2 * linux/fs/jbd2/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/seq_file.h>
40 #include <linux/math64.h>
41 #include <linux/hash.h>
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/jbd2.h>
46 #include <asm/uaccess.h>
49 EXPORT_SYMBOL(jbd2_journal_start);
50 EXPORT_SYMBOL(jbd2_journal_restart);
51 EXPORT_SYMBOL(jbd2_journal_extend);
52 EXPORT_SYMBOL(jbd2_journal_stop);
53 EXPORT_SYMBOL(jbd2_journal_lock_updates);
54 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
55 EXPORT_SYMBOL(jbd2_journal_get_write_access);
56 EXPORT_SYMBOL(jbd2_journal_get_create_access);
57 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
58 EXPORT_SYMBOL(jbd2_journal_set_triggers);
59 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
60 EXPORT_SYMBOL(jbd2_journal_release_buffer);
61 EXPORT_SYMBOL(jbd2_journal_forget);
63 EXPORT_SYMBOL(journal_sync_buffer);
65 EXPORT_SYMBOL(jbd2_journal_flush);
66 EXPORT_SYMBOL(jbd2_journal_revoke);
68 EXPORT_SYMBOL(jbd2_journal_init_dev);
69 EXPORT_SYMBOL(jbd2_journal_init_inode);
70 EXPORT_SYMBOL(jbd2_journal_update_format);
71 EXPORT_SYMBOL(jbd2_journal_check_used_features);
72 EXPORT_SYMBOL(jbd2_journal_check_available_features);
73 EXPORT_SYMBOL(jbd2_journal_set_features);
74 EXPORT_SYMBOL(jbd2_journal_load);
75 EXPORT_SYMBOL(jbd2_journal_destroy);
76 EXPORT_SYMBOL(jbd2_journal_abort);
77 EXPORT_SYMBOL(jbd2_journal_errno);
78 EXPORT_SYMBOL(jbd2_journal_ack_err);
79 EXPORT_SYMBOL(jbd2_journal_clear_err);
80 EXPORT_SYMBOL(jbd2_log_wait_commit);
81 EXPORT_SYMBOL(jbd2_log_start_commit);
82 EXPORT_SYMBOL(jbd2_journal_start_commit);
83 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
84 EXPORT_SYMBOL(jbd2_journal_wipe);
85 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
86 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
87 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
88 EXPORT_SYMBOL(jbd2_journal_force_commit);
89 EXPORT_SYMBOL(jbd2_journal_file_inode);
90 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
91 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
92 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
94 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
95 static void __journal_abort_soft (journal_t *journal, int errno);
98 * Helper function used to manage commit timeouts
101 static void commit_timeout(unsigned long __data)
103 struct task_struct * p = (struct task_struct *) __data;
109 * kjournald2: The main thread function used to manage a logging device
112 * This kernel thread is responsible for two things:
114 * 1) COMMIT: Every so often we need to commit the current state of the
115 * filesystem to disk. The journal thread is responsible for writing
116 * all of the metadata buffers to disk.
118 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
119 * of the data in that part of the log has been rewritten elsewhere on
120 * the disk. Flushing these old buffers to reclaim space in the log is
121 * known as checkpointing, and this thread is responsible for that job.
124 static int kjournald2(void *arg)
126 journal_t *journal = arg;
127 transaction_t *transaction;
130 * Set up an interval timer which can be used to trigger a commit wakeup
131 * after the commit interval expires
133 setup_timer(&journal->j_commit_timer, commit_timeout,
134 (unsigned long)current);
136 /* Record that the journal thread is running */
137 journal->j_task = current;
138 wake_up(&journal->j_wait_done_commit);
141 * And now, wait forever for commit wakeup events.
143 spin_lock(&journal->j_state_lock);
146 if (journal->j_flags & JBD2_UNMOUNT)
149 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
150 journal->j_commit_sequence, journal->j_commit_request);
152 if (journal->j_commit_sequence != journal->j_commit_request) {
153 jbd_debug(1, "OK, requests differ\n");
154 spin_unlock(&journal->j_state_lock);
155 del_timer_sync(&journal->j_commit_timer);
156 jbd2_journal_commit_transaction(journal);
157 spin_lock(&journal->j_state_lock);
161 wake_up(&journal->j_wait_done_commit);
162 if (freezing(current)) {
164 * The simpler the better. Flushing journal isn't a
165 * good idea, because that depends on threads that may
166 * be already stopped.
168 jbd_debug(1, "Now suspending kjournald2\n");
169 spin_unlock(&journal->j_state_lock);
171 spin_lock(&journal->j_state_lock);
174 * We assume on resume that commits are already there,
178 int should_sleep = 1;
180 prepare_to_wait(&journal->j_wait_commit, &wait,
182 if (journal->j_commit_sequence != journal->j_commit_request)
184 transaction = journal->j_running_transaction;
185 if (transaction && time_after_eq(jiffies,
186 transaction->t_expires))
188 if (journal->j_flags & JBD2_UNMOUNT)
191 spin_unlock(&journal->j_state_lock);
193 spin_lock(&journal->j_state_lock);
195 finish_wait(&journal->j_wait_commit, &wait);
198 jbd_debug(1, "kjournald2 wakes\n");
201 * Were we woken up by a commit wakeup event?
203 transaction = journal->j_running_transaction;
204 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
205 journal->j_commit_request = transaction->t_tid;
206 jbd_debug(1, "woke because of timeout\n");
211 spin_unlock(&journal->j_state_lock);
212 del_timer_sync(&journal->j_commit_timer);
213 journal->j_task = NULL;
214 wake_up(&journal->j_wait_done_commit);
215 jbd_debug(1, "Journal thread exiting.\n");
219 static int jbd2_journal_start_thread(journal_t *journal)
221 struct task_struct *t;
223 t = kthread_run(kjournald2, journal, "jbd2/%s",
228 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
232 static void journal_kill_thread(journal_t *journal)
234 spin_lock(&journal->j_state_lock);
235 journal->j_flags |= JBD2_UNMOUNT;
237 while (journal->j_task) {
238 wake_up(&journal->j_wait_commit);
239 spin_unlock(&journal->j_state_lock);
240 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
241 spin_lock(&journal->j_state_lock);
243 spin_unlock(&journal->j_state_lock);
247 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
249 * Writes a metadata buffer to a given disk block. The actual IO is not
250 * performed but a new buffer_head is constructed which labels the data
251 * to be written with the correct destination disk block.
253 * Any magic-number escaping which needs to be done will cause a
254 * copy-out here. If the buffer happens to start with the
255 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
256 * magic number is only written to the log for descripter blocks. In
257 * this case, we copy the data and replace the first word with 0, and we
258 * return a result code which indicates that this buffer needs to be
259 * marked as an escaped buffer in the corresponding log descriptor
260 * block. The missing word can then be restored when the block is read
263 * If the source buffer has already been modified by a new transaction
264 * since we took the last commit snapshot, we use the frozen copy of
265 * that data for IO. If we end up using the existing buffer_head's data
266 * for the write, then we *have* to lock the buffer to prevent anyone
267 * else from using and possibly modifying it while the IO is in
270 * The function returns a pointer to the buffer_heads to be used for IO.
272 * We assume that the journal has already been locked in this function.
279 * Bit 0 set == escape performed on the data
280 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
283 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
284 struct journal_head *jh_in,
285 struct journal_head **jh_out,
286 unsigned long long blocknr)
288 int need_copy_out = 0;
289 int done_copy_out = 0;
292 struct buffer_head *new_bh;
293 struct journal_head *new_jh;
294 struct page *new_page;
295 unsigned int new_offset;
296 struct buffer_head *bh_in = jh2bh(jh_in);
297 struct jbd2_buffer_trigger_type *triggers;
298 journal_t *journal = transaction->t_journal;
301 * The buffer really shouldn't be locked: only the current committing
302 * transaction is allowed to write it, so nobody else is allowed
305 * akpm: except if we're journalling data, and write() output is
306 * also part of a shared mapping, and another thread has
307 * decided to launch a writepage() against this buffer.
309 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
311 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
312 /* keep subsequent assertions sane */
314 init_buffer(new_bh, NULL, NULL);
315 atomic_set(&new_bh->b_count, 1);
316 new_jh = jbd2_journal_add_journal_head(new_bh); /* This sleeps */
319 * If a new transaction has already done a buffer copy-out, then
320 * we use that version of the data for the commit.
322 jbd_lock_bh_state(bh_in);
324 if (jh_in->b_frozen_data) {
326 new_page = virt_to_page(jh_in->b_frozen_data);
327 new_offset = offset_in_page(jh_in->b_frozen_data);
328 triggers = jh_in->b_frozen_triggers;
330 new_page = jh2bh(jh_in)->b_page;
331 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
332 triggers = jh_in->b_triggers;
335 mapped_data = kmap_atomic(new_page, KM_USER0);
337 * Fire any commit trigger. Do this before checking for escaping,
338 * as the trigger may modify the magic offset. If a copy-out
339 * happens afterwards, it will have the correct data in the buffer.
341 jbd2_buffer_commit_trigger(jh_in, mapped_data + new_offset,
347 if (*((__be32 *)(mapped_data + new_offset)) ==
348 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
352 kunmap_atomic(mapped_data, KM_USER0);
355 * Do we need to do a data copy?
357 if (need_copy_out && !done_copy_out) {
360 jbd_unlock_bh_state(bh_in);
361 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
363 jbd2_journal_put_journal_head(new_jh);
366 jbd_lock_bh_state(bh_in);
367 if (jh_in->b_frozen_data) {
368 jbd2_free(tmp, bh_in->b_size);
372 jh_in->b_frozen_data = tmp;
373 mapped_data = kmap_atomic(new_page, KM_USER0);
374 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
375 kunmap_atomic(mapped_data, KM_USER0);
377 new_page = virt_to_page(tmp);
378 new_offset = offset_in_page(tmp);
382 * This isn't strictly necessary, as we're using frozen
383 * data for the escaping, but it keeps consistency with
384 * b_frozen_data usage.
386 jh_in->b_frozen_triggers = jh_in->b_triggers;
390 * Did we need to do an escaping? Now we've done all the
391 * copying, we can finally do so.
394 mapped_data = kmap_atomic(new_page, KM_USER0);
395 *((unsigned int *)(mapped_data + new_offset)) = 0;
396 kunmap_atomic(mapped_data, KM_USER0);
399 set_bh_page(new_bh, new_page, new_offset);
400 new_jh->b_transaction = NULL;
401 new_bh->b_size = jh2bh(jh_in)->b_size;
402 new_bh->b_bdev = transaction->t_journal->j_dev;
403 new_bh->b_blocknr = blocknr;
404 set_buffer_mapped(new_bh);
405 set_buffer_dirty(new_bh);
410 * The to-be-written buffer needs to get moved to the io queue,
411 * and the original buffer whose contents we are shadowing or
412 * copying is moved to the transaction's shadow queue.
414 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
415 spin_lock(&journal->j_list_lock);
416 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
417 spin_unlock(&journal->j_list_lock);
418 jbd_unlock_bh_state(bh_in);
420 JBUFFER_TRACE(new_jh, "file as BJ_IO");
421 jbd2_journal_file_buffer(new_jh, transaction, BJ_IO);
423 return do_escape | (done_copy_out << 1);
427 * Allocation code for the journal file. Manage the space left in the
428 * journal, so that we can begin checkpointing when appropriate.
432 * __jbd2_log_space_left: Return the number of free blocks left in the journal.
434 * Called with the journal already locked.
436 * Called under j_state_lock
439 int __jbd2_log_space_left(journal_t *journal)
441 int left = journal->j_free;
443 assert_spin_locked(&journal->j_state_lock);
446 * Be pessimistic here about the number of those free blocks which
447 * might be required for log descriptor control blocks.
450 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
452 left -= MIN_LOG_RESERVED_BLOCKS;
461 * Called under j_state_lock. Returns true if a transaction commit was started.
463 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
466 * Are we already doing a recent enough commit?
468 if (!tid_geq(journal->j_commit_request, target)) {
470 * We want a new commit: OK, mark the request and wakup the
471 * commit thread. We do _not_ do the commit ourselves.
474 journal->j_commit_request = target;
475 jbd_debug(1, "JBD: requesting commit %d/%d\n",
476 journal->j_commit_request,
477 journal->j_commit_sequence);
478 wake_up(&journal->j_wait_commit);
484 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
488 spin_lock(&journal->j_state_lock);
489 ret = __jbd2_log_start_commit(journal, tid);
490 spin_unlock(&journal->j_state_lock);
495 * Force and wait upon a commit if the calling process is not within
496 * transaction. This is used for forcing out undo-protected data which contains
497 * bitmaps, when the fs is running out of space.
499 * We can only force the running transaction if we don't have an active handle;
500 * otherwise, we will deadlock.
502 * Returns true if a transaction was started.
504 int jbd2_journal_force_commit_nested(journal_t *journal)
506 transaction_t *transaction = NULL;
509 spin_lock(&journal->j_state_lock);
510 if (journal->j_running_transaction && !current->journal_info) {
511 transaction = journal->j_running_transaction;
512 __jbd2_log_start_commit(journal, transaction->t_tid);
513 } else if (journal->j_committing_transaction)
514 transaction = journal->j_committing_transaction;
517 spin_unlock(&journal->j_state_lock);
518 return 0; /* Nothing to retry */
521 tid = transaction->t_tid;
522 spin_unlock(&journal->j_state_lock);
523 jbd2_log_wait_commit(journal, tid);
528 * Start a commit of the current running transaction (if any). Returns true
529 * if a transaction is going to be committed (or is currently already
530 * committing), and fills its tid in at *ptid
532 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
536 spin_lock(&journal->j_state_lock);
537 if (journal->j_running_transaction) {
538 tid_t tid = journal->j_running_transaction->t_tid;
540 __jbd2_log_start_commit(journal, tid);
541 /* There's a running transaction and we've just made sure
542 * it's commit has been scheduled. */
546 } else if (journal->j_committing_transaction) {
548 * If ext3_write_super() recently started a commit, then we
549 * have to wait for completion of that transaction
552 *ptid = journal->j_committing_transaction->t_tid;
555 spin_unlock(&journal->j_state_lock);
560 * Wait for a specified commit to complete.
561 * The caller may not hold the journal lock.
563 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
567 #ifdef CONFIG_JBD2_DEBUG
568 spin_lock(&journal->j_state_lock);
569 if (!tid_geq(journal->j_commit_request, tid)) {
571 "%s: error: j_commit_request=%d, tid=%d\n",
572 __func__, journal->j_commit_request, tid);
574 spin_unlock(&journal->j_state_lock);
576 spin_lock(&journal->j_state_lock);
577 while (tid_gt(tid, journal->j_commit_sequence)) {
578 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
579 tid, journal->j_commit_sequence);
580 wake_up(&journal->j_wait_commit);
581 spin_unlock(&journal->j_state_lock);
582 wait_event(journal->j_wait_done_commit,
583 !tid_gt(tid, journal->j_commit_sequence));
584 spin_lock(&journal->j_state_lock);
586 spin_unlock(&journal->j_state_lock);
588 if (unlikely(is_journal_aborted(journal))) {
589 printk(KERN_EMERG "journal commit I/O error\n");
596 * Log buffer allocation routines:
599 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
601 unsigned long blocknr;
603 spin_lock(&journal->j_state_lock);
604 J_ASSERT(journal->j_free > 1);
606 blocknr = journal->j_head;
609 if (journal->j_head == journal->j_last)
610 journal->j_head = journal->j_first;
611 spin_unlock(&journal->j_state_lock);
612 return jbd2_journal_bmap(journal, blocknr, retp);
616 * Conversion of logical to physical block numbers for the journal
618 * On external journals the journal blocks are identity-mapped, so
619 * this is a no-op. If needed, we can use j_blk_offset - everything is
622 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
623 unsigned long long *retp)
626 unsigned long long ret;
628 if (journal->j_inode) {
629 ret = bmap(journal->j_inode, blocknr);
633 printk(KERN_ALERT "%s: journal block not found "
634 "at offset %lu on %s\n",
635 __func__, blocknr, journal->j_devname);
637 __journal_abort_soft(journal, err);
640 *retp = blocknr; /* +journal->j_blk_offset */
646 * We play buffer_head aliasing tricks to write data/metadata blocks to
647 * the journal without copying their contents, but for journal
648 * descriptor blocks we do need to generate bona fide buffers.
650 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
651 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
652 * But we don't bother doing that, so there will be coherency problems with
653 * mmaps of blockdevs which hold live JBD-controlled filesystems.
655 struct journal_head *jbd2_journal_get_descriptor_buffer(journal_t *journal)
657 struct buffer_head *bh;
658 unsigned long long blocknr;
661 err = jbd2_journal_next_log_block(journal, &blocknr);
666 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
670 memset(bh->b_data, 0, journal->j_blocksize);
671 set_buffer_uptodate(bh);
673 BUFFER_TRACE(bh, "return this buffer");
674 return jbd2_journal_add_journal_head(bh);
677 struct jbd2_stats_proc_session {
679 struct transaction_stats_s *stats;
684 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
686 return *pos ? NULL : SEQ_START_TOKEN;
689 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
694 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
696 struct jbd2_stats_proc_session *s = seq->private;
698 if (v != SEQ_START_TOKEN)
700 seq_printf(seq, "%lu transaction, each up to %u blocks\n",
702 s->journal->j_max_transaction_buffers);
703 if (s->stats->ts_tid == 0)
705 seq_printf(seq, "average: \n %ums waiting for transaction\n",
706 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
707 seq_printf(seq, " %ums running transaction\n",
708 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
709 seq_printf(seq, " %ums transaction was being locked\n",
710 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
711 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
712 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
713 seq_printf(seq, " %ums logging transaction\n",
714 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
715 seq_printf(seq, " %lluus average transaction commit time\n",
716 div_u64(s->journal->j_average_commit_time, 1000));
717 seq_printf(seq, " %lu handles per transaction\n",
718 s->stats->run.rs_handle_count / s->stats->ts_tid);
719 seq_printf(seq, " %lu blocks per transaction\n",
720 s->stats->run.rs_blocks / s->stats->ts_tid);
721 seq_printf(seq, " %lu logged blocks per transaction\n",
722 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
726 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
730 static const struct seq_operations jbd2_seq_info_ops = {
731 .start = jbd2_seq_info_start,
732 .next = jbd2_seq_info_next,
733 .stop = jbd2_seq_info_stop,
734 .show = jbd2_seq_info_show,
737 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
739 journal_t *journal = PDE(inode)->data;
740 struct jbd2_stats_proc_session *s;
743 s = kmalloc(sizeof(*s), GFP_KERNEL);
746 size = sizeof(struct transaction_stats_s);
747 s->stats = kmalloc(size, GFP_KERNEL);
748 if (s->stats == NULL) {
752 spin_lock(&journal->j_history_lock);
753 memcpy(s->stats, &journal->j_stats, size);
754 s->journal = journal;
755 spin_unlock(&journal->j_history_lock);
757 rc = seq_open(file, &jbd2_seq_info_ops);
759 struct seq_file *m = file->private_data;
769 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
771 struct seq_file *seq = file->private_data;
772 struct jbd2_stats_proc_session *s = seq->private;
775 return seq_release(inode, file);
778 static const struct file_operations jbd2_seq_info_fops = {
779 .owner = THIS_MODULE,
780 .open = jbd2_seq_info_open,
783 .release = jbd2_seq_info_release,
786 static struct proc_dir_entry *proc_jbd2_stats;
788 static void jbd2_stats_proc_init(journal_t *journal)
790 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
791 if (journal->j_proc_entry) {
792 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
793 &jbd2_seq_info_fops, journal);
797 static void jbd2_stats_proc_exit(journal_t *journal)
799 remove_proc_entry("info", journal->j_proc_entry);
800 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
804 * Management for journal control blocks: functions to create and
805 * destroy journal_t structures, and to initialise and read existing
806 * journal blocks from disk. */
808 /* First: create and setup a journal_t object in memory. We initialise
809 * very few fields yet: that has to wait until we have created the
810 * journal structures from from scratch, or loaded them from disk. */
812 static journal_t * journal_init_common (void)
817 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
821 init_waitqueue_head(&journal->j_wait_transaction_locked);
822 init_waitqueue_head(&journal->j_wait_logspace);
823 init_waitqueue_head(&journal->j_wait_done_commit);
824 init_waitqueue_head(&journal->j_wait_checkpoint);
825 init_waitqueue_head(&journal->j_wait_commit);
826 init_waitqueue_head(&journal->j_wait_updates);
827 mutex_init(&journal->j_barrier);
828 mutex_init(&journal->j_checkpoint_mutex);
829 spin_lock_init(&journal->j_revoke_lock);
830 spin_lock_init(&journal->j_list_lock);
831 spin_lock_init(&journal->j_state_lock);
833 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
834 journal->j_min_batch_time = 0;
835 journal->j_max_batch_time = 15000; /* 15ms */
837 /* The journal is marked for error until we succeed with recovery! */
838 journal->j_flags = JBD2_ABORT;
840 /* Set up a default-sized revoke table for the new mount. */
841 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
847 spin_lock_init(&journal->j_history_lock);
854 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
856 * Create a journal structure assigned some fixed set of disk blocks to
857 * the journal. We don't actually touch those disk blocks yet, but we
858 * need to set up all of the mapping information to tell the journaling
859 * system where the journal blocks are.
864 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
865 * @bdev: Block device on which to create the journal
866 * @fs_dev: Device which hold journalled filesystem for this journal.
867 * @start: Block nr Start of journal.
868 * @len: Length of the journal in blocks.
869 * @blocksize: blocksize of journalling device
871 * Returns: a newly created journal_t *
873 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
874 * range of blocks on an arbitrary block device.
877 journal_t * jbd2_journal_init_dev(struct block_device *bdev,
878 struct block_device *fs_dev,
879 unsigned long long start, int len, int blocksize)
881 journal_t *journal = journal_init_common();
882 struct buffer_head *bh;
889 /* journal descriptor can store up to n blocks -bzzz */
890 journal->j_blocksize = blocksize;
891 jbd2_stats_proc_init(journal);
892 n = journal->j_blocksize / sizeof(journal_block_tag_t);
893 journal->j_wbufsize = n;
894 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
895 if (!journal->j_wbuf) {
896 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
900 journal->j_dev = bdev;
901 journal->j_fs_dev = fs_dev;
902 journal->j_blk_offset = start;
903 journal->j_maxlen = len;
904 bdevname(journal->j_dev, journal->j_devname);
905 p = journal->j_devname;
906 while ((p = strchr(p, '/')))
909 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
912 "%s: Cannot get buffer for journal superblock\n",
916 journal->j_sb_buffer = bh;
917 journal->j_superblock = (journal_superblock_t *)bh->b_data;
921 kfree(journal->j_wbuf);
922 jbd2_stats_proc_exit(journal);
928 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
929 * @inode: An inode to create the journal in
931 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
932 * the journal. The inode must exist already, must support bmap() and
933 * must have all data blocks preallocated.
935 journal_t * jbd2_journal_init_inode (struct inode *inode)
937 struct buffer_head *bh;
938 journal_t *journal = journal_init_common();
942 unsigned long long blocknr;
947 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
948 journal->j_inode = inode;
949 bdevname(journal->j_dev, journal->j_devname);
950 p = journal->j_devname;
951 while ((p = strchr(p, '/')))
953 p = journal->j_devname + strlen(journal->j_devname);
954 sprintf(p, "-%lu", journal->j_inode->i_ino);
956 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
957 journal, inode->i_sb->s_id, inode->i_ino,
958 (long long) inode->i_size,
959 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
961 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
962 journal->j_blocksize = inode->i_sb->s_blocksize;
963 jbd2_stats_proc_init(journal);
965 /* journal descriptor can store up to n blocks -bzzz */
966 n = journal->j_blocksize / sizeof(journal_block_tag_t);
967 journal->j_wbufsize = n;
968 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
969 if (!journal->j_wbuf) {
970 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
975 err = jbd2_journal_bmap(journal, 0, &blocknr);
976 /* If that failed, give up */
978 printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
983 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
986 "%s: Cannot get buffer for journal superblock\n",
990 journal->j_sb_buffer = bh;
991 journal->j_superblock = (journal_superblock_t *)bh->b_data;
995 kfree(journal->j_wbuf);
996 jbd2_stats_proc_exit(journal);
1002 * If the journal init or create aborts, we need to mark the journal
1003 * superblock as being NULL to prevent the journal destroy from writing
1004 * back a bogus superblock.
1006 static void journal_fail_superblock (journal_t *journal)
1008 struct buffer_head *bh = journal->j_sb_buffer;
1010 journal->j_sb_buffer = NULL;
1014 * Given a journal_t structure, initialise the various fields for
1015 * startup of a new journaling session. We use this both when creating
1016 * a journal, and after recovering an old journal to reset it for
1020 static int journal_reset(journal_t *journal)
1022 journal_superblock_t *sb = journal->j_superblock;
1023 unsigned long long first, last;
1025 first = be32_to_cpu(sb->s_first);
1026 last = be32_to_cpu(sb->s_maxlen);
1027 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1028 printk(KERN_ERR "JBD: Journal too short (blocks %llu-%llu).\n",
1030 journal_fail_superblock(journal);
1034 journal->j_first = first;
1035 journal->j_last = last;
1037 journal->j_head = first;
1038 journal->j_tail = first;
1039 journal->j_free = last - first;
1041 journal->j_tail_sequence = journal->j_transaction_sequence;
1042 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1043 journal->j_commit_request = journal->j_commit_sequence;
1045 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1047 /* Add the dynamic fields and write it to disk. */
1048 jbd2_journal_update_superblock(journal, 1);
1049 return jbd2_journal_start_thread(journal);
1053 * void jbd2_journal_update_superblock() - Update journal sb on disk.
1054 * @journal: The journal to update.
1055 * @wait: Set to '0' if you don't want to wait for IO completion.
1057 * Update a journal's dynamic superblock fields and write it to disk,
1058 * optionally waiting for the IO to complete.
1060 void jbd2_journal_update_superblock(journal_t *journal, int wait)
1062 journal_superblock_t *sb = journal->j_superblock;
1063 struct buffer_head *bh = journal->j_sb_buffer;
1066 * As a special case, if the on-disk copy is already marked as needing
1067 * no recovery (s_start == 0) and there are no outstanding transactions
1068 * in the filesystem, then we can safely defer the superblock update
1069 * until the next commit by setting JBD2_FLUSHED. This avoids
1070 * attempting a write to a potential-readonly device.
1072 if (sb->s_start == 0 && journal->j_tail_sequence ==
1073 journal->j_transaction_sequence) {
1074 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1075 "(start %ld, seq %d, errno %d)\n",
1076 journal->j_tail, journal->j_tail_sequence,
1081 if (buffer_write_io_error(bh)) {
1083 * Oh, dear. A previous attempt to write the journal
1084 * superblock failed. This could happen because the
1085 * USB device was yanked out. Or it could happen to
1086 * be a transient write error and maybe the block will
1087 * be remapped. Nothing we can do but to retry the
1088 * write and hope for the best.
1090 printk(KERN_ERR "JBD2: previous I/O error detected "
1091 "for journal superblock update for %s.\n",
1092 journal->j_devname);
1093 clear_buffer_write_io_error(bh);
1094 set_buffer_uptodate(bh);
1097 spin_lock(&journal->j_state_lock);
1098 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
1099 journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1101 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1102 sb->s_start = cpu_to_be32(journal->j_tail);
1103 sb->s_errno = cpu_to_be32(journal->j_errno);
1104 spin_unlock(&journal->j_state_lock);
1106 BUFFER_TRACE(bh, "marking dirty");
1107 mark_buffer_dirty(bh);
1109 sync_dirty_buffer(bh);
1110 if (buffer_write_io_error(bh)) {
1111 printk(KERN_ERR "JBD2: I/O error detected "
1112 "when updating journal superblock for %s.\n",
1113 journal->j_devname);
1114 clear_buffer_write_io_error(bh);
1115 set_buffer_uptodate(bh);
1118 ll_rw_block(SWRITE, 1, &bh);
1121 /* If we have just flushed the log (by marking s_start==0), then
1122 * any future commit will have to be careful to update the
1123 * superblock again to re-record the true start of the log. */
1125 spin_lock(&journal->j_state_lock);
1127 journal->j_flags &= ~JBD2_FLUSHED;
1129 journal->j_flags |= JBD2_FLUSHED;
1130 spin_unlock(&journal->j_state_lock);
1134 * Read the superblock for a given journal, performing initial
1135 * validation of the format.
1138 static int journal_get_superblock(journal_t *journal)
1140 struct buffer_head *bh;
1141 journal_superblock_t *sb;
1144 bh = journal->j_sb_buffer;
1146 J_ASSERT(bh != NULL);
1147 if (!buffer_uptodate(bh)) {
1148 ll_rw_block(READ, 1, &bh);
1150 if (!buffer_uptodate(bh)) {
1152 "JBD: IO error reading journal superblock\n");
1157 sb = journal->j_superblock;
1161 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1162 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1163 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1167 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1168 case JBD2_SUPERBLOCK_V1:
1169 journal->j_format_version = 1;
1171 case JBD2_SUPERBLOCK_V2:
1172 journal->j_format_version = 2;
1175 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1179 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1180 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1181 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1182 printk (KERN_WARNING "JBD: journal file too short\n");
1189 journal_fail_superblock(journal);
1194 * Load the on-disk journal superblock and read the key fields into the
1198 static int load_superblock(journal_t *journal)
1201 journal_superblock_t *sb;
1203 err = journal_get_superblock(journal);
1207 sb = journal->j_superblock;
1209 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1210 journal->j_tail = be32_to_cpu(sb->s_start);
1211 journal->j_first = be32_to_cpu(sb->s_first);
1212 journal->j_last = be32_to_cpu(sb->s_maxlen);
1213 journal->j_errno = be32_to_cpu(sb->s_errno);
1220 * int jbd2_journal_load() - Read journal from disk.
1221 * @journal: Journal to act on.
1223 * Given a journal_t structure which tells us which disk blocks contain
1224 * a journal, read the journal from disk to initialise the in-memory
1227 int jbd2_journal_load(journal_t *journal)
1230 journal_superblock_t *sb;
1232 err = load_superblock(journal);
1236 sb = journal->j_superblock;
1237 /* If this is a V2 superblock, then we have to check the
1238 * features flags on it. */
1240 if (journal->j_format_version >= 2) {
1241 if ((sb->s_feature_ro_compat &
1242 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1243 (sb->s_feature_incompat &
1244 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1245 printk (KERN_WARNING
1246 "JBD: Unrecognised features on journal\n");
1251 /* Let the recovery code check whether it needs to recover any
1252 * data from the journal. */
1253 if (jbd2_journal_recover(journal))
1254 goto recovery_error;
1256 if (journal->j_failed_commit) {
1257 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1258 "is corrupt.\n", journal->j_failed_commit,
1259 journal->j_devname);
1263 /* OK, we've finished with the dynamic journal bits:
1264 * reinitialise the dynamic contents of the superblock in memory
1265 * and reset them on disk. */
1266 if (journal_reset(journal))
1267 goto recovery_error;
1269 journal->j_flags &= ~JBD2_ABORT;
1270 journal->j_flags |= JBD2_LOADED;
1274 printk (KERN_WARNING "JBD: recovery failed\n");
1279 * void jbd2_journal_destroy() - Release a journal_t structure.
1280 * @journal: Journal to act on.
1282 * Release a journal_t structure once it is no longer in use by the
1284 * Return <0 if we couldn't clean up the journal.
1286 int jbd2_journal_destroy(journal_t *journal)
1290 /* Wait for the commit thread to wake up and die. */
1291 journal_kill_thread(journal);
1293 /* Force a final log commit */
1294 if (journal->j_running_transaction)
1295 jbd2_journal_commit_transaction(journal);
1297 /* Force any old transactions to disk */
1299 /* Totally anal locking here... */
1300 spin_lock(&journal->j_list_lock);
1301 while (journal->j_checkpoint_transactions != NULL) {
1302 spin_unlock(&journal->j_list_lock);
1303 mutex_lock(&journal->j_checkpoint_mutex);
1304 jbd2_log_do_checkpoint(journal);
1305 mutex_unlock(&journal->j_checkpoint_mutex);
1306 spin_lock(&journal->j_list_lock);
1309 J_ASSERT(journal->j_running_transaction == NULL);
1310 J_ASSERT(journal->j_committing_transaction == NULL);
1311 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1312 spin_unlock(&journal->j_list_lock);
1314 if (journal->j_sb_buffer) {
1315 if (!is_journal_aborted(journal)) {
1316 /* We can now mark the journal as empty. */
1317 journal->j_tail = 0;
1318 journal->j_tail_sequence =
1319 ++journal->j_transaction_sequence;
1320 jbd2_journal_update_superblock(journal, 1);
1324 brelse(journal->j_sb_buffer);
1327 if (journal->j_proc_entry)
1328 jbd2_stats_proc_exit(journal);
1329 if (journal->j_inode)
1330 iput(journal->j_inode);
1331 if (journal->j_revoke)
1332 jbd2_journal_destroy_revoke(journal);
1333 kfree(journal->j_wbuf);
1341 *int jbd2_journal_check_used_features () - Check if features specified are used.
1342 * @journal: Journal to check.
1343 * @compat: bitmask of compatible features
1344 * @ro: bitmask of features that force read-only mount
1345 * @incompat: bitmask of incompatible features
1347 * Check whether the journal uses all of a given set of
1348 * features. Return true (non-zero) if it does.
1351 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1352 unsigned long ro, unsigned long incompat)
1354 journal_superblock_t *sb;
1356 if (!compat && !ro && !incompat)
1358 if (journal->j_format_version == 1)
1361 sb = journal->j_superblock;
1363 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1364 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1365 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1372 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1373 * @journal: Journal to check.
1374 * @compat: bitmask of compatible features
1375 * @ro: bitmask of features that force read-only mount
1376 * @incompat: bitmask of incompatible features
1378 * Check whether the journaling code supports the use of
1379 * all of a given set of features on this journal. Return true
1380 * (non-zero) if it can. */
1382 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1383 unsigned long ro, unsigned long incompat)
1385 journal_superblock_t *sb;
1387 if (!compat && !ro && !incompat)
1390 sb = journal->j_superblock;
1392 /* We can support any known requested features iff the
1393 * superblock is in version 2. Otherwise we fail to support any
1394 * extended sb features. */
1396 if (journal->j_format_version != 2)
1399 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1400 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1401 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1408 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1409 * @journal: Journal to act on.
1410 * @compat: bitmask of compatible features
1411 * @ro: bitmask of features that force read-only mount
1412 * @incompat: bitmask of incompatible features
1414 * Mark a given journal feature as present on the
1415 * superblock. Returns true if the requested features could be set.
1419 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1420 unsigned long ro, unsigned long incompat)
1422 journal_superblock_t *sb;
1424 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1427 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1430 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1431 compat, ro, incompat);
1433 sb = journal->j_superblock;
1435 sb->s_feature_compat |= cpu_to_be32(compat);
1436 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1437 sb->s_feature_incompat |= cpu_to_be32(incompat);
1443 * jbd2_journal_clear_features () - Clear a given journal feature in the
1445 * @journal: Journal to act on.
1446 * @compat: bitmask of compatible features
1447 * @ro: bitmask of features that force read-only mount
1448 * @incompat: bitmask of incompatible features
1450 * Clear a given journal feature as present on the
1453 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1454 unsigned long ro, unsigned long incompat)
1456 journal_superblock_t *sb;
1458 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1459 compat, ro, incompat);
1461 sb = journal->j_superblock;
1463 sb->s_feature_compat &= ~cpu_to_be32(compat);
1464 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1465 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1467 EXPORT_SYMBOL(jbd2_journal_clear_features);
1470 * int jbd2_journal_update_format () - Update on-disk journal structure.
1471 * @journal: Journal to act on.
1473 * Given an initialised but unloaded journal struct, poke about in the
1474 * on-disk structure to update it to the most recent supported version.
1476 int jbd2_journal_update_format (journal_t *journal)
1478 journal_superblock_t *sb;
1481 err = journal_get_superblock(journal);
1485 sb = journal->j_superblock;
1487 switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1488 case JBD2_SUPERBLOCK_V2:
1490 case JBD2_SUPERBLOCK_V1:
1491 return journal_convert_superblock_v1(journal, sb);
1498 static int journal_convert_superblock_v1(journal_t *journal,
1499 journal_superblock_t *sb)
1501 int offset, blocksize;
1502 struct buffer_head *bh;
1505 "JBD: Converting superblock from version 1 to 2.\n");
1507 /* Pre-initialise new fields to zero */
1508 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1509 blocksize = be32_to_cpu(sb->s_blocksize);
1510 memset(&sb->s_feature_compat, 0, blocksize-offset);
1512 sb->s_nr_users = cpu_to_be32(1);
1513 sb->s_header.h_blocktype = cpu_to_be32(JBD2_SUPERBLOCK_V2);
1514 journal->j_format_version = 2;
1516 bh = journal->j_sb_buffer;
1517 BUFFER_TRACE(bh, "marking dirty");
1518 mark_buffer_dirty(bh);
1519 sync_dirty_buffer(bh);
1525 * int jbd2_journal_flush () - Flush journal
1526 * @journal: Journal to act on.
1528 * Flush all data for a given journal to disk and empty the journal.
1529 * Filesystems can use this when remounting readonly to ensure that
1530 * recovery does not need to happen on remount.
1533 int jbd2_journal_flush(journal_t *journal)
1536 transaction_t *transaction = NULL;
1537 unsigned long old_tail;
1539 spin_lock(&journal->j_state_lock);
1541 /* Force everything buffered to the log... */
1542 if (journal->j_running_transaction) {
1543 transaction = journal->j_running_transaction;
1544 __jbd2_log_start_commit(journal, transaction->t_tid);
1545 } else if (journal->j_committing_transaction)
1546 transaction = journal->j_committing_transaction;
1548 /* Wait for the log commit to complete... */
1550 tid_t tid = transaction->t_tid;
1552 spin_unlock(&journal->j_state_lock);
1553 jbd2_log_wait_commit(journal, tid);
1555 spin_unlock(&journal->j_state_lock);
1558 /* ...and flush everything in the log out to disk. */
1559 spin_lock(&journal->j_list_lock);
1560 while (!err && journal->j_checkpoint_transactions != NULL) {
1561 spin_unlock(&journal->j_list_lock);
1562 mutex_lock(&journal->j_checkpoint_mutex);
1563 err = jbd2_log_do_checkpoint(journal);
1564 mutex_unlock(&journal->j_checkpoint_mutex);
1565 spin_lock(&journal->j_list_lock);
1567 spin_unlock(&journal->j_list_lock);
1569 if (is_journal_aborted(journal))
1572 jbd2_cleanup_journal_tail(journal);
1574 /* Finally, mark the journal as really needing no recovery.
1575 * This sets s_start==0 in the underlying superblock, which is
1576 * the magic code for a fully-recovered superblock. Any future
1577 * commits of data to the journal will restore the current
1579 spin_lock(&journal->j_state_lock);
1580 old_tail = journal->j_tail;
1581 journal->j_tail = 0;
1582 spin_unlock(&journal->j_state_lock);
1583 jbd2_journal_update_superblock(journal, 1);
1584 spin_lock(&journal->j_state_lock);
1585 journal->j_tail = old_tail;
1587 J_ASSERT(!journal->j_running_transaction);
1588 J_ASSERT(!journal->j_committing_transaction);
1589 J_ASSERT(!journal->j_checkpoint_transactions);
1590 J_ASSERT(journal->j_head == journal->j_tail);
1591 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1592 spin_unlock(&journal->j_state_lock);
1597 * int jbd2_journal_wipe() - Wipe journal contents
1598 * @journal: Journal to act on.
1599 * @write: flag (see below)
1601 * Wipe out all of the contents of a journal, safely. This will produce
1602 * a warning if the journal contains any valid recovery information.
1603 * Must be called between journal_init_*() and jbd2_journal_load().
1605 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1606 * we merely suppress recovery.
1609 int jbd2_journal_wipe(journal_t *journal, int write)
1611 journal_superblock_t *sb;
1614 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
1616 err = load_superblock(journal);
1620 sb = journal->j_superblock;
1622 if (!journal->j_tail)
1625 printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1626 write ? "Clearing" : "Ignoring");
1628 err = jbd2_journal_skip_recovery(journal);
1630 jbd2_journal_update_superblock(journal, 1);
1637 * Journal abort has very specific semantics, which we describe
1638 * for journal abort.
1640 * Two internal functions, which provide abort to the jbd layer
1645 * Quick version for internal journal use (doesn't lock the journal).
1646 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1647 * and don't attempt to make any other journal updates.
1649 void __jbd2_journal_abort_hard(journal_t *journal)
1651 transaction_t *transaction;
1653 if (journal->j_flags & JBD2_ABORT)
1656 printk(KERN_ERR "Aborting journal on device %s.\n",
1657 journal->j_devname);
1659 spin_lock(&journal->j_state_lock);
1660 journal->j_flags |= JBD2_ABORT;
1661 transaction = journal->j_running_transaction;
1663 __jbd2_log_start_commit(journal, transaction->t_tid);
1664 spin_unlock(&journal->j_state_lock);
1667 /* Soft abort: record the abort error status in the journal superblock,
1668 * but don't do any other IO. */
1669 static void __journal_abort_soft (journal_t *journal, int errno)
1671 if (journal->j_flags & JBD2_ABORT)
1674 if (!journal->j_errno)
1675 journal->j_errno = errno;
1677 __jbd2_journal_abort_hard(journal);
1680 jbd2_journal_update_superblock(journal, 1);
1684 * void jbd2_journal_abort () - Shutdown the journal immediately.
1685 * @journal: the journal to shutdown.
1686 * @errno: an error number to record in the journal indicating
1687 * the reason for the shutdown.
1689 * Perform a complete, immediate shutdown of the ENTIRE
1690 * journal (not of a single transaction). This operation cannot be
1691 * undone without closing and reopening the journal.
1693 * The jbd2_journal_abort function is intended to support higher level error
1694 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1697 * Journal abort has very specific semantics. Any existing dirty,
1698 * unjournaled buffers in the main filesystem will still be written to
1699 * disk by bdflush, but the journaling mechanism will be suspended
1700 * immediately and no further transaction commits will be honoured.
1702 * Any dirty, journaled buffers will be written back to disk without
1703 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1704 * filesystem, but we _do_ attempt to leave as much data as possible
1705 * behind for fsck to use for cleanup.
1707 * Any attempt to get a new transaction handle on a journal which is in
1708 * ABORT state will just result in an -EROFS error return. A
1709 * jbd2_journal_stop on an existing handle will return -EIO if we have
1710 * entered abort state during the update.
1712 * Recursive transactions are not disturbed by journal abort until the
1713 * final jbd2_journal_stop, which will receive the -EIO error.
1715 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
1716 * which will be recorded (if possible) in the journal superblock. This
1717 * allows a client to record failure conditions in the middle of a
1718 * transaction without having to complete the transaction to record the
1719 * failure to disk. ext3_error, for example, now uses this
1722 * Errors which originate from within the journaling layer will NOT
1723 * supply an errno; a null errno implies that absolutely no further
1724 * writes are done to the journal (unless there are any already in
1729 void jbd2_journal_abort(journal_t *journal, int errno)
1731 __journal_abort_soft(journal, errno);
1735 * int jbd2_journal_errno () - returns the journal's error state.
1736 * @journal: journal to examine.
1738 * This is the errno number set with jbd2_journal_abort(), the last
1739 * time the journal was mounted - if the journal was stopped
1740 * without calling abort this will be 0.
1742 * If the journal has been aborted on this mount time -EROFS will
1745 int jbd2_journal_errno(journal_t *journal)
1749 spin_lock(&journal->j_state_lock);
1750 if (journal->j_flags & JBD2_ABORT)
1753 err = journal->j_errno;
1754 spin_unlock(&journal->j_state_lock);
1759 * int jbd2_journal_clear_err () - clears the journal's error state
1760 * @journal: journal to act on.
1762 * An error must be cleared or acked to take a FS out of readonly
1765 int jbd2_journal_clear_err(journal_t *journal)
1769 spin_lock(&journal->j_state_lock);
1770 if (journal->j_flags & JBD2_ABORT)
1773 journal->j_errno = 0;
1774 spin_unlock(&journal->j_state_lock);
1779 * void jbd2_journal_ack_err() - Ack journal err.
1780 * @journal: journal to act on.
1782 * An error must be cleared or acked to take a FS out of readonly
1785 void jbd2_journal_ack_err(journal_t *journal)
1787 spin_lock(&journal->j_state_lock);
1788 if (journal->j_errno)
1789 journal->j_flags |= JBD2_ACK_ERR;
1790 spin_unlock(&journal->j_state_lock);
1793 int jbd2_journal_blocks_per_page(struct inode *inode)
1795 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1799 * helper functions to deal with 32 or 64bit block numbers.
1801 size_t journal_tag_bytes(journal_t *journal)
1803 if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
1804 return JBD2_TAG_SIZE64;
1806 return JBD2_TAG_SIZE32;
1810 * Journal_head storage management
1812 static struct kmem_cache *jbd2_journal_head_cache;
1813 #ifdef CONFIG_JBD2_DEBUG
1814 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1817 static int journal_init_jbd2_journal_head_cache(void)
1821 J_ASSERT(jbd2_journal_head_cache == NULL);
1822 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
1823 sizeof(struct journal_head),
1825 SLAB_TEMPORARY, /* flags */
1828 if (!jbd2_journal_head_cache) {
1830 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1835 static void jbd2_journal_destroy_jbd2_journal_head_cache(void)
1837 if (jbd2_journal_head_cache) {
1838 kmem_cache_destroy(jbd2_journal_head_cache);
1839 jbd2_journal_head_cache = NULL;
1844 * journal_head splicing and dicing
1846 static struct journal_head *journal_alloc_journal_head(void)
1848 struct journal_head *ret;
1849 static unsigned long last_warning;
1851 #ifdef CONFIG_JBD2_DEBUG
1852 atomic_inc(&nr_journal_heads);
1854 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1856 jbd_debug(1, "out of memory for journal_head\n");
1857 if (time_after(jiffies, last_warning + 5*HZ)) {
1858 printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1860 last_warning = jiffies;
1864 ret = kmem_cache_alloc(jbd2_journal_head_cache, GFP_NOFS);
1870 static void journal_free_journal_head(struct journal_head *jh)
1872 #ifdef CONFIG_JBD2_DEBUG
1873 atomic_dec(&nr_journal_heads);
1874 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
1876 kmem_cache_free(jbd2_journal_head_cache, jh);
1880 * A journal_head is attached to a buffer_head whenever JBD has an
1881 * interest in the buffer.
1883 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1884 * is set. This bit is tested in core kernel code where we need to take
1885 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
1888 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1890 * When a buffer has its BH_JBD bit set it is immune from being released by
1891 * core kernel code, mainly via ->b_count.
1893 * A journal_head may be detached from its buffer_head when the journal_head's
1894 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1895 * Various places in JBD call jbd2_journal_remove_journal_head() to indicate that the
1896 * journal_head can be dropped if needed.
1898 * Various places in the kernel want to attach a journal_head to a buffer_head
1899 * _before_ attaching the journal_head to a transaction. To protect the
1900 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
1901 * journal_head's b_jcount refcount by one. The caller must call
1902 * jbd2_journal_put_journal_head() to undo this.
1904 * So the typical usage would be:
1906 * (Attach a journal_head if needed. Increments b_jcount)
1907 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1909 * jh->b_transaction = xxx;
1910 * jbd2_journal_put_journal_head(jh);
1912 * Now, the journal_head's b_jcount is zero, but it is safe from being released
1913 * because it has a non-zero b_transaction.
1917 * Give a buffer_head a journal_head.
1919 * Doesn't need the journal lock.
1922 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
1924 struct journal_head *jh;
1925 struct journal_head *new_jh = NULL;
1928 if (!buffer_jbd(bh)) {
1929 new_jh = journal_alloc_journal_head();
1930 memset(new_jh, 0, sizeof(*new_jh));
1933 jbd_lock_bh_journal_head(bh);
1934 if (buffer_jbd(bh)) {
1938 (atomic_read(&bh->b_count) > 0) ||
1939 (bh->b_page && bh->b_page->mapping));
1942 jbd_unlock_bh_journal_head(bh);
1947 new_jh = NULL; /* We consumed it */
1952 BUFFER_TRACE(bh, "added journal_head");
1955 jbd_unlock_bh_journal_head(bh);
1957 journal_free_journal_head(new_jh);
1958 return bh->b_private;
1962 * Grab a ref against this buffer_head's journal_head. If it ended up not
1963 * having a journal_head, return NULL
1965 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
1967 struct journal_head *jh = NULL;
1969 jbd_lock_bh_journal_head(bh);
1970 if (buffer_jbd(bh)) {
1974 jbd_unlock_bh_journal_head(bh);
1978 static void __journal_remove_journal_head(struct buffer_head *bh)
1980 struct journal_head *jh = bh2jh(bh);
1982 J_ASSERT_JH(jh, jh->b_jcount >= 0);
1985 if (jh->b_jcount == 0) {
1986 if (jh->b_transaction == NULL &&
1987 jh->b_next_transaction == NULL &&
1988 jh->b_cp_transaction == NULL) {
1989 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1990 J_ASSERT_BH(bh, buffer_jbd(bh));
1991 J_ASSERT_BH(bh, jh2bh(jh) == bh);
1992 BUFFER_TRACE(bh, "remove journal_head");
1993 if (jh->b_frozen_data) {
1994 printk(KERN_WARNING "%s: freeing "
1997 jbd2_free(jh->b_frozen_data, bh->b_size);
1999 if (jh->b_committed_data) {
2000 printk(KERN_WARNING "%s: freeing "
2001 "b_committed_data\n",
2003 jbd2_free(jh->b_committed_data, bh->b_size);
2005 bh->b_private = NULL;
2006 jh->b_bh = NULL; /* debug, really */
2007 clear_buffer_jbd(bh);
2009 journal_free_journal_head(jh);
2011 BUFFER_TRACE(bh, "journal_head was locked");
2017 * jbd2_journal_remove_journal_head(): if the buffer isn't attached to a transaction
2018 * and has a zero b_jcount then remove and release its journal_head. If we did
2019 * see that the buffer is not used by any transaction we also "logically"
2020 * decrement ->b_count.
2022 * We in fact take an additional increment on ->b_count as a convenience,
2023 * because the caller usually wants to do additional things with the bh
2024 * after calling here.
2025 * The caller of jbd2_journal_remove_journal_head() *must* run __brelse(bh) at some
2026 * time. Once the caller has run __brelse(), the buffer is eligible for
2027 * reaping by try_to_free_buffers().
2029 void jbd2_journal_remove_journal_head(struct buffer_head *bh)
2031 jbd_lock_bh_journal_head(bh);
2032 __journal_remove_journal_head(bh);
2033 jbd_unlock_bh_journal_head(bh);
2037 * Drop a reference on the passed journal_head. If it fell to zero then try to
2038 * release the journal_head from the buffer_head.
2040 void jbd2_journal_put_journal_head(struct journal_head *jh)
2042 struct buffer_head *bh = jh2bh(jh);
2044 jbd_lock_bh_journal_head(bh);
2045 J_ASSERT_JH(jh, jh->b_jcount > 0);
2047 if (!jh->b_jcount && !jh->b_transaction) {
2048 __journal_remove_journal_head(bh);
2051 jbd_unlock_bh_journal_head(bh);
2055 * Initialize jbd inode head
2057 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2059 jinode->i_transaction = NULL;
2060 jinode->i_next_transaction = NULL;
2061 jinode->i_vfs_inode = inode;
2062 jinode->i_flags = 0;
2063 INIT_LIST_HEAD(&jinode->i_list);
2067 * Function to be called before we start removing inode from memory (i.e.,
2068 * clear_inode() is a fine place to be called from). It removes inode from
2069 * transaction's lists.
2071 void jbd2_journal_release_jbd_inode(journal_t *journal,
2072 struct jbd2_inode *jinode)
2079 spin_lock(&journal->j_list_lock);
2080 /* Is commit writing out inode - we have to wait */
2081 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2082 wait_queue_head_t *wq;
2083 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2084 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2085 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2086 spin_unlock(&journal->j_list_lock);
2088 finish_wait(wq, &wait.wait);
2092 /* Do we need to wait for data writeback? */
2093 if (journal->j_committing_transaction == jinode->i_transaction)
2095 if (jinode->i_transaction) {
2096 list_del(&jinode->i_list);
2097 jinode->i_transaction = NULL;
2099 spin_unlock(&journal->j_list_lock);
2105 #ifdef CONFIG_JBD2_DEBUG
2106 u8 jbd2_journal_enable_debug __read_mostly;
2107 EXPORT_SYMBOL(jbd2_journal_enable_debug);
2109 #define JBD2_DEBUG_NAME "jbd2-debug"
2111 static struct dentry *jbd2_debugfs_dir;
2112 static struct dentry *jbd2_debug;
2114 static void __init jbd2_create_debugfs_entry(void)
2116 jbd2_debugfs_dir = debugfs_create_dir("jbd2", NULL);
2117 if (jbd2_debugfs_dir)
2118 jbd2_debug = debugfs_create_u8(JBD2_DEBUG_NAME,
2121 &jbd2_journal_enable_debug);
2124 static void __exit jbd2_remove_debugfs_entry(void)
2126 debugfs_remove(jbd2_debug);
2127 debugfs_remove(jbd2_debugfs_dir);
2132 static void __init jbd2_create_debugfs_entry(void)
2136 static void __exit jbd2_remove_debugfs_entry(void)
2142 #ifdef CONFIG_PROC_FS
2144 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2146 static void __init jbd2_create_jbd_stats_proc_entry(void)
2148 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2151 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2153 if (proc_jbd2_stats)
2154 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2159 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2160 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2164 struct kmem_cache *jbd2_handle_cache;
2166 static int __init journal_init_handle_cache(void)
2168 jbd2_handle_cache = kmem_cache_create("jbd2_journal_handle",
2171 SLAB_TEMPORARY, /* flags */
2173 if (jbd2_handle_cache == NULL) {
2174 printk(KERN_EMERG "JBD: failed to create handle cache\n");
2180 static void jbd2_journal_destroy_handle_cache(void)
2182 if (jbd2_handle_cache)
2183 kmem_cache_destroy(jbd2_handle_cache);
2187 * Module startup and shutdown
2190 static int __init journal_init_caches(void)
2194 ret = jbd2_journal_init_revoke_caches();
2196 ret = journal_init_jbd2_journal_head_cache();
2198 ret = journal_init_handle_cache();
2202 static void jbd2_journal_destroy_caches(void)
2204 jbd2_journal_destroy_revoke_caches();
2205 jbd2_journal_destroy_jbd2_journal_head_cache();
2206 jbd2_journal_destroy_handle_cache();
2209 static int __init journal_init(void)
2213 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2215 ret = journal_init_caches();
2217 jbd2_create_debugfs_entry();
2218 jbd2_create_jbd_stats_proc_entry();
2220 jbd2_journal_destroy_caches();
2225 static void __exit journal_exit(void)
2227 #ifdef CONFIG_JBD2_DEBUG
2228 int n = atomic_read(&nr_journal_heads);
2230 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2232 jbd2_remove_debugfs_entry();
2233 jbd2_remove_jbd_stats_proc_entry();
2234 jbd2_journal_destroy_caches();
2238 * jbd2_dev_to_name is a utility function used by the jbd2 and ext4
2239 * tracing infrastructure to map a dev_t to a device name.
2241 * The caller should use rcu_read_lock() in order to make sure the
2242 * device name stays valid until its done with it. We use
2243 * rcu_read_lock() as well to make sure we're safe in case the caller
2244 * gets sloppy, and because rcu_read_lock() is cheap and can be safely
2247 struct devname_cache {
2248 struct rcu_head rcu;
2250 char devname[BDEVNAME_SIZE];
2252 #define CACHE_SIZE_BITS 6
2253 static struct devname_cache *devcache[1 << CACHE_SIZE_BITS];
2254 static DEFINE_SPINLOCK(devname_cache_lock);
2256 static void free_devcache(struct rcu_head *rcu)
2261 const char *jbd2_dev_to_name(dev_t device)
2263 int i = hash_32(device, CACHE_SIZE_BITS);
2265 struct block_device *bd;
2266 static struct devname_cache *new_dev;
2269 if (devcache[i] && devcache[i]->device == device) {
2270 ret = devcache[i]->devname;
2276 new_dev = kmalloc(sizeof(struct devname_cache), GFP_KERNEL);
2278 return "NODEV-ALLOCFAILURE"; /* Something non-NULL */
2279 spin_lock(&devname_cache_lock);
2281 if (devcache[i]->device == device) {
2283 ret = devcache[i]->devname;
2284 spin_unlock(&devname_cache_lock);
2287 call_rcu(&devcache[i]->rcu, free_devcache);
2289 devcache[i] = new_dev;
2290 devcache[i]->device = device;
2293 bdevname(bd, devcache[i]->devname);
2296 __bdevname(device, devcache[i]->devname);
2297 ret = devcache[i]->devname;
2298 spin_unlock(&devname_cache_lock);
2301 EXPORT_SYMBOL(jbd2_dev_to_name);
2303 MODULE_LICENSE("GPL");
2304 module_init(journal_init);
2305 module_exit(journal_exit);