Merge tag 'libnvdimm-for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdim...
[platform/kernel/linux-rpi.git] / fs / jbd2 / journal.c
1 /*
2  * linux/fs/jbd2/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd2.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/math64.h>
40 #include <linux/hash.h>
41 #include <linux/log2.h>
42 #include <linux/vmalloc.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bitops.h>
45 #include <linux/ratelimit.h>
46 #include <linux/sched/mm.h>
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/jbd2.h>
50
51 #include <linux/uaccess.h>
52 #include <asm/page.h>
53
54 #ifdef CONFIG_JBD2_DEBUG
55 ushort jbd2_journal_enable_debug __read_mostly;
56 EXPORT_SYMBOL(jbd2_journal_enable_debug);
57
58 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
59 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
60 #endif
61
62 EXPORT_SYMBOL(jbd2_journal_extend);
63 EXPORT_SYMBOL(jbd2_journal_stop);
64 EXPORT_SYMBOL(jbd2_journal_lock_updates);
65 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
66 EXPORT_SYMBOL(jbd2_journal_get_write_access);
67 EXPORT_SYMBOL(jbd2_journal_get_create_access);
68 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
69 EXPORT_SYMBOL(jbd2_journal_set_triggers);
70 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
71 EXPORT_SYMBOL(jbd2_journal_forget);
72 #if 0
73 EXPORT_SYMBOL(journal_sync_buffer);
74 #endif
75 EXPORT_SYMBOL(jbd2_journal_flush);
76 EXPORT_SYMBOL(jbd2_journal_revoke);
77
78 EXPORT_SYMBOL(jbd2_journal_init_dev);
79 EXPORT_SYMBOL(jbd2_journal_init_inode);
80 EXPORT_SYMBOL(jbd2_journal_check_used_features);
81 EXPORT_SYMBOL(jbd2_journal_check_available_features);
82 EXPORT_SYMBOL(jbd2_journal_set_features);
83 EXPORT_SYMBOL(jbd2_journal_load);
84 EXPORT_SYMBOL(jbd2_journal_destroy);
85 EXPORT_SYMBOL(jbd2_journal_abort);
86 EXPORT_SYMBOL(jbd2_journal_errno);
87 EXPORT_SYMBOL(jbd2_journal_ack_err);
88 EXPORT_SYMBOL(jbd2_journal_clear_err);
89 EXPORT_SYMBOL(jbd2_log_wait_commit);
90 EXPORT_SYMBOL(jbd2_log_start_commit);
91 EXPORT_SYMBOL(jbd2_journal_start_commit);
92 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
93 EXPORT_SYMBOL(jbd2_journal_wipe);
94 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
95 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
96 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
97 EXPORT_SYMBOL(jbd2_journal_force_commit);
98 EXPORT_SYMBOL(jbd2_journal_inode_add_write);
99 EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
100 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
101 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
102 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
103 EXPORT_SYMBOL(jbd2_inode_cache);
104
105 static void __journal_abort_soft (journal_t *journal, int errno);
106 static int jbd2_journal_create_slab(size_t slab_size);
107
108 #ifdef CONFIG_JBD2_DEBUG
109 void __jbd2_debug(int level, const char *file, const char *func,
110                   unsigned int line, const char *fmt, ...)
111 {
112         struct va_format vaf;
113         va_list args;
114
115         if (level > jbd2_journal_enable_debug)
116                 return;
117         va_start(args, fmt);
118         vaf.fmt = fmt;
119         vaf.va = &args;
120         printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
121         va_end(args);
122 }
123 EXPORT_SYMBOL(__jbd2_debug);
124 #endif
125
126 /* Checksumming functions */
127 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
128 {
129         if (!jbd2_journal_has_csum_v2or3_feature(j))
130                 return 1;
131
132         return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
133 }
134
135 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
136 {
137         __u32 csum;
138         __be32 old_csum;
139
140         old_csum = sb->s_checksum;
141         sb->s_checksum = 0;
142         csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
143         sb->s_checksum = old_csum;
144
145         return cpu_to_be32(csum);
146 }
147
148 static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
149 {
150         if (!jbd2_journal_has_csum_v2or3(j))
151                 return 1;
152
153         return sb->s_checksum == jbd2_superblock_csum(j, sb);
154 }
155
156 static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
157 {
158         if (!jbd2_journal_has_csum_v2or3(j))
159                 return;
160
161         sb->s_checksum = jbd2_superblock_csum(j, sb);
162 }
163
164 /*
165  * Helper function used to manage commit timeouts
166  */
167
168 static void commit_timeout(struct timer_list *t)
169 {
170         journal_t *journal = from_timer(journal, t, j_commit_timer);
171
172         wake_up_process(journal->j_task);
173 }
174
175 /*
176  * kjournald2: The main thread function used to manage a logging device
177  * journal.
178  *
179  * This kernel thread is responsible for two things:
180  *
181  * 1) COMMIT:  Every so often we need to commit the current state of the
182  *    filesystem to disk.  The journal thread is responsible for writing
183  *    all of the metadata buffers to disk.
184  *
185  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
186  *    of the data in that part of the log has been rewritten elsewhere on
187  *    the disk.  Flushing these old buffers to reclaim space in the log is
188  *    known as checkpointing, and this thread is responsible for that job.
189  */
190
191 static int kjournald2(void *arg)
192 {
193         journal_t *journal = arg;
194         transaction_t *transaction;
195
196         /*
197          * Set up an interval timer which can be used to trigger a commit wakeup
198          * after the commit interval expires
199          */
200         timer_setup(&journal->j_commit_timer, commit_timeout, 0);
201
202         set_freezable();
203
204         /* Record that the journal thread is running */
205         journal->j_task = current;
206         wake_up(&journal->j_wait_done_commit);
207
208         /*
209          * Make sure that no allocations from this kernel thread will ever
210          * recurse to the fs layer because we are responsible for the
211          * transaction commit and any fs involvement might get stuck waiting for
212          * the trasn. commit.
213          */
214         memalloc_nofs_save();
215
216         /*
217          * And now, wait forever for commit wakeup events.
218          */
219         write_lock(&journal->j_state_lock);
220
221 loop:
222         if (journal->j_flags & JBD2_UNMOUNT)
223                 goto end_loop;
224
225         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
226                 journal->j_commit_sequence, journal->j_commit_request);
227
228         if (journal->j_commit_sequence != journal->j_commit_request) {
229                 jbd_debug(1, "OK, requests differ\n");
230                 write_unlock(&journal->j_state_lock);
231                 del_timer_sync(&journal->j_commit_timer);
232                 jbd2_journal_commit_transaction(journal);
233                 write_lock(&journal->j_state_lock);
234                 goto loop;
235         }
236
237         wake_up(&journal->j_wait_done_commit);
238         if (freezing(current)) {
239                 /*
240                  * The simpler the better. Flushing journal isn't a
241                  * good idea, because that depends on threads that may
242                  * be already stopped.
243                  */
244                 jbd_debug(1, "Now suspending kjournald2\n");
245                 write_unlock(&journal->j_state_lock);
246                 try_to_freeze();
247                 write_lock(&journal->j_state_lock);
248         } else {
249                 /*
250                  * We assume on resume that commits are already there,
251                  * so we don't sleep
252                  */
253                 DEFINE_WAIT(wait);
254                 int should_sleep = 1;
255
256                 prepare_to_wait(&journal->j_wait_commit, &wait,
257                                 TASK_INTERRUPTIBLE);
258                 if (journal->j_commit_sequence != journal->j_commit_request)
259                         should_sleep = 0;
260                 transaction = journal->j_running_transaction;
261                 if (transaction && time_after_eq(jiffies,
262                                                 transaction->t_expires))
263                         should_sleep = 0;
264                 if (journal->j_flags & JBD2_UNMOUNT)
265                         should_sleep = 0;
266                 if (should_sleep) {
267                         write_unlock(&journal->j_state_lock);
268                         schedule();
269                         write_lock(&journal->j_state_lock);
270                 }
271                 finish_wait(&journal->j_wait_commit, &wait);
272         }
273
274         jbd_debug(1, "kjournald2 wakes\n");
275
276         /*
277          * Were we woken up by a commit wakeup event?
278          */
279         transaction = journal->j_running_transaction;
280         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
281                 journal->j_commit_request = transaction->t_tid;
282                 jbd_debug(1, "woke because of timeout\n");
283         }
284         goto loop;
285
286 end_loop:
287         del_timer_sync(&journal->j_commit_timer);
288         journal->j_task = NULL;
289         wake_up(&journal->j_wait_done_commit);
290         jbd_debug(1, "Journal thread exiting.\n");
291         write_unlock(&journal->j_state_lock);
292         return 0;
293 }
294
295 static int jbd2_journal_start_thread(journal_t *journal)
296 {
297         struct task_struct *t;
298
299         t = kthread_run(kjournald2, journal, "jbd2/%s",
300                         journal->j_devname);
301         if (IS_ERR(t))
302                 return PTR_ERR(t);
303
304         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
305         return 0;
306 }
307
308 static void journal_kill_thread(journal_t *journal)
309 {
310         write_lock(&journal->j_state_lock);
311         journal->j_flags |= JBD2_UNMOUNT;
312
313         while (journal->j_task) {
314                 write_unlock(&journal->j_state_lock);
315                 wake_up(&journal->j_wait_commit);
316                 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
317                 write_lock(&journal->j_state_lock);
318         }
319         write_unlock(&journal->j_state_lock);
320 }
321
322 /*
323  * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
324  *
325  * Writes a metadata buffer to a given disk block.  The actual IO is not
326  * performed but a new buffer_head is constructed which labels the data
327  * to be written with the correct destination disk block.
328  *
329  * Any magic-number escaping which needs to be done will cause a
330  * copy-out here.  If the buffer happens to start with the
331  * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
332  * magic number is only written to the log for descripter blocks.  In
333  * this case, we copy the data and replace the first word with 0, and we
334  * return a result code which indicates that this buffer needs to be
335  * marked as an escaped buffer in the corresponding log descriptor
336  * block.  The missing word can then be restored when the block is read
337  * during recovery.
338  *
339  * If the source buffer has already been modified by a new transaction
340  * since we took the last commit snapshot, we use the frozen copy of
341  * that data for IO. If we end up using the existing buffer_head's data
342  * for the write, then we have to make sure nobody modifies it while the
343  * IO is in progress. do_get_write_access() handles this.
344  *
345  * The function returns a pointer to the buffer_head to be used for IO.
346  * 
347  *
348  * Return value:
349  *  <0: Error
350  * >=0: Finished OK
351  *
352  * On success:
353  * Bit 0 set == escape performed on the data
354  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
355  */
356
357 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
358                                   struct journal_head  *jh_in,
359                                   struct buffer_head **bh_out,
360                                   sector_t blocknr)
361 {
362         int need_copy_out = 0;
363         int done_copy_out = 0;
364         int do_escape = 0;
365         char *mapped_data;
366         struct buffer_head *new_bh;
367         struct page *new_page;
368         unsigned int new_offset;
369         struct buffer_head *bh_in = jh2bh(jh_in);
370         journal_t *journal = transaction->t_journal;
371
372         /*
373          * The buffer really shouldn't be locked: only the current committing
374          * transaction is allowed to write it, so nobody else is allowed
375          * to do any IO.
376          *
377          * akpm: except if we're journalling data, and write() output is
378          * also part of a shared mapping, and another thread has
379          * decided to launch a writepage() against this buffer.
380          */
381         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
382
383         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
384
385         /* keep subsequent assertions sane */
386         atomic_set(&new_bh->b_count, 1);
387
388         jbd_lock_bh_state(bh_in);
389 repeat:
390         /*
391          * If a new transaction has already done a buffer copy-out, then
392          * we use that version of the data for the commit.
393          */
394         if (jh_in->b_frozen_data) {
395                 done_copy_out = 1;
396                 new_page = virt_to_page(jh_in->b_frozen_data);
397                 new_offset = offset_in_page(jh_in->b_frozen_data);
398         } else {
399                 new_page = jh2bh(jh_in)->b_page;
400                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
401         }
402
403         mapped_data = kmap_atomic(new_page);
404         /*
405          * Fire data frozen trigger if data already wasn't frozen.  Do this
406          * before checking for escaping, as the trigger may modify the magic
407          * offset.  If a copy-out happens afterwards, it will have the correct
408          * data in the buffer.
409          */
410         if (!done_copy_out)
411                 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
412                                            jh_in->b_triggers);
413
414         /*
415          * Check for escaping
416          */
417         if (*((__be32 *)(mapped_data + new_offset)) ==
418                                 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
419                 need_copy_out = 1;
420                 do_escape = 1;
421         }
422         kunmap_atomic(mapped_data);
423
424         /*
425          * Do we need to do a data copy?
426          */
427         if (need_copy_out && !done_copy_out) {
428                 char *tmp;
429
430                 jbd_unlock_bh_state(bh_in);
431                 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
432                 if (!tmp) {
433                         brelse(new_bh);
434                         return -ENOMEM;
435                 }
436                 jbd_lock_bh_state(bh_in);
437                 if (jh_in->b_frozen_data) {
438                         jbd2_free(tmp, bh_in->b_size);
439                         goto repeat;
440                 }
441
442                 jh_in->b_frozen_data = tmp;
443                 mapped_data = kmap_atomic(new_page);
444                 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
445                 kunmap_atomic(mapped_data);
446
447                 new_page = virt_to_page(tmp);
448                 new_offset = offset_in_page(tmp);
449                 done_copy_out = 1;
450
451                 /*
452                  * This isn't strictly necessary, as we're using frozen
453                  * data for the escaping, but it keeps consistency with
454                  * b_frozen_data usage.
455                  */
456                 jh_in->b_frozen_triggers = jh_in->b_triggers;
457         }
458
459         /*
460          * Did we need to do an escaping?  Now we've done all the
461          * copying, we can finally do so.
462          */
463         if (do_escape) {
464                 mapped_data = kmap_atomic(new_page);
465                 *((unsigned int *)(mapped_data + new_offset)) = 0;
466                 kunmap_atomic(mapped_data);
467         }
468
469         set_bh_page(new_bh, new_page, new_offset);
470         new_bh->b_size = bh_in->b_size;
471         new_bh->b_bdev = journal->j_dev;
472         new_bh->b_blocknr = blocknr;
473         new_bh->b_private = bh_in;
474         set_buffer_mapped(new_bh);
475         set_buffer_dirty(new_bh);
476
477         *bh_out = new_bh;
478
479         /*
480          * The to-be-written buffer needs to get moved to the io queue,
481          * and the original buffer whose contents we are shadowing or
482          * copying is moved to the transaction's shadow queue.
483          */
484         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
485         spin_lock(&journal->j_list_lock);
486         __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
487         spin_unlock(&journal->j_list_lock);
488         set_buffer_shadow(bh_in);
489         jbd_unlock_bh_state(bh_in);
490
491         return do_escape | (done_copy_out << 1);
492 }
493
494 /*
495  * Allocation code for the journal file.  Manage the space left in the
496  * journal, so that we can begin checkpointing when appropriate.
497  */
498
499 /*
500  * Called with j_state_lock locked for writing.
501  * Returns true if a transaction commit was started.
502  */
503 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
504 {
505         /* Return if the txn has already requested to be committed */
506         if (journal->j_commit_request == target)
507                 return 0;
508
509         /*
510          * The only transaction we can possibly wait upon is the
511          * currently running transaction (if it exists).  Otherwise,
512          * the target tid must be an old one.
513          */
514         if (journal->j_running_transaction &&
515             journal->j_running_transaction->t_tid == target) {
516                 /*
517                  * We want a new commit: OK, mark the request and wakeup the
518                  * commit thread.  We do _not_ do the commit ourselves.
519                  */
520
521                 journal->j_commit_request = target;
522                 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
523                           journal->j_commit_request,
524                           journal->j_commit_sequence);
525                 journal->j_running_transaction->t_requested = jiffies;
526                 wake_up(&journal->j_wait_commit);
527                 return 1;
528         } else if (!tid_geq(journal->j_commit_request, target))
529                 /* This should never happen, but if it does, preserve
530                    the evidence before kjournald goes into a loop and
531                    increments j_commit_sequence beyond all recognition. */
532                 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
533                           journal->j_commit_request,
534                           journal->j_commit_sequence,
535                           target, journal->j_running_transaction ? 
536                           journal->j_running_transaction->t_tid : 0);
537         return 0;
538 }
539
540 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
541 {
542         int ret;
543
544         write_lock(&journal->j_state_lock);
545         ret = __jbd2_log_start_commit(journal, tid);
546         write_unlock(&journal->j_state_lock);
547         return ret;
548 }
549
550 /*
551  * Force and wait any uncommitted transactions.  We can only force the running
552  * transaction if we don't have an active handle, otherwise, we will deadlock.
553  * Returns: <0 in case of error,
554  *           0 if nothing to commit,
555  *           1 if transaction was successfully committed.
556  */
557 static int __jbd2_journal_force_commit(journal_t *journal)
558 {
559         transaction_t *transaction = NULL;
560         tid_t tid;
561         int need_to_start = 0, ret = 0;
562
563         read_lock(&journal->j_state_lock);
564         if (journal->j_running_transaction && !current->journal_info) {
565                 transaction = journal->j_running_transaction;
566                 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
567                         need_to_start = 1;
568         } else if (journal->j_committing_transaction)
569                 transaction = journal->j_committing_transaction;
570
571         if (!transaction) {
572                 /* Nothing to commit */
573                 read_unlock(&journal->j_state_lock);
574                 return 0;
575         }
576         tid = transaction->t_tid;
577         read_unlock(&journal->j_state_lock);
578         if (need_to_start)
579                 jbd2_log_start_commit(journal, tid);
580         ret = jbd2_log_wait_commit(journal, tid);
581         if (!ret)
582                 ret = 1;
583
584         return ret;
585 }
586
587 /**
588  * Force and wait upon a commit if the calling process is not within
589  * transaction.  This is used for forcing out undo-protected data which contains
590  * bitmaps, when the fs is running out of space.
591  *
592  * @journal: journal to force
593  * Returns true if progress was made.
594  */
595 int jbd2_journal_force_commit_nested(journal_t *journal)
596 {
597         int ret;
598
599         ret = __jbd2_journal_force_commit(journal);
600         return ret > 0;
601 }
602
603 /**
604  * int journal_force_commit() - force any uncommitted transactions
605  * @journal: journal to force
606  *
607  * Caller want unconditional commit. We can only force the running transaction
608  * if we don't have an active handle, otherwise, we will deadlock.
609  */
610 int jbd2_journal_force_commit(journal_t *journal)
611 {
612         int ret;
613
614         J_ASSERT(!current->journal_info);
615         ret = __jbd2_journal_force_commit(journal);
616         if (ret > 0)
617                 ret = 0;
618         return ret;
619 }
620
621 /*
622  * Start a commit of the current running transaction (if any).  Returns true
623  * if a transaction is going to be committed (or is currently already
624  * committing), and fills its tid in at *ptid
625  */
626 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
627 {
628         int ret = 0;
629
630         write_lock(&journal->j_state_lock);
631         if (journal->j_running_transaction) {
632                 tid_t tid = journal->j_running_transaction->t_tid;
633
634                 __jbd2_log_start_commit(journal, tid);
635                 /* There's a running transaction and we've just made sure
636                  * it's commit has been scheduled. */
637                 if (ptid)
638                         *ptid = tid;
639                 ret = 1;
640         } else if (journal->j_committing_transaction) {
641                 /*
642                  * If commit has been started, then we have to wait for
643                  * completion of that transaction.
644                  */
645                 if (ptid)
646                         *ptid = journal->j_committing_transaction->t_tid;
647                 ret = 1;
648         }
649         write_unlock(&journal->j_state_lock);
650         return ret;
651 }
652
653 /*
654  * Return 1 if a given transaction has not yet sent barrier request
655  * connected with a transaction commit. If 0 is returned, transaction
656  * may or may not have sent the barrier. Used to avoid sending barrier
657  * twice in common cases.
658  */
659 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
660 {
661         int ret = 0;
662         transaction_t *commit_trans;
663
664         if (!(journal->j_flags & JBD2_BARRIER))
665                 return 0;
666         read_lock(&journal->j_state_lock);
667         /* Transaction already committed? */
668         if (tid_geq(journal->j_commit_sequence, tid))
669                 goto out;
670         commit_trans = journal->j_committing_transaction;
671         if (!commit_trans || commit_trans->t_tid != tid) {
672                 ret = 1;
673                 goto out;
674         }
675         /*
676          * Transaction is being committed and we already proceeded to
677          * submitting a flush to fs partition?
678          */
679         if (journal->j_fs_dev != journal->j_dev) {
680                 if (!commit_trans->t_need_data_flush ||
681                     commit_trans->t_state >= T_COMMIT_DFLUSH)
682                         goto out;
683         } else {
684                 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
685                         goto out;
686         }
687         ret = 1;
688 out:
689         read_unlock(&journal->j_state_lock);
690         return ret;
691 }
692 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
693
694 /*
695  * Wait for a specified commit to complete.
696  * The caller may not hold the journal lock.
697  */
698 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
699 {
700         int err = 0;
701
702         read_lock(&journal->j_state_lock);
703 #ifdef CONFIG_PROVE_LOCKING
704         /*
705          * Some callers make sure transaction is already committing and in that
706          * case we cannot block on open handles anymore. So don't warn in that
707          * case.
708          */
709         if (tid_gt(tid, journal->j_commit_sequence) &&
710             (!journal->j_committing_transaction ||
711              journal->j_committing_transaction->t_tid != tid)) {
712                 read_unlock(&journal->j_state_lock);
713                 jbd2_might_wait_for_commit(journal);
714                 read_lock(&journal->j_state_lock);
715         }
716 #endif
717 #ifdef CONFIG_JBD2_DEBUG
718         if (!tid_geq(journal->j_commit_request, tid)) {
719                 printk(KERN_ERR
720                        "%s: error: j_commit_request=%d, tid=%d\n",
721                        __func__, journal->j_commit_request, tid);
722         }
723 #endif
724         while (tid_gt(tid, journal->j_commit_sequence)) {
725                 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
726                                   tid, journal->j_commit_sequence);
727                 read_unlock(&journal->j_state_lock);
728                 wake_up(&journal->j_wait_commit);
729                 wait_event(journal->j_wait_done_commit,
730                                 !tid_gt(tid, journal->j_commit_sequence));
731                 read_lock(&journal->j_state_lock);
732         }
733         read_unlock(&journal->j_state_lock);
734
735         if (unlikely(is_journal_aborted(journal)))
736                 err = -EIO;
737         return err;
738 }
739
740 /* Return 1 when transaction with given tid has already committed. */
741 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
742 {
743         int ret = 1;
744
745         read_lock(&journal->j_state_lock);
746         if (journal->j_running_transaction &&
747             journal->j_running_transaction->t_tid == tid)
748                 ret = 0;
749         if (journal->j_committing_transaction &&
750             journal->j_committing_transaction->t_tid == tid)
751                 ret = 0;
752         read_unlock(&journal->j_state_lock);
753         return ret;
754 }
755 EXPORT_SYMBOL(jbd2_transaction_committed);
756
757 /*
758  * When this function returns the transaction corresponding to tid
759  * will be completed.  If the transaction has currently running, start
760  * committing that transaction before waiting for it to complete.  If
761  * the transaction id is stale, it is by definition already completed,
762  * so just return SUCCESS.
763  */
764 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
765 {
766         int     need_to_wait = 1;
767
768         read_lock(&journal->j_state_lock);
769         if (journal->j_running_transaction &&
770             journal->j_running_transaction->t_tid == tid) {
771                 if (journal->j_commit_request != tid) {
772                         /* transaction not yet started, so request it */
773                         read_unlock(&journal->j_state_lock);
774                         jbd2_log_start_commit(journal, tid);
775                         goto wait_commit;
776                 }
777         } else if (!(journal->j_committing_transaction &&
778                      journal->j_committing_transaction->t_tid == tid))
779                 need_to_wait = 0;
780         read_unlock(&journal->j_state_lock);
781         if (!need_to_wait)
782                 return 0;
783 wait_commit:
784         return jbd2_log_wait_commit(journal, tid);
785 }
786 EXPORT_SYMBOL(jbd2_complete_transaction);
787
788 /*
789  * Log buffer allocation routines:
790  */
791
792 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
793 {
794         unsigned long blocknr;
795
796         write_lock(&journal->j_state_lock);
797         J_ASSERT(journal->j_free > 1);
798
799         blocknr = journal->j_head;
800         journal->j_head++;
801         journal->j_free--;
802         if (journal->j_head == journal->j_last)
803                 journal->j_head = journal->j_first;
804         write_unlock(&journal->j_state_lock);
805         return jbd2_journal_bmap(journal, blocknr, retp);
806 }
807
808 /*
809  * Conversion of logical to physical block numbers for the journal
810  *
811  * On external journals the journal blocks are identity-mapped, so
812  * this is a no-op.  If needed, we can use j_blk_offset - everything is
813  * ready.
814  */
815 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
816                  unsigned long long *retp)
817 {
818         int err = 0;
819         unsigned long long ret;
820
821         if (journal->j_inode) {
822                 ret = bmap(journal->j_inode, blocknr);
823                 if (ret)
824                         *retp = ret;
825                 else {
826                         printk(KERN_ALERT "%s: journal block not found "
827                                         "at offset %lu on %s\n",
828                                __func__, blocknr, journal->j_devname);
829                         err = -EIO;
830                         __journal_abort_soft(journal, err);
831                 }
832         } else {
833                 *retp = blocknr; /* +journal->j_blk_offset */
834         }
835         return err;
836 }
837
838 /*
839  * We play buffer_head aliasing tricks to write data/metadata blocks to
840  * the journal without copying their contents, but for journal
841  * descriptor blocks we do need to generate bona fide buffers.
842  *
843  * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
844  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
845  * But we don't bother doing that, so there will be coherency problems with
846  * mmaps of blockdevs which hold live JBD-controlled filesystems.
847  */
848 struct buffer_head *
849 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
850 {
851         journal_t *journal = transaction->t_journal;
852         struct buffer_head *bh;
853         unsigned long long blocknr;
854         journal_header_t *header;
855         int err;
856
857         err = jbd2_journal_next_log_block(journal, &blocknr);
858
859         if (err)
860                 return NULL;
861
862         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
863         if (!bh)
864                 return NULL;
865         lock_buffer(bh);
866         memset(bh->b_data, 0, journal->j_blocksize);
867         header = (journal_header_t *)bh->b_data;
868         header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
869         header->h_blocktype = cpu_to_be32(type);
870         header->h_sequence = cpu_to_be32(transaction->t_tid);
871         set_buffer_uptodate(bh);
872         unlock_buffer(bh);
873         BUFFER_TRACE(bh, "return this buffer");
874         return bh;
875 }
876
877 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
878 {
879         struct jbd2_journal_block_tail *tail;
880         __u32 csum;
881
882         if (!jbd2_journal_has_csum_v2or3(j))
883                 return;
884
885         tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
886                         sizeof(struct jbd2_journal_block_tail));
887         tail->t_checksum = 0;
888         csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
889         tail->t_checksum = cpu_to_be32(csum);
890 }
891
892 /*
893  * Return tid of the oldest transaction in the journal and block in the journal
894  * where the transaction starts.
895  *
896  * If the journal is now empty, return which will be the next transaction ID
897  * we will write and where will that transaction start.
898  *
899  * The return value is 0 if journal tail cannot be pushed any further, 1 if
900  * it can.
901  */
902 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
903                               unsigned long *block)
904 {
905         transaction_t *transaction;
906         int ret;
907
908         read_lock(&journal->j_state_lock);
909         spin_lock(&journal->j_list_lock);
910         transaction = journal->j_checkpoint_transactions;
911         if (transaction) {
912                 *tid = transaction->t_tid;
913                 *block = transaction->t_log_start;
914         } else if ((transaction = journal->j_committing_transaction) != NULL) {
915                 *tid = transaction->t_tid;
916                 *block = transaction->t_log_start;
917         } else if ((transaction = journal->j_running_transaction) != NULL) {
918                 *tid = transaction->t_tid;
919                 *block = journal->j_head;
920         } else {
921                 *tid = journal->j_transaction_sequence;
922                 *block = journal->j_head;
923         }
924         ret = tid_gt(*tid, journal->j_tail_sequence);
925         spin_unlock(&journal->j_list_lock);
926         read_unlock(&journal->j_state_lock);
927
928         return ret;
929 }
930
931 /*
932  * Update information in journal structure and in on disk journal superblock
933  * about log tail. This function does not check whether information passed in
934  * really pushes log tail further. It's responsibility of the caller to make
935  * sure provided log tail information is valid (e.g. by holding
936  * j_checkpoint_mutex all the time between computing log tail and calling this
937  * function as is the case with jbd2_cleanup_journal_tail()).
938  *
939  * Requires j_checkpoint_mutex
940  */
941 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
942 {
943         unsigned long freed;
944         int ret;
945
946         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
947
948         /*
949          * We cannot afford for write to remain in drive's caches since as
950          * soon as we update j_tail, next transaction can start reusing journal
951          * space and if we lose sb update during power failure we'd replay
952          * old transaction with possibly newly overwritten data.
953          */
954         ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
955                                               REQ_SYNC | REQ_FUA);
956         if (ret)
957                 goto out;
958
959         write_lock(&journal->j_state_lock);
960         freed = block - journal->j_tail;
961         if (block < journal->j_tail)
962                 freed += journal->j_last - journal->j_first;
963
964         trace_jbd2_update_log_tail(journal, tid, block, freed);
965         jbd_debug(1,
966                   "Cleaning journal tail from %d to %d (offset %lu), "
967                   "freeing %lu\n",
968                   journal->j_tail_sequence, tid, block, freed);
969
970         journal->j_free += freed;
971         journal->j_tail_sequence = tid;
972         journal->j_tail = block;
973         write_unlock(&journal->j_state_lock);
974
975 out:
976         return ret;
977 }
978
979 /*
980  * This is a variaon of __jbd2_update_log_tail which checks for validity of
981  * provided log tail and locks j_checkpoint_mutex. So it is safe against races
982  * with other threads updating log tail.
983  */
984 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
985 {
986         mutex_lock_io(&journal->j_checkpoint_mutex);
987         if (tid_gt(tid, journal->j_tail_sequence))
988                 __jbd2_update_log_tail(journal, tid, block);
989         mutex_unlock(&journal->j_checkpoint_mutex);
990 }
991
992 struct jbd2_stats_proc_session {
993         journal_t *journal;
994         struct transaction_stats_s *stats;
995         int start;
996         int max;
997 };
998
999 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
1000 {
1001         return *pos ? NULL : SEQ_START_TOKEN;
1002 }
1003
1004 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
1005 {
1006         return NULL;
1007 }
1008
1009 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
1010 {
1011         struct jbd2_stats_proc_session *s = seq->private;
1012
1013         if (v != SEQ_START_TOKEN)
1014                 return 0;
1015         seq_printf(seq, "%lu transactions (%lu requested), "
1016                    "each up to %u blocks\n",
1017                    s->stats->ts_tid, s->stats->ts_requested,
1018                    s->journal->j_max_transaction_buffers);
1019         if (s->stats->ts_tid == 0)
1020                 return 0;
1021         seq_printf(seq, "average: \n  %ums waiting for transaction\n",
1022             jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1023         seq_printf(seq, "  %ums request delay\n",
1024             (s->stats->ts_requested == 0) ? 0 :
1025             jiffies_to_msecs(s->stats->run.rs_request_delay /
1026                              s->stats->ts_requested));
1027         seq_printf(seq, "  %ums running transaction\n",
1028             jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1029         seq_printf(seq, "  %ums transaction was being locked\n",
1030             jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1031         seq_printf(seq, "  %ums flushing data (in ordered mode)\n",
1032             jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1033         seq_printf(seq, "  %ums logging transaction\n",
1034             jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1035         seq_printf(seq, "  %lluus average transaction commit time\n",
1036                    div_u64(s->journal->j_average_commit_time, 1000));
1037         seq_printf(seq, "  %lu handles per transaction\n",
1038             s->stats->run.rs_handle_count / s->stats->ts_tid);
1039         seq_printf(seq, "  %lu blocks per transaction\n",
1040             s->stats->run.rs_blocks / s->stats->ts_tid);
1041         seq_printf(seq, "  %lu logged blocks per transaction\n",
1042             s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1043         return 0;
1044 }
1045
1046 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1047 {
1048 }
1049
1050 static const struct seq_operations jbd2_seq_info_ops = {
1051         .start  = jbd2_seq_info_start,
1052         .next   = jbd2_seq_info_next,
1053         .stop   = jbd2_seq_info_stop,
1054         .show   = jbd2_seq_info_show,
1055 };
1056
1057 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1058 {
1059         journal_t *journal = PDE_DATA(inode);
1060         struct jbd2_stats_proc_session *s;
1061         int rc, size;
1062
1063         s = kmalloc(sizeof(*s), GFP_KERNEL);
1064         if (s == NULL)
1065                 return -ENOMEM;
1066         size = sizeof(struct transaction_stats_s);
1067         s->stats = kmalloc(size, GFP_KERNEL);
1068         if (s->stats == NULL) {
1069                 kfree(s);
1070                 return -ENOMEM;
1071         }
1072         spin_lock(&journal->j_history_lock);
1073         memcpy(s->stats, &journal->j_stats, size);
1074         s->journal = journal;
1075         spin_unlock(&journal->j_history_lock);
1076
1077         rc = seq_open(file, &jbd2_seq_info_ops);
1078         if (rc == 0) {
1079                 struct seq_file *m = file->private_data;
1080                 m->private = s;
1081         } else {
1082                 kfree(s->stats);
1083                 kfree(s);
1084         }
1085         return rc;
1086
1087 }
1088
1089 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1090 {
1091         struct seq_file *seq = file->private_data;
1092         struct jbd2_stats_proc_session *s = seq->private;
1093         kfree(s->stats);
1094         kfree(s);
1095         return seq_release(inode, file);
1096 }
1097
1098 static const struct file_operations jbd2_seq_info_fops = {
1099         .owner          = THIS_MODULE,
1100         .open           = jbd2_seq_info_open,
1101         .read           = seq_read,
1102         .llseek         = seq_lseek,
1103         .release        = jbd2_seq_info_release,
1104 };
1105
1106 static struct proc_dir_entry *proc_jbd2_stats;
1107
1108 static void jbd2_stats_proc_init(journal_t *journal)
1109 {
1110         journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1111         if (journal->j_proc_entry) {
1112                 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1113                                  &jbd2_seq_info_fops, journal);
1114         }
1115 }
1116
1117 static void jbd2_stats_proc_exit(journal_t *journal)
1118 {
1119         remove_proc_entry("info", journal->j_proc_entry);
1120         remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1121 }
1122
1123 /*
1124  * Management for journal control blocks: functions to create and
1125  * destroy journal_t structures, and to initialise and read existing
1126  * journal blocks from disk.  */
1127
1128 /* First: create and setup a journal_t object in memory.  We initialise
1129  * very few fields yet: that has to wait until we have created the
1130  * journal structures from from scratch, or loaded them from disk. */
1131
1132 static journal_t *journal_init_common(struct block_device *bdev,
1133                         struct block_device *fs_dev,
1134                         unsigned long long start, int len, int blocksize)
1135 {
1136         static struct lock_class_key jbd2_trans_commit_key;
1137         journal_t *journal;
1138         int err;
1139         struct buffer_head *bh;
1140         int n;
1141
1142         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1143         if (!journal)
1144                 return NULL;
1145
1146         init_waitqueue_head(&journal->j_wait_transaction_locked);
1147         init_waitqueue_head(&journal->j_wait_done_commit);
1148         init_waitqueue_head(&journal->j_wait_commit);
1149         init_waitqueue_head(&journal->j_wait_updates);
1150         init_waitqueue_head(&journal->j_wait_reserved);
1151         mutex_init(&journal->j_barrier);
1152         mutex_init(&journal->j_checkpoint_mutex);
1153         spin_lock_init(&journal->j_revoke_lock);
1154         spin_lock_init(&journal->j_list_lock);
1155         rwlock_init(&journal->j_state_lock);
1156
1157         journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1158         journal->j_min_batch_time = 0;
1159         journal->j_max_batch_time = 15000; /* 15ms */
1160         atomic_set(&journal->j_reserved_credits, 0);
1161
1162         /* The journal is marked for error until we succeed with recovery! */
1163         journal->j_flags = JBD2_ABORT;
1164
1165         /* Set up a default-sized revoke table for the new mount. */
1166         err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1167         if (err)
1168                 goto err_cleanup;
1169
1170         spin_lock_init(&journal->j_history_lock);
1171
1172         lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1173                          &jbd2_trans_commit_key, 0);
1174
1175         /* journal descriptor can store up to n blocks -bzzz */
1176         journal->j_blocksize = blocksize;
1177         journal->j_dev = bdev;
1178         journal->j_fs_dev = fs_dev;
1179         journal->j_blk_offset = start;
1180         journal->j_maxlen = len;
1181         n = journal->j_blocksize / sizeof(journal_block_tag_t);
1182         journal->j_wbufsize = n;
1183         journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1184                                         GFP_KERNEL);
1185         if (!journal->j_wbuf)
1186                 goto err_cleanup;
1187
1188         bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1189         if (!bh) {
1190                 pr_err("%s: Cannot get buffer for journal superblock\n",
1191                         __func__);
1192                 goto err_cleanup;
1193         }
1194         journal->j_sb_buffer = bh;
1195         journal->j_superblock = (journal_superblock_t *)bh->b_data;
1196
1197         return journal;
1198
1199 err_cleanup:
1200         kfree(journal->j_wbuf);
1201         jbd2_journal_destroy_revoke(journal);
1202         kfree(journal);
1203         return NULL;
1204 }
1205
1206 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1207  *
1208  * Create a journal structure assigned some fixed set of disk blocks to
1209  * the journal.  We don't actually touch those disk blocks yet, but we
1210  * need to set up all of the mapping information to tell the journaling
1211  * system where the journal blocks are.
1212  *
1213  */
1214
1215 /**
1216  *  journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1217  *  @bdev: Block device on which to create the journal
1218  *  @fs_dev: Device which hold journalled filesystem for this journal.
1219  *  @start: Block nr Start of journal.
1220  *  @len:  Length of the journal in blocks.
1221  *  @blocksize: blocksize of journalling device
1222  *
1223  *  Returns: a newly created journal_t *
1224  *
1225  *  jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1226  *  range of blocks on an arbitrary block device.
1227  *
1228  */
1229 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1230                         struct block_device *fs_dev,
1231                         unsigned long long start, int len, int blocksize)
1232 {
1233         journal_t *journal;
1234
1235         journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1236         if (!journal)
1237                 return NULL;
1238
1239         bdevname(journal->j_dev, journal->j_devname);
1240         strreplace(journal->j_devname, '/', '!');
1241         jbd2_stats_proc_init(journal);
1242
1243         return journal;
1244 }
1245
1246 /**
1247  *  journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1248  *  @inode: An inode to create the journal in
1249  *
1250  * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1251  * the journal.  The inode must exist already, must support bmap() and
1252  * must have all data blocks preallocated.
1253  */
1254 journal_t *jbd2_journal_init_inode(struct inode *inode)
1255 {
1256         journal_t *journal;
1257         char *p;
1258         unsigned long long blocknr;
1259
1260         blocknr = bmap(inode, 0);
1261         if (!blocknr) {
1262                 pr_err("%s: Cannot locate journal superblock\n",
1263                         __func__);
1264                 return NULL;
1265         }
1266
1267         jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1268                   inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1269                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1270
1271         journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1272                         blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1273                         inode->i_sb->s_blocksize);
1274         if (!journal)
1275                 return NULL;
1276
1277         journal->j_inode = inode;
1278         bdevname(journal->j_dev, journal->j_devname);
1279         p = strreplace(journal->j_devname, '/', '!');
1280         sprintf(p, "-%lu", journal->j_inode->i_ino);
1281         jbd2_stats_proc_init(journal);
1282
1283         return journal;
1284 }
1285
1286 /*
1287  * If the journal init or create aborts, we need to mark the journal
1288  * superblock as being NULL to prevent the journal destroy from writing
1289  * back a bogus superblock.
1290  */
1291 static void journal_fail_superblock (journal_t *journal)
1292 {
1293         struct buffer_head *bh = journal->j_sb_buffer;
1294         brelse(bh);
1295         journal->j_sb_buffer = NULL;
1296 }
1297
1298 /*
1299  * Given a journal_t structure, initialise the various fields for
1300  * startup of a new journaling session.  We use this both when creating
1301  * a journal, and after recovering an old journal to reset it for
1302  * subsequent use.
1303  */
1304
1305 static int journal_reset(journal_t *journal)
1306 {
1307         journal_superblock_t *sb = journal->j_superblock;
1308         unsigned long long first, last;
1309
1310         first = be32_to_cpu(sb->s_first);
1311         last = be32_to_cpu(sb->s_maxlen);
1312         if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1313                 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1314                        first, last);
1315                 journal_fail_superblock(journal);
1316                 return -EINVAL;
1317         }
1318
1319         journal->j_first = first;
1320         journal->j_last = last;
1321
1322         journal->j_head = first;
1323         journal->j_tail = first;
1324         journal->j_free = last - first;
1325
1326         journal->j_tail_sequence = journal->j_transaction_sequence;
1327         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1328         journal->j_commit_request = journal->j_commit_sequence;
1329
1330         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1331
1332         /*
1333          * As a special case, if the on-disk copy is already marked as needing
1334          * no recovery (s_start == 0), then we can safely defer the superblock
1335          * update until the next commit by setting JBD2_FLUSHED.  This avoids
1336          * attempting a write to a potential-readonly device.
1337          */
1338         if (sb->s_start == 0) {
1339                 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1340                         "(start %ld, seq %d, errno %d)\n",
1341                         journal->j_tail, journal->j_tail_sequence,
1342                         journal->j_errno);
1343                 journal->j_flags |= JBD2_FLUSHED;
1344         } else {
1345                 /* Lock here to make assertions happy... */
1346                 mutex_lock_io(&journal->j_checkpoint_mutex);
1347                 /*
1348                  * Update log tail information. We use REQ_FUA since new
1349                  * transaction will start reusing journal space and so we
1350                  * must make sure information about current log tail is on
1351                  * disk before that.
1352                  */
1353                 jbd2_journal_update_sb_log_tail(journal,
1354                                                 journal->j_tail_sequence,
1355                                                 journal->j_tail,
1356                                                 REQ_SYNC | REQ_FUA);
1357                 mutex_unlock(&journal->j_checkpoint_mutex);
1358         }
1359         return jbd2_journal_start_thread(journal);
1360 }
1361
1362 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1363 {
1364         struct buffer_head *bh = journal->j_sb_buffer;
1365         journal_superblock_t *sb = journal->j_superblock;
1366         int ret;
1367
1368         trace_jbd2_write_superblock(journal, write_flags);
1369         if (!(journal->j_flags & JBD2_BARRIER))
1370                 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1371         lock_buffer(bh);
1372         if (buffer_write_io_error(bh)) {
1373                 /*
1374                  * Oh, dear.  A previous attempt to write the journal
1375                  * superblock failed.  This could happen because the
1376                  * USB device was yanked out.  Or it could happen to
1377                  * be a transient write error and maybe the block will
1378                  * be remapped.  Nothing we can do but to retry the
1379                  * write and hope for the best.
1380                  */
1381                 printk(KERN_ERR "JBD2: previous I/O error detected "
1382                        "for journal superblock update for %s.\n",
1383                        journal->j_devname);
1384                 clear_buffer_write_io_error(bh);
1385                 set_buffer_uptodate(bh);
1386         }
1387         jbd2_superblock_csum_set(journal, sb);
1388         get_bh(bh);
1389         bh->b_end_io = end_buffer_write_sync;
1390         ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1391         wait_on_buffer(bh);
1392         if (buffer_write_io_error(bh)) {
1393                 clear_buffer_write_io_error(bh);
1394                 set_buffer_uptodate(bh);
1395                 ret = -EIO;
1396         }
1397         if (ret) {
1398                 printk(KERN_ERR "JBD2: Error %d detected when updating "
1399                        "journal superblock for %s.\n", ret,
1400                        journal->j_devname);
1401                 jbd2_journal_abort(journal, ret);
1402         }
1403
1404         return ret;
1405 }
1406
1407 /**
1408  * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1409  * @journal: The journal to update.
1410  * @tail_tid: TID of the new transaction at the tail of the log
1411  * @tail_block: The first block of the transaction at the tail of the log
1412  * @write_op: With which operation should we write the journal sb
1413  *
1414  * Update a journal's superblock information about log tail and write it to
1415  * disk, waiting for the IO to complete.
1416  */
1417 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1418                                      unsigned long tail_block, int write_op)
1419 {
1420         journal_superblock_t *sb = journal->j_superblock;
1421         int ret;
1422
1423         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1424         jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1425                   tail_block, tail_tid);
1426
1427         sb->s_sequence = cpu_to_be32(tail_tid);
1428         sb->s_start    = cpu_to_be32(tail_block);
1429
1430         ret = jbd2_write_superblock(journal, write_op);
1431         if (ret)
1432                 goto out;
1433
1434         /* Log is no longer empty */
1435         write_lock(&journal->j_state_lock);
1436         WARN_ON(!sb->s_sequence);
1437         journal->j_flags &= ~JBD2_FLUSHED;
1438         write_unlock(&journal->j_state_lock);
1439
1440 out:
1441         return ret;
1442 }
1443
1444 /**
1445  * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1446  * @journal: The journal to update.
1447  * @write_op: With which operation should we write the journal sb
1448  *
1449  * Update a journal's dynamic superblock fields to show that journal is empty.
1450  * Write updated superblock to disk waiting for IO to complete.
1451  */
1452 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1453 {
1454         journal_superblock_t *sb = journal->j_superblock;
1455
1456         BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1457         read_lock(&journal->j_state_lock);
1458         /* Is it already empty? */
1459         if (sb->s_start == 0) {
1460                 read_unlock(&journal->j_state_lock);
1461                 return;
1462         }
1463         jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1464                   journal->j_tail_sequence);
1465
1466         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1467         sb->s_start    = cpu_to_be32(0);
1468         read_unlock(&journal->j_state_lock);
1469
1470         jbd2_write_superblock(journal, write_op);
1471
1472         /* Log is no longer empty */
1473         write_lock(&journal->j_state_lock);
1474         journal->j_flags |= JBD2_FLUSHED;
1475         write_unlock(&journal->j_state_lock);
1476 }
1477
1478
1479 /**
1480  * jbd2_journal_update_sb_errno() - Update error in the journal.
1481  * @journal: The journal to update.
1482  *
1483  * Update a journal's errno.  Write updated superblock to disk waiting for IO
1484  * to complete.
1485  */
1486 void jbd2_journal_update_sb_errno(journal_t *journal)
1487 {
1488         journal_superblock_t *sb = journal->j_superblock;
1489
1490         read_lock(&journal->j_state_lock);
1491         jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1492                   journal->j_errno);
1493         sb->s_errno    = cpu_to_be32(journal->j_errno);
1494         read_unlock(&journal->j_state_lock);
1495
1496         jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1497 }
1498 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1499
1500 /*
1501  * Read the superblock for a given journal, performing initial
1502  * validation of the format.
1503  */
1504 static int journal_get_superblock(journal_t *journal)
1505 {
1506         struct buffer_head *bh;
1507         journal_superblock_t *sb;
1508         int err = -EIO;
1509
1510         bh = journal->j_sb_buffer;
1511
1512         J_ASSERT(bh != NULL);
1513         if (!buffer_uptodate(bh)) {
1514                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1515                 wait_on_buffer(bh);
1516                 if (!buffer_uptodate(bh)) {
1517                         printk(KERN_ERR
1518                                 "JBD2: IO error reading journal superblock\n");
1519                         goto out;
1520                 }
1521         }
1522
1523         if (buffer_verified(bh))
1524                 return 0;
1525
1526         sb = journal->j_superblock;
1527
1528         err = -EINVAL;
1529
1530         if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1531             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1532                 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1533                 goto out;
1534         }
1535
1536         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1537         case JBD2_SUPERBLOCK_V1:
1538                 journal->j_format_version = 1;
1539                 break;
1540         case JBD2_SUPERBLOCK_V2:
1541                 journal->j_format_version = 2;
1542                 break;
1543         default:
1544                 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1545                 goto out;
1546         }
1547
1548         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1549                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1550         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1551                 printk(KERN_WARNING "JBD2: journal file too short\n");
1552                 goto out;
1553         }
1554
1555         if (be32_to_cpu(sb->s_first) == 0 ||
1556             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1557                 printk(KERN_WARNING
1558                         "JBD2: Invalid start block of journal: %u\n",
1559                         be32_to_cpu(sb->s_first));
1560                 goto out;
1561         }
1562
1563         if (jbd2_has_feature_csum2(journal) &&
1564             jbd2_has_feature_csum3(journal)) {
1565                 /* Can't have checksum v2 and v3 at the same time! */
1566                 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1567                        "at the same time!\n");
1568                 goto out;
1569         }
1570
1571         if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1572             jbd2_has_feature_checksum(journal)) {
1573                 /* Can't have checksum v1 and v2 on at the same time! */
1574                 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1575                        "at the same time!\n");
1576                 goto out;
1577         }
1578
1579         if (!jbd2_verify_csum_type(journal, sb)) {
1580                 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1581                 goto out;
1582         }
1583
1584         /* Load the checksum driver */
1585         if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1586                 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1587                 if (IS_ERR(journal->j_chksum_driver)) {
1588                         printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1589                         err = PTR_ERR(journal->j_chksum_driver);
1590                         journal->j_chksum_driver = NULL;
1591                         goto out;
1592                 }
1593         }
1594
1595         /* Check superblock checksum */
1596         if (!jbd2_superblock_csum_verify(journal, sb)) {
1597                 printk(KERN_ERR "JBD2: journal checksum error\n");
1598                 err = -EFSBADCRC;
1599                 goto out;
1600         }
1601
1602         /* Precompute checksum seed for all metadata */
1603         if (jbd2_journal_has_csum_v2or3(journal))
1604                 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1605                                                    sizeof(sb->s_uuid));
1606
1607         set_buffer_verified(bh);
1608
1609         return 0;
1610
1611 out:
1612         journal_fail_superblock(journal);
1613         return err;
1614 }
1615
1616 /*
1617  * Load the on-disk journal superblock and read the key fields into the
1618  * journal_t.
1619  */
1620
1621 static int load_superblock(journal_t *journal)
1622 {
1623         int err;
1624         journal_superblock_t *sb;
1625
1626         err = journal_get_superblock(journal);
1627         if (err)
1628                 return err;
1629
1630         sb = journal->j_superblock;
1631
1632         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1633         journal->j_tail = be32_to_cpu(sb->s_start);
1634         journal->j_first = be32_to_cpu(sb->s_first);
1635         journal->j_last = be32_to_cpu(sb->s_maxlen);
1636         journal->j_errno = be32_to_cpu(sb->s_errno);
1637
1638         return 0;
1639 }
1640
1641
1642 /**
1643  * int jbd2_journal_load() - Read journal from disk.
1644  * @journal: Journal to act on.
1645  *
1646  * Given a journal_t structure which tells us which disk blocks contain
1647  * a journal, read the journal from disk to initialise the in-memory
1648  * structures.
1649  */
1650 int jbd2_journal_load(journal_t *journal)
1651 {
1652         int err;
1653         journal_superblock_t *sb;
1654
1655         err = load_superblock(journal);
1656         if (err)
1657                 return err;
1658
1659         sb = journal->j_superblock;
1660         /* If this is a V2 superblock, then we have to check the
1661          * features flags on it. */
1662
1663         if (journal->j_format_version >= 2) {
1664                 if ((sb->s_feature_ro_compat &
1665                      ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1666                     (sb->s_feature_incompat &
1667                      ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1668                         printk(KERN_WARNING
1669                                 "JBD2: Unrecognised features on journal\n");
1670                         return -EINVAL;
1671                 }
1672         }
1673
1674         /*
1675          * Create a slab for this blocksize
1676          */
1677         err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1678         if (err)
1679                 return err;
1680
1681         /* Let the recovery code check whether it needs to recover any
1682          * data from the journal. */
1683         if (jbd2_journal_recover(journal))
1684                 goto recovery_error;
1685
1686         if (journal->j_failed_commit) {
1687                 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1688                        "is corrupt.\n", journal->j_failed_commit,
1689                        journal->j_devname);
1690                 return -EFSCORRUPTED;
1691         }
1692
1693         /* OK, we've finished with the dynamic journal bits:
1694          * reinitialise the dynamic contents of the superblock in memory
1695          * and reset them on disk. */
1696         if (journal_reset(journal))
1697                 goto recovery_error;
1698
1699         journal->j_flags &= ~JBD2_ABORT;
1700         journal->j_flags |= JBD2_LOADED;
1701         return 0;
1702
1703 recovery_error:
1704         printk(KERN_WARNING "JBD2: recovery failed\n");
1705         return -EIO;
1706 }
1707
1708 /**
1709  * void jbd2_journal_destroy() - Release a journal_t structure.
1710  * @journal: Journal to act on.
1711  *
1712  * Release a journal_t structure once it is no longer in use by the
1713  * journaled object.
1714  * Return <0 if we couldn't clean up the journal.
1715  */
1716 int jbd2_journal_destroy(journal_t *journal)
1717 {
1718         int err = 0;
1719
1720         /* Wait for the commit thread to wake up and die. */
1721         journal_kill_thread(journal);
1722
1723         /* Force a final log commit */
1724         if (journal->j_running_transaction)
1725                 jbd2_journal_commit_transaction(journal);
1726
1727         /* Force any old transactions to disk */
1728
1729         /* Totally anal locking here... */
1730         spin_lock(&journal->j_list_lock);
1731         while (journal->j_checkpoint_transactions != NULL) {
1732                 spin_unlock(&journal->j_list_lock);
1733                 mutex_lock_io(&journal->j_checkpoint_mutex);
1734                 err = jbd2_log_do_checkpoint(journal);
1735                 mutex_unlock(&journal->j_checkpoint_mutex);
1736                 /*
1737                  * If checkpointing failed, just free the buffers to avoid
1738                  * looping forever
1739                  */
1740                 if (err) {
1741                         jbd2_journal_destroy_checkpoint(journal);
1742                         spin_lock(&journal->j_list_lock);
1743                         break;
1744                 }
1745                 spin_lock(&journal->j_list_lock);
1746         }
1747
1748         J_ASSERT(journal->j_running_transaction == NULL);
1749         J_ASSERT(journal->j_committing_transaction == NULL);
1750         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1751         spin_unlock(&journal->j_list_lock);
1752
1753         if (journal->j_sb_buffer) {
1754                 if (!is_journal_aborted(journal)) {
1755                         mutex_lock_io(&journal->j_checkpoint_mutex);
1756
1757                         write_lock(&journal->j_state_lock);
1758                         journal->j_tail_sequence =
1759                                 ++journal->j_transaction_sequence;
1760                         write_unlock(&journal->j_state_lock);
1761
1762                         jbd2_mark_journal_empty(journal,
1763                                         REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1764                         mutex_unlock(&journal->j_checkpoint_mutex);
1765                 } else
1766                         err = -EIO;
1767                 brelse(journal->j_sb_buffer);
1768         }
1769
1770         if (journal->j_proc_entry)
1771                 jbd2_stats_proc_exit(journal);
1772         iput(journal->j_inode);
1773         if (journal->j_revoke)
1774                 jbd2_journal_destroy_revoke(journal);
1775         if (journal->j_chksum_driver)
1776                 crypto_free_shash(journal->j_chksum_driver);
1777         kfree(journal->j_wbuf);
1778         kfree(journal);
1779
1780         return err;
1781 }
1782
1783
1784 /**
1785  *int jbd2_journal_check_used_features () - Check if features specified are used.
1786  * @journal: Journal to check.
1787  * @compat: bitmask of compatible features
1788  * @ro: bitmask of features that force read-only mount
1789  * @incompat: bitmask of incompatible features
1790  *
1791  * Check whether the journal uses all of a given set of
1792  * features.  Return true (non-zero) if it does.
1793  **/
1794
1795 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1796                                  unsigned long ro, unsigned long incompat)
1797 {
1798         journal_superblock_t *sb;
1799
1800         if (!compat && !ro && !incompat)
1801                 return 1;
1802         /* Load journal superblock if it is not loaded yet. */
1803         if (journal->j_format_version == 0 &&
1804             journal_get_superblock(journal) != 0)
1805                 return 0;
1806         if (journal->j_format_version == 1)
1807                 return 0;
1808
1809         sb = journal->j_superblock;
1810
1811         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1812             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1813             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1814                 return 1;
1815
1816         return 0;
1817 }
1818
1819 /**
1820  * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1821  * @journal: Journal to check.
1822  * @compat: bitmask of compatible features
1823  * @ro: bitmask of features that force read-only mount
1824  * @incompat: bitmask of incompatible features
1825  *
1826  * Check whether the journaling code supports the use of
1827  * all of a given set of features on this journal.  Return true
1828  * (non-zero) if it can. */
1829
1830 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1831                                       unsigned long ro, unsigned long incompat)
1832 {
1833         if (!compat && !ro && !incompat)
1834                 return 1;
1835
1836         /* We can support any known requested features iff the
1837          * superblock is in version 2.  Otherwise we fail to support any
1838          * extended sb features. */
1839
1840         if (journal->j_format_version != 2)
1841                 return 0;
1842
1843         if ((compat   & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1844             (ro       & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1845             (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1846                 return 1;
1847
1848         return 0;
1849 }
1850
1851 /**
1852  * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1853  * @journal: Journal to act on.
1854  * @compat: bitmask of compatible features
1855  * @ro: bitmask of features that force read-only mount
1856  * @incompat: bitmask of incompatible features
1857  *
1858  * Mark a given journal feature as present on the
1859  * superblock.  Returns true if the requested features could be set.
1860  *
1861  */
1862
1863 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1864                           unsigned long ro, unsigned long incompat)
1865 {
1866 #define INCOMPAT_FEATURE_ON(f) \
1867                 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1868 #define COMPAT_FEATURE_ON(f) \
1869                 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1870         journal_superblock_t *sb;
1871
1872         if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1873                 return 1;
1874
1875         if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1876                 return 0;
1877
1878         /* If enabling v2 checksums, turn on v3 instead */
1879         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1880                 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1881                 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1882         }
1883
1884         /* Asking for checksumming v3 and v1?  Only give them v3. */
1885         if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1886             compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1887                 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1888
1889         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1890                   compat, ro, incompat);
1891
1892         sb = journal->j_superblock;
1893
1894         /* If enabling v3 checksums, update superblock */
1895         if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1896                 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1897                 sb->s_feature_compat &=
1898                         ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1899
1900                 /* Load the checksum driver */
1901                 if (journal->j_chksum_driver == NULL) {
1902                         journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1903                                                                       0, 0);
1904                         if (IS_ERR(journal->j_chksum_driver)) {
1905                                 printk(KERN_ERR "JBD2: Cannot load crc32c "
1906                                        "driver.\n");
1907                                 journal->j_chksum_driver = NULL;
1908                                 return 0;
1909                         }
1910
1911                         /* Precompute checksum seed for all metadata */
1912                         journal->j_csum_seed = jbd2_chksum(journal, ~0,
1913                                                            sb->s_uuid,
1914                                                            sizeof(sb->s_uuid));
1915                 }
1916         }
1917
1918         /* If enabling v1 checksums, downgrade superblock */
1919         if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1920                 sb->s_feature_incompat &=
1921                         ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1922                                      JBD2_FEATURE_INCOMPAT_CSUM_V3);
1923
1924         sb->s_feature_compat    |= cpu_to_be32(compat);
1925         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1926         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1927
1928         return 1;
1929 #undef COMPAT_FEATURE_ON
1930 #undef INCOMPAT_FEATURE_ON
1931 }
1932
1933 /*
1934  * jbd2_journal_clear_features () - Clear a given journal feature in the
1935  *                                  superblock
1936  * @journal: Journal to act on.
1937  * @compat: bitmask of compatible features
1938  * @ro: bitmask of features that force read-only mount
1939  * @incompat: bitmask of incompatible features
1940  *
1941  * Clear a given journal feature as present on the
1942  * superblock.
1943  */
1944 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1945                                 unsigned long ro, unsigned long incompat)
1946 {
1947         journal_superblock_t *sb;
1948
1949         jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1950                   compat, ro, incompat);
1951
1952         sb = journal->j_superblock;
1953
1954         sb->s_feature_compat    &= ~cpu_to_be32(compat);
1955         sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1956         sb->s_feature_incompat  &= ~cpu_to_be32(incompat);
1957 }
1958 EXPORT_SYMBOL(jbd2_journal_clear_features);
1959
1960 /**
1961  * int jbd2_journal_flush () - Flush journal
1962  * @journal: Journal to act on.
1963  *
1964  * Flush all data for a given journal to disk and empty the journal.
1965  * Filesystems can use this when remounting readonly to ensure that
1966  * recovery does not need to happen on remount.
1967  */
1968
1969 int jbd2_journal_flush(journal_t *journal)
1970 {
1971         int err = 0;
1972         transaction_t *transaction = NULL;
1973
1974         write_lock(&journal->j_state_lock);
1975
1976         /* Force everything buffered to the log... */
1977         if (journal->j_running_transaction) {
1978                 transaction = journal->j_running_transaction;
1979                 __jbd2_log_start_commit(journal, transaction->t_tid);
1980         } else if (journal->j_committing_transaction)
1981                 transaction = journal->j_committing_transaction;
1982
1983         /* Wait for the log commit to complete... */
1984         if (transaction) {
1985                 tid_t tid = transaction->t_tid;
1986
1987                 write_unlock(&journal->j_state_lock);
1988                 jbd2_log_wait_commit(journal, tid);
1989         } else {
1990                 write_unlock(&journal->j_state_lock);
1991         }
1992
1993         /* ...and flush everything in the log out to disk. */
1994         spin_lock(&journal->j_list_lock);
1995         while (!err && journal->j_checkpoint_transactions != NULL) {
1996                 spin_unlock(&journal->j_list_lock);
1997                 mutex_lock_io(&journal->j_checkpoint_mutex);
1998                 err = jbd2_log_do_checkpoint(journal);
1999                 mutex_unlock(&journal->j_checkpoint_mutex);
2000                 spin_lock(&journal->j_list_lock);
2001         }
2002         spin_unlock(&journal->j_list_lock);
2003
2004         if (is_journal_aborted(journal))
2005                 return -EIO;
2006
2007         mutex_lock_io(&journal->j_checkpoint_mutex);
2008         if (!err) {
2009                 err = jbd2_cleanup_journal_tail(journal);
2010                 if (err < 0) {
2011                         mutex_unlock(&journal->j_checkpoint_mutex);
2012                         goto out;
2013                 }
2014                 err = 0;
2015         }
2016
2017         /* Finally, mark the journal as really needing no recovery.
2018          * This sets s_start==0 in the underlying superblock, which is
2019          * the magic code for a fully-recovered superblock.  Any future
2020          * commits of data to the journal will restore the current
2021          * s_start value. */
2022         jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2023         mutex_unlock(&journal->j_checkpoint_mutex);
2024         write_lock(&journal->j_state_lock);
2025         J_ASSERT(!journal->j_running_transaction);
2026         J_ASSERT(!journal->j_committing_transaction);
2027         J_ASSERT(!journal->j_checkpoint_transactions);
2028         J_ASSERT(journal->j_head == journal->j_tail);
2029         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2030         write_unlock(&journal->j_state_lock);
2031 out:
2032         return err;
2033 }
2034
2035 /**
2036  * int jbd2_journal_wipe() - Wipe journal contents
2037  * @journal: Journal to act on.
2038  * @write: flag (see below)
2039  *
2040  * Wipe out all of the contents of a journal, safely.  This will produce
2041  * a warning if the journal contains any valid recovery information.
2042  * Must be called between journal_init_*() and jbd2_journal_load().
2043  *
2044  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2045  * we merely suppress recovery.
2046  */
2047
2048 int jbd2_journal_wipe(journal_t *journal, int write)
2049 {
2050         int err = 0;
2051
2052         J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2053
2054         err = load_superblock(journal);
2055         if (err)
2056                 return err;
2057
2058         if (!journal->j_tail)
2059                 goto no_recovery;
2060
2061         printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2062                 write ? "Clearing" : "Ignoring");
2063
2064         err = jbd2_journal_skip_recovery(journal);
2065         if (write) {
2066                 /* Lock to make assertions happy... */
2067                 mutex_lock(&journal->j_checkpoint_mutex);
2068                 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2069                 mutex_unlock(&journal->j_checkpoint_mutex);
2070         }
2071
2072  no_recovery:
2073         return err;
2074 }
2075
2076 /*
2077  * Journal abort has very specific semantics, which we describe
2078  * for journal abort.
2079  *
2080  * Two internal functions, which provide abort to the jbd layer
2081  * itself are here.
2082  */
2083
2084 /*
2085  * Quick version for internal journal use (doesn't lock the journal).
2086  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2087  * and don't attempt to make any other journal updates.
2088  */
2089 void __jbd2_journal_abort_hard(journal_t *journal)
2090 {
2091         transaction_t *transaction;
2092
2093         if (journal->j_flags & JBD2_ABORT)
2094                 return;
2095
2096         printk(KERN_ERR "Aborting journal on device %s.\n",
2097                journal->j_devname);
2098
2099         write_lock(&journal->j_state_lock);
2100         journal->j_flags |= JBD2_ABORT;
2101         transaction = journal->j_running_transaction;
2102         if (transaction)
2103                 __jbd2_log_start_commit(journal, transaction->t_tid);
2104         write_unlock(&journal->j_state_lock);
2105 }
2106
2107 /* Soft abort: record the abort error status in the journal superblock,
2108  * but don't do any other IO. */
2109 static void __journal_abort_soft (journal_t *journal, int errno)
2110 {
2111         if (journal->j_flags & JBD2_ABORT)
2112                 return;
2113
2114         if (!journal->j_errno)
2115                 journal->j_errno = errno;
2116
2117         __jbd2_journal_abort_hard(journal);
2118
2119         if (errno) {
2120                 jbd2_journal_update_sb_errno(journal);
2121                 write_lock(&journal->j_state_lock);
2122                 journal->j_flags |= JBD2_REC_ERR;
2123                 write_unlock(&journal->j_state_lock);
2124         }
2125 }
2126
2127 /**
2128  * void jbd2_journal_abort () - Shutdown the journal immediately.
2129  * @journal: the journal to shutdown.
2130  * @errno:   an error number to record in the journal indicating
2131  *           the reason for the shutdown.
2132  *
2133  * Perform a complete, immediate shutdown of the ENTIRE
2134  * journal (not of a single transaction).  This operation cannot be
2135  * undone without closing and reopening the journal.
2136  *
2137  * The jbd2_journal_abort function is intended to support higher level error
2138  * recovery mechanisms such as the ext2/ext3 remount-readonly error
2139  * mode.
2140  *
2141  * Journal abort has very specific semantics.  Any existing dirty,
2142  * unjournaled buffers in the main filesystem will still be written to
2143  * disk by bdflush, but the journaling mechanism will be suspended
2144  * immediately and no further transaction commits will be honoured.
2145  *
2146  * Any dirty, journaled buffers will be written back to disk without
2147  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
2148  * filesystem, but we _do_ attempt to leave as much data as possible
2149  * behind for fsck to use for cleanup.
2150  *
2151  * Any attempt to get a new transaction handle on a journal which is in
2152  * ABORT state will just result in an -EROFS error return.  A
2153  * jbd2_journal_stop on an existing handle will return -EIO if we have
2154  * entered abort state during the update.
2155  *
2156  * Recursive transactions are not disturbed by journal abort until the
2157  * final jbd2_journal_stop, which will receive the -EIO error.
2158  *
2159  * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2160  * which will be recorded (if possible) in the journal superblock.  This
2161  * allows a client to record failure conditions in the middle of a
2162  * transaction without having to complete the transaction to record the
2163  * failure to disk.  ext3_error, for example, now uses this
2164  * functionality.
2165  *
2166  * Errors which originate from within the journaling layer will NOT
2167  * supply an errno; a null errno implies that absolutely no further
2168  * writes are done to the journal (unless there are any already in
2169  * progress).
2170  *
2171  */
2172
2173 void jbd2_journal_abort(journal_t *journal, int errno)
2174 {
2175         __journal_abort_soft(journal, errno);
2176 }
2177
2178 /**
2179  * int jbd2_journal_errno () - returns the journal's error state.
2180  * @journal: journal to examine.
2181  *
2182  * This is the errno number set with jbd2_journal_abort(), the last
2183  * time the journal was mounted - if the journal was stopped
2184  * without calling abort this will be 0.
2185  *
2186  * If the journal has been aborted on this mount time -EROFS will
2187  * be returned.
2188  */
2189 int jbd2_journal_errno(journal_t *journal)
2190 {
2191         int err;
2192
2193         read_lock(&journal->j_state_lock);
2194         if (journal->j_flags & JBD2_ABORT)
2195                 err = -EROFS;
2196         else
2197                 err = journal->j_errno;
2198         read_unlock(&journal->j_state_lock);
2199         return err;
2200 }
2201
2202 /**
2203  * int jbd2_journal_clear_err () - clears the journal's error state
2204  * @journal: journal to act on.
2205  *
2206  * An error must be cleared or acked to take a FS out of readonly
2207  * mode.
2208  */
2209 int jbd2_journal_clear_err(journal_t *journal)
2210 {
2211         int err = 0;
2212
2213         write_lock(&journal->j_state_lock);
2214         if (journal->j_flags & JBD2_ABORT)
2215                 err = -EROFS;
2216         else
2217                 journal->j_errno = 0;
2218         write_unlock(&journal->j_state_lock);
2219         return err;
2220 }
2221
2222 /**
2223  * void jbd2_journal_ack_err() - Ack journal err.
2224  * @journal: journal to act on.
2225  *
2226  * An error must be cleared or acked to take a FS out of readonly
2227  * mode.
2228  */
2229 void jbd2_journal_ack_err(journal_t *journal)
2230 {
2231         write_lock(&journal->j_state_lock);
2232         if (journal->j_errno)
2233                 journal->j_flags |= JBD2_ACK_ERR;
2234         write_unlock(&journal->j_state_lock);
2235 }
2236
2237 int jbd2_journal_blocks_per_page(struct inode *inode)
2238 {
2239         return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2240 }
2241
2242 /*
2243  * helper functions to deal with 32 or 64bit block numbers.
2244  */
2245 size_t journal_tag_bytes(journal_t *journal)
2246 {
2247         size_t sz;
2248
2249         if (jbd2_has_feature_csum3(journal))
2250                 return sizeof(journal_block_tag3_t);
2251
2252         sz = sizeof(journal_block_tag_t);
2253
2254         if (jbd2_has_feature_csum2(journal))
2255                 sz += sizeof(__u16);
2256
2257         if (jbd2_has_feature_64bit(journal))
2258                 return sz;
2259         else
2260                 return sz - sizeof(__u32);
2261 }
2262
2263 /*
2264  * JBD memory management
2265  *
2266  * These functions are used to allocate block-sized chunks of memory
2267  * used for making copies of buffer_head data.  Very often it will be
2268  * page-sized chunks of data, but sometimes it will be in
2269  * sub-page-size chunks.  (For example, 16k pages on Power systems
2270  * with a 4k block file system.)  For blocks smaller than a page, we
2271  * use a SLAB allocator.  There are slab caches for each block size,
2272  * which are allocated at mount time, if necessary, and we only free
2273  * (all of) the slab caches when/if the jbd2 module is unloaded.  For
2274  * this reason we don't need to a mutex to protect access to
2275  * jbd2_slab[] allocating or releasing memory; only in
2276  * jbd2_journal_create_slab().
2277  */
2278 #define JBD2_MAX_SLABS 8
2279 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2280
2281 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2282         "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2283         "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2284 };
2285
2286
2287 static void jbd2_journal_destroy_slabs(void)
2288 {
2289         int i;
2290
2291         for (i = 0; i < JBD2_MAX_SLABS; i++) {
2292                 if (jbd2_slab[i])
2293                         kmem_cache_destroy(jbd2_slab[i]);
2294                 jbd2_slab[i] = NULL;
2295         }
2296 }
2297
2298 static int jbd2_journal_create_slab(size_t size)
2299 {
2300         static DEFINE_MUTEX(jbd2_slab_create_mutex);
2301         int i = order_base_2(size) - 10;
2302         size_t slab_size;
2303
2304         if (size == PAGE_SIZE)
2305                 return 0;
2306
2307         if (i >= JBD2_MAX_SLABS)
2308                 return -EINVAL;
2309
2310         if (unlikely(i < 0))
2311                 i = 0;
2312         mutex_lock(&jbd2_slab_create_mutex);
2313         if (jbd2_slab[i]) {
2314                 mutex_unlock(&jbd2_slab_create_mutex);
2315                 return 0;       /* Already created */
2316         }
2317
2318         slab_size = 1 << (i+10);
2319         jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2320                                          slab_size, 0, NULL);
2321         mutex_unlock(&jbd2_slab_create_mutex);
2322         if (!jbd2_slab[i]) {
2323                 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2324                 return -ENOMEM;
2325         }
2326         return 0;
2327 }
2328
2329 static struct kmem_cache *get_slab(size_t size)
2330 {
2331         int i = order_base_2(size) - 10;
2332
2333         BUG_ON(i >= JBD2_MAX_SLABS);
2334         if (unlikely(i < 0))
2335                 i = 0;
2336         BUG_ON(jbd2_slab[i] == NULL);
2337         return jbd2_slab[i];
2338 }
2339
2340 void *jbd2_alloc(size_t size, gfp_t flags)
2341 {
2342         void *ptr;
2343
2344         BUG_ON(size & (size-1)); /* Must be a power of 2 */
2345
2346         if (size < PAGE_SIZE)
2347                 ptr = kmem_cache_alloc(get_slab(size), flags);
2348         else
2349                 ptr = (void *)__get_free_pages(flags, get_order(size));
2350
2351         /* Check alignment; SLUB has gotten this wrong in the past,
2352          * and this can lead to user data corruption! */
2353         BUG_ON(((unsigned long) ptr) & (size-1));
2354
2355         return ptr;
2356 }
2357
2358 void jbd2_free(void *ptr, size_t size)
2359 {
2360         if (size < PAGE_SIZE)
2361                 kmem_cache_free(get_slab(size), ptr);
2362         else
2363                 free_pages((unsigned long)ptr, get_order(size));
2364 };
2365
2366 /*
2367  * Journal_head storage management
2368  */
2369 static struct kmem_cache *jbd2_journal_head_cache;
2370 #ifdef CONFIG_JBD2_DEBUG
2371 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2372 #endif
2373
2374 static int jbd2_journal_init_journal_head_cache(void)
2375 {
2376         int retval;
2377
2378         J_ASSERT(jbd2_journal_head_cache == NULL);
2379         jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2380                                 sizeof(struct journal_head),
2381                                 0,              /* offset */
2382                                 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2383                                 NULL);          /* ctor */
2384         retval = 0;
2385         if (!jbd2_journal_head_cache) {
2386                 retval = -ENOMEM;
2387                 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2388         }
2389         return retval;
2390 }
2391
2392 static void jbd2_journal_destroy_journal_head_cache(void)
2393 {
2394         if (jbd2_journal_head_cache) {
2395                 kmem_cache_destroy(jbd2_journal_head_cache);
2396                 jbd2_journal_head_cache = NULL;
2397         }
2398 }
2399
2400 /*
2401  * journal_head splicing and dicing
2402  */
2403 static struct journal_head *journal_alloc_journal_head(void)
2404 {
2405         struct journal_head *ret;
2406
2407 #ifdef CONFIG_JBD2_DEBUG
2408         atomic_inc(&nr_journal_heads);
2409 #endif
2410         ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2411         if (!ret) {
2412                 jbd_debug(1, "out of memory for journal_head\n");
2413                 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2414                 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2415                                 GFP_NOFS | __GFP_NOFAIL);
2416         }
2417         return ret;
2418 }
2419
2420 static void journal_free_journal_head(struct journal_head *jh)
2421 {
2422 #ifdef CONFIG_JBD2_DEBUG
2423         atomic_dec(&nr_journal_heads);
2424         memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2425 #endif
2426         kmem_cache_free(jbd2_journal_head_cache, jh);
2427 }
2428
2429 /*
2430  * A journal_head is attached to a buffer_head whenever JBD has an
2431  * interest in the buffer.
2432  *
2433  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2434  * is set.  This bit is tested in core kernel code where we need to take
2435  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
2436  * there.
2437  *
2438  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2439  *
2440  * When a buffer has its BH_JBD bit set it is immune from being released by
2441  * core kernel code, mainly via ->b_count.
2442  *
2443  * A journal_head is detached from its buffer_head when the journal_head's
2444  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2445  * transaction (b_cp_transaction) hold their references to b_jcount.
2446  *
2447  * Various places in the kernel want to attach a journal_head to a buffer_head
2448  * _before_ attaching the journal_head to a transaction.  To protect the
2449  * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2450  * journal_head's b_jcount refcount by one.  The caller must call
2451  * jbd2_journal_put_journal_head() to undo this.
2452  *
2453  * So the typical usage would be:
2454  *
2455  *      (Attach a journal_head if needed.  Increments b_jcount)
2456  *      struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2457  *      ...
2458  *      (Get another reference for transaction)
2459  *      jbd2_journal_grab_journal_head(bh);
2460  *      jh->b_transaction = xxx;
2461  *      (Put original reference)
2462  *      jbd2_journal_put_journal_head(jh);
2463  */
2464
2465 /*
2466  * Give a buffer_head a journal_head.
2467  *
2468  * May sleep.
2469  */
2470 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2471 {
2472         struct journal_head *jh;
2473         struct journal_head *new_jh = NULL;
2474
2475 repeat:
2476         if (!buffer_jbd(bh))
2477                 new_jh = journal_alloc_journal_head();
2478
2479         jbd_lock_bh_journal_head(bh);
2480         if (buffer_jbd(bh)) {
2481                 jh = bh2jh(bh);
2482         } else {
2483                 J_ASSERT_BH(bh,
2484                         (atomic_read(&bh->b_count) > 0) ||
2485                         (bh->b_page && bh->b_page->mapping));
2486
2487                 if (!new_jh) {
2488                         jbd_unlock_bh_journal_head(bh);
2489                         goto repeat;
2490                 }
2491
2492                 jh = new_jh;
2493                 new_jh = NULL;          /* We consumed it */
2494                 set_buffer_jbd(bh);
2495                 bh->b_private = jh;
2496                 jh->b_bh = bh;
2497                 get_bh(bh);
2498                 BUFFER_TRACE(bh, "added journal_head");
2499         }
2500         jh->b_jcount++;
2501         jbd_unlock_bh_journal_head(bh);
2502         if (new_jh)
2503                 journal_free_journal_head(new_jh);
2504         return bh->b_private;
2505 }
2506
2507 /*
2508  * Grab a ref against this buffer_head's journal_head.  If it ended up not
2509  * having a journal_head, return NULL
2510  */
2511 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2512 {
2513         struct journal_head *jh = NULL;
2514
2515         jbd_lock_bh_journal_head(bh);
2516         if (buffer_jbd(bh)) {
2517                 jh = bh2jh(bh);
2518                 jh->b_jcount++;
2519         }
2520         jbd_unlock_bh_journal_head(bh);
2521         return jh;
2522 }
2523
2524 static void __journal_remove_journal_head(struct buffer_head *bh)
2525 {
2526         struct journal_head *jh = bh2jh(bh);
2527
2528         J_ASSERT_JH(jh, jh->b_jcount >= 0);
2529         J_ASSERT_JH(jh, jh->b_transaction == NULL);
2530         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2531         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2532         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2533         J_ASSERT_BH(bh, buffer_jbd(bh));
2534         J_ASSERT_BH(bh, jh2bh(jh) == bh);
2535         BUFFER_TRACE(bh, "remove journal_head");
2536         if (jh->b_frozen_data) {
2537                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2538                 jbd2_free(jh->b_frozen_data, bh->b_size);
2539         }
2540         if (jh->b_committed_data) {
2541                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2542                 jbd2_free(jh->b_committed_data, bh->b_size);
2543         }
2544         bh->b_private = NULL;
2545         jh->b_bh = NULL;        /* debug, really */
2546         clear_buffer_jbd(bh);
2547         journal_free_journal_head(jh);
2548 }
2549
2550 /*
2551  * Drop a reference on the passed journal_head.  If it fell to zero then
2552  * release the journal_head from the buffer_head.
2553  */
2554 void jbd2_journal_put_journal_head(struct journal_head *jh)
2555 {
2556         struct buffer_head *bh = jh2bh(jh);
2557
2558         jbd_lock_bh_journal_head(bh);
2559         J_ASSERT_JH(jh, jh->b_jcount > 0);
2560         --jh->b_jcount;
2561         if (!jh->b_jcount) {
2562                 __journal_remove_journal_head(bh);
2563                 jbd_unlock_bh_journal_head(bh);
2564                 __brelse(bh);
2565         } else
2566                 jbd_unlock_bh_journal_head(bh);
2567 }
2568
2569 /*
2570  * Initialize jbd inode head
2571  */
2572 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2573 {
2574         jinode->i_transaction = NULL;
2575         jinode->i_next_transaction = NULL;
2576         jinode->i_vfs_inode = inode;
2577         jinode->i_flags = 0;
2578         INIT_LIST_HEAD(&jinode->i_list);
2579 }
2580
2581 /*
2582  * Function to be called before we start removing inode from memory (i.e.,
2583  * clear_inode() is a fine place to be called from). It removes inode from
2584  * transaction's lists.
2585  */
2586 void jbd2_journal_release_jbd_inode(journal_t *journal,
2587                                     struct jbd2_inode *jinode)
2588 {
2589         if (!journal)
2590                 return;
2591 restart:
2592         spin_lock(&journal->j_list_lock);
2593         /* Is commit writing out inode - we have to wait */
2594         if (jinode->i_flags & JI_COMMIT_RUNNING) {
2595                 wait_queue_head_t *wq;
2596                 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2597                 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2598                 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2599                 spin_unlock(&journal->j_list_lock);
2600                 schedule();
2601                 finish_wait(wq, &wait.wq_entry);
2602                 goto restart;
2603         }
2604
2605         if (jinode->i_transaction) {
2606                 list_del(&jinode->i_list);
2607                 jinode->i_transaction = NULL;
2608         }
2609         spin_unlock(&journal->j_list_lock);
2610 }
2611
2612
2613 #ifdef CONFIG_PROC_FS
2614
2615 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2616
2617 static void __init jbd2_create_jbd_stats_proc_entry(void)
2618 {
2619         proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2620 }
2621
2622 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2623 {
2624         if (proc_jbd2_stats)
2625                 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2626 }
2627
2628 #else
2629
2630 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2631 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2632
2633 #endif
2634
2635 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2636
2637 static int __init jbd2_journal_init_handle_cache(void)
2638 {
2639         jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2640         if (jbd2_handle_cache == NULL) {
2641                 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2642                 return -ENOMEM;
2643         }
2644         jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2645         if (jbd2_inode_cache == NULL) {
2646                 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2647                 kmem_cache_destroy(jbd2_handle_cache);
2648                 return -ENOMEM;
2649         }
2650         return 0;
2651 }
2652
2653 static void jbd2_journal_destroy_handle_cache(void)
2654 {
2655         if (jbd2_handle_cache)
2656                 kmem_cache_destroy(jbd2_handle_cache);
2657         if (jbd2_inode_cache)
2658                 kmem_cache_destroy(jbd2_inode_cache);
2659
2660 }
2661
2662 /*
2663  * Module startup and shutdown
2664  */
2665
2666 static int __init journal_init_caches(void)
2667 {
2668         int ret;
2669
2670         ret = jbd2_journal_init_revoke_caches();
2671         if (ret == 0)
2672                 ret = jbd2_journal_init_journal_head_cache();
2673         if (ret == 0)
2674                 ret = jbd2_journal_init_handle_cache();
2675         if (ret == 0)
2676                 ret = jbd2_journal_init_transaction_cache();
2677         return ret;
2678 }
2679
2680 static void jbd2_journal_destroy_caches(void)
2681 {
2682         jbd2_journal_destroy_revoke_caches();
2683         jbd2_journal_destroy_journal_head_cache();
2684         jbd2_journal_destroy_handle_cache();
2685         jbd2_journal_destroy_transaction_cache();
2686         jbd2_journal_destroy_slabs();
2687 }
2688
2689 static int __init journal_init(void)
2690 {
2691         int ret;
2692
2693         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2694
2695         ret = journal_init_caches();
2696         if (ret == 0) {
2697                 jbd2_create_jbd_stats_proc_entry();
2698         } else {
2699                 jbd2_journal_destroy_caches();
2700         }
2701         return ret;
2702 }
2703
2704 static void __exit journal_exit(void)
2705 {
2706 #ifdef CONFIG_JBD2_DEBUG
2707         int n = atomic_read(&nr_journal_heads);
2708         if (n)
2709                 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2710 #endif
2711         jbd2_remove_jbd_stats_proc_entry();
2712         jbd2_journal_destroy_caches();
2713 }
2714
2715 MODULE_LICENSE("GPL");
2716 module_init(journal_init);
2717 module_exit(journal_exit);
2718