x86/mce: Add mechanism to safely save information in MCE handler
[platform/adaptation/renesas_rcar/renesas_kernel.git] / fs / jbd / journal.c
1 /*
2  * linux/fs/jbd/journal.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem journal-writing code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages journals: areas of disk reserved for logging
16  * transactional updates.  This includes the kernel journaling thread
17  * which is responsible for scheduling updates to the log.
18  *
19  * We do not actually manage the physical storage of the journal in this
20  * file: that is left to a per-journal policy function, which allows us
21  * to store the journal within a filesystem-specified area for ext2
22  * journaling (ext2 can use a reserved inode for storing the log).
23  */
24
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
39 #include <linux/ratelimit.h>
40
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/jbd.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/page.h>
46
47 EXPORT_SYMBOL(journal_start);
48 EXPORT_SYMBOL(journal_restart);
49 EXPORT_SYMBOL(journal_extend);
50 EXPORT_SYMBOL(journal_stop);
51 EXPORT_SYMBOL(journal_lock_updates);
52 EXPORT_SYMBOL(journal_unlock_updates);
53 EXPORT_SYMBOL(journal_get_write_access);
54 EXPORT_SYMBOL(journal_get_create_access);
55 EXPORT_SYMBOL(journal_get_undo_access);
56 EXPORT_SYMBOL(journal_dirty_data);
57 EXPORT_SYMBOL(journal_dirty_metadata);
58 EXPORT_SYMBOL(journal_release_buffer);
59 EXPORT_SYMBOL(journal_forget);
60 #if 0
61 EXPORT_SYMBOL(journal_sync_buffer);
62 #endif
63 EXPORT_SYMBOL(journal_flush);
64 EXPORT_SYMBOL(journal_revoke);
65
66 EXPORT_SYMBOL(journal_init_dev);
67 EXPORT_SYMBOL(journal_init_inode);
68 EXPORT_SYMBOL(journal_update_format);
69 EXPORT_SYMBOL(journal_check_used_features);
70 EXPORT_SYMBOL(journal_check_available_features);
71 EXPORT_SYMBOL(journal_set_features);
72 EXPORT_SYMBOL(journal_create);
73 EXPORT_SYMBOL(journal_load);
74 EXPORT_SYMBOL(journal_destroy);
75 EXPORT_SYMBOL(journal_abort);
76 EXPORT_SYMBOL(journal_errno);
77 EXPORT_SYMBOL(journal_ack_err);
78 EXPORT_SYMBOL(journal_clear_err);
79 EXPORT_SYMBOL(log_wait_commit);
80 EXPORT_SYMBOL(log_start_commit);
81 EXPORT_SYMBOL(journal_start_commit);
82 EXPORT_SYMBOL(journal_force_commit_nested);
83 EXPORT_SYMBOL(journal_wipe);
84 EXPORT_SYMBOL(journal_blocks_per_page);
85 EXPORT_SYMBOL(journal_invalidatepage);
86 EXPORT_SYMBOL(journal_try_to_free_buffers);
87 EXPORT_SYMBOL(journal_force_commit);
88
89 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
90 static void __journal_abort_soft (journal_t *journal, int errno);
91 static const char *journal_dev_name(journal_t *journal, char *buffer);
92
93 /*
94  * Helper function used to manage commit timeouts
95  */
96
97 static void commit_timeout(unsigned long __data)
98 {
99         struct task_struct * p = (struct task_struct *) __data;
100
101         wake_up_process(p);
102 }
103
104 /*
105  * kjournald: The main thread function used to manage a logging device
106  * journal.
107  *
108  * This kernel thread is responsible for two things:
109  *
110  * 1) COMMIT:  Every so often we need to commit the current state of the
111  *    filesystem to disk.  The journal thread is responsible for writing
112  *    all of the metadata buffers to disk.
113  *
114  * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
115  *    of the data in that part of the log has been rewritten elsewhere on
116  *    the disk.  Flushing these old buffers to reclaim space in the log is
117  *    known as checkpointing, and this thread is responsible for that job.
118  */
119
120 static int kjournald(void *arg)
121 {
122         journal_t *journal = arg;
123         transaction_t *transaction;
124
125         /*
126          * Set up an interval timer which can be used to trigger a commit wakeup
127          * after the commit interval expires
128          */
129         setup_timer(&journal->j_commit_timer, commit_timeout,
130                         (unsigned long)current);
131
132         /* Record that the journal thread is running */
133         journal->j_task = current;
134         wake_up(&journal->j_wait_done_commit);
135
136         printk(KERN_INFO "kjournald starting.  Commit interval %ld seconds\n",
137                         journal->j_commit_interval / HZ);
138
139         /*
140          * And now, wait forever for commit wakeup events.
141          */
142         spin_lock(&journal->j_state_lock);
143
144 loop:
145         if (journal->j_flags & JFS_UNMOUNT)
146                 goto end_loop;
147
148         jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
149                 journal->j_commit_sequence, journal->j_commit_request);
150
151         if (journal->j_commit_sequence != journal->j_commit_request) {
152                 jbd_debug(1, "OK, requests differ\n");
153                 spin_unlock(&journal->j_state_lock);
154                 del_timer_sync(&journal->j_commit_timer);
155                 journal_commit_transaction(journal);
156                 spin_lock(&journal->j_state_lock);
157                 goto loop;
158         }
159
160         wake_up(&journal->j_wait_done_commit);
161         if (freezing(current)) {
162                 /*
163                  * The simpler the better. Flushing journal isn't a
164                  * good idea, because that depends on threads that may
165                  * be already stopped.
166                  */
167                 jbd_debug(1, "Now suspending kjournald\n");
168                 spin_unlock(&journal->j_state_lock);
169                 refrigerator();
170                 spin_lock(&journal->j_state_lock);
171         } else {
172                 /*
173                  * We assume on resume that commits are already there,
174                  * so we don't sleep
175                  */
176                 DEFINE_WAIT(wait);
177                 int should_sleep = 1;
178
179                 prepare_to_wait(&journal->j_wait_commit, &wait,
180                                 TASK_INTERRUPTIBLE);
181                 if (journal->j_commit_sequence != journal->j_commit_request)
182                         should_sleep = 0;
183                 transaction = journal->j_running_transaction;
184                 if (transaction && time_after_eq(jiffies,
185                                                 transaction->t_expires))
186                         should_sleep = 0;
187                 if (journal->j_flags & JFS_UNMOUNT)
188                         should_sleep = 0;
189                 if (should_sleep) {
190                         spin_unlock(&journal->j_state_lock);
191                         schedule();
192                         spin_lock(&journal->j_state_lock);
193                 }
194                 finish_wait(&journal->j_wait_commit, &wait);
195         }
196
197         jbd_debug(1, "kjournald wakes\n");
198
199         /*
200          * Were we woken up by a commit wakeup event?
201          */
202         transaction = journal->j_running_transaction;
203         if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
204                 journal->j_commit_request = transaction->t_tid;
205                 jbd_debug(1, "woke because of timeout\n");
206         }
207         goto loop;
208
209 end_loop:
210         spin_unlock(&journal->j_state_lock);
211         del_timer_sync(&journal->j_commit_timer);
212         journal->j_task = NULL;
213         wake_up(&journal->j_wait_done_commit);
214         jbd_debug(1, "Journal thread exiting.\n");
215         return 0;
216 }
217
218 static int journal_start_thread(journal_t *journal)
219 {
220         struct task_struct *t;
221
222         t = kthread_run(kjournald, journal, "kjournald");
223         if (IS_ERR(t))
224                 return PTR_ERR(t);
225
226         wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
227         return 0;
228 }
229
230 static void journal_kill_thread(journal_t *journal)
231 {
232         spin_lock(&journal->j_state_lock);
233         journal->j_flags |= JFS_UNMOUNT;
234
235         while (journal->j_task) {
236                 wake_up(&journal->j_wait_commit);
237                 spin_unlock(&journal->j_state_lock);
238                 wait_event(journal->j_wait_done_commit,
239                                 journal->j_task == NULL);
240                 spin_lock(&journal->j_state_lock);
241         }
242         spin_unlock(&journal->j_state_lock);
243 }
244
245 /*
246  * journal_write_metadata_buffer: write a metadata buffer to the journal.
247  *
248  * Writes a metadata buffer to a given disk block.  The actual IO is not
249  * performed but a new buffer_head is constructed which labels the data
250  * to be written with the correct destination disk block.
251  *
252  * Any magic-number escaping which needs to be done will cause a
253  * copy-out here.  If the buffer happens to start with the
254  * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
255  * magic number is only written to the log for descripter blocks.  In
256  * this case, we copy the data and replace the first word with 0, and we
257  * return a result code which indicates that this buffer needs to be
258  * marked as an escaped buffer in the corresponding log descriptor
259  * block.  The missing word can then be restored when the block is read
260  * during recovery.
261  *
262  * If the source buffer has already been modified by a new transaction
263  * since we took the last commit snapshot, we use the frozen copy of
264  * that data for IO.  If we end up using the existing buffer_head's data
265  * for the write, then we *have* to lock the buffer to prevent anyone
266  * else from using and possibly modifying it while the IO is in
267  * progress.
268  *
269  * The function returns a pointer to the buffer_heads to be used for IO.
270  *
271  * We assume that the journal has already been locked in this function.
272  *
273  * Return value:
274  *  <0: Error
275  * >=0: Finished OK
276  *
277  * On success:
278  * Bit 0 set == escape performed on the data
279  * Bit 1 set == buffer copy-out performed (kfree the data after IO)
280  */
281
282 int journal_write_metadata_buffer(transaction_t *transaction,
283                                   struct journal_head  *jh_in,
284                                   struct journal_head **jh_out,
285                                   unsigned int blocknr)
286 {
287         int need_copy_out = 0;
288         int done_copy_out = 0;
289         int do_escape = 0;
290         char *mapped_data;
291         struct buffer_head *new_bh;
292         struct journal_head *new_jh;
293         struct page *new_page;
294         unsigned int new_offset;
295         struct buffer_head *bh_in = jh2bh(jh_in);
296         journal_t *journal = transaction->t_journal;
297
298         /*
299          * The buffer really shouldn't be locked: only the current committing
300          * transaction is allowed to write it, so nobody else is allowed
301          * to do any IO.
302          *
303          * akpm: except if we're journalling data, and write() output is
304          * also part of a shared mapping, and another thread has
305          * decided to launch a writepage() against this buffer.
306          */
307         J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
308
309         new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
310         /* keep subsequent assertions sane */
311         new_bh->b_state = 0;
312         init_buffer(new_bh, NULL, NULL);
313         atomic_set(&new_bh->b_count, 1);
314         new_jh = journal_add_journal_head(new_bh);      /* This sleeps */
315
316         /*
317          * If a new transaction has already done a buffer copy-out, then
318          * we use that version of the data for the commit.
319          */
320         jbd_lock_bh_state(bh_in);
321 repeat:
322         if (jh_in->b_frozen_data) {
323                 done_copy_out = 1;
324                 new_page = virt_to_page(jh_in->b_frozen_data);
325                 new_offset = offset_in_page(jh_in->b_frozen_data);
326         } else {
327                 new_page = jh2bh(jh_in)->b_page;
328                 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
329         }
330
331         mapped_data = kmap_atomic(new_page, KM_USER0);
332         /*
333          * Check for escaping
334          */
335         if (*((__be32 *)(mapped_data + new_offset)) ==
336                                 cpu_to_be32(JFS_MAGIC_NUMBER)) {
337                 need_copy_out = 1;
338                 do_escape = 1;
339         }
340         kunmap_atomic(mapped_data, KM_USER0);
341
342         /*
343          * Do we need to do a data copy?
344          */
345         if (need_copy_out && !done_copy_out) {
346                 char *tmp;
347
348                 jbd_unlock_bh_state(bh_in);
349                 tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
350                 jbd_lock_bh_state(bh_in);
351                 if (jh_in->b_frozen_data) {
352                         jbd_free(tmp, bh_in->b_size);
353                         goto repeat;
354                 }
355
356                 jh_in->b_frozen_data = tmp;
357                 mapped_data = kmap_atomic(new_page, KM_USER0);
358                 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
359                 kunmap_atomic(mapped_data, KM_USER0);
360
361                 new_page = virt_to_page(tmp);
362                 new_offset = offset_in_page(tmp);
363                 done_copy_out = 1;
364         }
365
366         /*
367          * Did we need to do an escaping?  Now we've done all the
368          * copying, we can finally do so.
369          */
370         if (do_escape) {
371                 mapped_data = kmap_atomic(new_page, KM_USER0);
372                 *((unsigned int *)(mapped_data + new_offset)) = 0;
373                 kunmap_atomic(mapped_data, KM_USER0);
374         }
375
376         set_bh_page(new_bh, new_page, new_offset);
377         new_jh->b_transaction = NULL;
378         new_bh->b_size = jh2bh(jh_in)->b_size;
379         new_bh->b_bdev = transaction->t_journal->j_dev;
380         new_bh->b_blocknr = blocknr;
381         set_buffer_mapped(new_bh);
382         set_buffer_dirty(new_bh);
383
384         *jh_out = new_jh;
385
386         /*
387          * The to-be-written buffer needs to get moved to the io queue,
388          * and the original buffer whose contents we are shadowing or
389          * copying is moved to the transaction's shadow queue.
390          */
391         JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
392         spin_lock(&journal->j_list_lock);
393         __journal_file_buffer(jh_in, transaction, BJ_Shadow);
394         spin_unlock(&journal->j_list_lock);
395         jbd_unlock_bh_state(bh_in);
396
397         JBUFFER_TRACE(new_jh, "file as BJ_IO");
398         journal_file_buffer(new_jh, transaction, BJ_IO);
399
400         return do_escape | (done_copy_out << 1);
401 }
402
403 /*
404  * Allocation code for the journal file.  Manage the space left in the
405  * journal, so that we can begin checkpointing when appropriate.
406  */
407
408 /*
409  * __log_space_left: Return the number of free blocks left in the journal.
410  *
411  * Called with the journal already locked.
412  *
413  * Called under j_state_lock
414  */
415
416 int __log_space_left(journal_t *journal)
417 {
418         int left = journal->j_free;
419
420         assert_spin_locked(&journal->j_state_lock);
421
422         /*
423          * Be pessimistic here about the number of those free blocks which
424          * might be required for log descriptor control blocks.
425          */
426
427 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
428
429         left -= MIN_LOG_RESERVED_BLOCKS;
430
431         if (left <= 0)
432                 return 0;
433         left -= (left >> 3);
434         return left;
435 }
436
437 /*
438  * Called under j_state_lock.  Returns true if a transaction commit was started.
439  */
440 int __log_start_commit(journal_t *journal, tid_t target)
441 {
442         /*
443          * The only transaction we can possibly wait upon is the
444          * currently running transaction (if it exists).  Otherwise,
445          * the target tid must be an old one.
446          */
447         if (journal->j_running_transaction &&
448             journal->j_running_transaction->t_tid == target) {
449                 /*
450                  * We want a new commit: OK, mark the request and wakeup the
451                  * commit thread.  We do _not_ do the commit ourselves.
452                  */
453
454                 journal->j_commit_request = target;
455                 jbd_debug(1, "JBD: requesting commit %d/%d\n",
456                           journal->j_commit_request,
457                           journal->j_commit_sequence);
458                 wake_up(&journal->j_wait_commit);
459                 return 1;
460         } else if (!tid_geq(journal->j_commit_request, target))
461                 /* This should never happen, but if it does, preserve
462                    the evidence before kjournald goes into a loop and
463                    increments j_commit_sequence beyond all recognition. */
464                 WARN_ONCE(1, "jbd: bad log_start_commit: %u %u %u %u\n",
465                     journal->j_commit_request, journal->j_commit_sequence,
466                     target, journal->j_running_transaction ?
467                     journal->j_running_transaction->t_tid : 0);
468         return 0;
469 }
470
471 int log_start_commit(journal_t *journal, tid_t tid)
472 {
473         int ret;
474
475         spin_lock(&journal->j_state_lock);
476         ret = __log_start_commit(journal, tid);
477         spin_unlock(&journal->j_state_lock);
478         return ret;
479 }
480
481 /*
482  * Force and wait upon a commit if the calling process is not within
483  * transaction.  This is used for forcing out undo-protected data which contains
484  * bitmaps, when the fs is running out of space.
485  *
486  * We can only force the running transaction if we don't have an active handle;
487  * otherwise, we will deadlock.
488  *
489  * Returns true if a transaction was started.
490  */
491 int journal_force_commit_nested(journal_t *journal)
492 {
493         transaction_t *transaction = NULL;
494         tid_t tid;
495
496         spin_lock(&journal->j_state_lock);
497         if (journal->j_running_transaction && !current->journal_info) {
498                 transaction = journal->j_running_transaction;
499                 __log_start_commit(journal, transaction->t_tid);
500         } else if (journal->j_committing_transaction)
501                 transaction = journal->j_committing_transaction;
502
503         if (!transaction) {
504                 spin_unlock(&journal->j_state_lock);
505                 return 0;       /* Nothing to retry */
506         }
507
508         tid = transaction->t_tid;
509         spin_unlock(&journal->j_state_lock);
510         log_wait_commit(journal, tid);
511         return 1;
512 }
513
514 /*
515  * Start a commit of the current running transaction (if any).  Returns true
516  * if a transaction is going to be committed (or is currently already
517  * committing), and fills its tid in at *ptid
518  */
519 int journal_start_commit(journal_t *journal, tid_t *ptid)
520 {
521         int ret = 0;
522
523         spin_lock(&journal->j_state_lock);
524         if (journal->j_running_transaction) {
525                 tid_t tid = journal->j_running_transaction->t_tid;
526
527                 __log_start_commit(journal, tid);
528                 /* There's a running transaction and we've just made sure
529                  * it's commit has been scheduled. */
530                 if (ptid)
531                         *ptid = tid;
532                 ret = 1;
533         } else if (journal->j_committing_transaction) {
534                 /*
535                  * If ext3_write_super() recently started a commit, then we
536                  * have to wait for completion of that transaction
537                  */
538                 if (ptid)
539                         *ptid = journal->j_committing_transaction->t_tid;
540                 ret = 1;
541         }
542         spin_unlock(&journal->j_state_lock);
543         return ret;
544 }
545
546 /*
547  * Wait for a specified commit to complete.
548  * The caller may not hold the journal lock.
549  */
550 int log_wait_commit(journal_t *journal, tid_t tid)
551 {
552         int err = 0;
553
554 #ifdef CONFIG_JBD_DEBUG
555         spin_lock(&journal->j_state_lock);
556         if (!tid_geq(journal->j_commit_request, tid)) {
557                 printk(KERN_EMERG
558                        "%s: error: j_commit_request=%d, tid=%d\n",
559                        __func__, journal->j_commit_request, tid);
560         }
561         spin_unlock(&journal->j_state_lock);
562 #endif
563         spin_lock(&journal->j_state_lock);
564         while (tid_gt(tid, journal->j_commit_sequence)) {
565                 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
566                                   tid, journal->j_commit_sequence);
567                 wake_up(&journal->j_wait_commit);
568                 spin_unlock(&journal->j_state_lock);
569                 wait_event(journal->j_wait_done_commit,
570                                 !tid_gt(tid, journal->j_commit_sequence));
571                 spin_lock(&journal->j_state_lock);
572         }
573         spin_unlock(&journal->j_state_lock);
574
575         if (unlikely(is_journal_aborted(journal))) {
576                 printk(KERN_EMERG "journal commit I/O error\n");
577                 err = -EIO;
578         }
579         return err;
580 }
581
582 /*
583  * Return 1 if a given transaction has not yet sent barrier request
584  * connected with a transaction commit. If 0 is returned, transaction
585  * may or may not have sent the barrier. Used to avoid sending barrier
586  * twice in common cases.
587  */
588 int journal_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
589 {
590         int ret = 0;
591         transaction_t *commit_trans;
592
593         if (!(journal->j_flags & JFS_BARRIER))
594                 return 0;
595         spin_lock(&journal->j_state_lock);
596         /* Transaction already committed? */
597         if (tid_geq(journal->j_commit_sequence, tid))
598                 goto out;
599         /*
600          * Transaction is being committed and we already proceeded to
601          * writing commit record?
602          */
603         commit_trans = journal->j_committing_transaction;
604         if (commit_trans && commit_trans->t_tid == tid &&
605             commit_trans->t_state >= T_COMMIT_RECORD)
606                 goto out;
607         ret = 1;
608 out:
609         spin_unlock(&journal->j_state_lock);
610         return ret;
611 }
612 EXPORT_SYMBOL(journal_trans_will_send_data_barrier);
613
614 /*
615  * Log buffer allocation routines:
616  */
617
618 int journal_next_log_block(journal_t *journal, unsigned int *retp)
619 {
620         unsigned int blocknr;
621
622         spin_lock(&journal->j_state_lock);
623         J_ASSERT(journal->j_free > 1);
624
625         blocknr = journal->j_head;
626         journal->j_head++;
627         journal->j_free--;
628         if (journal->j_head == journal->j_last)
629                 journal->j_head = journal->j_first;
630         spin_unlock(&journal->j_state_lock);
631         return journal_bmap(journal, blocknr, retp);
632 }
633
634 /*
635  * Conversion of logical to physical block numbers for the journal
636  *
637  * On external journals the journal blocks are identity-mapped, so
638  * this is a no-op.  If needed, we can use j_blk_offset - everything is
639  * ready.
640  */
641 int journal_bmap(journal_t *journal, unsigned int blocknr,
642                  unsigned int *retp)
643 {
644         int err = 0;
645         unsigned int ret;
646
647         if (journal->j_inode) {
648                 ret = bmap(journal->j_inode, blocknr);
649                 if (ret)
650                         *retp = ret;
651                 else {
652                         char b[BDEVNAME_SIZE];
653
654                         printk(KERN_ALERT "%s: journal block not found "
655                                         "at offset %u on %s\n",
656                                 __func__,
657                                 blocknr,
658                                 bdevname(journal->j_dev, b));
659                         err = -EIO;
660                         __journal_abort_soft(journal, err);
661                 }
662         } else {
663                 *retp = blocknr; /* +journal->j_blk_offset */
664         }
665         return err;
666 }
667
668 /*
669  * We play buffer_head aliasing tricks to write data/metadata blocks to
670  * the journal without copying their contents, but for journal
671  * descriptor blocks we do need to generate bona fide buffers.
672  *
673  * After the caller of journal_get_descriptor_buffer() has finished modifying
674  * the buffer's contents they really should run flush_dcache_page(bh->b_page).
675  * But we don't bother doing that, so there will be coherency problems with
676  * mmaps of blockdevs which hold live JBD-controlled filesystems.
677  */
678 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
679 {
680         struct buffer_head *bh;
681         unsigned int blocknr;
682         int err;
683
684         err = journal_next_log_block(journal, &blocknr);
685
686         if (err)
687                 return NULL;
688
689         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
690         if (!bh)
691                 return NULL;
692         lock_buffer(bh);
693         memset(bh->b_data, 0, journal->j_blocksize);
694         set_buffer_uptodate(bh);
695         unlock_buffer(bh);
696         BUFFER_TRACE(bh, "return this buffer");
697         return journal_add_journal_head(bh);
698 }
699
700 /*
701  * Management for journal control blocks: functions to create and
702  * destroy journal_t structures, and to initialise and read existing
703  * journal blocks from disk.  */
704
705 /* First: create and setup a journal_t object in memory.  We initialise
706  * very few fields yet: that has to wait until we have created the
707  * journal structures from from scratch, or loaded them from disk. */
708
709 static journal_t * journal_init_common (void)
710 {
711         journal_t *journal;
712         int err;
713
714         journal = kzalloc(sizeof(*journal), GFP_KERNEL);
715         if (!journal)
716                 goto fail;
717
718         init_waitqueue_head(&journal->j_wait_transaction_locked);
719         init_waitqueue_head(&journal->j_wait_logspace);
720         init_waitqueue_head(&journal->j_wait_done_commit);
721         init_waitqueue_head(&journal->j_wait_checkpoint);
722         init_waitqueue_head(&journal->j_wait_commit);
723         init_waitqueue_head(&journal->j_wait_updates);
724         mutex_init(&journal->j_barrier);
725         mutex_init(&journal->j_checkpoint_mutex);
726         spin_lock_init(&journal->j_revoke_lock);
727         spin_lock_init(&journal->j_list_lock);
728         spin_lock_init(&journal->j_state_lock);
729
730         journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
731
732         /* The journal is marked for error until we succeed with recovery! */
733         journal->j_flags = JFS_ABORT;
734
735         /* Set up a default-sized revoke table for the new mount. */
736         err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
737         if (err) {
738                 kfree(journal);
739                 goto fail;
740         }
741         return journal;
742 fail:
743         return NULL;
744 }
745
746 /* journal_init_dev and journal_init_inode:
747  *
748  * Create a journal structure assigned some fixed set of disk blocks to
749  * the journal.  We don't actually touch those disk blocks yet, but we
750  * need to set up all of the mapping information to tell the journaling
751  * system where the journal blocks are.
752  *
753  */
754
755 /**
756  *  journal_t * journal_init_dev() - creates and initialises a journal structure
757  *  @bdev: Block device on which to create the journal
758  *  @fs_dev: Device which hold journalled filesystem for this journal.
759  *  @start: Block nr Start of journal.
760  *  @len:  Length of the journal in blocks.
761  *  @blocksize: blocksize of journalling device
762  *
763  *  Returns: a newly created journal_t *
764  *
765  *  journal_init_dev creates a journal which maps a fixed contiguous
766  *  range of blocks on an arbitrary block device.
767  *
768  */
769 journal_t * journal_init_dev(struct block_device *bdev,
770                         struct block_device *fs_dev,
771                         int start, int len, int blocksize)
772 {
773         journal_t *journal = journal_init_common();
774         struct buffer_head *bh;
775         int n;
776
777         if (!journal)
778                 return NULL;
779
780         /* journal descriptor can store up to n blocks -bzzz */
781         journal->j_blocksize = blocksize;
782         n = journal->j_blocksize / sizeof(journal_block_tag_t);
783         journal->j_wbufsize = n;
784         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
785         if (!journal->j_wbuf) {
786                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
787                         __func__);
788                 goto out_err;
789         }
790         journal->j_dev = bdev;
791         journal->j_fs_dev = fs_dev;
792         journal->j_blk_offset = start;
793         journal->j_maxlen = len;
794
795         bh = __getblk(journal->j_dev, start, journal->j_blocksize);
796         if (!bh) {
797                 printk(KERN_ERR
798                        "%s: Cannot get buffer for journal superblock\n",
799                        __func__);
800                 goto out_err;
801         }
802         journal->j_sb_buffer = bh;
803         journal->j_superblock = (journal_superblock_t *)bh->b_data;
804
805         return journal;
806 out_err:
807         kfree(journal->j_wbuf);
808         kfree(journal);
809         return NULL;
810 }
811
812 /**
813  *  journal_t * journal_init_inode () - creates a journal which maps to a inode.
814  *  @inode: An inode to create the journal in
815  *
816  * journal_init_inode creates a journal which maps an on-disk inode as
817  * the journal.  The inode must exist already, must support bmap() and
818  * must have all data blocks preallocated.
819  */
820 journal_t * journal_init_inode (struct inode *inode)
821 {
822         struct buffer_head *bh;
823         journal_t *journal = journal_init_common();
824         int err;
825         int n;
826         unsigned int blocknr;
827
828         if (!journal)
829                 return NULL;
830
831         journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
832         journal->j_inode = inode;
833         jbd_debug(1,
834                   "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
835                   journal, inode->i_sb->s_id, inode->i_ino,
836                   (long long) inode->i_size,
837                   inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
838
839         journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
840         journal->j_blocksize = inode->i_sb->s_blocksize;
841
842         /* journal descriptor can store up to n blocks -bzzz */
843         n = journal->j_blocksize / sizeof(journal_block_tag_t);
844         journal->j_wbufsize = n;
845         journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
846         if (!journal->j_wbuf) {
847                 printk(KERN_ERR "%s: Can't allocate bhs for commit thread\n",
848                         __func__);
849                 goto out_err;
850         }
851
852         err = journal_bmap(journal, 0, &blocknr);
853         /* If that failed, give up */
854         if (err) {
855                 printk(KERN_ERR "%s: Cannot locate journal superblock\n",
856                        __func__);
857                 goto out_err;
858         }
859
860         bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
861         if (!bh) {
862                 printk(KERN_ERR
863                        "%s: Cannot get buffer for journal superblock\n",
864                        __func__);
865                 goto out_err;
866         }
867         journal->j_sb_buffer = bh;
868         journal->j_superblock = (journal_superblock_t *)bh->b_data;
869
870         return journal;
871 out_err:
872         kfree(journal->j_wbuf);
873         kfree(journal);
874         return NULL;
875 }
876
877 /*
878  * If the journal init or create aborts, we need to mark the journal
879  * superblock as being NULL to prevent the journal destroy from writing
880  * back a bogus superblock.
881  */
882 static void journal_fail_superblock (journal_t *journal)
883 {
884         struct buffer_head *bh = journal->j_sb_buffer;
885         brelse(bh);
886         journal->j_sb_buffer = NULL;
887 }
888
889 /*
890  * Given a journal_t structure, initialise the various fields for
891  * startup of a new journaling session.  We use this both when creating
892  * a journal, and after recovering an old journal to reset it for
893  * subsequent use.
894  */
895
896 static int journal_reset(journal_t *journal)
897 {
898         journal_superblock_t *sb = journal->j_superblock;
899         unsigned int first, last;
900
901         first = be32_to_cpu(sb->s_first);
902         last = be32_to_cpu(sb->s_maxlen);
903         if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
904                 printk(KERN_ERR "JBD: Journal too short (blocks %u-%u).\n",
905                        first, last);
906                 journal_fail_superblock(journal);
907                 return -EINVAL;
908         }
909
910         journal->j_first = first;
911         journal->j_last = last;
912
913         journal->j_head = first;
914         journal->j_tail = first;
915         journal->j_free = last - first;
916
917         journal->j_tail_sequence = journal->j_transaction_sequence;
918         journal->j_commit_sequence = journal->j_transaction_sequence - 1;
919         journal->j_commit_request = journal->j_commit_sequence;
920
921         journal->j_max_transaction_buffers = journal->j_maxlen / 4;
922
923         /* Add the dynamic fields and write it to disk. */
924         journal_update_superblock(journal, 1);
925         return journal_start_thread(journal);
926 }
927
928 /**
929  * int journal_create() - Initialise the new journal file
930  * @journal: Journal to create. This structure must have been initialised
931  *
932  * Given a journal_t structure which tells us which disk blocks we can
933  * use, create a new journal superblock and initialise all of the
934  * journal fields from scratch.
935  **/
936 int journal_create(journal_t *journal)
937 {
938         unsigned int blocknr;
939         struct buffer_head *bh;
940         journal_superblock_t *sb;
941         int i, err;
942
943         if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
944                 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
945                         journal->j_maxlen);
946                 journal_fail_superblock(journal);
947                 return -EINVAL;
948         }
949
950         if (journal->j_inode == NULL) {
951                 /*
952                  * We don't know what block to start at!
953                  */
954                 printk(KERN_EMERG
955                        "%s: creation of journal on external device!\n",
956                        __func__);
957                 BUG();
958         }
959
960         /* Zero out the entire journal on disk.  We cannot afford to
961            have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
962         jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
963         for (i = 0; i < journal->j_maxlen; i++) {
964                 err = journal_bmap(journal, i, &blocknr);
965                 if (err)
966                         return err;
967                 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
968                 if (unlikely(!bh))
969                         return -ENOMEM;
970                 lock_buffer(bh);
971                 memset (bh->b_data, 0, journal->j_blocksize);
972                 BUFFER_TRACE(bh, "marking dirty");
973                 mark_buffer_dirty(bh);
974                 BUFFER_TRACE(bh, "marking uptodate");
975                 set_buffer_uptodate(bh);
976                 unlock_buffer(bh);
977                 __brelse(bh);
978         }
979
980         sync_blockdev(journal->j_dev);
981         jbd_debug(1, "JBD: journal cleared.\n");
982
983         /* OK, fill in the initial static fields in the new superblock */
984         sb = journal->j_superblock;
985
986         sb->s_header.h_magic     = cpu_to_be32(JFS_MAGIC_NUMBER);
987         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
988
989         sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
990         sb->s_maxlen    = cpu_to_be32(journal->j_maxlen);
991         sb->s_first     = cpu_to_be32(1);
992
993         journal->j_transaction_sequence = 1;
994
995         journal->j_flags &= ~JFS_ABORT;
996         journal->j_format_version = 2;
997
998         return journal_reset(journal);
999 }
1000
1001 /**
1002  * void journal_update_superblock() - Update journal sb on disk.
1003  * @journal: The journal to update.
1004  * @wait: Set to '0' if you don't want to wait for IO completion.
1005  *
1006  * Update a journal's dynamic superblock fields and write it to disk,
1007  * optionally waiting for the IO to complete.
1008  */
1009 void journal_update_superblock(journal_t *journal, int wait)
1010 {
1011         journal_superblock_t *sb = journal->j_superblock;
1012         struct buffer_head *bh = journal->j_sb_buffer;
1013
1014         /*
1015          * As a special case, if the on-disk copy is already marked as needing
1016          * no recovery (s_start == 0) and there are no outstanding transactions
1017          * in the filesystem, then we can safely defer the superblock update
1018          * until the next commit by setting JFS_FLUSHED.  This avoids
1019          * attempting a write to a potential-readonly device.
1020          */
1021         if (sb->s_start == 0 && journal->j_tail_sequence ==
1022                                 journal->j_transaction_sequence) {
1023                 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
1024                         "(start %u, seq %d, errno %d)\n",
1025                         journal->j_tail, journal->j_tail_sequence,
1026                         journal->j_errno);
1027                 goto out;
1028         }
1029
1030         if (buffer_write_io_error(bh)) {
1031                 char b[BDEVNAME_SIZE];
1032                 /*
1033                  * Oh, dear.  A previous attempt to write the journal
1034                  * superblock failed.  This could happen because the
1035                  * USB device was yanked out.  Or it could happen to
1036                  * be a transient write error and maybe the block will
1037                  * be remapped.  Nothing we can do but to retry the
1038                  * write and hope for the best.
1039                  */
1040                 printk(KERN_ERR "JBD: previous I/O error detected "
1041                        "for journal superblock update for %s.\n",
1042                        journal_dev_name(journal, b));
1043                 clear_buffer_write_io_error(bh);
1044                 set_buffer_uptodate(bh);
1045         }
1046
1047         spin_lock(&journal->j_state_lock);
1048         jbd_debug(1,"JBD: updating superblock (start %u, seq %d, errno %d)\n",
1049                   journal->j_tail, journal->j_tail_sequence, journal->j_errno);
1050
1051         sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1052         sb->s_start    = cpu_to_be32(journal->j_tail);
1053         sb->s_errno    = cpu_to_be32(journal->j_errno);
1054         spin_unlock(&journal->j_state_lock);
1055
1056         BUFFER_TRACE(bh, "marking dirty");
1057         mark_buffer_dirty(bh);
1058         if (wait) {
1059                 sync_dirty_buffer(bh);
1060                 if (buffer_write_io_error(bh)) {
1061                         char b[BDEVNAME_SIZE];
1062                         printk(KERN_ERR "JBD: I/O error detected "
1063                                "when updating journal superblock for %s.\n",
1064                                journal_dev_name(journal, b));
1065                         clear_buffer_write_io_error(bh);
1066                         set_buffer_uptodate(bh);
1067                 }
1068         } else
1069                 write_dirty_buffer(bh, WRITE);
1070
1071         trace_jbd_update_superblock_end(journal, wait);
1072 out:
1073         /* If we have just flushed the log (by marking s_start==0), then
1074          * any future commit will have to be careful to update the
1075          * superblock again to re-record the true start of the log. */
1076
1077         spin_lock(&journal->j_state_lock);
1078         if (sb->s_start)
1079                 journal->j_flags &= ~JFS_FLUSHED;
1080         else
1081                 journal->j_flags |= JFS_FLUSHED;
1082         spin_unlock(&journal->j_state_lock);
1083 }
1084
1085 /*
1086  * Read the superblock for a given journal, performing initial
1087  * validation of the format.
1088  */
1089
1090 static int journal_get_superblock(journal_t *journal)
1091 {
1092         struct buffer_head *bh;
1093         journal_superblock_t *sb;
1094         int err = -EIO;
1095
1096         bh = journal->j_sb_buffer;
1097
1098         J_ASSERT(bh != NULL);
1099         if (!buffer_uptodate(bh)) {
1100                 ll_rw_block(READ, 1, &bh);
1101                 wait_on_buffer(bh);
1102                 if (!buffer_uptodate(bh)) {
1103                         printk (KERN_ERR
1104                                 "JBD: IO error reading journal superblock\n");
1105                         goto out;
1106                 }
1107         }
1108
1109         sb = journal->j_superblock;
1110
1111         err = -EINVAL;
1112
1113         if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1114             sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1115                 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1116                 goto out;
1117         }
1118
1119         switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1120         case JFS_SUPERBLOCK_V1:
1121                 journal->j_format_version = 1;
1122                 break;
1123         case JFS_SUPERBLOCK_V2:
1124                 journal->j_format_version = 2;
1125                 break;
1126         default:
1127                 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1128                 goto out;
1129         }
1130
1131         if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1132                 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1133         else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1134                 printk (KERN_WARNING "JBD: journal file too short\n");
1135                 goto out;
1136         }
1137
1138         if (be32_to_cpu(sb->s_first) == 0 ||
1139             be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1140                 printk(KERN_WARNING
1141                         "JBD: Invalid start block of journal: %u\n",
1142                         be32_to_cpu(sb->s_first));
1143                 goto out;
1144         }
1145
1146         return 0;
1147
1148 out:
1149         journal_fail_superblock(journal);
1150         return err;
1151 }
1152
1153 /*
1154  * Load the on-disk journal superblock and read the key fields into the
1155  * journal_t.
1156  */
1157
1158 static int load_superblock(journal_t *journal)
1159 {
1160         int err;
1161         journal_superblock_t *sb;
1162
1163         err = journal_get_superblock(journal);
1164         if (err)
1165                 return err;
1166
1167         sb = journal->j_superblock;
1168
1169         journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1170         journal->j_tail = be32_to_cpu(sb->s_start);
1171         journal->j_first = be32_to_cpu(sb->s_first);
1172         journal->j_last = be32_to_cpu(sb->s_maxlen);
1173         journal->j_errno = be32_to_cpu(sb->s_errno);
1174
1175         return 0;
1176 }
1177
1178
1179 /**
1180  * int journal_load() - Read journal from disk.
1181  * @journal: Journal to act on.
1182  *
1183  * Given a journal_t structure which tells us which disk blocks contain
1184  * a journal, read the journal from disk to initialise the in-memory
1185  * structures.
1186  */
1187 int journal_load(journal_t *journal)
1188 {
1189         int err;
1190         journal_superblock_t *sb;
1191
1192         err = load_superblock(journal);
1193         if (err)
1194                 return err;
1195
1196         sb = journal->j_superblock;
1197         /* If this is a V2 superblock, then we have to check the
1198          * features flags on it. */
1199
1200         if (journal->j_format_version >= 2) {
1201                 if ((sb->s_feature_ro_compat &
1202                      ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1203                     (sb->s_feature_incompat &
1204                      ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1205                         printk (KERN_WARNING
1206                                 "JBD: Unrecognised features on journal\n");
1207                         return -EINVAL;
1208                 }
1209         }
1210
1211         /* Let the recovery code check whether it needs to recover any
1212          * data from the journal. */
1213         if (journal_recover(journal))
1214                 goto recovery_error;
1215
1216         /* OK, we've finished with the dynamic journal bits:
1217          * reinitialise the dynamic contents of the superblock in memory
1218          * and reset them on disk. */
1219         if (journal_reset(journal))
1220                 goto recovery_error;
1221
1222         journal->j_flags &= ~JFS_ABORT;
1223         journal->j_flags |= JFS_LOADED;
1224         return 0;
1225
1226 recovery_error:
1227         printk (KERN_WARNING "JBD: recovery failed\n");
1228         return -EIO;
1229 }
1230
1231 /**
1232  * void journal_destroy() - Release a journal_t structure.
1233  * @journal: Journal to act on.
1234  *
1235  * Release a journal_t structure once it is no longer in use by the
1236  * journaled object.
1237  * Return <0 if we couldn't clean up the journal.
1238  */
1239 int journal_destroy(journal_t *journal)
1240 {
1241         int err = 0;
1242
1243         
1244         /* Wait for the commit thread to wake up and die. */
1245         journal_kill_thread(journal);
1246
1247         /* Force a final log commit */
1248         if (journal->j_running_transaction)
1249                 journal_commit_transaction(journal);
1250
1251         /* Force any old transactions to disk */
1252
1253         /* Totally anal locking here... */
1254         spin_lock(&journal->j_list_lock);
1255         while (journal->j_checkpoint_transactions != NULL) {
1256                 spin_unlock(&journal->j_list_lock);
1257                 log_do_checkpoint(journal);
1258                 spin_lock(&journal->j_list_lock);
1259         }
1260
1261         J_ASSERT(journal->j_running_transaction == NULL);
1262         J_ASSERT(journal->j_committing_transaction == NULL);
1263         J_ASSERT(journal->j_checkpoint_transactions == NULL);
1264         spin_unlock(&journal->j_list_lock);
1265
1266         if (journal->j_sb_buffer) {
1267                 if (!is_journal_aborted(journal)) {
1268                         /* We can now mark the journal as empty. */
1269                         journal->j_tail = 0;
1270                         journal->j_tail_sequence =
1271                                 ++journal->j_transaction_sequence;
1272                         journal_update_superblock(journal, 1);
1273                 } else {
1274                         err = -EIO;
1275                 }
1276                 brelse(journal->j_sb_buffer);
1277         }
1278
1279         if (journal->j_inode)
1280                 iput(journal->j_inode);
1281         if (journal->j_revoke)
1282                 journal_destroy_revoke(journal);
1283         kfree(journal->j_wbuf);
1284         kfree(journal);
1285
1286         return err;
1287 }
1288
1289
1290 /**
1291  *int journal_check_used_features () - Check if features specified are used.
1292  * @journal: Journal to check.
1293  * @compat: bitmask of compatible features
1294  * @ro: bitmask of features that force read-only mount
1295  * @incompat: bitmask of incompatible features
1296  *
1297  * Check whether the journal uses all of a given set of
1298  * features.  Return true (non-zero) if it does.
1299  **/
1300
1301 int journal_check_used_features (journal_t *journal, unsigned long compat,
1302                                  unsigned long ro, unsigned long incompat)
1303 {
1304         journal_superblock_t *sb;
1305
1306         if (!compat && !ro && !incompat)
1307                 return 1;
1308         if (journal->j_format_version == 1)
1309                 return 0;
1310
1311         sb = journal->j_superblock;
1312
1313         if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1314             ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1315             ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1316                 return 1;
1317
1318         return 0;
1319 }
1320
1321 /**
1322  * int journal_check_available_features() - Check feature set in journalling layer
1323  * @journal: Journal to check.
1324  * @compat: bitmask of compatible features
1325  * @ro: bitmask of features that force read-only mount
1326  * @incompat: bitmask of incompatible features
1327  *
1328  * Check whether the journaling code supports the use of
1329  * all of a given set of features on this journal.  Return true
1330  * (non-zero) if it can. */
1331
1332 int journal_check_available_features (journal_t *journal, unsigned long compat,
1333                                       unsigned long ro, unsigned long incompat)
1334 {
1335         if (!compat && !ro && !incompat)
1336                 return 1;
1337
1338         /* We can support any known requested features iff the
1339          * superblock is in version 2.  Otherwise we fail to support any
1340          * extended sb features. */
1341
1342         if (journal->j_format_version != 2)
1343                 return 0;
1344
1345         if ((compat   & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1346             (ro       & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1347             (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1348                 return 1;
1349
1350         return 0;
1351 }
1352
1353 /**
1354  * int journal_set_features () - Mark a given journal feature in the superblock
1355  * @journal: Journal to act on.
1356  * @compat: bitmask of compatible features
1357  * @ro: bitmask of features that force read-only mount
1358  * @incompat: bitmask of incompatible features
1359  *
1360  * Mark a given journal feature as present on the
1361  * superblock.  Returns true if the requested features could be set.
1362  *
1363  */
1364
1365 int journal_set_features (journal_t *journal, unsigned long compat,
1366                           unsigned long ro, unsigned long incompat)
1367 {
1368         journal_superblock_t *sb;
1369
1370         if (journal_check_used_features(journal, compat, ro, incompat))
1371                 return 1;
1372
1373         if (!journal_check_available_features(journal, compat, ro, incompat))
1374                 return 0;
1375
1376         jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1377                   compat, ro, incompat);
1378
1379         sb = journal->j_superblock;
1380
1381         sb->s_feature_compat    |= cpu_to_be32(compat);
1382         sb->s_feature_ro_compat |= cpu_to_be32(ro);
1383         sb->s_feature_incompat  |= cpu_to_be32(incompat);
1384
1385         return 1;
1386 }
1387
1388
1389 /**
1390  * int journal_update_format () - Update on-disk journal structure.
1391  * @journal: Journal to act on.
1392  *
1393  * Given an initialised but unloaded journal struct, poke about in the
1394  * on-disk structure to update it to the most recent supported version.
1395  */
1396 int journal_update_format (journal_t *journal)
1397 {
1398         journal_superblock_t *sb;
1399         int err;
1400
1401         err = journal_get_superblock(journal);
1402         if (err)
1403                 return err;
1404
1405         sb = journal->j_superblock;
1406
1407         switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1408         case JFS_SUPERBLOCK_V2:
1409                 return 0;
1410         case JFS_SUPERBLOCK_V1:
1411                 return journal_convert_superblock_v1(journal, sb);
1412         default:
1413                 break;
1414         }
1415         return -EINVAL;
1416 }
1417
1418 static int journal_convert_superblock_v1(journal_t *journal,
1419                                          journal_superblock_t *sb)
1420 {
1421         int offset, blocksize;
1422         struct buffer_head *bh;
1423
1424         printk(KERN_WARNING
1425                 "JBD: Converting superblock from version 1 to 2.\n");
1426
1427         /* Pre-initialise new fields to zero */
1428         offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1429         blocksize = be32_to_cpu(sb->s_blocksize);
1430         memset(&sb->s_feature_compat, 0, blocksize-offset);
1431
1432         sb->s_nr_users = cpu_to_be32(1);
1433         sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1434         journal->j_format_version = 2;
1435
1436         bh = journal->j_sb_buffer;
1437         BUFFER_TRACE(bh, "marking dirty");
1438         mark_buffer_dirty(bh);
1439         sync_dirty_buffer(bh);
1440         return 0;
1441 }
1442
1443
1444 /**
1445  * int journal_flush () - Flush journal
1446  * @journal: Journal to act on.
1447  *
1448  * Flush all data for a given journal to disk and empty the journal.
1449  * Filesystems can use this when remounting readonly to ensure that
1450  * recovery does not need to happen on remount.
1451  */
1452
1453 int journal_flush(journal_t *journal)
1454 {
1455         int err = 0;
1456         transaction_t *transaction = NULL;
1457         unsigned int old_tail;
1458
1459         spin_lock(&journal->j_state_lock);
1460
1461         /* Force everything buffered to the log... */
1462         if (journal->j_running_transaction) {
1463                 transaction = journal->j_running_transaction;
1464                 __log_start_commit(journal, transaction->t_tid);
1465         } else if (journal->j_committing_transaction)
1466                 transaction = journal->j_committing_transaction;
1467
1468         /* Wait for the log commit to complete... */
1469         if (transaction) {
1470                 tid_t tid = transaction->t_tid;
1471
1472                 spin_unlock(&journal->j_state_lock);
1473                 log_wait_commit(journal, tid);
1474         } else {
1475                 spin_unlock(&journal->j_state_lock);
1476         }
1477
1478         /* ...and flush everything in the log out to disk. */
1479         spin_lock(&journal->j_list_lock);
1480         while (!err && journal->j_checkpoint_transactions != NULL) {
1481                 spin_unlock(&journal->j_list_lock);
1482                 mutex_lock(&journal->j_checkpoint_mutex);
1483                 err = log_do_checkpoint(journal);
1484                 mutex_unlock(&journal->j_checkpoint_mutex);
1485                 spin_lock(&journal->j_list_lock);
1486         }
1487         spin_unlock(&journal->j_list_lock);
1488
1489         if (is_journal_aborted(journal))
1490                 return -EIO;
1491
1492         cleanup_journal_tail(journal);
1493
1494         /* Finally, mark the journal as really needing no recovery.
1495          * This sets s_start==0 in the underlying superblock, which is
1496          * the magic code for a fully-recovered superblock.  Any future
1497          * commits of data to the journal will restore the current
1498          * s_start value. */
1499         spin_lock(&journal->j_state_lock);
1500         old_tail = journal->j_tail;
1501         journal->j_tail = 0;
1502         spin_unlock(&journal->j_state_lock);
1503         journal_update_superblock(journal, 1);
1504         spin_lock(&journal->j_state_lock);
1505         journal->j_tail = old_tail;
1506
1507         J_ASSERT(!journal->j_running_transaction);
1508         J_ASSERT(!journal->j_committing_transaction);
1509         J_ASSERT(!journal->j_checkpoint_transactions);
1510         J_ASSERT(journal->j_head == journal->j_tail);
1511         J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1512         spin_unlock(&journal->j_state_lock);
1513         return 0;
1514 }
1515
1516 /**
1517  * int journal_wipe() - Wipe journal contents
1518  * @journal: Journal to act on.
1519  * @write: flag (see below)
1520  *
1521  * Wipe out all of the contents of a journal, safely.  This will produce
1522  * a warning if the journal contains any valid recovery information.
1523  * Must be called between journal_init_*() and journal_load().
1524  *
1525  * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1526  * we merely suppress recovery.
1527  */
1528
1529 int journal_wipe(journal_t *journal, int write)
1530 {
1531         int err = 0;
1532
1533         J_ASSERT (!(journal->j_flags & JFS_LOADED));
1534
1535         err = load_superblock(journal);
1536         if (err)
1537                 return err;
1538
1539         if (!journal->j_tail)
1540                 goto no_recovery;
1541
1542         printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1543                 write ? "Clearing" : "Ignoring");
1544
1545         err = journal_skip_recovery(journal);
1546         if (write)
1547                 journal_update_superblock(journal, 1);
1548
1549  no_recovery:
1550         return err;
1551 }
1552
1553 /*
1554  * journal_dev_name: format a character string to describe on what
1555  * device this journal is present.
1556  */
1557
1558 static const char *journal_dev_name(journal_t *journal, char *buffer)
1559 {
1560         struct block_device *bdev;
1561
1562         if (journal->j_inode)
1563                 bdev = journal->j_inode->i_sb->s_bdev;
1564         else
1565                 bdev = journal->j_dev;
1566
1567         return bdevname(bdev, buffer);
1568 }
1569
1570 /*
1571  * Journal abort has very specific semantics, which we describe
1572  * for journal abort.
1573  *
1574  * Two internal function, which provide abort to te jbd layer
1575  * itself are here.
1576  */
1577
1578 /*
1579  * Quick version for internal journal use (doesn't lock the journal).
1580  * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1581  * and don't attempt to make any other journal updates.
1582  */
1583 static void __journal_abort_hard(journal_t *journal)
1584 {
1585         transaction_t *transaction;
1586         char b[BDEVNAME_SIZE];
1587
1588         if (journal->j_flags & JFS_ABORT)
1589                 return;
1590
1591         printk(KERN_ERR "Aborting journal on device %s.\n",
1592                 journal_dev_name(journal, b));
1593
1594         spin_lock(&journal->j_state_lock);
1595         journal->j_flags |= JFS_ABORT;
1596         transaction = journal->j_running_transaction;
1597         if (transaction)
1598                 __log_start_commit(journal, transaction->t_tid);
1599         spin_unlock(&journal->j_state_lock);
1600 }
1601
1602 /* Soft abort: record the abort error status in the journal superblock,
1603  * but don't do any other IO. */
1604 static void __journal_abort_soft (journal_t *journal, int errno)
1605 {
1606         if (journal->j_flags & JFS_ABORT)
1607                 return;
1608
1609         if (!journal->j_errno)
1610                 journal->j_errno = errno;
1611
1612         __journal_abort_hard(journal);
1613
1614         if (errno)
1615                 journal_update_superblock(journal, 1);
1616 }
1617
1618 /**
1619  * void journal_abort () - Shutdown the journal immediately.
1620  * @journal: the journal to shutdown.
1621  * @errno:   an error number to record in the journal indicating
1622  *           the reason for the shutdown.
1623  *
1624  * Perform a complete, immediate shutdown of the ENTIRE
1625  * journal (not of a single transaction).  This operation cannot be
1626  * undone without closing and reopening the journal.
1627  *
1628  * The journal_abort function is intended to support higher level error
1629  * recovery mechanisms such as the ext2/ext3 remount-readonly error
1630  * mode.
1631  *
1632  * Journal abort has very specific semantics.  Any existing dirty,
1633  * unjournaled buffers in the main filesystem will still be written to
1634  * disk by bdflush, but the journaling mechanism will be suspended
1635  * immediately and no further transaction commits will be honoured.
1636  *
1637  * Any dirty, journaled buffers will be written back to disk without
1638  * hitting the journal.  Atomicity cannot be guaranteed on an aborted
1639  * filesystem, but we _do_ attempt to leave as much data as possible
1640  * behind for fsck to use for cleanup.
1641  *
1642  * Any attempt to get a new transaction handle on a journal which is in
1643  * ABORT state will just result in an -EROFS error return.  A
1644  * journal_stop on an existing handle will return -EIO if we have
1645  * entered abort state during the update.
1646  *
1647  * Recursive transactions are not disturbed by journal abort until the
1648  * final journal_stop, which will receive the -EIO error.
1649  *
1650  * Finally, the journal_abort call allows the caller to supply an errno
1651  * which will be recorded (if possible) in the journal superblock.  This
1652  * allows a client to record failure conditions in the middle of a
1653  * transaction without having to complete the transaction to record the
1654  * failure to disk.  ext3_error, for example, now uses this
1655  * functionality.
1656  *
1657  * Errors which originate from within the journaling layer will NOT
1658  * supply an errno; a null errno implies that absolutely no further
1659  * writes are done to the journal (unless there are any already in
1660  * progress).
1661  *
1662  */
1663
1664 void journal_abort(journal_t *journal, int errno)
1665 {
1666         __journal_abort_soft(journal, errno);
1667 }
1668
1669 /**
1670  * int journal_errno () - returns the journal's error state.
1671  * @journal: journal to examine.
1672  *
1673  * This is the errno numbet set with journal_abort(), the last
1674  * time the journal was mounted - if the journal was stopped
1675  * without calling abort this will be 0.
1676  *
1677  * If the journal has been aborted on this mount time -EROFS will
1678  * be returned.
1679  */
1680 int journal_errno(journal_t *journal)
1681 {
1682         int err;
1683
1684         spin_lock(&journal->j_state_lock);
1685         if (journal->j_flags & JFS_ABORT)
1686                 err = -EROFS;
1687         else
1688                 err = journal->j_errno;
1689         spin_unlock(&journal->j_state_lock);
1690         return err;
1691 }
1692
1693 /**
1694  * int journal_clear_err () - clears the journal's error state
1695  * @journal: journal to act on.
1696  *
1697  * An error must be cleared or Acked to take a FS out of readonly
1698  * mode.
1699  */
1700 int journal_clear_err(journal_t *journal)
1701 {
1702         int err = 0;
1703
1704         spin_lock(&journal->j_state_lock);
1705         if (journal->j_flags & JFS_ABORT)
1706                 err = -EROFS;
1707         else
1708                 journal->j_errno = 0;
1709         spin_unlock(&journal->j_state_lock);
1710         return err;
1711 }
1712
1713 /**
1714  * void journal_ack_err() - Ack journal err.
1715  * @journal: journal to act on.
1716  *
1717  * An error must be cleared or Acked to take a FS out of readonly
1718  * mode.
1719  */
1720 void journal_ack_err(journal_t *journal)
1721 {
1722         spin_lock(&journal->j_state_lock);
1723         if (journal->j_errno)
1724                 journal->j_flags |= JFS_ACK_ERR;
1725         spin_unlock(&journal->j_state_lock);
1726 }
1727
1728 int journal_blocks_per_page(struct inode *inode)
1729 {
1730         return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1731 }
1732
1733 /*
1734  * Journal_head storage management
1735  */
1736 static struct kmem_cache *journal_head_cache;
1737 #ifdef CONFIG_JBD_DEBUG
1738 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1739 #endif
1740
1741 static int journal_init_journal_head_cache(void)
1742 {
1743         int retval;
1744
1745         J_ASSERT(journal_head_cache == NULL);
1746         journal_head_cache = kmem_cache_create("journal_head",
1747                                 sizeof(struct journal_head),
1748                                 0,              /* offset */
1749                                 SLAB_TEMPORARY, /* flags */
1750                                 NULL);          /* ctor */
1751         retval = 0;
1752         if (!journal_head_cache) {
1753                 retval = -ENOMEM;
1754                 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1755         }
1756         return retval;
1757 }
1758
1759 static void journal_destroy_journal_head_cache(void)
1760 {
1761         if (journal_head_cache) {
1762                 kmem_cache_destroy(journal_head_cache);
1763                 journal_head_cache = NULL;
1764         }
1765 }
1766
1767 /*
1768  * journal_head splicing and dicing
1769  */
1770 static struct journal_head *journal_alloc_journal_head(void)
1771 {
1772         struct journal_head *ret;
1773
1774 #ifdef CONFIG_JBD_DEBUG
1775         atomic_inc(&nr_journal_heads);
1776 #endif
1777         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1778         if (ret == NULL) {
1779                 jbd_debug(1, "out of memory for journal_head\n");
1780                 printk_ratelimited(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1781                                    __func__);
1782
1783                 while (ret == NULL) {
1784                         yield();
1785                         ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1786                 }
1787         }
1788         return ret;
1789 }
1790
1791 static void journal_free_journal_head(struct journal_head *jh)
1792 {
1793 #ifdef CONFIG_JBD_DEBUG
1794         atomic_dec(&nr_journal_heads);
1795         memset(jh, JBD_POISON_FREE, sizeof(*jh));
1796 #endif
1797         kmem_cache_free(journal_head_cache, jh);
1798 }
1799
1800 /*
1801  * A journal_head is attached to a buffer_head whenever JBD has an
1802  * interest in the buffer.
1803  *
1804  * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1805  * is set.  This bit is tested in core kernel code where we need to take
1806  * JBD-specific actions.  Testing the zeroness of ->b_private is not reliable
1807  * there.
1808  *
1809  * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1810  *
1811  * When a buffer has its BH_JBD bit set it is immune from being released by
1812  * core kernel code, mainly via ->b_count.
1813  *
1814  * A journal_head is detached from its buffer_head when the journal_head's
1815  * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
1816  * transaction (b_cp_transaction) hold their references to b_jcount.
1817  *
1818  * Various places in the kernel want to attach a journal_head to a buffer_head
1819  * _before_ attaching the journal_head to a transaction.  To protect the
1820  * journal_head in this situation, journal_add_journal_head elevates the
1821  * journal_head's b_jcount refcount by one.  The caller must call
1822  * journal_put_journal_head() to undo this.
1823  *
1824  * So the typical usage would be:
1825  *
1826  *      (Attach a journal_head if needed.  Increments b_jcount)
1827  *      struct journal_head *jh = journal_add_journal_head(bh);
1828  *      ...
1829  *      (Get another reference for transaction)
1830  *      journal_grab_journal_head(bh);
1831  *      jh->b_transaction = xxx;
1832  *      (Put original reference)
1833  *      journal_put_journal_head(jh);
1834  */
1835
1836 /*
1837  * Give a buffer_head a journal_head.
1838  *
1839  * May sleep.
1840  */
1841 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1842 {
1843         struct journal_head *jh;
1844         struct journal_head *new_jh = NULL;
1845
1846 repeat:
1847         if (!buffer_jbd(bh)) {
1848                 new_jh = journal_alloc_journal_head();
1849                 memset(new_jh, 0, sizeof(*new_jh));
1850         }
1851
1852         jbd_lock_bh_journal_head(bh);
1853         if (buffer_jbd(bh)) {
1854                 jh = bh2jh(bh);
1855         } else {
1856                 J_ASSERT_BH(bh,
1857                         (atomic_read(&bh->b_count) > 0) ||
1858                         (bh->b_page && bh->b_page->mapping));
1859
1860                 if (!new_jh) {
1861                         jbd_unlock_bh_journal_head(bh);
1862                         goto repeat;
1863                 }
1864
1865                 jh = new_jh;
1866                 new_jh = NULL;          /* We consumed it */
1867                 set_buffer_jbd(bh);
1868                 bh->b_private = jh;
1869                 jh->b_bh = bh;
1870                 get_bh(bh);
1871                 BUFFER_TRACE(bh, "added journal_head");
1872         }
1873         jh->b_jcount++;
1874         jbd_unlock_bh_journal_head(bh);
1875         if (new_jh)
1876                 journal_free_journal_head(new_jh);
1877         return bh->b_private;
1878 }
1879
1880 /*
1881  * Grab a ref against this buffer_head's journal_head.  If it ended up not
1882  * having a journal_head, return NULL
1883  */
1884 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1885 {
1886         struct journal_head *jh = NULL;
1887
1888         jbd_lock_bh_journal_head(bh);
1889         if (buffer_jbd(bh)) {
1890                 jh = bh2jh(bh);
1891                 jh->b_jcount++;
1892         }
1893         jbd_unlock_bh_journal_head(bh);
1894         return jh;
1895 }
1896
1897 static void __journal_remove_journal_head(struct buffer_head *bh)
1898 {
1899         struct journal_head *jh = bh2jh(bh);
1900
1901         J_ASSERT_JH(jh, jh->b_jcount >= 0);
1902         J_ASSERT_JH(jh, jh->b_transaction == NULL);
1903         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1904         J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
1905         J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1906         J_ASSERT_BH(bh, buffer_jbd(bh));
1907         J_ASSERT_BH(bh, jh2bh(jh) == bh);
1908         BUFFER_TRACE(bh, "remove journal_head");
1909         if (jh->b_frozen_data) {
1910                 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
1911                 jbd_free(jh->b_frozen_data, bh->b_size);
1912         }
1913         if (jh->b_committed_data) {
1914                 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
1915                 jbd_free(jh->b_committed_data, bh->b_size);
1916         }
1917         bh->b_private = NULL;
1918         jh->b_bh = NULL;        /* debug, really */
1919         clear_buffer_jbd(bh);
1920         journal_free_journal_head(jh);
1921 }
1922
1923 /*
1924  * Drop a reference on the passed journal_head.  If it fell to zero then
1925  * release the journal_head from the buffer_head.
1926  */
1927 void journal_put_journal_head(struct journal_head *jh)
1928 {
1929         struct buffer_head *bh = jh2bh(jh);
1930
1931         jbd_lock_bh_journal_head(bh);
1932         J_ASSERT_JH(jh, jh->b_jcount > 0);
1933         --jh->b_jcount;
1934         if (!jh->b_jcount) {
1935                 __journal_remove_journal_head(bh);
1936                 jbd_unlock_bh_journal_head(bh);
1937                 __brelse(bh);
1938         } else
1939                 jbd_unlock_bh_journal_head(bh);
1940 }
1941
1942 /*
1943  * debugfs tunables
1944  */
1945 #ifdef CONFIG_JBD_DEBUG
1946
1947 u8 journal_enable_debug __read_mostly;
1948 EXPORT_SYMBOL(journal_enable_debug);
1949
1950 static struct dentry *jbd_debugfs_dir;
1951 static struct dentry *jbd_debug;
1952
1953 static void __init jbd_create_debugfs_entry(void)
1954 {
1955         jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
1956         if (jbd_debugfs_dir)
1957                 jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO | S_IWUSR,
1958                                                jbd_debugfs_dir,
1959                                                &journal_enable_debug);
1960 }
1961
1962 static void __exit jbd_remove_debugfs_entry(void)
1963 {
1964         debugfs_remove(jbd_debug);
1965         debugfs_remove(jbd_debugfs_dir);
1966 }
1967
1968 #else
1969
1970 static inline void jbd_create_debugfs_entry(void)
1971 {
1972 }
1973
1974 static inline void jbd_remove_debugfs_entry(void)
1975 {
1976 }
1977
1978 #endif
1979
1980 struct kmem_cache *jbd_handle_cache;
1981
1982 static int __init journal_init_handle_cache(void)
1983 {
1984         jbd_handle_cache = kmem_cache_create("journal_handle",
1985                                 sizeof(handle_t),
1986                                 0,              /* offset */
1987                                 SLAB_TEMPORARY, /* flags */
1988                                 NULL);          /* ctor */
1989         if (jbd_handle_cache == NULL) {
1990                 printk(KERN_EMERG "JBD: failed to create handle cache\n");
1991                 return -ENOMEM;
1992         }
1993         return 0;
1994 }
1995
1996 static void journal_destroy_handle_cache(void)
1997 {
1998         if (jbd_handle_cache)
1999                 kmem_cache_destroy(jbd_handle_cache);
2000 }
2001
2002 /*
2003  * Module startup and shutdown
2004  */
2005
2006 static int __init journal_init_caches(void)
2007 {
2008         int ret;
2009
2010         ret = journal_init_revoke_caches();
2011         if (ret == 0)
2012                 ret = journal_init_journal_head_cache();
2013         if (ret == 0)
2014                 ret = journal_init_handle_cache();
2015         return ret;
2016 }
2017
2018 static void journal_destroy_caches(void)
2019 {
2020         journal_destroy_revoke_caches();
2021         journal_destroy_journal_head_cache();
2022         journal_destroy_handle_cache();
2023 }
2024
2025 static int __init journal_init(void)
2026 {
2027         int ret;
2028
2029         BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2030
2031         ret = journal_init_caches();
2032         if (ret != 0)
2033                 journal_destroy_caches();
2034         jbd_create_debugfs_entry();
2035         return ret;
2036 }
2037
2038 static void __exit journal_exit(void)
2039 {
2040 #ifdef CONFIG_JBD_DEBUG
2041         int n = atomic_read(&nr_journal_heads);
2042         if (n)
2043                 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2044 #endif
2045         jbd_remove_debugfs_entry();
2046         journal_destroy_caches();
2047 }
2048
2049 MODULE_LICENSE("GPL");
2050 module_init(journal_init);
2051 module_exit(journal_exit);
2052