction.
1984                  * We are writing our own transaction's data, not any
1985                  * previous one's, so it is safe to throw it away
1986                  * (remember that we expect the filesystem to have set
1987                  * i_size already for this truncate so recovery will not
1988                  * expose the disk blocks we are discarding here.) */
1989                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
1990                 JBUFFER_TRACE(jh, "on running transaction");
1991                 may_free = __dispose_buffer(jh, transaction);
1992         }
1993
1994 zap_buffer:
1995         /*
1996          * This is tricky. Although the buffer is truncated, it may be reused
1997          * if blocksize < pagesize and it is attached to the page straddling
1998          * EOF. Since the buffer might have been added to BJ_Forget list of the
1999          * running transaction, journal_get_write_access() won't clear
2000          * b_modified and credit accounting gets confused. So clear b_modified
2001          * here.
2002          */
2003         jh->b_modified = 0;
2004         jbd2_journal_put_journal_head(jh);
2005 zap_buffer_no_jh:
2006         spin_unlock(&journal->j_list_lock);
2007         jbd_unlock_bh_state(bh);
2008         write_unlock(&journal->j_state_lock);
2009 zap_buffer_unlocked:
2010         clear_buffer_dirty(bh);
2011         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2012         clear_buffer_mapped(bh);
2013         clear_buffer_req(bh);
2014         clear_buffer_new(bh);
2015         clear_buffer_delay(bh);
2016         clear_buffer_unwritten(bh);
2017         bh->b_bdev = NULL;
2018         return may_free;
2019 }
2020
2021 /**
2022  * void jbd2_journal_invalidatepage()
2023  * @journal: journal to use for flush...
2024  * @page:    page to flush
2025  * @offset:  start of the range to invalidate
2026  * @length:  length of the range to invalidate
2027  *
2028  * Reap page buffers containing data after in the specified range in page.
2029  * Can return -EBUSY if buffers are part of the committing transaction and
2030  * the page is straddling i_size. Caller then has to wait for current commit
2031  * and try again.
2032  */
2033 int jbd2_journal_invalidatepage(journal_t *journal,
2034                                 struct page *page,
2035                                 unsigned int offset,
2036                                 unsigned int length)
2037 {
2038         struct buffer_head *head, *bh, *next;
2039         unsigned int stop = offset + length;
2040         unsigned int curr_off = 0;
2041         int partial_page = (offset || length < PAGE_CACHE_SIZE);
2042         int may_free = 1;
2043         int ret = 0;
2044
2045         if (!PageLocked(page))
2046                 BUG();
2047         if (!page_has_buffers(page))
2048                 return 0;
2049
2050         BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2051
2052         /* We will potentially be playing with lists other than just the
2053          * data lists (especially for journaled data mode), so be
2054          * cautious in our locking. */
2055
2056         head = bh = page_buffers(page);
2057         do {
2058                 unsigned int next_off = curr_off + bh->b_size;
2059                 next = bh->b_this_page;
2060
2061                 if (next_off > stop)
2062                         return 0;
2063
2064                 if (offset <= curr_off) {
2065                         /* This block is wholly outside the truncation point */
2066                         lock_buffer(bh);
2067                         ret = journal_unmap_buffer(journal, bh, partial_page);
2068                         unlock_buffer(bh);
2069                         if (ret < 0)
2070                                 return ret;
2071                         may_free &= ret;
2072                 }
2073                 curr_off = next_off;
2074                 bh = next;
2075
2076         } while (bh != head);
2077
2078         if (!partial_page) {
2079                 if (may_free && try_to_free_buffers(page))
2080                         J_ASSERT(!page_has_buffers(page));
2081         }
2082         return 0;
2083 }
2084
2085 /*
2086  * File a buffer on the given transaction list.
2087  */
2088 void __jbd2_journal_file_buffer(struct journal_head *jh,
2089                         transaction_t *transaction, int jlist)
2090 {
2091         struct journal_head **list = NULL;
2092         int was_dirty = 0;
2093         struct buffer_head *bh = jh2bh(jh);
2094
2095         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2096         assert_spin_locked(&transaction->t_journal->j_list_lock);
2097
2098         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2099         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2100                                 jh->b_transaction == NULL);
2101
2102         if (jh->b_transaction && jh->b_jlist == jlist)
2103                 return;
2104
2105         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2106             jlist == BJ_Shadow || jlist == BJ_Forget) {
2107                 /*
2108                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2109                  * instead of buffer_dirty. We should not see a dirty bit set
2110                  * here because we clear it in do_get_write_access but e.g.
2111                  * tune2fs can modify the sb and set the dirty bit at any time
2112                  * so we try to gracefully handle that.
2113                  */
2114                 if (buffer_dirty(bh))
2115                         warn_dirty_buffer(bh);
2116                 if (test_clear_buffer_dirty(bh) ||
2117                     test_clear_buffer_jbddirty(bh))
2118                         was_dirty = 1;
2119         }
2120
2121         if (jh->b_transaction)
2122                 __jbd2_journal_temp_unlink_buffer(jh);
2123         else
2124                 jbd2_journal_grab_journal_head(bh);
2125         jh->b_transaction = transaction;
2126
2127         switch (jlist) {
2128         case BJ_None:
2129                 J_ASSERT_JH(jh, !jh->b_committed_data);
2130                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2131                 return;
2132         case BJ_Metadata:
2133                 transaction->t_nr_buffers++;
2134                 list = &transaction->t_buffers;
2135                 break;
2136         case BJ_Forget:
2137                 list = &transaction->t_forget;
2138                 break;
2139         case BJ_Shadow:
2140                 list = &transaction->t_shadow_list;
2141                 break;
2142         case BJ_Reserved:
2143                 list = &transaction->t_reserved_list;
2144                 break;
2145         }
2146
2147         __blist_add_buffer(list, jh);
2148         jh->b_jlist = jlist;
2149
2150         if (was_dirty)
2151                 set_buffer_jbddirty(bh);
2152 }
2153
2154 void jbd2_journal_file_buffer(struct journal_head *jh,
2155                                 transaction_t *transaction, int jlist)
2156 {
2157         jbd_lock_bh_state(jh2bh(jh));
2158         spin_lock(&transaction->t_journal->j_list_lock);
2159         __jbd2_journal_file_buffer(jh, transaction, jlist);
2160         spin_unlock(&transaction->t_journal->j_list_lock);
2161         jbd_unlock_bh_state(jh2bh(jh));
2162 }
2163
2164 /*
2165  * Remove a buffer from its current buffer list in preparation for
2166  * dropping it from its current transaction entirely.  If the buffer has
2167  * already started to be used by a subsequent transaction, refile the
2168  * buffer on that transaction's metadata list.
2169  *
2170  * Called under j_list_lock
2171  * Called under jbd_lock_bh_state(jh2bh(jh))
2172  *
2173  * jh and bh may be already free when this function returns
2174  */
2175 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2176 {
2177         int was_dirty, jlist;
2178         struct buffer_head *bh = jh2bh(jh);
2179
2180         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2181         if (jh->b_transaction)
2182                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2183
2184         /* If the buffer is now unused, just drop it. */
2185         if (jh->b_next_transaction == NULL) {
2186                 __jbd2_journal_unfile_buffer(jh);
2187                 return;
2188         }
2189
2190         /*
2191          * It has been modified by a later transaction: add it to the new
2192          * transaction's metadata list.
2193          */
2194
2195         was_dirty = test_clear_buffer_jbddirty(bh);
2196         __jbd2_journal_temp_unlink_buffer(jh);
2197         /*
2198          * We set b_transaction here because b_next_transaction will inherit
2199          * our jh reference and thus __jbd2_journal_file_buffer() must not
2200          * take a new one.
2201          */
2202         jh->b_transaction = jh->b_next_transaction;
2203         jh->b_next_transaction = NULL;
2204         if (buffer_freed(bh))
2205                 jlist = BJ_Forget;
2206         else if (jh->b_modified)
2207                 jlist = BJ_Metadata;
2208         else
2209                 jlist = BJ_Reserved;
2210         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2211         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2212
2213         if (was_dirty)
2214                 set_buffer_jbddirty(bh);
2215 }
2216
2217 /*
2218  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2219  * bh reference so that we can safely unlock bh.
2220  *
2221  * The jh and bh may be freed by this call.
2222  */
2223 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2224 {
2225         struct buffer_head *bh = jh2bh(jh);
2226
2227         /* Get reference so that buffer cannot be freed before we unlock it */
2228         get_bh(bh);
2229         jbd_lock_bh_state(bh);
2230         spin_lock(&journal->j_list_lock);
2231         __jbd2_journal_refile_buffer(jh);
2232         jbd_unlock_bh_state(bh);
2233         spin_unlock(&journal->j_list_lock);
2234         __brelse(bh);
2235 }
2236
2237 /*
2238  * File inode in the inode list of the handle's transaction
2239  */
2240 int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2241 {
2242         transaction_t *transaction = handle->h_transaction;
2243         journal_t *journal = transaction->t_journal;
2244
2245         if (is_handle_aborted(handle))
2246                 return -EIO;
2247
2248         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2249                         transaction->t_tid);
2250
2251         /*
2252          * First check whether inode isn't already on the transaction's
2253          * lists without taking the lock. Note that this check is safe
2254          * without the lock as we cannot race with somebody removing inode
2255          * from the transaction. The reason is that we remove inode from the
2256          * transaction only in journal_release_jbd_inode() and when we commit
2257          * the transaction. We are guarded from the first case by holding
2258          * a reference to the inode. We are safe against the second case
2259          * because if jinode->i_transaction == transaction, commit code
2260          * cannot touch the transaction because we hold reference to it,
2261          * and if jinode->i_next_transaction == transaction, commit code
2262          * will only file the inode where we want it.
2263          */
2264         if (jinode->i_transaction == transaction ||
2265             jinode->i_next_transaction == transaction)
2266                 return 0;
2267
2268         spin_lock(&journal->j_list_lock);
2269
2270         if (jinode->i_transaction == transaction ||
2271             jinode->i_next_transaction == transaction)
2272                 goto done;
2273
2274         /*
2275          * We only ever set this variable to 1 so the test is safe. Since
2276          * t_need_data_flush is likely to be set, we do the test to save some
2277          * cacheline bouncing
2278          */
2279         if (!transaction->t_need_data_flush)
2280                 transaction->t_need_data_flush = 1;
2281         /* On some different transaction's list - should be
2282          * the committing one */
2283         if (jinode->i_transaction) {
2284                 J_ASSERT(jinode->i_next_transaction == NULL);
2285                 J_ASSERT(jinode->i_transaction ==
2286                                         journal->j_committing_transaction);
2287                 jinode->i_next_transaction = transaction;
2288                 goto done;
2289         }
2290         /* Not on any transaction list... */
2291         J_ASSERT(!jinode->i_next_transaction);
2292         jinode->i_transaction = transaction;
2293         list_add(&jinode->i_list, &transaction->t_inode_list);
2294 done:
2295         spin_unlock(&journal->j_list_lock);
2296
2297         return 0;
2298 }
2299
2300 /*
2301  * File truncate and transaction commit interact with each other in a
2302  * non-trivial way.  If a transaction writing data block A is
2303  * committing, we cannot discard the data by truncate until we have
2304  * written them.  Otherwise if we crashed after the transaction with
2305  * write has committed but before the transaction with truncate has
2306  * committed, we could see stale data in block A.  This function is a
2307  * helper to solve this problem.  It starts writeout of the truncated
2308  * part in case it is in the committing transaction.
2309  *
2310  * Filesystem code must call this function when inode is journaled in
2311  * ordered mode before truncation happens and after the inode has been
2312  * placed on orphan list with the new inode size. The second condition
2313  * avoids the race that someone writes new data and we start
2314  * committing the transaction after this function has been called but
2315  * before a transaction for truncate is started (and furthermore it
2316  * allows us to optimize the case where the addition to orphan list
2317  * happens in the same transaction as write --- we don't have to write
2318  * any data in such case).
2319  */
2320 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2321                                         struct jbd2_inode *jinode,
2322                                         loff_t new_size)
2323 {
2324         transaction_t *inode_trans, *commit_trans;
2325         int ret = 0;
2326
2327         /* This is a quick check to avoid locking if not necessary */
2328         if (!jinode->i_transaction)
2329                 goto out;
2330         /* Locks are here just to force reading of recent values, it is
2331          * enough that the transaction was not committing before we started
2332          * a transaction adding the inode to orphan list */
2333         read_lock(&journal->j_state_lock);
2334         commit_trans = journal->j_committing_transaction;
2335         read_unlock(&journal->j_state_lock);
2336         spin_lock(&journal->j_list_lock);
2337         inode_trans = jinode->i_transaction;
2338         spin_unlock(&journal->j_list_lock);
2339         if (inode_trans == commit_trans) {
2340                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2341                         new_size, LLONG_MAX);
2342                 if (ret)
2343                         jbd2_journal_abort(journal, ret);
2344         }
2345 out:
2346         return ret;
2347 }