Merge tag 'slab-fixes-for-6.6-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / fs / jbd2 / transaction.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * linux/fs/jbd2/transaction.c
4  *
5  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6  *
7  * Copyright 1998 Red Hat corp --- All Rights Reserved
8  *
9  * Generic filesystem transaction handling code; part of the ext2fs
10  * journaling system.
11  *
12  * This file manages transactions (compound commits managed by the
13  * journaling code) and handles (individual atomic operations by the
14  * filesystem).
15  */
16
17 #include <linux/time.h>
18 #include <linux/fs.h>
19 #include <linux/jbd2.h>
20 #include <linux/errno.h>
21 #include <linux/slab.h>
22 #include <linux/timer.h>
23 #include <linux/mm.h>
24 #include <linux/highmem.h>
25 #include <linux/hrtimer.h>
26 #include <linux/backing-dev.h>
27 #include <linux/bug.h>
28 #include <linux/module.h>
29 #include <linux/sched/mm.h>
30
31 #include <trace/events/jbd2.h>
32
33 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36 static struct kmem_cache *transaction_cache;
37 int __init jbd2_journal_init_transaction_cache(void)
38 {
39         J_ASSERT(!transaction_cache);
40         transaction_cache = kmem_cache_create("jbd2_transaction_s",
41                                         sizeof(transaction_t),
42                                         0,
43                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44                                         NULL);
45         if (!transaction_cache) {
46                 pr_emerg("JBD2: failed to create transaction cache\n");
47                 return -ENOMEM;
48         }
49         return 0;
50 }
51
52 void jbd2_journal_destroy_transaction_cache(void)
53 {
54         kmem_cache_destroy(transaction_cache);
55         transaction_cache = NULL;
56 }
57
58 void jbd2_journal_free_transaction(transaction_t *transaction)
59 {
60         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61                 return;
62         kmem_cache_free(transaction_cache, transaction);
63 }
64
65 /*
66  * Base amount of descriptor blocks we reserve for each transaction.
67  */
68 static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69 {
70         int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71         int tags_per_block;
72
73         /* Subtract UUID */
74         tag_space -= 16;
75         if (jbd2_journal_has_csum_v2or3(journal))
76                 tag_space -= sizeof(struct jbd2_journal_block_tail);
77         /* Commit code leaves a slack space of 16 bytes at the end of block */
78         tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79         /*
80          * Revoke descriptors are accounted separately so we need to reserve
81          * space for commit block and normal transaction descriptor blocks.
82          */
83         return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84                                 tags_per_block);
85 }
86
87 /*
88  * jbd2_get_transaction: obtain a new transaction_t object.
89  *
90  * Simply initialise a new transaction. Initialize it in
91  * RUNNING state and add it to the current journal (which should not
92  * have an existing running transaction: we only make a new transaction
93  * once we have started to commit the old one).
94  *
95  * Preconditions:
96  *      The journal MUST be locked.  We don't perform atomic mallocs on the
97  *      new transaction and we can't block without protecting against other
98  *      processes trying to touch the journal while it is in transition.
99  *
100  */
101
102 static void jbd2_get_transaction(journal_t *journal,
103                                 transaction_t *transaction)
104 {
105         transaction->t_journal = journal;
106         transaction->t_state = T_RUNNING;
107         transaction->t_start_time = ktime_get();
108         transaction->t_tid = journal->j_transaction_sequence++;
109         transaction->t_expires = jiffies + journal->j_commit_interval;
110         atomic_set(&transaction->t_updates, 0);
111         atomic_set(&transaction->t_outstanding_credits,
112                    jbd2_descriptor_blocks_per_trans(journal) +
113                    atomic_read(&journal->j_reserved_credits));
114         atomic_set(&transaction->t_outstanding_revokes, 0);
115         atomic_set(&transaction->t_handle_count, 0);
116         INIT_LIST_HEAD(&transaction->t_inode_list);
117         INIT_LIST_HEAD(&transaction->t_private_list);
118
119         /* Set up the commit timer for the new transaction. */
120         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
121         add_timer(&journal->j_commit_timer);
122
123         J_ASSERT(journal->j_running_transaction == NULL);
124         journal->j_running_transaction = transaction;
125         transaction->t_max_wait = 0;
126         transaction->t_start = jiffies;
127         transaction->t_requested = 0;
128 }
129
130 /*
131  * Handle management.
132  *
133  * A handle_t is an object which represents a single atomic update to a
134  * filesystem, and which tracks all of the modifications which form part
135  * of that one update.
136  */
137
138 /*
139  * Update transaction's maximum wait time, if debugging is enabled.
140  *
141  * t_max_wait is carefully updated here with use of atomic compare exchange.
142  * Note that there could be multiplre threads trying to do this simultaneously
143  * hence using cmpxchg to avoid any use of locks in this case.
144  * With this t_max_wait can be updated w/o enabling jbd2_journal_enable_debug.
145  */
146 static inline void update_t_max_wait(transaction_t *transaction,
147                                      unsigned long ts)
148 {
149         unsigned long oldts, newts;
150
151         if (time_after(transaction->t_start, ts)) {
152                 newts = jbd2_time_diff(ts, transaction->t_start);
153                 oldts = READ_ONCE(transaction->t_max_wait);
154                 while (oldts < newts)
155                         oldts = cmpxchg(&transaction->t_max_wait, oldts, newts);
156         }
157 }
158
159 /*
160  * Wait until running transaction passes to T_FLUSH state and new transaction
161  * can thus be started. Also starts the commit if needed. The function expects
162  * running transaction to exist and releases j_state_lock.
163  */
164 static void wait_transaction_locked(journal_t *journal)
165         __releases(journal->j_state_lock)
166 {
167         DEFINE_WAIT(wait);
168         int need_to_start;
169         tid_t tid = journal->j_running_transaction->t_tid;
170
171         prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
172                         TASK_UNINTERRUPTIBLE);
173         need_to_start = !tid_geq(journal->j_commit_request, tid);
174         read_unlock(&journal->j_state_lock);
175         if (need_to_start)
176                 jbd2_log_start_commit(journal, tid);
177         jbd2_might_wait_for_commit(journal);
178         schedule();
179         finish_wait(&journal->j_wait_transaction_locked, &wait);
180 }
181
182 /*
183  * Wait until running transaction transitions from T_SWITCH to T_FLUSH
184  * state and new transaction can thus be started. The function releases
185  * j_state_lock.
186  */
187 static void wait_transaction_switching(journal_t *journal)
188         __releases(journal->j_state_lock)
189 {
190         DEFINE_WAIT(wait);
191
192         if (WARN_ON(!journal->j_running_transaction ||
193                     journal->j_running_transaction->t_state != T_SWITCH)) {
194                 read_unlock(&journal->j_state_lock);
195                 return;
196         }
197         prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
198                         TASK_UNINTERRUPTIBLE);
199         read_unlock(&journal->j_state_lock);
200         /*
201          * We don't call jbd2_might_wait_for_commit() here as there's no
202          * waiting for outstanding handles happening anymore in T_SWITCH state
203          * and handling of reserved handles actually relies on that for
204          * correctness.
205          */
206         schedule();
207         finish_wait(&journal->j_wait_transaction_locked, &wait);
208 }
209
210 static void sub_reserved_credits(journal_t *journal, int blocks)
211 {
212         atomic_sub(blocks, &journal->j_reserved_credits);
213         wake_up(&journal->j_wait_reserved);
214 }
215
216 /*
217  * Wait until we can add credits for handle to the running transaction.  Called
218  * with j_state_lock held for reading. Returns 0 if handle joined the running
219  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
220  * caller must retry.
221  *
222  * Note: because j_state_lock may be dropped depending on the return
223  * value, we need to fake out sparse so ti doesn't complain about a
224  * locking imbalance.  Callers of add_transaction_credits will need to
225  * make a similar accomodation.
226  */
227 static int add_transaction_credits(journal_t *journal, int blocks,
228                                    int rsv_blocks)
229 __must_hold(&journal->j_state_lock)
230 {
231         transaction_t *t = journal->j_running_transaction;
232         int needed;
233         int total = blocks + rsv_blocks;
234
235         /*
236          * If the current transaction is locked down for commit, wait
237          * for the lock to be released.
238          */
239         if (t->t_state != T_RUNNING) {
240                 WARN_ON_ONCE(t->t_state >= T_FLUSH);
241                 wait_transaction_locked(journal);
242                 __acquire(&journal->j_state_lock); /* fake out sparse */
243                 return 1;
244         }
245
246         /*
247          * If there is not enough space left in the log to write all
248          * potential buffers requested by this operation, we need to
249          * stall pending a log checkpoint to free some more log space.
250          */
251         needed = atomic_add_return(total, &t->t_outstanding_credits);
252         if (needed > journal->j_max_transaction_buffers) {
253                 /*
254                  * If the current transaction is already too large,
255                  * then start to commit it: we can then go back and
256                  * attach this handle to a new transaction.
257                  */
258                 atomic_sub(total, &t->t_outstanding_credits);
259
260                 /*
261                  * Is the number of reserved credits in the current transaction too
262                  * big to fit this handle? Wait until reserved credits are freed.
263                  */
264                 if (atomic_read(&journal->j_reserved_credits) + total >
265                     journal->j_max_transaction_buffers) {
266                         read_unlock(&journal->j_state_lock);
267                         jbd2_might_wait_for_commit(journal);
268                         wait_event(journal->j_wait_reserved,
269                                    atomic_read(&journal->j_reserved_credits) + total <=
270                                    journal->j_max_transaction_buffers);
271                         __acquire(&journal->j_state_lock); /* fake out sparse */
272                         return 1;
273                 }
274
275                 wait_transaction_locked(journal);
276                 __acquire(&journal->j_state_lock); /* fake out sparse */
277                 return 1;
278         }
279
280         /*
281          * The commit code assumes that it can get enough log space
282          * without forcing a checkpoint.  This is *critical* for
283          * correctness: a checkpoint of a buffer which is also
284          * associated with a committing transaction creates a deadlock,
285          * so commit simply cannot force through checkpoints.
286          *
287          * We must therefore ensure the necessary space in the journal
288          * *before* starting to dirty potentially checkpointed buffers
289          * in the new transaction.
290          */
291         if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
292                 atomic_sub(total, &t->t_outstanding_credits);
293                 read_unlock(&journal->j_state_lock);
294                 jbd2_might_wait_for_commit(journal);
295                 write_lock(&journal->j_state_lock);
296                 if (jbd2_log_space_left(journal) <
297                                         journal->j_max_transaction_buffers)
298                         __jbd2_log_wait_for_space(journal);
299                 write_unlock(&journal->j_state_lock);
300                 __acquire(&journal->j_state_lock); /* fake out sparse */
301                 return 1;
302         }
303
304         /* No reservation? We are done... */
305         if (!rsv_blocks)
306                 return 0;
307
308         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
309         /* We allow at most half of a transaction to be reserved */
310         if (needed > journal->j_max_transaction_buffers / 2) {
311                 sub_reserved_credits(journal, rsv_blocks);
312                 atomic_sub(total, &t->t_outstanding_credits);
313                 read_unlock(&journal->j_state_lock);
314                 jbd2_might_wait_for_commit(journal);
315                 wait_event(journal->j_wait_reserved,
316                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
317                          <= journal->j_max_transaction_buffers / 2);
318                 __acquire(&journal->j_state_lock); /* fake out sparse */
319                 return 1;
320         }
321         return 0;
322 }
323
324 /*
325  * start_this_handle: Given a handle, deal with any locking or stalling
326  * needed to make sure that there is enough journal space for the handle
327  * to begin.  Attach the handle to a transaction and set up the
328  * transaction's buffer credits.
329  */
330
331 static int start_this_handle(journal_t *journal, handle_t *handle,
332                              gfp_t gfp_mask)
333 {
334         transaction_t   *transaction, *new_transaction = NULL;
335         int             blocks = handle->h_total_credits;
336         int             rsv_blocks = 0;
337         unsigned long ts = jiffies;
338
339         if (handle->h_rsv_handle)
340                 rsv_blocks = handle->h_rsv_handle->h_total_credits;
341
342         /*
343          * Limit the number of reserved credits to 1/2 of maximum transaction
344          * size and limit the number of total credits to not exceed maximum
345          * transaction size per operation.
346          */
347         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
348             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
349                 printk(KERN_ERR "JBD2: %s wants too many credits "
350                        "credits:%d rsv_credits:%d max:%d\n",
351                        current->comm, blocks, rsv_blocks,
352                        journal->j_max_transaction_buffers);
353                 WARN_ON(1);
354                 return -ENOSPC;
355         }
356
357 alloc_transaction:
358         /*
359          * This check is racy but it is just an optimization of allocating new
360          * transaction early if there are high chances we'll need it. If we
361          * guess wrong, we'll retry or free unused transaction.
362          */
363         if (!data_race(journal->j_running_transaction)) {
364                 /*
365                  * If __GFP_FS is not present, then we may be being called from
366                  * inside the fs writeback layer, so we MUST NOT fail.
367                  */
368                 if ((gfp_mask & __GFP_FS) == 0)
369                         gfp_mask |= __GFP_NOFAIL;
370                 new_transaction = kmem_cache_zalloc(transaction_cache,
371                                                     gfp_mask);
372                 if (!new_transaction)
373                         return -ENOMEM;
374         }
375
376         jbd2_debug(3, "New handle %p going live.\n", handle);
377
378         /*
379          * We need to hold j_state_lock until t_updates has been incremented,
380          * for proper journal barrier handling
381          */
382 repeat:
383         read_lock(&journal->j_state_lock);
384         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
385         if (is_journal_aborted(journal) ||
386             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
387                 read_unlock(&journal->j_state_lock);
388                 jbd2_journal_free_transaction(new_transaction);
389                 return -EROFS;
390         }
391
392         /*
393          * Wait on the journal's transaction barrier if necessary. Specifically
394          * we allow reserved handles to proceed because otherwise commit could
395          * deadlock on page writeback not being able to complete.
396          */
397         if (!handle->h_reserved && journal->j_barrier_count) {
398                 read_unlock(&journal->j_state_lock);
399                 wait_event(journal->j_wait_transaction_locked,
400                                 journal->j_barrier_count == 0);
401                 goto repeat;
402         }
403
404         if (!journal->j_running_transaction) {
405                 read_unlock(&journal->j_state_lock);
406                 if (!new_transaction)
407                         goto alloc_transaction;
408                 write_lock(&journal->j_state_lock);
409                 if (!journal->j_running_transaction &&
410                     (handle->h_reserved || !journal->j_barrier_count)) {
411                         jbd2_get_transaction(journal, new_transaction);
412                         new_transaction = NULL;
413                 }
414                 write_unlock(&journal->j_state_lock);
415                 goto repeat;
416         }
417
418         transaction = journal->j_running_transaction;
419
420         if (!handle->h_reserved) {
421                 /* We may have dropped j_state_lock - restart in that case */
422                 if (add_transaction_credits(journal, blocks, rsv_blocks)) {
423                         /*
424                          * add_transaction_credits releases
425                          * j_state_lock on a non-zero return
426                          */
427                         __release(&journal->j_state_lock);
428                         goto repeat;
429                 }
430         } else {
431                 /*
432                  * We have handle reserved so we are allowed to join T_LOCKED
433                  * transaction and we don't have to check for transaction size
434                  * and journal space. But we still have to wait while running
435                  * transaction is being switched to a committing one as it
436                  * won't wait for any handles anymore.
437                  */
438                 if (transaction->t_state == T_SWITCH) {
439                         wait_transaction_switching(journal);
440                         goto repeat;
441                 }
442                 sub_reserved_credits(journal, blocks);
443                 handle->h_reserved = 0;
444         }
445
446         /* OK, account for the buffers that this operation expects to
447          * use and add the handle to the running transaction.
448          */
449         update_t_max_wait(transaction, ts);
450         handle->h_transaction = transaction;
451         handle->h_requested_credits = blocks;
452         handle->h_revoke_credits_requested = handle->h_revoke_credits;
453         handle->h_start_jiffies = jiffies;
454         atomic_inc(&transaction->t_updates);
455         atomic_inc(&transaction->t_handle_count);
456         jbd2_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
457                   handle, blocks,
458                   atomic_read(&transaction->t_outstanding_credits),
459                   jbd2_log_space_left(journal));
460         read_unlock(&journal->j_state_lock);
461         current->journal_info = handle;
462
463         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
464         jbd2_journal_free_transaction(new_transaction);
465         /*
466          * Ensure that no allocations done while the transaction is open are
467          * going to recurse back to the fs layer.
468          */
469         handle->saved_alloc_context = memalloc_nofs_save();
470         return 0;
471 }
472
473 /* Allocate a new handle.  This should probably be in a slab... */
474 static handle_t *new_handle(int nblocks)
475 {
476         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
477         if (!handle)
478                 return NULL;
479         handle->h_total_credits = nblocks;
480         handle->h_ref = 1;
481
482         return handle;
483 }
484
485 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
486                               int revoke_records, gfp_t gfp_mask,
487                               unsigned int type, unsigned int line_no)
488 {
489         handle_t *handle = journal_current_handle();
490         int err;
491
492         if (!journal)
493                 return ERR_PTR(-EROFS);
494
495         if (handle) {
496                 J_ASSERT(handle->h_transaction->t_journal == journal);
497                 handle->h_ref++;
498                 return handle;
499         }
500
501         nblocks += DIV_ROUND_UP(revoke_records,
502                                 journal->j_revoke_records_per_block);
503         handle = new_handle(nblocks);
504         if (!handle)
505                 return ERR_PTR(-ENOMEM);
506         if (rsv_blocks) {
507                 handle_t *rsv_handle;
508
509                 rsv_handle = new_handle(rsv_blocks);
510                 if (!rsv_handle) {
511                         jbd2_free_handle(handle);
512                         return ERR_PTR(-ENOMEM);
513                 }
514                 rsv_handle->h_reserved = 1;
515                 rsv_handle->h_journal = journal;
516                 handle->h_rsv_handle = rsv_handle;
517         }
518         handle->h_revoke_credits = revoke_records;
519
520         err = start_this_handle(journal, handle, gfp_mask);
521         if (err < 0) {
522                 if (handle->h_rsv_handle)
523                         jbd2_free_handle(handle->h_rsv_handle);
524                 jbd2_free_handle(handle);
525                 return ERR_PTR(err);
526         }
527         handle->h_type = type;
528         handle->h_line_no = line_no;
529         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
530                                 handle->h_transaction->t_tid, type,
531                                 line_no, nblocks);
532
533         return handle;
534 }
535 EXPORT_SYMBOL(jbd2__journal_start);
536
537
538 /**
539  * jbd2_journal_start() - Obtain a new handle.
540  * @journal: Journal to start transaction on.
541  * @nblocks: number of block buffer we might modify
542  *
543  * We make sure that the transaction can guarantee at least nblocks of
544  * modified buffers in the log.  We block until the log can guarantee
545  * that much space. Additionally, if rsv_blocks > 0, we also create another
546  * handle with rsv_blocks reserved blocks in the journal. This handle is
547  * stored in h_rsv_handle. It is not attached to any particular transaction
548  * and thus doesn't block transaction commit. If the caller uses this reserved
549  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
550  * on the parent handle will dispose the reserved one. Reserved handle has to
551  * be converted to a normal handle using jbd2_journal_start_reserved() before
552  * it can be used.
553  *
554  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
555  * on failure.
556  */
557 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
558 {
559         return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
560 }
561 EXPORT_SYMBOL(jbd2_journal_start);
562
563 static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
564 {
565         journal_t *journal = handle->h_journal;
566
567         WARN_ON(!handle->h_reserved);
568         sub_reserved_credits(journal, handle->h_total_credits);
569         if (t)
570                 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
571 }
572
573 void jbd2_journal_free_reserved(handle_t *handle)
574 {
575         journal_t *journal = handle->h_journal;
576
577         /* Get j_state_lock to pin running transaction if it exists */
578         read_lock(&journal->j_state_lock);
579         __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
580         read_unlock(&journal->j_state_lock);
581         jbd2_free_handle(handle);
582 }
583 EXPORT_SYMBOL(jbd2_journal_free_reserved);
584
585 /**
586  * jbd2_journal_start_reserved() - start reserved handle
587  * @handle: handle to start
588  * @type: for handle statistics
589  * @line_no: for handle statistics
590  *
591  * Start handle that has been previously reserved with jbd2_journal_reserve().
592  * This attaches @handle to the running transaction (or creates one if there's
593  * not transaction running). Unlike jbd2_journal_start() this function cannot
594  * block on journal commit, checkpointing, or similar stuff. It can block on
595  * memory allocation or frozen journal though.
596  *
597  * Return 0 on success, non-zero on error - handle is freed in that case.
598  */
599 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
600                                 unsigned int line_no)
601 {
602         journal_t *journal = handle->h_journal;
603         int ret = -EIO;
604
605         if (WARN_ON(!handle->h_reserved)) {
606                 /* Someone passed in normal handle? Just stop it. */
607                 jbd2_journal_stop(handle);
608                 return ret;
609         }
610         /*
611          * Usefulness of mixing of reserved and unreserved handles is
612          * questionable. So far nobody seems to need it so just error out.
613          */
614         if (WARN_ON(current->journal_info)) {
615                 jbd2_journal_free_reserved(handle);
616                 return ret;
617         }
618
619         handle->h_journal = NULL;
620         /*
621          * GFP_NOFS is here because callers are likely from writeback or
622          * similarly constrained call sites
623          */
624         ret = start_this_handle(journal, handle, GFP_NOFS);
625         if (ret < 0) {
626                 handle->h_journal = journal;
627                 jbd2_journal_free_reserved(handle);
628                 return ret;
629         }
630         handle->h_type = type;
631         handle->h_line_no = line_no;
632         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
633                                 handle->h_transaction->t_tid, type,
634                                 line_no, handle->h_total_credits);
635         return 0;
636 }
637 EXPORT_SYMBOL(jbd2_journal_start_reserved);
638
639 /**
640  * jbd2_journal_extend() - extend buffer credits.
641  * @handle:  handle to 'extend'
642  * @nblocks: nr blocks to try to extend by.
643  * @revoke_records: number of revoke records to try to extend by.
644  *
645  * Some transactions, such as large extends and truncates, can be done
646  * atomically all at once or in several stages.  The operation requests
647  * a credit for a number of buffer modifications in advance, but can
648  * extend its credit if it needs more.
649  *
650  * jbd2_journal_extend tries to give the running handle more buffer credits.
651  * It does not guarantee that allocation - this is a best-effort only.
652  * The calling process MUST be able to deal cleanly with a failure to
653  * extend here.
654  *
655  * Return 0 on success, non-zero on failure.
656  *
657  * return code < 0 implies an error
658  * return code > 0 implies normal transaction-full status.
659  */
660 int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
661 {
662         transaction_t *transaction = handle->h_transaction;
663         journal_t *journal;
664         int result;
665         int wanted;
666
667         if (is_handle_aborted(handle))
668                 return -EROFS;
669         journal = transaction->t_journal;
670
671         result = 1;
672
673         read_lock(&journal->j_state_lock);
674
675         /* Don't extend a locked-down transaction! */
676         if (transaction->t_state != T_RUNNING) {
677                 jbd2_debug(3, "denied handle %p %d blocks: "
678                           "transaction not running\n", handle, nblocks);
679                 goto error_out;
680         }
681
682         nblocks += DIV_ROUND_UP(
683                         handle->h_revoke_credits_requested + revoke_records,
684                         journal->j_revoke_records_per_block) -
685                 DIV_ROUND_UP(
686                         handle->h_revoke_credits_requested,
687                         journal->j_revoke_records_per_block);
688         wanted = atomic_add_return(nblocks,
689                                    &transaction->t_outstanding_credits);
690
691         if (wanted > journal->j_max_transaction_buffers) {
692                 jbd2_debug(3, "denied handle %p %d blocks: "
693                           "transaction too large\n", handle, nblocks);
694                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
695                 goto error_out;
696         }
697
698         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
699                                  transaction->t_tid,
700                                  handle->h_type, handle->h_line_no,
701                                  handle->h_total_credits,
702                                  nblocks);
703
704         handle->h_total_credits += nblocks;
705         handle->h_requested_credits += nblocks;
706         handle->h_revoke_credits += revoke_records;
707         handle->h_revoke_credits_requested += revoke_records;
708         result = 0;
709
710         jbd2_debug(3, "extended handle %p by %d\n", handle, nblocks);
711 error_out:
712         read_unlock(&journal->j_state_lock);
713         return result;
714 }
715
716 static void stop_this_handle(handle_t *handle)
717 {
718         transaction_t *transaction = handle->h_transaction;
719         journal_t *journal = transaction->t_journal;
720         int revokes;
721
722         J_ASSERT(journal_current_handle() == handle);
723         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
724         current->journal_info = NULL;
725         /*
726          * Subtract necessary revoke descriptor blocks from handle credits. We
727          * take care to account only for revoke descriptor blocks the
728          * transaction will really need as large sequences of transactions with
729          * small numbers of revokes are relatively common.
730          */
731         revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
732         if (revokes) {
733                 int t_revokes, revoke_descriptors;
734                 int rr_per_blk = journal->j_revoke_records_per_block;
735
736                 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
737                                 > handle->h_total_credits);
738                 t_revokes = atomic_add_return(revokes,
739                                 &transaction->t_outstanding_revokes);
740                 revoke_descriptors =
741                         DIV_ROUND_UP(t_revokes, rr_per_blk) -
742                         DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
743                 handle->h_total_credits -= revoke_descriptors;
744         }
745         atomic_sub(handle->h_total_credits,
746                    &transaction->t_outstanding_credits);
747         if (handle->h_rsv_handle)
748                 __jbd2_journal_unreserve_handle(handle->h_rsv_handle,
749                                                 transaction);
750         if (atomic_dec_and_test(&transaction->t_updates))
751                 wake_up(&journal->j_wait_updates);
752
753         rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
754         /*
755          * Scope of the GFP_NOFS context is over here and so we can restore the
756          * original alloc context.
757          */
758         memalloc_nofs_restore(handle->saved_alloc_context);
759 }
760
761 /**
762  * jbd2__journal_restart() - restart a handle .
763  * @handle:  handle to restart
764  * @nblocks: nr credits requested
765  * @revoke_records: number of revoke record credits requested
766  * @gfp_mask: memory allocation flags (for start_this_handle)
767  *
768  * Restart a handle for a multi-transaction filesystem
769  * operation.
770  *
771  * If the jbd2_journal_extend() call above fails to grant new buffer credits
772  * to a running handle, a call to jbd2_journal_restart will commit the
773  * handle's transaction so far and reattach the handle to a new
774  * transaction capable of guaranteeing the requested number of
775  * credits. We preserve reserved handle if there's any attached to the
776  * passed in handle.
777  */
778 int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
779                           gfp_t gfp_mask)
780 {
781         transaction_t *transaction = handle->h_transaction;
782         journal_t *journal;
783         tid_t           tid;
784         int             need_to_start;
785         int             ret;
786
787         /* If we've had an abort of any type, don't even think about
788          * actually doing the restart! */
789         if (is_handle_aborted(handle))
790                 return 0;
791         journal = transaction->t_journal;
792         tid = transaction->t_tid;
793
794         /*
795          * First unlink the handle from its current transaction, and start the
796          * commit on that.
797          */
798         jbd2_debug(2, "restarting handle %p\n", handle);
799         stop_this_handle(handle);
800         handle->h_transaction = NULL;
801
802         /*
803          * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
804          * get rid of pointless j_state_lock traffic like this.
805          */
806         read_lock(&journal->j_state_lock);
807         need_to_start = !tid_geq(journal->j_commit_request, tid);
808         read_unlock(&journal->j_state_lock);
809         if (need_to_start)
810                 jbd2_log_start_commit(journal, tid);
811         handle->h_total_credits = nblocks +
812                 DIV_ROUND_UP(revoke_records,
813                              journal->j_revoke_records_per_block);
814         handle->h_revoke_credits = revoke_records;
815         ret = start_this_handle(journal, handle, gfp_mask);
816         trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
817                                  ret ? 0 : handle->h_transaction->t_tid,
818                                  handle->h_type, handle->h_line_no,
819                                  handle->h_total_credits);
820         return ret;
821 }
822 EXPORT_SYMBOL(jbd2__journal_restart);
823
824
825 int jbd2_journal_restart(handle_t *handle, int nblocks)
826 {
827         return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
828 }
829 EXPORT_SYMBOL(jbd2_journal_restart);
830
831 /*
832  * Waits for any outstanding t_updates to finish.
833  * This is called with write j_state_lock held.
834  */
835 void jbd2_journal_wait_updates(journal_t *journal)
836 {
837         DEFINE_WAIT(wait);
838
839         while (1) {
840                 /*
841                  * Note that the running transaction can get freed under us if
842                  * this transaction is getting committed in
843                  * jbd2_journal_commit_transaction() ->
844                  * jbd2_journal_free_transaction(). This can only happen when we
845                  * release j_state_lock -> schedule() -> acquire j_state_lock.
846                  * Hence we should everytime retrieve new j_running_transaction
847                  * value (after j_state_lock release acquire cycle), else it may
848                  * lead to use-after-free of old freed transaction.
849                  */
850                 transaction_t *transaction = journal->j_running_transaction;
851
852                 if (!transaction)
853                         break;
854
855                 prepare_to_wait(&journal->j_wait_updates, &wait,
856                                 TASK_UNINTERRUPTIBLE);
857                 if (!atomic_read(&transaction->t_updates)) {
858                         finish_wait(&journal->j_wait_updates, &wait);
859                         break;
860                 }
861                 write_unlock(&journal->j_state_lock);
862                 schedule();
863                 finish_wait(&journal->j_wait_updates, &wait);
864                 write_lock(&journal->j_state_lock);
865         }
866 }
867
868 /**
869  * jbd2_journal_lock_updates () - establish a transaction barrier.
870  * @journal:  Journal to establish a barrier on.
871  *
872  * This locks out any further updates from being started, and blocks
873  * until all existing updates have completed, returning only once the
874  * journal is in a quiescent state with no updates running.
875  *
876  * The journal lock should not be held on entry.
877  */
878 void jbd2_journal_lock_updates(journal_t *journal)
879 {
880         jbd2_might_wait_for_commit(journal);
881
882         write_lock(&journal->j_state_lock);
883         ++journal->j_barrier_count;
884
885         /* Wait until there are no reserved handles */
886         if (atomic_read(&journal->j_reserved_credits)) {
887                 write_unlock(&journal->j_state_lock);
888                 wait_event(journal->j_wait_reserved,
889                            atomic_read(&journal->j_reserved_credits) == 0);
890                 write_lock(&journal->j_state_lock);
891         }
892
893         /* Wait until there are no running t_updates */
894         jbd2_journal_wait_updates(journal);
895
896         write_unlock(&journal->j_state_lock);
897
898         /*
899          * We have now established a barrier against other normal updates, but
900          * we also need to barrier against other jbd2_journal_lock_updates() calls
901          * to make sure that we serialise special journal-locked operations
902          * too.
903          */
904         mutex_lock(&journal->j_barrier);
905 }
906
907 /**
908  * jbd2_journal_unlock_updates () - release barrier
909  * @journal:  Journal to release the barrier on.
910  *
911  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
912  *
913  * Should be called without the journal lock held.
914  */
915 void jbd2_journal_unlock_updates (journal_t *journal)
916 {
917         J_ASSERT(journal->j_barrier_count != 0);
918
919         mutex_unlock(&journal->j_barrier);
920         write_lock(&journal->j_state_lock);
921         --journal->j_barrier_count;
922         write_unlock(&journal->j_state_lock);
923         wake_up_all(&journal->j_wait_transaction_locked);
924 }
925
926 static void warn_dirty_buffer(struct buffer_head *bh)
927 {
928         printk(KERN_WARNING
929                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
930                "There's a risk of filesystem corruption in case of system "
931                "crash.\n",
932                bh->b_bdev, (unsigned long long)bh->b_blocknr);
933 }
934
935 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
936 static void jbd2_freeze_jh_data(struct journal_head *jh)
937 {
938         char *source;
939         struct buffer_head *bh = jh2bh(jh);
940
941         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
942         source = kmap_local_folio(bh->b_folio, bh_offset(bh));
943         /* Fire data frozen trigger just before we copy the data */
944         jbd2_buffer_frozen_trigger(jh, source, jh->b_triggers);
945         memcpy(jh->b_frozen_data, source, bh->b_size);
946         kunmap_local(source);
947
948         /*
949          * Now that the frozen data is saved off, we need to store any matching
950          * triggers.
951          */
952         jh->b_frozen_triggers = jh->b_triggers;
953 }
954
955 /*
956  * If the buffer is already part of the current transaction, then there
957  * is nothing we need to do.  If it is already part of a prior
958  * transaction which we are still committing to disk, then we need to
959  * make sure that we do not overwrite the old copy: we do copy-out to
960  * preserve the copy going to disk.  We also account the buffer against
961  * the handle's metadata buffer credits (unless the buffer is already
962  * part of the transaction, that is).
963  *
964  */
965 static int
966 do_get_write_access(handle_t *handle, struct journal_head *jh,
967                         int force_copy)
968 {
969         struct buffer_head *bh;
970         transaction_t *transaction = handle->h_transaction;
971         journal_t *journal;
972         int error;
973         char *frozen_buffer = NULL;
974         unsigned long start_lock, time_lock;
975
976         journal = transaction->t_journal;
977
978         jbd2_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
979
980         JBUFFER_TRACE(jh, "entry");
981 repeat:
982         bh = jh2bh(jh);
983
984         /* @@@ Need to check for errors here at some point. */
985
986         start_lock = jiffies;
987         lock_buffer(bh);
988         spin_lock(&jh->b_state_lock);
989
990         /* If it takes too long to lock the buffer, trace it */
991         time_lock = jbd2_time_diff(start_lock, jiffies);
992         if (time_lock > HZ/10)
993                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
994                         jiffies_to_msecs(time_lock));
995
996         /* We now hold the buffer lock so it is safe to query the buffer
997          * state.  Is the buffer dirty?
998          *
999          * If so, there are two possibilities.  The buffer may be
1000          * non-journaled, and undergoing a quite legitimate writeback.
1001          * Otherwise, it is journaled, and we don't expect dirty buffers
1002          * in that state (the buffers should be marked JBD_Dirty
1003          * instead.)  So either the IO is being done under our own
1004          * control and this is a bug, or it's a third party IO such as
1005          * dump(8) (which may leave the buffer scheduled for read ---
1006          * ie. locked but not dirty) or tune2fs (which may actually have
1007          * the buffer dirtied, ugh.)  */
1008
1009         if (buffer_dirty(bh) && jh->b_transaction) {
1010                 warn_dirty_buffer(bh);
1011                 /*
1012                  * We need to clean the dirty flag and we must do it under the
1013                  * buffer lock to be sure we don't race with running write-out.
1014                  */
1015                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
1016                 clear_buffer_dirty(bh);
1017                 /*
1018                  * The buffer is going to be added to BJ_Reserved list now and
1019                  * nothing guarantees jbd2_journal_dirty_metadata() will be
1020                  * ever called for it. So we need to set jbddirty bit here to
1021                  * make sure the buffer is dirtied and written out when the
1022                  * journaling machinery is done with it.
1023                  */
1024                 set_buffer_jbddirty(bh);
1025         }
1026
1027         error = -EROFS;
1028         if (is_handle_aborted(handle)) {
1029                 spin_unlock(&jh->b_state_lock);
1030                 unlock_buffer(bh);
1031                 goto out;
1032         }
1033         error = 0;
1034
1035         /*
1036          * The buffer is already part of this transaction if b_transaction or
1037          * b_next_transaction points to it
1038          */
1039         if (jh->b_transaction == transaction ||
1040             jh->b_next_transaction == transaction) {
1041                 unlock_buffer(bh);
1042                 goto done;
1043         }
1044
1045         /*
1046          * this is the first time this transaction is touching this buffer,
1047          * reset the modified flag
1048          */
1049         jh->b_modified = 0;
1050
1051         /*
1052          * If the buffer is not journaled right now, we need to make sure it
1053          * doesn't get written to disk before the caller actually commits the
1054          * new data
1055          */
1056         if (!jh->b_transaction) {
1057                 JBUFFER_TRACE(jh, "no transaction");
1058                 J_ASSERT_JH(jh, !jh->b_next_transaction);
1059                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1060                 /*
1061                  * Make sure all stores to jh (b_modified, b_frozen_data) are
1062                  * visible before attaching it to the running transaction.
1063                  * Paired with barrier in jbd2_write_access_granted()
1064                  */
1065                 smp_wmb();
1066                 spin_lock(&journal->j_list_lock);
1067                 if (test_clear_buffer_dirty(bh)) {
1068                         /*
1069                          * Execute buffer dirty clearing and jh->b_transaction
1070                          * assignment under journal->j_list_lock locked to
1071                          * prevent bh being removed from checkpoint list if
1072                          * the buffer is in an intermediate state (not dirty
1073                          * and jh->b_transaction is NULL).
1074                          */
1075                         JBUFFER_TRACE(jh, "Journalling dirty buffer");
1076                         set_buffer_jbddirty(bh);
1077                 }
1078                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1079                 spin_unlock(&journal->j_list_lock);
1080                 unlock_buffer(bh);
1081                 goto done;
1082         }
1083         unlock_buffer(bh);
1084
1085         /*
1086          * If there is already a copy-out version of this buffer, then we don't
1087          * need to make another one
1088          */
1089         if (jh->b_frozen_data) {
1090                 JBUFFER_TRACE(jh, "has frozen data");
1091                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1092                 goto attach_next;
1093         }
1094
1095         JBUFFER_TRACE(jh, "owned by older transaction");
1096         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1097         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1098
1099         /*
1100          * There is one case we have to be very careful about.  If the
1101          * committing transaction is currently writing this buffer out to disk
1102          * and has NOT made a copy-out, then we cannot modify the buffer
1103          * contents at all right now.  The essence of copy-out is that it is
1104          * the extra copy, not the primary copy, which gets journaled.  If the
1105          * primary copy is already going to disk then we cannot do copy-out
1106          * here.
1107          */
1108         if (buffer_shadow(bh)) {
1109                 JBUFFER_TRACE(jh, "on shadow: sleep");
1110                 spin_unlock(&jh->b_state_lock);
1111                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1112                 goto repeat;
1113         }
1114
1115         /*
1116          * Only do the copy if the currently-owning transaction still needs it.
1117          * If buffer isn't on BJ_Metadata list, the committing transaction is
1118          * past that stage (here we use the fact that BH_Shadow is set under
1119          * bh_state lock together with refiling to BJ_Shadow list and at this
1120          * point we know the buffer doesn't have BH_Shadow set).
1121          *
1122          * Subtle point, though: if this is a get_undo_access, then we will be
1123          * relying on the frozen_data to contain the new value of the
1124          * committed_data record after the transaction, so we HAVE to force the
1125          * frozen_data copy in that case.
1126          */
1127         if (jh->b_jlist == BJ_Metadata || force_copy) {
1128                 JBUFFER_TRACE(jh, "generate frozen data");
1129                 if (!frozen_buffer) {
1130                         JBUFFER_TRACE(jh, "allocate memory for buffer");
1131                         spin_unlock(&jh->b_state_lock);
1132                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1133                                                    GFP_NOFS | __GFP_NOFAIL);
1134                         goto repeat;
1135                 }
1136                 jh->b_frozen_data = frozen_buffer;
1137                 frozen_buffer = NULL;
1138                 jbd2_freeze_jh_data(jh);
1139         }
1140 attach_next:
1141         /*
1142          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1143          * before attaching it to the running transaction. Paired with barrier
1144          * in jbd2_write_access_granted()
1145          */
1146         smp_wmb();
1147         jh->b_next_transaction = transaction;
1148
1149 done:
1150         spin_unlock(&jh->b_state_lock);
1151
1152         /*
1153          * If we are about to journal a buffer, then any revoke pending on it is
1154          * no longer valid
1155          */
1156         jbd2_journal_cancel_revoke(handle, jh);
1157
1158 out:
1159         if (unlikely(frozen_buffer))    /* It's usually NULL */
1160                 jbd2_free(frozen_buffer, bh->b_size);
1161
1162         JBUFFER_TRACE(jh, "exit");
1163         return error;
1164 }
1165
1166 /* Fast check whether buffer is already attached to the required transaction */
1167 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1168                                                         bool undo)
1169 {
1170         struct journal_head *jh;
1171         bool ret = false;
1172
1173         /* Dirty buffers require special handling... */
1174         if (buffer_dirty(bh))
1175                 return false;
1176
1177         /*
1178          * RCU protects us from dereferencing freed pages. So the checks we do
1179          * are guaranteed not to oops. However the jh slab object can get freed
1180          * & reallocated while we work with it. So we have to be careful. When
1181          * we see jh attached to the running transaction, we know it must stay
1182          * so until the transaction is committed. Thus jh won't be freed and
1183          * will be attached to the same bh while we run.  However it can
1184          * happen jh gets freed, reallocated, and attached to the transaction
1185          * just after we get pointer to it from bh. So we have to be careful
1186          * and recheck jh still belongs to our bh before we return success.
1187          */
1188         rcu_read_lock();
1189         if (!buffer_jbd(bh))
1190                 goto out;
1191         /* This should be bh2jh() but that doesn't work with inline functions */
1192         jh = READ_ONCE(bh->b_private);
1193         if (!jh)
1194                 goto out;
1195         /* For undo access buffer must have data copied */
1196         if (undo && !jh->b_committed_data)
1197                 goto out;
1198         if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1199             READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1200                 goto out;
1201         /*
1202          * There are two reasons for the barrier here:
1203          * 1) Make sure to fetch b_bh after we did previous checks so that we
1204          * detect when jh went through free, realloc, attach to transaction
1205          * while we were checking. Paired with implicit barrier in that path.
1206          * 2) So that access to bh done after jbd2_write_access_granted()
1207          * doesn't get reordered and see inconsistent state of concurrent
1208          * do_get_write_access().
1209          */
1210         smp_mb();
1211         if (unlikely(jh->b_bh != bh))
1212                 goto out;
1213         ret = true;
1214 out:
1215         rcu_read_unlock();
1216         return ret;
1217 }
1218
1219 /**
1220  * jbd2_journal_get_write_access() - notify intent to modify a buffer
1221  *                                   for metadata (not data) update.
1222  * @handle: transaction to add buffer modifications to
1223  * @bh:     bh to be used for metadata writes
1224  *
1225  * Returns: error code or 0 on success.
1226  *
1227  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1228  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1229  */
1230
1231 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1232 {
1233         struct journal_head *jh;
1234         int rc;
1235
1236         if (is_handle_aborted(handle))
1237                 return -EROFS;
1238
1239         if (jbd2_write_access_granted(handle, bh, false))
1240                 return 0;
1241
1242         jh = jbd2_journal_add_journal_head(bh);
1243         /* We do not want to get caught playing with fields which the
1244          * log thread also manipulates.  Make sure that the buffer
1245          * completes any outstanding IO before proceeding. */
1246         rc = do_get_write_access(handle, jh, 0);
1247         jbd2_journal_put_journal_head(jh);
1248         return rc;
1249 }
1250
1251
1252 /*
1253  * When the user wants to journal a newly created buffer_head
1254  * (ie. getblk() returned a new buffer and we are going to populate it
1255  * manually rather than reading off disk), then we need to keep the
1256  * buffer_head locked until it has been completely filled with new
1257  * data.  In this case, we should be able to make the assertion that
1258  * the bh is not already part of an existing transaction.
1259  *
1260  * The buffer should already be locked by the caller by this point.
1261  * There is no lock ranking violation: it was a newly created,
1262  * unlocked buffer beforehand. */
1263
1264 /**
1265  * jbd2_journal_get_create_access () - notify intent to use newly created bh
1266  * @handle: transaction to new buffer to
1267  * @bh: new buffer.
1268  *
1269  * Call this if you create a new bh.
1270  */
1271 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1272 {
1273         transaction_t *transaction = handle->h_transaction;
1274         journal_t *journal;
1275         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1276         int err;
1277
1278         jbd2_debug(5, "journal_head %p\n", jh);
1279         err = -EROFS;
1280         if (is_handle_aborted(handle))
1281                 goto out;
1282         journal = transaction->t_journal;
1283         err = 0;
1284
1285         JBUFFER_TRACE(jh, "entry");
1286         /*
1287          * The buffer may already belong to this transaction due to pre-zeroing
1288          * in the filesystem's new_block code.  It may also be on the previous,
1289          * committing transaction's lists, but it HAS to be in Forget state in
1290          * that case: the transaction must have deleted the buffer for it to be
1291          * reused here.
1292          */
1293         spin_lock(&jh->b_state_lock);
1294         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1295                 jh->b_transaction == NULL ||
1296                 (jh->b_transaction == journal->j_committing_transaction &&
1297                           jh->b_jlist == BJ_Forget)));
1298
1299         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1300         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1301
1302         if (jh->b_transaction == NULL) {
1303                 /*
1304                  * Previous jbd2_journal_forget() could have left the buffer
1305                  * with jbddirty bit set because it was being committed. When
1306                  * the commit finished, we've filed the buffer for
1307                  * checkpointing and marked it dirty. Now we are reallocating
1308                  * the buffer so the transaction freeing it must have
1309                  * committed and so it's safe to clear the dirty bit.
1310                  */
1311                 clear_buffer_dirty(jh2bh(jh));
1312                 /* first access by this transaction */
1313                 jh->b_modified = 0;
1314
1315                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1316                 spin_lock(&journal->j_list_lock);
1317                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1318                 spin_unlock(&journal->j_list_lock);
1319         } else if (jh->b_transaction == journal->j_committing_transaction) {
1320                 /* first access by this transaction */
1321                 jh->b_modified = 0;
1322
1323                 JBUFFER_TRACE(jh, "set next transaction");
1324                 spin_lock(&journal->j_list_lock);
1325                 jh->b_next_transaction = transaction;
1326                 spin_unlock(&journal->j_list_lock);
1327         }
1328         spin_unlock(&jh->b_state_lock);
1329
1330         /*
1331          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1332          * blocks which contain freed but then revoked metadata.  We need
1333          * to cancel the revoke in case we end up freeing it yet again
1334          * and the reallocating as data - this would cause a second revoke,
1335          * which hits an assertion error.
1336          */
1337         JBUFFER_TRACE(jh, "cancelling revoke");
1338         jbd2_journal_cancel_revoke(handle, jh);
1339 out:
1340         jbd2_journal_put_journal_head(jh);
1341         return err;
1342 }
1343
1344 /**
1345  * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1346  *     non-rewindable consequences
1347  * @handle: transaction
1348  * @bh: buffer to undo
1349  *
1350  * Sometimes there is a need to distinguish between metadata which has
1351  * been committed to disk and that which has not.  The ext3fs code uses
1352  * this for freeing and allocating space, we have to make sure that we
1353  * do not reuse freed space until the deallocation has been committed,
1354  * since if we overwrote that space we would make the delete
1355  * un-rewindable in case of a crash.
1356  *
1357  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1358  * buffer for parts of non-rewindable operations such as delete
1359  * operations on the bitmaps.  The journaling code must keep a copy of
1360  * the buffer's contents prior to the undo_access call until such time
1361  * as we know that the buffer has definitely been committed to disk.
1362  *
1363  * We never need to know which transaction the committed data is part
1364  * of, buffers touched here are guaranteed to be dirtied later and so
1365  * will be committed to a new transaction in due course, at which point
1366  * we can discard the old committed data pointer.
1367  *
1368  * Returns error number or 0 on success.
1369  */
1370 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1371 {
1372         int err;
1373         struct journal_head *jh;
1374         char *committed_data = NULL;
1375
1376         if (is_handle_aborted(handle))
1377                 return -EROFS;
1378
1379         if (jbd2_write_access_granted(handle, bh, true))
1380                 return 0;
1381
1382         jh = jbd2_journal_add_journal_head(bh);
1383         JBUFFER_TRACE(jh, "entry");
1384
1385         /*
1386          * Do this first --- it can drop the journal lock, so we want to
1387          * make sure that obtaining the committed_data is done
1388          * atomically wrt. completion of any outstanding commits.
1389          */
1390         err = do_get_write_access(handle, jh, 1);
1391         if (err)
1392                 goto out;
1393
1394 repeat:
1395         if (!jh->b_committed_data)
1396                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1397                                             GFP_NOFS|__GFP_NOFAIL);
1398
1399         spin_lock(&jh->b_state_lock);
1400         if (!jh->b_committed_data) {
1401                 /* Copy out the current buffer contents into the
1402                  * preserved, committed copy. */
1403                 JBUFFER_TRACE(jh, "generate b_committed data");
1404                 if (!committed_data) {
1405                         spin_unlock(&jh->b_state_lock);
1406                         goto repeat;
1407                 }
1408
1409                 jh->b_committed_data = committed_data;
1410                 committed_data = NULL;
1411                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1412         }
1413         spin_unlock(&jh->b_state_lock);
1414 out:
1415         jbd2_journal_put_journal_head(jh);
1416         if (unlikely(committed_data))
1417                 jbd2_free(committed_data, bh->b_size);
1418         return err;
1419 }
1420
1421 /**
1422  * jbd2_journal_set_triggers() - Add triggers for commit writeout
1423  * @bh: buffer to trigger on
1424  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1425  *
1426  * Set any triggers on this journal_head.  This is always safe, because
1427  * triggers for a committing buffer will be saved off, and triggers for
1428  * a running transaction will match the buffer in that transaction.
1429  *
1430  * Call with NULL to clear the triggers.
1431  */
1432 void jbd2_journal_set_triggers(struct buffer_head *bh,
1433                                struct jbd2_buffer_trigger_type *type)
1434 {
1435         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1436
1437         if (WARN_ON_ONCE(!jh))
1438                 return;
1439         jh->b_triggers = type;
1440         jbd2_journal_put_journal_head(jh);
1441 }
1442
1443 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1444                                 struct jbd2_buffer_trigger_type *triggers)
1445 {
1446         struct buffer_head *bh = jh2bh(jh);
1447
1448         if (!triggers || !triggers->t_frozen)
1449                 return;
1450
1451         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1452 }
1453
1454 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1455                                struct jbd2_buffer_trigger_type *triggers)
1456 {
1457         if (!triggers || !triggers->t_abort)
1458                 return;
1459
1460         triggers->t_abort(triggers, jh2bh(jh));
1461 }
1462
1463 /**
1464  * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1465  * @handle: transaction to add buffer to.
1466  * @bh: buffer to mark
1467  *
1468  * mark dirty metadata which needs to be journaled as part of the current
1469  * transaction.
1470  *
1471  * The buffer must have previously had jbd2_journal_get_write_access()
1472  * called so that it has a valid journal_head attached to the buffer
1473  * head.
1474  *
1475  * The buffer is placed on the transaction's metadata list and is marked
1476  * as belonging to the transaction.
1477  *
1478  * Returns error number or 0 on success.
1479  *
1480  * Special care needs to be taken if the buffer already belongs to the
1481  * current committing transaction (in which case we should have frozen
1482  * data present for that commit).  In that case, we don't relink the
1483  * buffer: that only gets done when the old transaction finally
1484  * completes its commit.
1485  */
1486 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1487 {
1488         transaction_t *transaction = handle->h_transaction;
1489         journal_t *journal;
1490         struct journal_head *jh;
1491         int ret = 0;
1492
1493         if (!buffer_jbd(bh))
1494                 return -EUCLEAN;
1495
1496         /*
1497          * We don't grab jh reference here since the buffer must be part
1498          * of the running transaction.
1499          */
1500         jh = bh2jh(bh);
1501         jbd2_debug(5, "journal_head %p\n", jh);
1502         JBUFFER_TRACE(jh, "entry");
1503
1504         /*
1505          * This and the following assertions are unreliable since we may see jh
1506          * in inconsistent state unless we grab bh_state lock. But this is
1507          * crucial to catch bugs so let's do a reliable check until the
1508          * lockless handling is fully proven.
1509          */
1510         if (data_race(jh->b_transaction != transaction &&
1511             jh->b_next_transaction != transaction)) {
1512                 spin_lock(&jh->b_state_lock);
1513                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1514                                 jh->b_next_transaction == transaction);
1515                 spin_unlock(&jh->b_state_lock);
1516         }
1517         if (jh->b_modified == 1) {
1518                 /* If it's in our transaction it must be in BJ_Metadata list. */
1519                 if (data_race(jh->b_transaction == transaction &&
1520                     jh->b_jlist != BJ_Metadata)) {
1521                         spin_lock(&jh->b_state_lock);
1522                         if (jh->b_transaction == transaction &&
1523                             jh->b_jlist != BJ_Metadata)
1524                                 pr_err("JBD2: assertion failure: h_type=%u "
1525                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1526                                        handle->h_type, handle->h_line_no,
1527                                        (unsigned long long) bh->b_blocknr,
1528                                        jh->b_jlist);
1529                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1530                                         jh->b_jlist == BJ_Metadata);
1531                         spin_unlock(&jh->b_state_lock);
1532                 }
1533                 goto out;
1534         }
1535
1536         journal = transaction->t_journal;
1537         spin_lock(&jh->b_state_lock);
1538
1539         if (is_handle_aborted(handle)) {
1540                 /*
1541                  * Check journal aborting with @jh->b_state_lock locked,
1542                  * since 'jh->b_transaction' could be replaced with
1543                  * 'jh->b_next_transaction' during old transaction
1544                  * committing if journal aborted, which may fail
1545                  * assertion on 'jh->b_frozen_data == NULL'.
1546                  */
1547                 ret = -EROFS;
1548                 goto out_unlock_bh;
1549         }
1550
1551         if (jh->b_modified == 0) {
1552                 /*
1553                  * This buffer's got modified and becoming part
1554                  * of the transaction. This needs to be done
1555                  * once a transaction -bzzz
1556                  */
1557                 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1558                         ret = -ENOSPC;
1559                         goto out_unlock_bh;
1560                 }
1561                 jh->b_modified = 1;
1562                 handle->h_total_credits--;
1563         }
1564
1565         /*
1566          * fastpath, to avoid expensive locking.  If this buffer is already
1567          * on the running transaction's metadata list there is nothing to do.
1568          * Nobody can take it off again because there is a handle open.
1569          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1570          * result in this test being false, so we go in and take the locks.
1571          */
1572         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1573                 JBUFFER_TRACE(jh, "fastpath");
1574                 if (unlikely(jh->b_transaction !=
1575                              journal->j_running_transaction)) {
1576                         printk(KERN_ERR "JBD2: %s: "
1577                                "jh->b_transaction (%llu, %p, %u) != "
1578                                "journal->j_running_transaction (%p, %u)\n",
1579                                journal->j_devname,
1580                                (unsigned long long) bh->b_blocknr,
1581                                jh->b_transaction,
1582                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1583                                journal->j_running_transaction,
1584                                journal->j_running_transaction ?
1585                                journal->j_running_transaction->t_tid : 0);
1586                         ret = -EINVAL;
1587                 }
1588                 goto out_unlock_bh;
1589         }
1590
1591         set_buffer_jbddirty(bh);
1592
1593         /*
1594          * Metadata already on the current transaction list doesn't
1595          * need to be filed.  Metadata on another transaction's list must
1596          * be committing, and will be refiled once the commit completes:
1597          * leave it alone for now.
1598          */
1599         if (jh->b_transaction != transaction) {
1600                 JBUFFER_TRACE(jh, "already on other transaction");
1601                 if (unlikely(((jh->b_transaction !=
1602                                journal->j_committing_transaction)) ||
1603                              (jh->b_next_transaction != transaction))) {
1604                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1605                                "bad jh for block %llu: "
1606                                "transaction (%p, %u), "
1607                                "jh->b_transaction (%p, %u), "
1608                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1609                                journal->j_devname,
1610                                (unsigned long long) bh->b_blocknr,
1611                                transaction, transaction->t_tid,
1612                                jh->b_transaction,
1613                                jh->b_transaction ?
1614                                jh->b_transaction->t_tid : 0,
1615                                jh->b_next_transaction,
1616                                jh->b_next_transaction ?
1617                                jh->b_next_transaction->t_tid : 0,
1618                                jh->b_jlist);
1619                         WARN_ON(1);
1620                         ret = -EINVAL;
1621                 }
1622                 /* And this case is illegal: we can't reuse another
1623                  * transaction's data buffer, ever. */
1624                 goto out_unlock_bh;
1625         }
1626
1627         /* That test should have eliminated the following case: */
1628         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1629
1630         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1631         spin_lock(&journal->j_list_lock);
1632         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1633         spin_unlock(&journal->j_list_lock);
1634 out_unlock_bh:
1635         spin_unlock(&jh->b_state_lock);
1636 out:
1637         JBUFFER_TRACE(jh, "exit");
1638         return ret;
1639 }
1640
1641 /**
1642  * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1643  * @handle: transaction handle
1644  * @bh:     bh to 'forget'
1645  *
1646  * We can only do the bforget if there are no commits pending against the
1647  * buffer.  If the buffer is dirty in the current running transaction we
1648  * can safely unlink it.
1649  *
1650  * bh may not be a journalled buffer at all - it may be a non-JBD
1651  * buffer which came off the hashtable.  Check for this.
1652  *
1653  * Decrements bh->b_count by one.
1654  *
1655  * Allow this call even if the handle has aborted --- it may be part of
1656  * the caller's cleanup after an abort.
1657  */
1658 int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1659 {
1660         transaction_t *transaction = handle->h_transaction;
1661         journal_t *journal;
1662         struct journal_head *jh;
1663         int drop_reserve = 0;
1664         int err = 0;
1665         int was_modified = 0;
1666
1667         if (is_handle_aborted(handle))
1668                 return -EROFS;
1669         journal = transaction->t_journal;
1670
1671         BUFFER_TRACE(bh, "entry");
1672
1673         jh = jbd2_journal_grab_journal_head(bh);
1674         if (!jh) {
1675                 __bforget(bh);
1676                 return 0;
1677         }
1678
1679         spin_lock(&jh->b_state_lock);
1680
1681         /* Critical error: attempting to delete a bitmap buffer, maybe?
1682          * Don't do any jbd operations, and return an error. */
1683         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1684                          "inconsistent data on disk")) {
1685                 err = -EIO;
1686                 goto drop;
1687         }
1688
1689         /* keep track of whether or not this transaction modified us */
1690         was_modified = jh->b_modified;
1691
1692         /*
1693          * The buffer's going from the transaction, we must drop
1694          * all references -bzzz
1695          */
1696         jh->b_modified = 0;
1697
1698         if (jh->b_transaction == transaction) {
1699                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1700
1701                 /* If we are forgetting a buffer which is already part
1702                  * of this transaction, then we can just drop it from
1703                  * the transaction immediately. */
1704                 clear_buffer_dirty(bh);
1705                 clear_buffer_jbddirty(bh);
1706
1707                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1708
1709                 /*
1710                  * we only want to drop a reference if this transaction
1711                  * modified the buffer
1712                  */
1713                 if (was_modified)
1714                         drop_reserve = 1;
1715
1716                 /*
1717                  * We are no longer going to journal this buffer.
1718                  * However, the commit of this transaction is still
1719                  * important to the buffer: the delete that we are now
1720                  * processing might obsolete an old log entry, so by
1721                  * committing, we can satisfy the buffer's checkpoint.
1722                  *
1723                  * So, if we have a checkpoint on the buffer, we should
1724                  * now refile the buffer on our BJ_Forget list so that
1725                  * we know to remove the checkpoint after we commit.
1726                  */
1727
1728                 spin_lock(&journal->j_list_lock);
1729                 if (jh->b_cp_transaction) {
1730                         __jbd2_journal_temp_unlink_buffer(jh);
1731                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1732                 } else {
1733                         __jbd2_journal_unfile_buffer(jh);
1734                         jbd2_journal_put_journal_head(jh);
1735                 }
1736                 spin_unlock(&journal->j_list_lock);
1737         } else if (jh->b_transaction) {
1738                 J_ASSERT_JH(jh, (jh->b_transaction ==
1739                                  journal->j_committing_transaction));
1740                 /* However, if the buffer is still owned by a prior
1741                  * (committing) transaction, we can't drop it yet... */
1742                 JBUFFER_TRACE(jh, "belongs to older transaction");
1743                 /* ... but we CAN drop it from the new transaction through
1744                  * marking the buffer as freed and set j_next_transaction to
1745                  * the new transaction, so that not only the commit code
1746                  * knows it should clear dirty bits when it is done with the
1747                  * buffer, but also the buffer can be checkpointed only
1748                  * after the new transaction commits. */
1749
1750                 set_buffer_freed(bh);
1751
1752                 if (!jh->b_next_transaction) {
1753                         spin_lock(&journal->j_list_lock);
1754                         jh->b_next_transaction = transaction;
1755                         spin_unlock(&journal->j_list_lock);
1756                 } else {
1757                         J_ASSERT(jh->b_next_transaction == transaction);
1758
1759                         /*
1760                          * only drop a reference if this transaction modified
1761                          * the buffer
1762                          */
1763                         if (was_modified)
1764                                 drop_reserve = 1;
1765                 }
1766         } else {
1767                 /*
1768                  * Finally, if the buffer is not belongs to any
1769                  * transaction, we can just drop it now if it has no
1770                  * checkpoint.
1771                  */
1772                 spin_lock(&journal->j_list_lock);
1773                 if (!jh->b_cp_transaction) {
1774                         JBUFFER_TRACE(jh, "belongs to none transaction");
1775                         spin_unlock(&journal->j_list_lock);
1776                         goto drop;
1777                 }
1778
1779                 /*
1780                  * Otherwise, if the buffer has been written to disk,
1781                  * it is safe to remove the checkpoint and drop it.
1782                  */
1783                 if (jbd2_journal_try_remove_checkpoint(jh) >= 0) {
1784                         spin_unlock(&journal->j_list_lock);
1785                         goto drop;
1786                 }
1787
1788                 /*
1789                  * The buffer is still not written to disk, we should
1790                  * attach this buffer to current transaction so that the
1791                  * buffer can be checkpointed only after the current
1792                  * transaction commits.
1793                  */
1794                 clear_buffer_dirty(bh);
1795                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1796                 spin_unlock(&journal->j_list_lock);
1797         }
1798 drop:
1799         __brelse(bh);
1800         spin_unlock(&jh->b_state_lock);
1801         jbd2_journal_put_journal_head(jh);
1802         if (drop_reserve) {
1803                 /* no need to reserve log space for this block -bzzz */
1804                 handle->h_total_credits++;
1805         }
1806         return err;
1807 }
1808
1809 /**
1810  * jbd2_journal_stop() - complete a transaction
1811  * @handle: transaction to complete.
1812  *
1813  * All done for a particular handle.
1814  *
1815  * There is not much action needed here.  We just return any remaining
1816  * buffer credits to the transaction and remove the handle.  The only
1817  * complication is that we need to start a commit operation if the
1818  * filesystem is marked for synchronous update.
1819  *
1820  * jbd2_journal_stop itself will not usually return an error, but it may
1821  * do so in unusual circumstances.  In particular, expect it to
1822  * return -EIO if a jbd2_journal_abort has been executed since the
1823  * transaction began.
1824  */
1825 int jbd2_journal_stop(handle_t *handle)
1826 {
1827         transaction_t *transaction = handle->h_transaction;
1828         journal_t *journal;
1829         int err = 0, wait_for_commit = 0;
1830         tid_t tid;
1831         pid_t pid;
1832
1833         if (--handle->h_ref > 0) {
1834                 jbd2_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1835                                                  handle->h_ref);
1836                 if (is_handle_aborted(handle))
1837                         return -EIO;
1838                 return 0;
1839         }
1840         if (!transaction) {
1841                 /*
1842                  * Handle is already detached from the transaction so there is
1843                  * nothing to do other than free the handle.
1844                  */
1845                 memalloc_nofs_restore(handle->saved_alloc_context);
1846                 goto free_and_exit;
1847         }
1848         journal = transaction->t_journal;
1849         tid = transaction->t_tid;
1850
1851         if (is_handle_aborted(handle))
1852                 err = -EIO;
1853
1854         jbd2_debug(4, "Handle %p going down\n", handle);
1855         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1856                                 tid, handle->h_type, handle->h_line_no,
1857                                 jiffies - handle->h_start_jiffies,
1858                                 handle->h_sync, handle->h_requested_credits,
1859                                 (handle->h_requested_credits -
1860                                  handle->h_total_credits));
1861
1862         /*
1863          * Implement synchronous transaction batching.  If the handle
1864          * was synchronous, don't force a commit immediately.  Let's
1865          * yield and let another thread piggyback onto this
1866          * transaction.  Keep doing that while new threads continue to
1867          * arrive.  It doesn't cost much - we're about to run a commit
1868          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1869          * operations by 30x or more...
1870          *
1871          * We try and optimize the sleep time against what the
1872          * underlying disk can do, instead of having a static sleep
1873          * time.  This is useful for the case where our storage is so
1874          * fast that it is more optimal to go ahead and force a flush
1875          * and wait for the transaction to be committed than it is to
1876          * wait for an arbitrary amount of time for new writers to
1877          * join the transaction.  We achieve this by measuring how
1878          * long it takes to commit a transaction, and compare it with
1879          * how long this transaction has been running, and if run time
1880          * < commit time then we sleep for the delta and commit.  This
1881          * greatly helps super fast disks that would see slowdowns as
1882          * more threads started doing fsyncs.
1883          *
1884          * But don't do this if this process was the most recent one
1885          * to perform a synchronous write.  We do this to detect the
1886          * case where a single process is doing a stream of sync
1887          * writes.  No point in waiting for joiners in that case.
1888          *
1889          * Setting max_batch_time to 0 disables this completely.
1890          */
1891         pid = current->pid;
1892         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1893             journal->j_max_batch_time) {
1894                 u64 commit_time, trans_time;
1895
1896                 journal->j_last_sync_writer = pid;
1897
1898                 read_lock(&journal->j_state_lock);
1899                 commit_time = journal->j_average_commit_time;
1900                 read_unlock(&journal->j_state_lock);
1901
1902                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1903                                                    transaction->t_start_time));
1904
1905                 commit_time = max_t(u64, commit_time,
1906                                     1000*journal->j_min_batch_time);
1907                 commit_time = min_t(u64, commit_time,
1908                                     1000*journal->j_max_batch_time);
1909
1910                 if (trans_time < commit_time) {
1911                         ktime_t expires = ktime_add_ns(ktime_get(),
1912                                                        commit_time);
1913                         set_current_state(TASK_UNINTERRUPTIBLE);
1914                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1915                 }
1916         }
1917
1918         if (handle->h_sync)
1919                 transaction->t_synchronous_commit = 1;
1920
1921         /*
1922          * If the handle is marked SYNC, we need to set another commit
1923          * going!  We also want to force a commit if the transaction is too
1924          * old now.
1925          */
1926         if (handle->h_sync ||
1927             time_after_eq(jiffies, transaction->t_expires)) {
1928                 /* Do this even for aborted journals: an abort still
1929                  * completes the commit thread, it just doesn't write
1930                  * anything to disk. */
1931
1932                 jbd2_debug(2, "transaction too old, requesting commit for "
1933                                         "handle %p\n", handle);
1934                 /* This is non-blocking */
1935                 jbd2_log_start_commit(journal, tid);
1936
1937                 /*
1938                  * Special case: JBD2_SYNC synchronous updates require us
1939                  * to wait for the commit to complete.
1940                  */
1941                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1942                         wait_for_commit = 1;
1943         }
1944
1945         /*
1946          * Once stop_this_handle() drops t_updates, the transaction could start
1947          * committing on us and eventually disappear.  So we must not
1948          * dereference transaction pointer again after calling
1949          * stop_this_handle().
1950          */
1951         stop_this_handle(handle);
1952
1953         if (wait_for_commit)
1954                 err = jbd2_log_wait_commit(journal, tid);
1955
1956 free_and_exit:
1957         if (handle->h_rsv_handle)
1958                 jbd2_free_handle(handle->h_rsv_handle);
1959         jbd2_free_handle(handle);
1960         return err;
1961 }
1962
1963 /*
1964  *
1965  * List management code snippets: various functions for manipulating the
1966  * transaction buffer lists.
1967  *
1968  */
1969
1970 /*
1971  * Append a buffer to a transaction list, given the transaction's list head
1972  * pointer.
1973  *
1974  * j_list_lock is held.
1975  *
1976  * jh->b_state_lock is held.
1977  */
1978
1979 static inline void
1980 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1981 {
1982         if (!*list) {
1983                 jh->b_tnext = jh->b_tprev = jh;
1984                 *list = jh;
1985         } else {
1986                 /* Insert at the tail of the list to preserve order */
1987                 struct journal_head *first = *list, *last = first->b_tprev;
1988                 jh->b_tprev = last;
1989                 jh->b_tnext = first;
1990                 last->b_tnext = first->b_tprev = jh;
1991         }
1992 }
1993
1994 /*
1995  * Remove a buffer from a transaction list, given the transaction's list
1996  * head pointer.
1997  *
1998  * Called with j_list_lock held, and the journal may not be locked.
1999  *
2000  * jh->b_state_lock is held.
2001  */
2002
2003 static inline void
2004 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
2005 {
2006         if (*list == jh) {
2007                 *list = jh->b_tnext;
2008                 if (*list == jh)
2009                         *list = NULL;
2010         }
2011         jh->b_tprev->b_tnext = jh->b_tnext;
2012         jh->b_tnext->b_tprev = jh->b_tprev;
2013 }
2014
2015 /*
2016  * Remove a buffer from the appropriate transaction list.
2017  *
2018  * Note that this function can *change* the value of
2019  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
2020  * t_reserved_list.  If the caller is holding onto a copy of one of these
2021  * pointers, it could go bad.  Generally the caller needs to re-read the
2022  * pointer from the transaction_t.
2023  *
2024  * Called under j_list_lock.
2025  */
2026 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2027 {
2028         struct journal_head **list = NULL;
2029         transaction_t *transaction;
2030         struct buffer_head *bh = jh2bh(jh);
2031
2032         lockdep_assert_held(&jh->b_state_lock);
2033         transaction = jh->b_transaction;
2034         if (transaction)
2035                 assert_spin_locked(&transaction->t_journal->j_list_lock);
2036
2037         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2038         if (jh->b_jlist != BJ_None)
2039                 J_ASSERT_JH(jh, transaction != NULL);
2040
2041         switch (jh->b_jlist) {
2042         case BJ_None:
2043                 return;
2044         case BJ_Metadata:
2045                 transaction->t_nr_buffers--;
2046                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2047                 list = &transaction->t_buffers;
2048                 break;
2049         case BJ_Forget:
2050                 list = &transaction->t_forget;
2051                 break;
2052         case BJ_Shadow:
2053                 list = &transaction->t_shadow_list;
2054                 break;
2055         case BJ_Reserved:
2056                 list = &transaction->t_reserved_list;
2057                 break;
2058         }
2059
2060         __blist_del_buffer(list, jh);
2061         jh->b_jlist = BJ_None;
2062         if (transaction && is_journal_aborted(transaction->t_journal))
2063                 clear_buffer_jbddirty(bh);
2064         else if (test_clear_buffer_jbddirty(bh))
2065                 mark_buffer_dirty(bh);  /* Expose it to the VM */
2066 }
2067
2068 /*
2069  * Remove buffer from all transactions. The caller is responsible for dropping
2070  * the jh reference that belonged to the transaction.
2071  *
2072  * Called with bh_state lock and j_list_lock
2073  */
2074 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2075 {
2076         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2077         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2078
2079         __jbd2_journal_temp_unlink_buffer(jh);
2080         jh->b_transaction = NULL;
2081 }
2082
2083 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2084 {
2085         struct buffer_head *bh = jh2bh(jh);
2086
2087         /* Get reference so that buffer cannot be freed before we unlock it */
2088         get_bh(bh);
2089         spin_lock(&jh->b_state_lock);
2090         spin_lock(&journal->j_list_lock);
2091         __jbd2_journal_unfile_buffer(jh);
2092         spin_unlock(&journal->j_list_lock);
2093         spin_unlock(&jh->b_state_lock);
2094         jbd2_journal_put_journal_head(jh);
2095         __brelse(bh);
2096 }
2097
2098 /**
2099  * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2100  * @journal: journal for operation
2101  * @folio: Folio to detach data from.
2102  *
2103  * For all the buffers on this page,
2104  * if they are fully written out ordered data, move them onto BUF_CLEAN
2105  * so try_to_free_buffers() can reap them.
2106  *
2107  * This function returns non-zero if we wish try_to_free_buffers()
2108  * to be called. We do this if the page is releasable by try_to_free_buffers().
2109  * We also do it if the page has locked or dirty buffers and the caller wants
2110  * us to perform sync or async writeout.
2111  *
2112  * This complicates JBD locking somewhat.  We aren't protected by the
2113  * BKL here.  We wish to remove the buffer from its committing or
2114  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2115  *
2116  * This may *change* the value of transaction_t->t_datalist, so anyone
2117  * who looks at t_datalist needs to lock against this function.
2118  *
2119  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2120  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2121  * will come out of the lock with the buffer dirty, which makes it
2122  * ineligible for release here.
2123  *
2124  * Who else is affected by this?  hmm...  Really the only contender
2125  * is do_get_write_access() - it could be looking at the buffer while
2126  * journal_try_to_free_buffer() is changing its state.  But that
2127  * cannot happen because we never reallocate freed data as metadata
2128  * while the data is part of a transaction.  Yes?
2129  *
2130  * Return false on failure, true on success
2131  */
2132 bool jbd2_journal_try_to_free_buffers(journal_t *journal, struct folio *folio)
2133 {
2134         struct buffer_head *head;
2135         struct buffer_head *bh;
2136         bool ret = false;
2137
2138         J_ASSERT(folio_test_locked(folio));
2139
2140         head = folio_buffers(folio);
2141         bh = head;
2142         do {
2143                 struct journal_head *jh;
2144
2145                 /*
2146                  * We take our own ref against the journal_head here to avoid
2147                  * having to add tons of locking around each instance of
2148                  * jbd2_journal_put_journal_head().
2149                  */
2150                 jh = jbd2_journal_grab_journal_head(bh);
2151                 if (!jh)
2152                         continue;
2153
2154                 spin_lock(&jh->b_state_lock);
2155                 if (!jh->b_transaction && !jh->b_next_transaction) {
2156                         spin_lock(&journal->j_list_lock);
2157                         /* Remove written-back checkpointed metadata buffer */
2158                         if (jh->b_cp_transaction != NULL)
2159                                 jbd2_journal_try_remove_checkpoint(jh);
2160                         spin_unlock(&journal->j_list_lock);
2161                 }
2162                 spin_unlock(&jh->b_state_lock);
2163                 jbd2_journal_put_journal_head(jh);
2164                 if (buffer_jbd(bh))
2165                         goto busy;
2166         } while ((bh = bh->b_this_page) != head);
2167
2168         ret = try_to_free_buffers(folio);
2169 busy:
2170         return ret;
2171 }
2172
2173 /*
2174  * This buffer is no longer needed.  If it is on an older transaction's
2175  * checkpoint list we need to record it on this transaction's forget list
2176  * to pin this buffer (and hence its checkpointing transaction) down until
2177  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2178  * release it.
2179  * Returns non-zero if JBD no longer has an interest in the buffer.
2180  *
2181  * Called under j_list_lock.
2182  *
2183  * Called under jh->b_state_lock.
2184  */
2185 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2186 {
2187         int may_free = 1;
2188         struct buffer_head *bh = jh2bh(jh);
2189
2190         if (jh->b_cp_transaction) {
2191                 JBUFFER_TRACE(jh, "on running+cp transaction");
2192                 __jbd2_journal_temp_unlink_buffer(jh);
2193                 /*
2194                  * We don't want to write the buffer anymore, clear the
2195                  * bit so that we don't confuse checks in
2196                  * __journal_file_buffer
2197                  */
2198                 clear_buffer_dirty(bh);
2199                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2200                 may_free = 0;
2201         } else {
2202                 JBUFFER_TRACE(jh, "on running transaction");
2203                 __jbd2_journal_unfile_buffer(jh);
2204                 jbd2_journal_put_journal_head(jh);
2205         }
2206         return may_free;
2207 }
2208
2209 /*
2210  * jbd2_journal_invalidate_folio
2211  *
2212  * This code is tricky.  It has a number of cases to deal with.
2213  *
2214  * There are two invariants which this code relies on:
2215  *
2216  * i_size must be updated on disk before we start calling invalidate_folio
2217  * on the data.
2218  *
2219  *  This is done in ext3 by defining an ext3_setattr method which
2220  *  updates i_size before truncate gets going.  By maintaining this
2221  *  invariant, we can be sure that it is safe to throw away any buffers
2222  *  attached to the current transaction: once the transaction commits,
2223  *  we know that the data will not be needed.
2224  *
2225  *  Note however that we can *not* throw away data belonging to the
2226  *  previous, committing transaction!
2227  *
2228  * Any disk blocks which *are* part of the previous, committing
2229  * transaction (and which therefore cannot be discarded immediately) are
2230  * not going to be reused in the new running transaction
2231  *
2232  *  The bitmap committed_data images guarantee this: any block which is
2233  *  allocated in one transaction and removed in the next will be marked
2234  *  as in-use in the committed_data bitmap, so cannot be reused until
2235  *  the next transaction to delete the block commits.  This means that
2236  *  leaving committing buffers dirty is quite safe: the disk blocks
2237  *  cannot be reallocated to a different file and so buffer aliasing is
2238  *  not possible.
2239  *
2240  *
2241  * The above applies mainly to ordered data mode.  In writeback mode we
2242  * don't make guarantees about the order in which data hits disk --- in
2243  * particular we don't guarantee that new dirty data is flushed before
2244  * transaction commit --- so it is always safe just to discard data
2245  * immediately in that mode.  --sct
2246  */
2247
2248 /*
2249  * The journal_unmap_buffer helper function returns zero if the buffer
2250  * concerned remains pinned as an anonymous buffer belonging to an older
2251  * transaction.
2252  *
2253  * We're outside-transaction here.  Either or both of j_running_transaction
2254  * and j_committing_transaction may be NULL.
2255  */
2256 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2257                                 int partial_page)
2258 {
2259         transaction_t *transaction;
2260         struct journal_head *jh;
2261         int may_free = 1;
2262
2263         BUFFER_TRACE(bh, "entry");
2264
2265         /*
2266          * It is safe to proceed here without the j_list_lock because the
2267          * buffers cannot be stolen by try_to_free_buffers as long as we are
2268          * holding the page lock. --sct
2269          */
2270
2271         jh = jbd2_journal_grab_journal_head(bh);
2272         if (!jh)
2273                 goto zap_buffer_unlocked;
2274
2275         /* OK, we have data buffer in journaled mode */
2276         write_lock(&journal->j_state_lock);
2277         spin_lock(&jh->b_state_lock);
2278         spin_lock(&journal->j_list_lock);
2279
2280         /*
2281          * We cannot remove the buffer from checkpoint lists until the
2282          * transaction adding inode to orphan list (let's call it T)
2283          * is committed.  Otherwise if the transaction changing the
2284          * buffer would be cleaned from the journal before T is
2285          * committed, a crash will cause that the correct contents of
2286          * the buffer will be lost.  On the other hand we have to
2287          * clear the buffer dirty bit at latest at the moment when the
2288          * transaction marking the buffer as freed in the filesystem
2289          * structures is committed because from that moment on the
2290          * block can be reallocated and used by a different page.
2291          * Since the block hasn't been freed yet but the inode has
2292          * already been added to orphan list, it is safe for us to add
2293          * the buffer to BJ_Forget list of the newest transaction.
2294          *
2295          * Also we have to clear buffer_mapped flag of a truncated buffer
2296          * because the buffer_head may be attached to the page straddling
2297          * i_size (can happen only when blocksize < pagesize) and thus the
2298          * buffer_head can be reused when the file is extended again. So we end
2299          * up keeping around invalidated buffers attached to transactions'
2300          * BJ_Forget list just to stop checkpointing code from cleaning up
2301          * the transaction this buffer was modified in.
2302          */
2303         transaction = jh->b_transaction;
2304         if (transaction == NULL) {
2305                 /* First case: not on any transaction.  If it
2306                  * has no checkpoint link, then we can zap it:
2307                  * it's a writeback-mode buffer so we don't care
2308                  * if it hits disk safely. */
2309                 if (!jh->b_cp_transaction) {
2310                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2311                         goto zap_buffer;
2312                 }
2313
2314                 if (!buffer_dirty(bh)) {
2315                         /* bdflush has written it.  We can drop it now */
2316                         __jbd2_journal_remove_checkpoint(jh);
2317                         goto zap_buffer;
2318                 }
2319
2320                 /* OK, it must be in the journal but still not
2321                  * written fully to disk: it's metadata or
2322                  * journaled data... */
2323
2324                 if (journal->j_running_transaction) {
2325                         /* ... and once the current transaction has
2326                          * committed, the buffer won't be needed any
2327                          * longer. */
2328                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2329                         may_free = __dispose_buffer(jh,
2330                                         journal->j_running_transaction);
2331                         goto zap_buffer;
2332                 } else {
2333                         /* There is no currently-running transaction. So the
2334                          * orphan record which we wrote for this file must have
2335                          * passed into commit.  We must attach this buffer to
2336                          * the committing transaction, if it exists. */
2337                         if (journal->j_committing_transaction) {
2338                                 JBUFFER_TRACE(jh, "give to committing trans");
2339                                 may_free = __dispose_buffer(jh,
2340                                         journal->j_committing_transaction);
2341                                 goto zap_buffer;
2342                         } else {
2343                                 /* The orphan record's transaction has
2344                                  * committed.  We can cleanse this buffer */
2345                                 clear_buffer_jbddirty(bh);
2346                                 __jbd2_journal_remove_checkpoint(jh);
2347                                 goto zap_buffer;
2348                         }
2349                 }
2350         } else if (transaction == journal->j_committing_transaction) {
2351                 JBUFFER_TRACE(jh, "on committing transaction");
2352                 /*
2353                  * The buffer is committing, we simply cannot touch
2354                  * it. If the page is straddling i_size we have to wait
2355                  * for commit and try again.
2356                  */
2357                 if (partial_page) {
2358                         spin_unlock(&journal->j_list_lock);
2359                         spin_unlock(&jh->b_state_lock);
2360                         write_unlock(&journal->j_state_lock);
2361                         jbd2_journal_put_journal_head(jh);
2362                         /* Already zapped buffer? Nothing to do... */
2363                         if (!bh->b_bdev)
2364                                 return 0;
2365                         return -EBUSY;
2366                 }
2367                 /*
2368                  * OK, buffer won't be reachable after truncate. We just clear
2369                  * b_modified to not confuse transaction credit accounting, and
2370                  * set j_next_transaction to the running transaction (if there
2371                  * is one) and mark buffer as freed so that commit code knows
2372                  * it should clear dirty bits when it is done with the buffer.
2373                  */
2374                 set_buffer_freed(bh);
2375                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2376                         jh->b_next_transaction = journal->j_running_transaction;
2377                 jh->b_modified = 0;
2378                 spin_unlock(&journal->j_list_lock);
2379                 spin_unlock(&jh->b_state_lock);
2380                 write_unlock(&journal->j_state_lock);
2381                 jbd2_journal_put_journal_head(jh);
2382                 return 0;
2383         } else {
2384                 /* Good, the buffer belongs to the running transaction.
2385                  * We are writing our own transaction's data, not any
2386                  * previous one's, so it is safe to throw it away
2387                  * (remember that we expect the filesystem to have set
2388                  * i_size already for this truncate so recovery will not
2389                  * expose the disk blocks we are discarding here.) */
2390                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2391                 JBUFFER_TRACE(jh, "on running transaction");
2392                 may_free = __dispose_buffer(jh, transaction);
2393         }
2394
2395 zap_buffer:
2396         /*
2397          * This is tricky. Although the buffer is truncated, it may be reused
2398          * if blocksize < pagesize and it is attached to the page straddling
2399          * EOF. Since the buffer might have been added to BJ_Forget list of the
2400          * running transaction, journal_get_write_access() won't clear
2401          * b_modified and credit accounting gets confused. So clear b_modified
2402          * here.
2403          */
2404         jh->b_modified = 0;
2405         spin_unlock(&journal->j_list_lock);
2406         spin_unlock(&jh->b_state_lock);
2407         write_unlock(&journal->j_state_lock);
2408         jbd2_journal_put_journal_head(jh);
2409 zap_buffer_unlocked:
2410         clear_buffer_dirty(bh);
2411         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2412         clear_buffer_mapped(bh);
2413         clear_buffer_req(bh);
2414         clear_buffer_new(bh);
2415         clear_buffer_delay(bh);
2416         clear_buffer_unwritten(bh);
2417         bh->b_bdev = NULL;
2418         return may_free;
2419 }
2420
2421 /**
2422  * jbd2_journal_invalidate_folio()
2423  * @journal: journal to use for flush...
2424  * @folio:    folio to flush
2425  * @offset:  start of the range to invalidate
2426  * @length:  length of the range to invalidate
2427  *
2428  * Reap page buffers containing data after in the specified range in page.
2429  * Can return -EBUSY if buffers are part of the committing transaction and
2430  * the page is straddling i_size. Caller then has to wait for current commit
2431  * and try again.
2432  */
2433 int jbd2_journal_invalidate_folio(journal_t *journal, struct folio *folio,
2434                                 size_t offset, size_t length)
2435 {
2436         struct buffer_head *head, *bh, *next;
2437         unsigned int stop = offset + length;
2438         unsigned int curr_off = 0;
2439         int partial_page = (offset || length < folio_size(folio));
2440         int may_free = 1;
2441         int ret = 0;
2442
2443         if (!folio_test_locked(folio))
2444                 BUG();
2445         head = folio_buffers(folio);
2446         if (!head)
2447                 return 0;
2448
2449         BUG_ON(stop > folio_size(folio) || stop < length);
2450
2451         /* We will potentially be playing with lists other than just the
2452          * data lists (especially for journaled data mode), so be
2453          * cautious in our locking. */
2454
2455         bh = head;
2456         do {
2457                 unsigned int next_off = curr_off + bh->b_size;
2458                 next = bh->b_this_page;
2459
2460                 if (next_off > stop)
2461                         return 0;
2462
2463                 if (offset <= curr_off) {
2464                         /* This block is wholly outside the truncation point */
2465                         lock_buffer(bh);
2466                         ret = journal_unmap_buffer(journal, bh, partial_page);
2467                         unlock_buffer(bh);
2468                         if (ret < 0)
2469                                 return ret;
2470                         may_free &= ret;
2471                 }
2472                 curr_off = next_off;
2473                 bh = next;
2474
2475         } while (bh != head);
2476
2477         if (!partial_page) {
2478                 if (may_free && try_to_free_buffers(folio))
2479                         J_ASSERT(!folio_buffers(folio));
2480         }
2481         return 0;
2482 }
2483
2484 /*
2485  * File a buffer on the given transaction list.
2486  */
2487 void __jbd2_journal_file_buffer(struct journal_head *jh,
2488                         transaction_t *transaction, int jlist)
2489 {
2490         struct journal_head **list = NULL;
2491         int was_dirty = 0;
2492         struct buffer_head *bh = jh2bh(jh);
2493
2494         lockdep_assert_held(&jh->b_state_lock);
2495         assert_spin_locked(&transaction->t_journal->j_list_lock);
2496
2497         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2498         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2499                                 jh->b_transaction == NULL);
2500
2501         if (jh->b_transaction && jh->b_jlist == jlist)
2502                 return;
2503
2504         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2505             jlist == BJ_Shadow || jlist == BJ_Forget) {
2506                 /*
2507                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2508                  * instead of buffer_dirty. We should not see a dirty bit set
2509                  * here because we clear it in do_get_write_access but e.g.
2510                  * tune2fs can modify the sb and set the dirty bit at any time
2511                  * so we try to gracefully handle that.
2512                  */
2513                 if (buffer_dirty(bh))
2514                         warn_dirty_buffer(bh);
2515                 if (test_clear_buffer_dirty(bh) ||
2516                     test_clear_buffer_jbddirty(bh))
2517                         was_dirty = 1;
2518         }
2519
2520         if (jh->b_transaction)
2521                 __jbd2_journal_temp_unlink_buffer(jh);
2522         else
2523                 jbd2_journal_grab_journal_head(bh);
2524         jh->b_transaction = transaction;
2525
2526         switch (jlist) {
2527         case BJ_None:
2528                 J_ASSERT_JH(jh, !jh->b_committed_data);
2529                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2530                 return;
2531         case BJ_Metadata:
2532                 transaction->t_nr_buffers++;
2533                 list = &transaction->t_buffers;
2534                 break;
2535         case BJ_Forget:
2536                 list = &transaction->t_forget;
2537                 break;
2538         case BJ_Shadow:
2539                 list = &transaction->t_shadow_list;
2540                 break;
2541         case BJ_Reserved:
2542                 list = &transaction->t_reserved_list;
2543                 break;
2544         }
2545
2546         __blist_add_buffer(list, jh);
2547         jh->b_jlist = jlist;
2548
2549         if (was_dirty)
2550                 set_buffer_jbddirty(bh);
2551 }
2552
2553 void jbd2_journal_file_buffer(struct journal_head *jh,
2554                                 transaction_t *transaction, int jlist)
2555 {
2556         spin_lock(&jh->b_state_lock);
2557         spin_lock(&transaction->t_journal->j_list_lock);
2558         __jbd2_journal_file_buffer(jh, transaction, jlist);
2559         spin_unlock(&transaction->t_journal->j_list_lock);
2560         spin_unlock(&jh->b_state_lock);
2561 }
2562
2563 /*
2564  * Remove a buffer from its current buffer list in preparation for
2565  * dropping it from its current transaction entirely.  If the buffer has
2566  * already started to be used by a subsequent transaction, refile the
2567  * buffer on that transaction's metadata list.
2568  *
2569  * Called under j_list_lock
2570  * Called under jh->b_state_lock
2571  *
2572  * When this function returns true, there's no next transaction to refile to
2573  * and the caller has to drop jh reference through
2574  * jbd2_journal_put_journal_head().
2575  */
2576 bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2577 {
2578         int was_dirty, jlist;
2579         struct buffer_head *bh = jh2bh(jh);
2580
2581         lockdep_assert_held(&jh->b_state_lock);
2582         if (jh->b_transaction)
2583                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2584
2585         /* If the buffer is now unused, just drop it. */
2586         if (jh->b_next_transaction == NULL) {
2587                 __jbd2_journal_unfile_buffer(jh);
2588                 return true;
2589         }
2590
2591         /*
2592          * It has been modified by a later transaction: add it to the new
2593          * transaction's metadata list.
2594          */
2595
2596         was_dirty = test_clear_buffer_jbddirty(bh);
2597         __jbd2_journal_temp_unlink_buffer(jh);
2598
2599         /*
2600          * b_transaction must be set, otherwise the new b_transaction won't
2601          * be holding jh reference
2602          */
2603         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2604
2605         /*
2606          * We set b_transaction here because b_next_transaction will inherit
2607          * our jh reference and thus __jbd2_journal_file_buffer() must not
2608          * take a new one.
2609          */
2610         WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2611         WRITE_ONCE(jh->b_next_transaction, NULL);
2612         if (buffer_freed(bh))
2613                 jlist = BJ_Forget;
2614         else if (jh->b_modified)
2615                 jlist = BJ_Metadata;
2616         else
2617                 jlist = BJ_Reserved;
2618         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2619         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2620
2621         if (was_dirty)
2622                 set_buffer_jbddirty(bh);
2623         return false;
2624 }
2625
2626 /*
2627  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2628  * bh reference so that we can safely unlock bh.
2629  *
2630  * The jh and bh may be freed by this call.
2631  */
2632 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2633 {
2634         bool drop;
2635
2636         spin_lock(&jh->b_state_lock);
2637         spin_lock(&journal->j_list_lock);
2638         drop = __jbd2_journal_refile_buffer(jh);
2639         spin_unlock(&jh->b_state_lock);
2640         spin_unlock(&journal->j_list_lock);
2641         if (drop)
2642                 jbd2_journal_put_journal_head(jh);
2643 }
2644
2645 /*
2646  * File inode in the inode list of the handle's transaction
2647  */
2648 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2649                 unsigned long flags, loff_t start_byte, loff_t end_byte)
2650 {
2651         transaction_t *transaction = handle->h_transaction;
2652         journal_t *journal;
2653
2654         if (is_handle_aborted(handle))
2655                 return -EROFS;
2656         journal = transaction->t_journal;
2657
2658         jbd2_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2659                         transaction->t_tid);
2660
2661         spin_lock(&journal->j_list_lock);
2662         jinode->i_flags |= flags;
2663
2664         if (jinode->i_dirty_end) {
2665                 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2666                 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2667         } else {
2668                 jinode->i_dirty_start = start_byte;
2669                 jinode->i_dirty_end = end_byte;
2670         }
2671
2672         /* Is inode already attached where we need it? */
2673         if (jinode->i_transaction == transaction ||
2674             jinode->i_next_transaction == transaction)
2675                 goto done;
2676
2677         /*
2678          * We only ever set this variable to 1 so the test is safe. Since
2679          * t_need_data_flush is likely to be set, we do the test to save some
2680          * cacheline bouncing
2681          */
2682         if (!transaction->t_need_data_flush)
2683                 transaction->t_need_data_flush = 1;
2684         /* On some different transaction's list - should be
2685          * the committing one */
2686         if (jinode->i_transaction) {
2687                 J_ASSERT(jinode->i_next_transaction == NULL);
2688                 J_ASSERT(jinode->i_transaction ==
2689                                         journal->j_committing_transaction);
2690                 jinode->i_next_transaction = transaction;
2691                 goto done;
2692         }
2693         /* Not on any transaction list... */
2694         J_ASSERT(!jinode->i_next_transaction);
2695         jinode->i_transaction = transaction;
2696         list_add(&jinode->i_list, &transaction->t_inode_list);
2697 done:
2698         spin_unlock(&journal->j_list_lock);
2699
2700         return 0;
2701 }
2702
2703 int jbd2_journal_inode_ranged_write(handle_t *handle,
2704                 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2705 {
2706         return jbd2_journal_file_inode(handle, jinode,
2707                         JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2708                         start_byte + length - 1);
2709 }
2710
2711 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2712                 loff_t start_byte, loff_t length)
2713 {
2714         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2715                         start_byte, start_byte + length - 1);
2716 }
2717
2718 /*
2719  * File truncate and transaction commit interact with each other in a
2720  * non-trivial way.  If a transaction writing data block A is
2721  * committing, we cannot discard the data by truncate until we have
2722  * written them.  Otherwise if we crashed after the transaction with
2723  * write has committed but before the transaction with truncate has
2724  * committed, we could see stale data in block A.  This function is a
2725  * helper to solve this problem.  It starts writeout of the truncated
2726  * part in case it is in the committing transaction.
2727  *
2728  * Filesystem code must call this function when inode is journaled in
2729  * ordered mode before truncation happens and after the inode has been
2730  * placed on orphan list with the new inode size. The second condition
2731  * avoids the race that someone writes new data and we start
2732  * committing the transaction after this function has been called but
2733  * before a transaction for truncate is started (and furthermore it
2734  * allows us to optimize the case where the addition to orphan list
2735  * happens in the same transaction as write --- we don't have to write
2736  * any data in such case).
2737  */
2738 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2739                                         struct jbd2_inode *jinode,
2740                                         loff_t new_size)
2741 {
2742         transaction_t *inode_trans, *commit_trans;
2743         int ret = 0;
2744
2745         /* This is a quick check to avoid locking if not necessary */
2746         if (!jinode->i_transaction)
2747                 goto out;
2748         /* Locks are here just to force reading of recent values, it is
2749          * enough that the transaction was not committing before we started
2750          * a transaction adding the inode to orphan list */
2751         read_lock(&journal->j_state_lock);
2752         commit_trans = journal->j_committing_transaction;
2753         read_unlock(&journal->j_state_lock);
2754         spin_lock(&journal->j_list_lock);
2755         inode_trans = jinode->i_transaction;
2756         spin_unlock(&journal->j_list_lock);
2757         if (inode_trans == commit_trans) {
2758                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2759                         new_size, LLONG_MAX);
2760                 if (ret)
2761                         jbd2_journal_abort(journal, ret);
2762         }
2763 out:
2764         return ret;
2765 }