Merge tag 'for_v5.3-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[platform/kernel/linux-rpi.git] / fs / iomap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Red Hat, Inc.
4  * Copyright (c) 2016-2018 Christoph Hellwig.
5  */
6 #include <linux/module.h>
7 #include <linux/compiler.h>
8 #include <linux/fs.h>
9 #include <linux/iomap.h>
10 #include <linux/uaccess.h>
11 #include <linux/gfp.h>
12 #include <linux/migrate.h>
13 #include <linux/mm.h>
14 #include <linux/mm_inline.h>
15 #include <linux/swap.h>
16 #include <linux/pagemap.h>
17 #include <linux/pagevec.h>
18 #include <linux/file.h>
19 #include <linux/uio.h>
20 #include <linux/backing-dev.h>
21 #include <linux/buffer_head.h>
22 #include <linux/task_io_accounting_ops.h>
23 #include <linux/dax.h>
24 #include <linux/sched/signal.h>
25
26 #include "internal.h"
27
28 /*
29  * Execute a iomap write on a segment of the mapping that spans a
30  * contiguous range of pages that have identical block mapping state.
31  *
32  * This avoids the need to map pages individually, do individual allocations
33  * for each page and most importantly avoid the need for filesystem specific
34  * locking per page. Instead, all the operations are amortised over the entire
35  * range of pages. It is assumed that the filesystems will lock whatever
36  * resources they require in the iomap_begin call, and release them in the
37  * iomap_end call.
38  */
39 loff_t
40 iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags,
41                 const struct iomap_ops *ops, void *data, iomap_actor_t actor)
42 {
43         struct iomap iomap = { 0 };
44         loff_t written = 0, ret;
45
46         /*
47          * Need to map a range from start position for length bytes. This can
48          * span multiple pages - it is only guaranteed to return a range of a
49          * single type of pages (e.g. all into a hole, all mapped or all
50          * unwritten). Failure at this point has nothing to undo.
51          *
52          * If allocation is required for this range, reserve the space now so
53          * that the allocation is guaranteed to succeed later on. Once we copy
54          * the data into the page cache pages, then we cannot fail otherwise we
55          * expose transient stale data. If the reserve fails, we can safely
56          * back out at this point as there is nothing to undo.
57          */
58         ret = ops->iomap_begin(inode, pos, length, flags, &iomap);
59         if (ret)
60                 return ret;
61         if (WARN_ON(iomap.offset > pos))
62                 return -EIO;
63         if (WARN_ON(iomap.length == 0))
64                 return -EIO;
65
66         /*
67          * Cut down the length to the one actually provided by the filesystem,
68          * as it might not be able to give us the whole size that we requested.
69          */
70         if (iomap.offset + iomap.length < pos + length)
71                 length = iomap.offset + iomap.length - pos;
72
73         /*
74          * Now that we have guaranteed that the space allocation will succeed.
75          * we can do the copy-in page by page without having to worry about
76          * failures exposing transient data.
77          */
78         written = actor(inode, pos, length, data, &iomap);
79
80         /*
81          * Now the data has been copied, commit the range we've copied.  This
82          * should not fail unless the filesystem has had a fatal error.
83          */
84         if (ops->iomap_end) {
85                 ret = ops->iomap_end(inode, pos, length,
86                                      written > 0 ? written : 0,
87                                      flags, &iomap);
88         }
89
90         return written ? written : ret;
91 }
92
93 static sector_t
94 iomap_sector(struct iomap *iomap, loff_t pos)
95 {
96         return (iomap->addr + pos - iomap->offset) >> SECTOR_SHIFT;
97 }
98
99 static struct iomap_page *
100 iomap_page_create(struct inode *inode, struct page *page)
101 {
102         struct iomap_page *iop = to_iomap_page(page);
103
104         if (iop || i_blocksize(inode) == PAGE_SIZE)
105                 return iop;
106
107         iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
108         atomic_set(&iop->read_count, 0);
109         atomic_set(&iop->write_count, 0);
110         bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
111
112         /*
113          * migrate_page_move_mapping() assumes that pages with private data have
114          * their count elevated by 1.
115          */
116         get_page(page);
117         set_page_private(page, (unsigned long)iop);
118         SetPagePrivate(page);
119         return iop;
120 }
121
122 static void
123 iomap_page_release(struct page *page)
124 {
125         struct iomap_page *iop = to_iomap_page(page);
126
127         if (!iop)
128                 return;
129         WARN_ON_ONCE(atomic_read(&iop->read_count));
130         WARN_ON_ONCE(atomic_read(&iop->write_count));
131         ClearPagePrivate(page);
132         set_page_private(page, 0);
133         put_page(page);
134         kfree(iop);
135 }
136
137 /*
138  * Calculate the range inside the page that we actually need to read.
139  */
140 static void
141 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
142                 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
143 {
144         loff_t orig_pos = *pos;
145         loff_t isize = i_size_read(inode);
146         unsigned block_bits = inode->i_blkbits;
147         unsigned block_size = (1 << block_bits);
148         unsigned poff = offset_in_page(*pos);
149         unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
150         unsigned first = poff >> block_bits;
151         unsigned last = (poff + plen - 1) >> block_bits;
152
153         /*
154          * If the block size is smaller than the page size we need to check the
155          * per-block uptodate status and adjust the offset and length if needed
156          * to avoid reading in already uptodate ranges.
157          */
158         if (iop) {
159                 unsigned int i;
160
161                 /* move forward for each leading block marked uptodate */
162                 for (i = first; i <= last; i++) {
163                         if (!test_bit(i, iop->uptodate))
164                                 break;
165                         *pos += block_size;
166                         poff += block_size;
167                         plen -= block_size;
168                         first++;
169                 }
170
171                 /* truncate len if we find any trailing uptodate block(s) */
172                 for ( ; i <= last; i++) {
173                         if (test_bit(i, iop->uptodate)) {
174                                 plen -= (last - i + 1) * block_size;
175                                 last = i - 1;
176                                 break;
177                         }
178                 }
179         }
180
181         /*
182          * If the extent spans the block that contains the i_size we need to
183          * handle both halves separately so that we properly zero data in the
184          * page cache for blocks that are entirely outside of i_size.
185          */
186         if (orig_pos <= isize && orig_pos + length > isize) {
187                 unsigned end = offset_in_page(isize - 1) >> block_bits;
188
189                 if (first <= end && last > end)
190                         plen -= (last - end) * block_size;
191         }
192
193         *offp = poff;
194         *lenp = plen;
195 }
196
197 static void
198 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
199 {
200         struct iomap_page *iop = to_iomap_page(page);
201         struct inode *inode = page->mapping->host;
202         unsigned first = off >> inode->i_blkbits;
203         unsigned last = (off + len - 1) >> inode->i_blkbits;
204         unsigned int i;
205         bool uptodate = true;
206
207         if (iop) {
208                 for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
209                         if (i >= first && i <= last)
210                                 set_bit(i, iop->uptodate);
211                         else if (!test_bit(i, iop->uptodate))
212                                 uptodate = false;
213                 }
214         }
215
216         if (uptodate && !PageError(page))
217                 SetPageUptodate(page);
218 }
219
220 static void
221 iomap_read_finish(struct iomap_page *iop, struct page *page)
222 {
223         if (!iop || atomic_dec_and_test(&iop->read_count))
224                 unlock_page(page);
225 }
226
227 static void
228 iomap_read_page_end_io(struct bio_vec *bvec, int error)
229 {
230         struct page *page = bvec->bv_page;
231         struct iomap_page *iop = to_iomap_page(page);
232
233         if (unlikely(error)) {
234                 ClearPageUptodate(page);
235                 SetPageError(page);
236         } else {
237                 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
238         }
239
240         iomap_read_finish(iop, page);
241 }
242
243 static void
244 iomap_read_end_io(struct bio *bio)
245 {
246         int error = blk_status_to_errno(bio->bi_status);
247         struct bio_vec *bvec;
248         struct bvec_iter_all iter_all;
249
250         bio_for_each_segment_all(bvec, bio, iter_all)
251                 iomap_read_page_end_io(bvec, error);
252         bio_put(bio);
253 }
254
255 struct iomap_readpage_ctx {
256         struct page             *cur_page;
257         bool                    cur_page_in_bio;
258         bool                    is_readahead;
259         struct bio              *bio;
260         struct list_head        *pages;
261 };
262
263 static void
264 iomap_read_inline_data(struct inode *inode, struct page *page,
265                 struct iomap *iomap)
266 {
267         size_t size = i_size_read(inode);
268         void *addr;
269
270         if (PageUptodate(page))
271                 return;
272
273         BUG_ON(page->index);
274         BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
275
276         addr = kmap_atomic(page);
277         memcpy(addr, iomap->inline_data, size);
278         memset(addr + size, 0, PAGE_SIZE - size);
279         kunmap_atomic(addr);
280         SetPageUptodate(page);
281 }
282
283 static loff_t
284 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
285                 struct iomap *iomap)
286 {
287         struct iomap_readpage_ctx *ctx = data;
288         struct page *page = ctx->cur_page;
289         struct iomap_page *iop = iomap_page_create(inode, page);
290         bool same_page = false, is_contig = false;
291         loff_t orig_pos = pos;
292         unsigned poff, plen;
293         sector_t sector;
294
295         if (iomap->type == IOMAP_INLINE) {
296                 WARN_ON_ONCE(pos);
297                 iomap_read_inline_data(inode, page, iomap);
298                 return PAGE_SIZE;
299         }
300
301         /* zero post-eof blocks as the page may be mapped */
302         iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
303         if (plen == 0)
304                 goto done;
305
306         if (iomap->type != IOMAP_MAPPED || pos >= i_size_read(inode)) {
307                 zero_user(page, poff, plen);
308                 iomap_set_range_uptodate(page, poff, plen);
309                 goto done;
310         }
311
312         ctx->cur_page_in_bio = true;
313
314         /*
315          * Try to merge into a previous segment if we can.
316          */
317         sector = iomap_sector(iomap, pos);
318         if (ctx->bio && bio_end_sector(ctx->bio) == sector)
319                 is_contig = true;
320
321         if (is_contig &&
322             __bio_try_merge_page(ctx->bio, page, plen, poff, &same_page)) {
323                 if (!same_page && iop)
324                         atomic_inc(&iop->read_count);
325                 goto done;
326         }
327
328         /*
329          * If we start a new segment we need to increase the read count, and we
330          * need to do so before submitting any previous full bio to make sure
331          * that we don't prematurely unlock the page.
332          */
333         if (iop)
334                 atomic_inc(&iop->read_count);
335
336         if (!ctx->bio || !is_contig || bio_full(ctx->bio, plen)) {
337                 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
338                 int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
339
340                 if (ctx->bio)
341                         submit_bio(ctx->bio);
342
343                 if (ctx->is_readahead) /* same as readahead_gfp_mask */
344                         gfp |= __GFP_NORETRY | __GFP_NOWARN;
345                 ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
346                 ctx->bio->bi_opf = REQ_OP_READ;
347                 if (ctx->is_readahead)
348                         ctx->bio->bi_opf |= REQ_RAHEAD;
349                 ctx->bio->bi_iter.bi_sector = sector;
350                 bio_set_dev(ctx->bio, iomap->bdev);
351                 ctx->bio->bi_end_io = iomap_read_end_io;
352         }
353
354         bio_add_page(ctx->bio, page, plen, poff);
355 done:
356         /*
357          * Move the caller beyond our range so that it keeps making progress.
358          * For that we have to include any leading non-uptodate ranges, but
359          * we can skip trailing ones as they will be handled in the next
360          * iteration.
361          */
362         return pos - orig_pos + plen;
363 }
364
365 int
366 iomap_readpage(struct page *page, const struct iomap_ops *ops)
367 {
368         struct iomap_readpage_ctx ctx = { .cur_page = page };
369         struct inode *inode = page->mapping->host;
370         unsigned poff;
371         loff_t ret;
372
373         for (poff = 0; poff < PAGE_SIZE; poff += ret) {
374                 ret = iomap_apply(inode, page_offset(page) + poff,
375                                 PAGE_SIZE - poff, 0, ops, &ctx,
376                                 iomap_readpage_actor);
377                 if (ret <= 0) {
378                         WARN_ON_ONCE(ret == 0);
379                         SetPageError(page);
380                         break;
381                 }
382         }
383
384         if (ctx.bio) {
385                 submit_bio(ctx.bio);
386                 WARN_ON_ONCE(!ctx.cur_page_in_bio);
387         } else {
388                 WARN_ON_ONCE(ctx.cur_page_in_bio);
389                 unlock_page(page);
390         }
391
392         /*
393          * Just like mpage_readpages and block_read_full_page we always
394          * return 0 and just mark the page as PageError on errors.  This
395          * should be cleaned up all through the stack eventually.
396          */
397         return 0;
398 }
399 EXPORT_SYMBOL_GPL(iomap_readpage);
400
401 static struct page *
402 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
403                 loff_t length, loff_t *done)
404 {
405         while (!list_empty(pages)) {
406                 struct page *page = lru_to_page(pages);
407
408                 if (page_offset(page) >= (u64)pos + length)
409                         break;
410
411                 list_del(&page->lru);
412                 if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
413                                 GFP_NOFS))
414                         return page;
415
416                 /*
417                  * If we already have a page in the page cache at index we are
418                  * done.  Upper layers don't care if it is uptodate after the
419                  * readpages call itself as every page gets checked again once
420                  * actually needed.
421                  */
422                 *done += PAGE_SIZE;
423                 put_page(page);
424         }
425
426         return NULL;
427 }
428
429 static loff_t
430 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
431                 void *data, struct iomap *iomap)
432 {
433         struct iomap_readpage_ctx *ctx = data;
434         loff_t done, ret;
435
436         for (done = 0; done < length; done += ret) {
437                 if (ctx->cur_page && offset_in_page(pos + done) == 0) {
438                         if (!ctx->cur_page_in_bio)
439                                 unlock_page(ctx->cur_page);
440                         put_page(ctx->cur_page);
441                         ctx->cur_page = NULL;
442                 }
443                 if (!ctx->cur_page) {
444                         ctx->cur_page = iomap_next_page(inode, ctx->pages,
445                                         pos, length, &done);
446                         if (!ctx->cur_page)
447                                 break;
448                         ctx->cur_page_in_bio = false;
449                 }
450                 ret = iomap_readpage_actor(inode, pos + done, length - done,
451                                 ctx, iomap);
452         }
453
454         return done;
455 }
456
457 int
458 iomap_readpages(struct address_space *mapping, struct list_head *pages,
459                 unsigned nr_pages, const struct iomap_ops *ops)
460 {
461         struct iomap_readpage_ctx ctx = {
462                 .pages          = pages,
463                 .is_readahead   = true,
464         };
465         loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
466         loff_t last = page_offset(list_entry(pages->next, struct page, lru));
467         loff_t length = last - pos + PAGE_SIZE, ret = 0;
468
469         while (length > 0) {
470                 ret = iomap_apply(mapping->host, pos, length, 0, ops,
471                                 &ctx, iomap_readpages_actor);
472                 if (ret <= 0) {
473                         WARN_ON_ONCE(ret == 0);
474                         goto done;
475                 }
476                 pos += ret;
477                 length -= ret;
478         }
479         ret = 0;
480 done:
481         if (ctx.bio)
482                 submit_bio(ctx.bio);
483         if (ctx.cur_page) {
484                 if (!ctx.cur_page_in_bio)
485                         unlock_page(ctx.cur_page);
486                 put_page(ctx.cur_page);
487         }
488
489         /*
490          * Check that we didn't lose a page due to the arcance calling
491          * conventions..
492          */
493         WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
494         return ret;
495 }
496 EXPORT_SYMBOL_GPL(iomap_readpages);
497
498 /*
499  * iomap_is_partially_uptodate checks whether blocks within a page are
500  * uptodate or not.
501  *
502  * Returns true if all blocks which correspond to a file portion
503  * we want to read within the page are uptodate.
504  */
505 int
506 iomap_is_partially_uptodate(struct page *page, unsigned long from,
507                 unsigned long count)
508 {
509         struct iomap_page *iop = to_iomap_page(page);
510         struct inode *inode = page->mapping->host;
511         unsigned len, first, last;
512         unsigned i;
513
514         /* Limit range to one page */
515         len = min_t(unsigned, PAGE_SIZE - from, count);
516
517         /* First and last blocks in range within page */
518         first = from >> inode->i_blkbits;
519         last = (from + len - 1) >> inode->i_blkbits;
520
521         if (iop) {
522                 for (i = first; i <= last; i++)
523                         if (!test_bit(i, iop->uptodate))
524                                 return 0;
525                 return 1;
526         }
527
528         return 0;
529 }
530 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
531
532 int
533 iomap_releasepage(struct page *page, gfp_t gfp_mask)
534 {
535         /*
536          * mm accommodates an old ext3 case where clean pages might not have had
537          * the dirty bit cleared. Thus, it can send actual dirty pages to
538          * ->releasepage() via shrink_active_list(), skip those here.
539          */
540         if (PageDirty(page) || PageWriteback(page))
541                 return 0;
542         iomap_page_release(page);
543         return 1;
544 }
545 EXPORT_SYMBOL_GPL(iomap_releasepage);
546
547 void
548 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
549 {
550         /*
551          * If we are invalidating the entire page, clear the dirty state from it
552          * and release it to avoid unnecessary buildup of the LRU.
553          */
554         if (offset == 0 && len == PAGE_SIZE) {
555                 WARN_ON_ONCE(PageWriteback(page));
556                 cancel_dirty_page(page);
557                 iomap_page_release(page);
558         }
559 }
560 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
561
562 #ifdef CONFIG_MIGRATION
563 int
564 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
565                 struct page *page, enum migrate_mode mode)
566 {
567         int ret;
568
569         ret = migrate_page_move_mapping(mapping, newpage, page, mode, 0);
570         if (ret != MIGRATEPAGE_SUCCESS)
571                 return ret;
572
573         if (page_has_private(page)) {
574                 ClearPagePrivate(page);
575                 get_page(newpage);
576                 set_page_private(newpage, page_private(page));
577                 set_page_private(page, 0);
578                 put_page(page);
579                 SetPagePrivate(newpage);
580         }
581
582         if (mode != MIGRATE_SYNC_NO_COPY)
583                 migrate_page_copy(newpage, page);
584         else
585                 migrate_page_states(newpage, page);
586         return MIGRATEPAGE_SUCCESS;
587 }
588 EXPORT_SYMBOL_GPL(iomap_migrate_page);
589 #endif /* CONFIG_MIGRATION */
590
591 static void
592 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
593 {
594         loff_t i_size = i_size_read(inode);
595
596         /*
597          * Only truncate newly allocated pages beyoned EOF, even if the
598          * write started inside the existing inode size.
599          */
600         if (pos + len > i_size)
601                 truncate_pagecache_range(inode, max(pos, i_size), pos + len);
602 }
603
604 static int
605 iomap_read_page_sync(struct inode *inode, loff_t block_start, struct page *page,
606                 unsigned poff, unsigned plen, unsigned from, unsigned to,
607                 struct iomap *iomap)
608 {
609         struct bio_vec bvec;
610         struct bio bio;
611
612         if (iomap->type != IOMAP_MAPPED || block_start >= i_size_read(inode)) {
613                 zero_user_segments(page, poff, from, to, poff + plen);
614                 iomap_set_range_uptodate(page, poff, plen);
615                 return 0;
616         }
617
618         bio_init(&bio, &bvec, 1);
619         bio.bi_opf = REQ_OP_READ;
620         bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
621         bio_set_dev(&bio, iomap->bdev);
622         __bio_add_page(&bio, page, plen, poff);
623         return submit_bio_wait(&bio);
624 }
625
626 static int
627 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len,
628                 struct page *page, struct iomap *iomap)
629 {
630         struct iomap_page *iop = iomap_page_create(inode, page);
631         loff_t block_size = i_blocksize(inode);
632         loff_t block_start = pos & ~(block_size - 1);
633         loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
634         unsigned from = offset_in_page(pos), to = from + len, poff, plen;
635         int status = 0;
636
637         if (PageUptodate(page))
638                 return 0;
639
640         do {
641                 iomap_adjust_read_range(inode, iop, &block_start,
642                                 block_end - block_start, &poff, &plen);
643                 if (plen == 0)
644                         break;
645
646                 if ((from > poff && from < poff + plen) ||
647                     (to > poff && to < poff + plen)) {
648                         status = iomap_read_page_sync(inode, block_start, page,
649                                         poff, plen, from, to, iomap);
650                         if (status)
651                                 break;
652                 }
653
654         } while ((block_start += plen) < block_end);
655
656         return status;
657 }
658
659 static int
660 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
661                 struct page **pagep, struct iomap *iomap)
662 {
663         const struct iomap_page_ops *page_ops = iomap->page_ops;
664         pgoff_t index = pos >> PAGE_SHIFT;
665         struct page *page;
666         int status = 0;
667
668         BUG_ON(pos + len > iomap->offset + iomap->length);
669
670         if (fatal_signal_pending(current))
671                 return -EINTR;
672
673         if (page_ops && page_ops->page_prepare) {
674                 status = page_ops->page_prepare(inode, pos, len, iomap);
675                 if (status)
676                         return status;
677         }
678
679         page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
680         if (!page) {
681                 status = -ENOMEM;
682                 goto out_no_page;
683         }
684
685         if (iomap->type == IOMAP_INLINE)
686                 iomap_read_inline_data(inode, page, iomap);
687         else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
688                 status = __block_write_begin_int(page, pos, len, NULL, iomap);
689         else
690                 status = __iomap_write_begin(inode, pos, len, page, iomap);
691
692         if (unlikely(status))
693                 goto out_unlock;
694
695         *pagep = page;
696         return 0;
697
698 out_unlock:
699         unlock_page(page);
700         put_page(page);
701         iomap_write_failed(inode, pos, len);
702
703 out_no_page:
704         if (page_ops && page_ops->page_done)
705                 page_ops->page_done(inode, pos, 0, NULL, iomap);
706         return status;
707 }
708
709 int
710 iomap_set_page_dirty(struct page *page)
711 {
712         struct address_space *mapping = page_mapping(page);
713         int newly_dirty;
714
715         if (unlikely(!mapping))
716                 return !TestSetPageDirty(page);
717
718         /*
719          * Lock out page->mem_cgroup migration to keep PageDirty
720          * synchronized with per-memcg dirty page counters.
721          */
722         lock_page_memcg(page);
723         newly_dirty = !TestSetPageDirty(page);
724         if (newly_dirty)
725                 __set_page_dirty(page, mapping, 0);
726         unlock_page_memcg(page);
727
728         if (newly_dirty)
729                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
730         return newly_dirty;
731 }
732 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
733
734 static int
735 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
736                 unsigned copied, struct page *page, struct iomap *iomap)
737 {
738         flush_dcache_page(page);
739
740         /*
741          * The blocks that were entirely written will now be uptodate, so we
742          * don't have to worry about a readpage reading them and overwriting a
743          * partial write.  However if we have encountered a short write and only
744          * partially written into a block, it will not be marked uptodate, so a
745          * readpage might come in and destroy our partial write.
746          *
747          * Do the simplest thing, and just treat any short write to a non
748          * uptodate page as a zero-length write, and force the caller to redo
749          * the whole thing.
750          */
751         if (unlikely(copied < len && !PageUptodate(page)))
752                 return 0;
753         iomap_set_range_uptodate(page, offset_in_page(pos), len);
754         iomap_set_page_dirty(page);
755         return copied;
756 }
757
758 static int
759 iomap_write_end_inline(struct inode *inode, struct page *page,
760                 struct iomap *iomap, loff_t pos, unsigned copied)
761 {
762         void *addr;
763
764         WARN_ON_ONCE(!PageUptodate(page));
765         BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
766
767         addr = kmap_atomic(page);
768         memcpy(iomap->inline_data + pos, addr + pos, copied);
769         kunmap_atomic(addr);
770
771         mark_inode_dirty(inode);
772         return copied;
773 }
774
775 static int
776 iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
777                 unsigned copied, struct page *page, struct iomap *iomap)
778 {
779         const struct iomap_page_ops *page_ops = iomap->page_ops;
780         int ret;
781
782         if (iomap->type == IOMAP_INLINE) {
783                 ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
784         } else if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
785                 ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
786                                 page, NULL);
787         } else {
788                 ret = __iomap_write_end(inode, pos, len, copied, page, iomap);
789         }
790
791         __generic_write_end(inode, pos, ret, page);
792         if (page_ops && page_ops->page_done)
793                 page_ops->page_done(inode, pos, copied, page, iomap);
794         put_page(page);
795
796         if (ret < len)
797                 iomap_write_failed(inode, pos, len);
798         return ret;
799 }
800
801 static loff_t
802 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
803                 struct iomap *iomap)
804 {
805         struct iov_iter *i = data;
806         long status = 0;
807         ssize_t written = 0;
808         unsigned int flags = AOP_FLAG_NOFS;
809
810         do {
811                 struct page *page;
812                 unsigned long offset;   /* Offset into pagecache page */
813                 unsigned long bytes;    /* Bytes to write to page */
814                 size_t copied;          /* Bytes copied from user */
815
816                 offset = offset_in_page(pos);
817                 bytes = min_t(unsigned long, PAGE_SIZE - offset,
818                                                 iov_iter_count(i));
819 again:
820                 if (bytes > length)
821                         bytes = length;
822
823                 /*
824                  * Bring in the user page that we will copy from _first_.
825                  * Otherwise there's a nasty deadlock on copying from the
826                  * same page as we're writing to, without it being marked
827                  * up-to-date.
828                  *
829                  * Not only is this an optimisation, but it is also required
830                  * to check that the address is actually valid, when atomic
831                  * usercopies are used, below.
832                  */
833                 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
834                         status = -EFAULT;
835                         break;
836                 }
837
838                 status = iomap_write_begin(inode, pos, bytes, flags, &page,
839                                 iomap);
840                 if (unlikely(status))
841                         break;
842
843                 if (mapping_writably_mapped(inode->i_mapping))
844                         flush_dcache_page(page);
845
846                 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
847
848                 flush_dcache_page(page);
849
850                 status = iomap_write_end(inode, pos, bytes, copied, page,
851                                 iomap);
852                 if (unlikely(status < 0))
853                         break;
854                 copied = status;
855
856                 cond_resched();
857
858                 iov_iter_advance(i, copied);
859                 if (unlikely(copied == 0)) {
860                         /*
861                          * If we were unable to copy any data at all, we must
862                          * fall back to a single segment length write.
863                          *
864                          * If we didn't fallback here, we could livelock
865                          * because not all segments in the iov can be copied at
866                          * once without a pagefault.
867                          */
868                         bytes = min_t(unsigned long, PAGE_SIZE - offset,
869                                                 iov_iter_single_seg_count(i));
870                         goto again;
871                 }
872                 pos += copied;
873                 written += copied;
874                 length -= copied;
875
876                 balance_dirty_pages_ratelimited(inode->i_mapping);
877         } while (iov_iter_count(i) && length);
878
879         return written ? written : status;
880 }
881
882 ssize_t
883 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
884                 const struct iomap_ops *ops)
885 {
886         struct inode *inode = iocb->ki_filp->f_mapping->host;
887         loff_t pos = iocb->ki_pos, ret = 0, written = 0;
888
889         while (iov_iter_count(iter)) {
890                 ret = iomap_apply(inode, pos, iov_iter_count(iter),
891                                 IOMAP_WRITE, ops, iter, iomap_write_actor);
892                 if (ret <= 0)
893                         break;
894                 pos += ret;
895                 written += ret;
896         }
897
898         return written ? written : ret;
899 }
900 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
901
902 static struct page *
903 __iomap_read_page(struct inode *inode, loff_t offset)
904 {
905         struct address_space *mapping = inode->i_mapping;
906         struct page *page;
907
908         page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
909         if (IS_ERR(page))
910                 return page;
911         if (!PageUptodate(page)) {
912                 put_page(page);
913                 return ERR_PTR(-EIO);
914         }
915         return page;
916 }
917
918 static loff_t
919 iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
920                 struct iomap *iomap)
921 {
922         long status = 0;
923         ssize_t written = 0;
924
925         do {
926                 struct page *page, *rpage;
927                 unsigned long offset;   /* Offset into pagecache page */
928                 unsigned long bytes;    /* Bytes to write to page */
929
930                 offset = offset_in_page(pos);
931                 bytes = min_t(loff_t, PAGE_SIZE - offset, length);
932
933                 rpage = __iomap_read_page(inode, pos);
934                 if (IS_ERR(rpage))
935                         return PTR_ERR(rpage);
936
937                 status = iomap_write_begin(inode, pos, bytes,
938                                            AOP_FLAG_NOFS, &page, iomap);
939                 put_page(rpage);
940                 if (unlikely(status))
941                         return status;
942
943                 WARN_ON_ONCE(!PageUptodate(page));
944
945                 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap);
946                 if (unlikely(status <= 0)) {
947                         if (WARN_ON_ONCE(status == 0))
948                                 return -EIO;
949                         return status;
950                 }
951
952                 cond_resched();
953
954                 pos += status;
955                 written += status;
956                 length -= status;
957
958                 balance_dirty_pages_ratelimited(inode->i_mapping);
959         } while (length);
960
961         return written;
962 }
963
964 int
965 iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
966                 const struct iomap_ops *ops)
967 {
968         loff_t ret;
969
970         while (len) {
971                 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
972                                 iomap_dirty_actor);
973                 if (ret <= 0)
974                         return ret;
975                 pos += ret;
976                 len -= ret;
977         }
978
979         return 0;
980 }
981 EXPORT_SYMBOL_GPL(iomap_file_dirty);
982
983 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
984                 unsigned bytes, struct iomap *iomap)
985 {
986         struct page *page;
987         int status;
988
989         status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page,
990                                    iomap);
991         if (status)
992                 return status;
993
994         zero_user(page, offset, bytes);
995         mark_page_accessed(page);
996
997         return iomap_write_end(inode, pos, bytes, bytes, page, iomap);
998 }
999
1000 static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
1001                 struct iomap *iomap)
1002 {
1003         return __dax_zero_page_range(iomap->bdev, iomap->dax_dev,
1004                         iomap_sector(iomap, pos & PAGE_MASK), offset, bytes);
1005 }
1006
1007 static loff_t
1008 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
1009                 void *data, struct iomap *iomap)
1010 {
1011         bool *did_zero = data;
1012         loff_t written = 0;
1013         int status;
1014
1015         /* already zeroed?  we're done. */
1016         if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1017                 return count;
1018
1019         do {
1020                 unsigned offset, bytes;
1021
1022                 offset = offset_in_page(pos);
1023                 bytes = min_t(loff_t, PAGE_SIZE - offset, count);
1024
1025                 if (IS_DAX(inode))
1026                         status = iomap_dax_zero(pos, offset, bytes, iomap);
1027                 else
1028                         status = iomap_zero(inode, pos, offset, bytes, iomap);
1029                 if (status < 0)
1030                         return status;
1031
1032                 pos += bytes;
1033                 count -= bytes;
1034                 written += bytes;
1035                 if (did_zero)
1036                         *did_zero = true;
1037         } while (count > 0);
1038
1039         return written;
1040 }
1041
1042 int
1043 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1044                 const struct iomap_ops *ops)
1045 {
1046         loff_t ret;
1047
1048         while (len > 0) {
1049                 ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
1050                                 ops, did_zero, iomap_zero_range_actor);
1051                 if (ret <= 0)
1052                         return ret;
1053
1054                 pos += ret;
1055                 len -= ret;
1056         }
1057
1058         return 0;
1059 }
1060 EXPORT_SYMBOL_GPL(iomap_zero_range);
1061
1062 int
1063 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1064                 const struct iomap_ops *ops)
1065 {
1066         unsigned int blocksize = i_blocksize(inode);
1067         unsigned int off = pos & (blocksize - 1);
1068
1069         /* Block boundary? Nothing to do */
1070         if (!off)
1071                 return 0;
1072         return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1073 }
1074 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1075
1076 static loff_t
1077 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1078                 void *data, struct iomap *iomap)
1079 {
1080         struct page *page = data;
1081         int ret;
1082
1083         if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1084                 ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1085                 if (ret)
1086                         return ret;
1087                 block_commit_write(page, 0, length);
1088         } else {
1089                 WARN_ON_ONCE(!PageUptodate(page));
1090                 iomap_page_create(inode, page);
1091                 set_page_dirty(page);
1092         }
1093
1094         return length;
1095 }
1096
1097 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1098 {
1099         struct page *page = vmf->page;
1100         struct inode *inode = file_inode(vmf->vma->vm_file);
1101         unsigned long length;
1102         loff_t offset, size;
1103         ssize_t ret;
1104
1105         lock_page(page);
1106         size = i_size_read(inode);
1107         if ((page->mapping != inode->i_mapping) ||
1108             (page_offset(page) > size)) {
1109                 /* We overload EFAULT to mean page got truncated */
1110                 ret = -EFAULT;
1111                 goto out_unlock;
1112         }
1113
1114         /* page is wholly or partially inside EOF */
1115         if (((page->index + 1) << PAGE_SHIFT) > size)
1116                 length = offset_in_page(size);
1117         else
1118                 length = PAGE_SIZE;
1119
1120         offset = page_offset(page);
1121         while (length > 0) {
1122                 ret = iomap_apply(inode, offset, length,
1123                                 IOMAP_WRITE | IOMAP_FAULT, ops, page,
1124                                 iomap_page_mkwrite_actor);
1125                 if (unlikely(ret <= 0))
1126                         goto out_unlock;
1127                 offset += ret;
1128                 length -= ret;
1129         }
1130
1131         wait_for_stable_page(page);
1132         return VM_FAULT_LOCKED;
1133 out_unlock:
1134         unlock_page(page);
1135         return block_page_mkwrite_return(ret);
1136 }
1137 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1138
1139 struct fiemap_ctx {
1140         struct fiemap_extent_info *fi;
1141         struct iomap prev;
1142 };
1143
1144 static int iomap_to_fiemap(struct fiemap_extent_info *fi,
1145                 struct iomap *iomap, u32 flags)
1146 {
1147         switch (iomap->type) {
1148         case IOMAP_HOLE:
1149                 /* skip holes */
1150                 return 0;
1151         case IOMAP_DELALLOC:
1152                 flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN;
1153                 break;
1154         case IOMAP_MAPPED:
1155                 break;
1156         case IOMAP_UNWRITTEN:
1157                 flags |= FIEMAP_EXTENT_UNWRITTEN;
1158                 break;
1159         case IOMAP_INLINE:
1160                 flags |= FIEMAP_EXTENT_DATA_INLINE;
1161                 break;
1162         }
1163
1164         if (iomap->flags & IOMAP_F_MERGED)
1165                 flags |= FIEMAP_EXTENT_MERGED;
1166         if (iomap->flags & IOMAP_F_SHARED)
1167                 flags |= FIEMAP_EXTENT_SHARED;
1168
1169         return fiemap_fill_next_extent(fi, iomap->offset,
1170                         iomap->addr != IOMAP_NULL_ADDR ? iomap->addr : 0,
1171                         iomap->length, flags);
1172 }
1173
1174 static loff_t
1175 iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1176                 struct iomap *iomap)
1177 {
1178         struct fiemap_ctx *ctx = data;
1179         loff_t ret = length;
1180
1181         if (iomap->type == IOMAP_HOLE)
1182                 return length;
1183
1184         ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0);
1185         ctx->prev = *iomap;
1186         switch (ret) {
1187         case 0:         /* success */
1188                 return length;
1189         case 1:         /* extent array full */
1190                 return 0;
1191         default:
1192                 return ret;
1193         }
1194 }
1195
1196 int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi,
1197                 loff_t start, loff_t len, const struct iomap_ops *ops)
1198 {
1199         struct fiemap_ctx ctx;
1200         loff_t ret;
1201
1202         memset(&ctx, 0, sizeof(ctx));
1203         ctx.fi = fi;
1204         ctx.prev.type = IOMAP_HOLE;
1205
1206         ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC);
1207         if (ret)
1208                 return ret;
1209
1210         if (fi->fi_flags & FIEMAP_FLAG_SYNC) {
1211                 ret = filemap_write_and_wait(inode->i_mapping);
1212                 if (ret)
1213                         return ret;
1214         }
1215
1216         while (len > 0) {
1217                 ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx,
1218                                 iomap_fiemap_actor);
1219                 /* inode with no (attribute) mapping will give ENOENT */
1220                 if (ret == -ENOENT)
1221                         break;
1222                 if (ret < 0)
1223                         return ret;
1224                 if (ret == 0)
1225                         break;
1226
1227                 start += ret;
1228                 len -= ret;
1229         }
1230
1231         if (ctx.prev.type != IOMAP_HOLE) {
1232                 ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST);
1233                 if (ret < 0)
1234                         return ret;
1235         }
1236
1237         return 0;
1238 }
1239 EXPORT_SYMBOL_GPL(iomap_fiemap);
1240
1241 /*
1242  * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
1243  * Returns true if found and updates @lastoff to the offset in file.
1244  */
1245 static bool
1246 page_seek_hole_data(struct inode *inode, struct page *page, loff_t *lastoff,
1247                 int whence)
1248 {
1249         const struct address_space_operations *ops = inode->i_mapping->a_ops;
1250         unsigned int bsize = i_blocksize(inode), off;
1251         bool seek_data = whence == SEEK_DATA;
1252         loff_t poff = page_offset(page);
1253
1254         if (WARN_ON_ONCE(*lastoff >= poff + PAGE_SIZE))
1255                 return false;
1256
1257         if (*lastoff < poff) {
1258                 /*
1259                  * Last offset smaller than the start of the page means we found
1260                  * a hole:
1261                  */
1262                 if (whence == SEEK_HOLE)
1263                         return true;
1264                 *lastoff = poff;
1265         }
1266
1267         /*
1268          * Just check the page unless we can and should check block ranges:
1269          */
1270         if (bsize == PAGE_SIZE || !ops->is_partially_uptodate)
1271                 return PageUptodate(page) == seek_data;
1272
1273         lock_page(page);
1274         if (unlikely(page->mapping != inode->i_mapping))
1275                 goto out_unlock_not_found;
1276
1277         for (off = 0; off < PAGE_SIZE; off += bsize) {
1278                 if (offset_in_page(*lastoff) >= off + bsize)
1279                         continue;
1280                 if (ops->is_partially_uptodate(page, off, bsize) == seek_data) {
1281                         unlock_page(page);
1282                         return true;
1283                 }
1284                 *lastoff = poff + off + bsize;
1285         }
1286
1287 out_unlock_not_found:
1288         unlock_page(page);
1289         return false;
1290 }
1291
1292 /*
1293  * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
1294  *
1295  * Within unwritten extents, the page cache determines which parts are holes
1296  * and which are data: uptodate buffer heads count as data; everything else
1297  * counts as a hole.
1298  *
1299  * Returns the resulting offset on successs, and -ENOENT otherwise.
1300  */
1301 static loff_t
1302 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
1303                 int whence)
1304 {
1305         pgoff_t index = offset >> PAGE_SHIFT;
1306         pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1307         loff_t lastoff = offset;
1308         struct pagevec pvec;
1309
1310         if (length <= 0)
1311                 return -ENOENT;
1312
1313         pagevec_init(&pvec);
1314
1315         do {
1316                 unsigned nr_pages, i;
1317
1318                 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
1319                                                 end - 1);
1320                 if (nr_pages == 0)
1321                         break;
1322
1323                 for (i = 0; i < nr_pages; i++) {
1324                         struct page *page = pvec.pages[i];
1325
1326                         if (page_seek_hole_data(inode, page, &lastoff, whence))
1327                                 goto check_range;
1328                         lastoff = page_offset(page) + PAGE_SIZE;
1329                 }
1330                 pagevec_release(&pvec);
1331         } while (index < end);
1332
1333         /* When no page at lastoff and we are not done, we found a hole. */
1334         if (whence != SEEK_HOLE)
1335                 goto not_found;
1336
1337 check_range:
1338         if (lastoff < offset + length)
1339                 goto out;
1340 not_found:
1341         lastoff = -ENOENT;
1342 out:
1343         pagevec_release(&pvec);
1344         return lastoff;
1345 }
1346
1347
1348 static loff_t
1349 iomap_seek_hole_actor(struct inode *inode, loff_t offset, loff_t length,
1350                       void *data, struct iomap *iomap)
1351 {
1352         switch (iomap->type) {
1353         case IOMAP_UNWRITTEN:
1354                 offset = page_cache_seek_hole_data(inode, offset, length,
1355                                                    SEEK_HOLE);
1356                 if (offset < 0)
1357                         return length;
1358                 /* fall through */
1359         case IOMAP_HOLE:
1360                 *(loff_t *)data = offset;
1361                 return 0;
1362         default:
1363                 return length;
1364         }
1365 }
1366
1367 loff_t
1368 iomap_seek_hole(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1369 {
1370         loff_t size = i_size_read(inode);
1371         loff_t length = size - offset;
1372         loff_t ret;
1373
1374         /* Nothing to be found before or beyond the end of the file. */
1375         if (offset < 0 || offset >= size)
1376                 return -ENXIO;
1377
1378         while (length > 0) {
1379                 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1380                                   &offset, iomap_seek_hole_actor);
1381                 if (ret < 0)
1382                         return ret;
1383                 if (ret == 0)
1384                         break;
1385
1386                 offset += ret;
1387                 length -= ret;
1388         }
1389
1390         return offset;
1391 }
1392 EXPORT_SYMBOL_GPL(iomap_seek_hole);
1393
1394 static loff_t
1395 iomap_seek_data_actor(struct inode *inode, loff_t offset, loff_t length,
1396                       void *data, struct iomap *iomap)
1397 {
1398         switch (iomap->type) {
1399         case IOMAP_HOLE:
1400                 return length;
1401         case IOMAP_UNWRITTEN:
1402                 offset = page_cache_seek_hole_data(inode, offset, length,
1403                                                    SEEK_DATA);
1404                 if (offset < 0)
1405                         return length;
1406                 /*FALLTHRU*/
1407         default:
1408                 *(loff_t *)data = offset;
1409                 return 0;
1410         }
1411 }
1412
1413 loff_t
1414 iomap_seek_data(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1415 {
1416         loff_t size = i_size_read(inode);
1417         loff_t length = size - offset;
1418         loff_t ret;
1419
1420         /* Nothing to be found before or beyond the end of the file. */
1421         if (offset < 0 || offset >= size)
1422                 return -ENXIO;
1423
1424         while (length > 0) {
1425                 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1426                                   &offset, iomap_seek_data_actor);
1427                 if (ret < 0)
1428                         return ret;
1429                 if (ret == 0)
1430                         break;
1431
1432                 offset += ret;
1433                 length -= ret;
1434         }
1435
1436         if (length <= 0)
1437                 return -ENXIO;
1438         return offset;
1439 }
1440 EXPORT_SYMBOL_GPL(iomap_seek_data);
1441
1442 /*
1443  * Private flags for iomap_dio, must not overlap with the public ones in
1444  * iomap.h:
1445  */
1446 #define IOMAP_DIO_WRITE_FUA     (1 << 28)
1447 #define IOMAP_DIO_NEED_SYNC     (1 << 29)
1448 #define IOMAP_DIO_WRITE         (1 << 30)
1449 #define IOMAP_DIO_DIRTY         (1 << 31)
1450
1451 struct iomap_dio {
1452         struct kiocb            *iocb;
1453         iomap_dio_end_io_t      *end_io;
1454         loff_t                  i_size;
1455         loff_t                  size;
1456         atomic_t                ref;
1457         unsigned                flags;
1458         int                     error;
1459         bool                    wait_for_completion;
1460
1461         union {
1462                 /* used during submission and for synchronous completion: */
1463                 struct {
1464                         struct iov_iter         *iter;
1465                         struct task_struct      *waiter;
1466                         struct request_queue    *last_queue;
1467                         blk_qc_t                cookie;
1468                 } submit;
1469
1470                 /* used for aio completion: */
1471                 struct {
1472                         struct work_struct      work;
1473                 } aio;
1474         };
1475 };
1476
1477 int iomap_dio_iopoll(struct kiocb *kiocb, bool spin)
1478 {
1479         struct request_queue *q = READ_ONCE(kiocb->private);
1480
1481         if (!q)
1482                 return 0;
1483         return blk_poll(q, READ_ONCE(kiocb->ki_cookie), spin);
1484 }
1485 EXPORT_SYMBOL_GPL(iomap_dio_iopoll);
1486
1487 static void iomap_dio_submit_bio(struct iomap_dio *dio, struct iomap *iomap,
1488                 struct bio *bio)
1489 {
1490         atomic_inc(&dio->ref);
1491
1492         if (dio->iocb->ki_flags & IOCB_HIPRI)
1493                 bio_set_polled(bio, dio->iocb);
1494
1495         dio->submit.last_queue = bdev_get_queue(iomap->bdev);
1496         dio->submit.cookie = submit_bio(bio);
1497 }
1498
1499 static ssize_t iomap_dio_complete(struct iomap_dio *dio)
1500 {
1501         struct kiocb *iocb = dio->iocb;
1502         struct inode *inode = file_inode(iocb->ki_filp);
1503         loff_t offset = iocb->ki_pos;
1504         ssize_t ret;
1505
1506         if (dio->end_io) {
1507                 ret = dio->end_io(iocb,
1508                                 dio->error ? dio->error : dio->size,
1509                                 dio->flags);
1510         } else {
1511                 ret = dio->error;
1512         }
1513
1514         if (likely(!ret)) {
1515                 ret = dio->size;
1516                 /* check for short read */
1517                 if (offset + ret > dio->i_size &&
1518                     !(dio->flags & IOMAP_DIO_WRITE))
1519                         ret = dio->i_size - offset;
1520                 iocb->ki_pos += ret;
1521         }
1522
1523         /*
1524          * Try again to invalidate clean pages which might have been cached by
1525          * non-direct readahead, or faulted in by get_user_pages() if the source
1526          * of the write was an mmap'ed region of the file we're writing.  Either
1527          * one is a pretty crazy thing to do, so we don't support it 100%.  If
1528          * this invalidation fails, tough, the write still worked...
1529          *
1530          * And this page cache invalidation has to be after dio->end_io(), as
1531          * some filesystems convert unwritten extents to real allocations in
1532          * end_io() when necessary, otherwise a racing buffer read would cache
1533          * zeros from unwritten extents.
1534          */
1535         if (!dio->error &&
1536             (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
1537                 int err;
1538                 err = invalidate_inode_pages2_range(inode->i_mapping,
1539                                 offset >> PAGE_SHIFT,
1540                                 (offset + dio->size - 1) >> PAGE_SHIFT);
1541                 if (err)
1542                         dio_warn_stale_pagecache(iocb->ki_filp);
1543         }
1544
1545         /*
1546          * If this is a DSYNC write, make sure we push it to stable storage now
1547          * that we've written data.
1548          */
1549         if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
1550                 ret = generic_write_sync(iocb, ret);
1551
1552         inode_dio_end(file_inode(iocb->ki_filp));
1553         kfree(dio);
1554
1555         return ret;
1556 }
1557
1558 static void iomap_dio_complete_work(struct work_struct *work)
1559 {
1560         struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
1561         struct kiocb *iocb = dio->iocb;
1562
1563         iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
1564 }
1565
1566 /*
1567  * Set an error in the dio if none is set yet.  We have to use cmpxchg
1568  * as the submission context and the completion context(s) can race to
1569  * update the error.
1570  */
1571 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
1572 {
1573         cmpxchg(&dio->error, 0, ret);
1574 }
1575
1576 static void iomap_dio_bio_end_io(struct bio *bio)
1577 {
1578         struct iomap_dio *dio = bio->bi_private;
1579         bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
1580
1581         if (bio->bi_status)
1582                 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
1583
1584         if (atomic_dec_and_test(&dio->ref)) {
1585                 if (dio->wait_for_completion) {
1586                         struct task_struct *waiter = dio->submit.waiter;
1587                         WRITE_ONCE(dio->submit.waiter, NULL);
1588                         blk_wake_io_task(waiter);
1589                 } else if (dio->flags & IOMAP_DIO_WRITE) {
1590                         struct inode *inode = file_inode(dio->iocb->ki_filp);
1591
1592                         INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
1593                         queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
1594                 } else {
1595                         iomap_dio_complete_work(&dio->aio.work);
1596                 }
1597         }
1598
1599         if (should_dirty) {
1600                 bio_check_pages_dirty(bio);
1601         } else {
1602                 bio_release_pages(bio, false);
1603                 bio_put(bio);
1604         }
1605 }
1606
1607 static void
1608 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
1609                 unsigned len)
1610 {
1611         struct page *page = ZERO_PAGE(0);
1612         int flags = REQ_SYNC | REQ_IDLE;
1613         struct bio *bio;
1614
1615         bio = bio_alloc(GFP_KERNEL, 1);
1616         bio_set_dev(bio, iomap->bdev);
1617         bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1618         bio->bi_private = dio;
1619         bio->bi_end_io = iomap_dio_bio_end_io;
1620
1621         get_page(page);
1622         __bio_add_page(bio, page, len, 0);
1623         bio_set_op_attrs(bio, REQ_OP_WRITE, flags);
1624         iomap_dio_submit_bio(dio, iomap, bio);
1625 }
1626
1627 static loff_t
1628 iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
1629                 struct iomap_dio *dio, struct iomap *iomap)
1630 {
1631         unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
1632         unsigned int fs_block_size = i_blocksize(inode), pad;
1633         unsigned int align = iov_iter_alignment(dio->submit.iter);
1634         struct iov_iter iter;
1635         struct bio *bio;
1636         bool need_zeroout = false;
1637         bool use_fua = false;
1638         int nr_pages, ret = 0;
1639         size_t copied = 0;
1640
1641         if ((pos | length | align) & ((1 << blkbits) - 1))
1642                 return -EINVAL;
1643
1644         if (iomap->type == IOMAP_UNWRITTEN) {
1645                 dio->flags |= IOMAP_DIO_UNWRITTEN;
1646                 need_zeroout = true;
1647         }
1648
1649         if (iomap->flags & IOMAP_F_SHARED)
1650                 dio->flags |= IOMAP_DIO_COW;
1651
1652         if (iomap->flags & IOMAP_F_NEW) {
1653                 need_zeroout = true;
1654         } else if (iomap->type == IOMAP_MAPPED) {
1655                 /*
1656                  * Use a FUA write if we need datasync semantics, this is a pure
1657                  * data IO that doesn't require any metadata updates (including
1658                  * after IO completion such as unwritten extent conversion) and
1659                  * the underlying device supports FUA. This allows us to avoid
1660                  * cache flushes on IO completion.
1661                  */
1662                 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
1663                     (dio->flags & IOMAP_DIO_WRITE_FUA) &&
1664                     blk_queue_fua(bdev_get_queue(iomap->bdev)))
1665                         use_fua = true;
1666         }
1667
1668         /*
1669          * Operate on a partial iter trimmed to the extent we were called for.
1670          * We'll update the iter in the dio once we're done with this extent.
1671          */
1672         iter = *dio->submit.iter;
1673         iov_iter_truncate(&iter, length);
1674
1675         nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1676         if (nr_pages <= 0)
1677                 return nr_pages;
1678
1679         if (need_zeroout) {
1680                 /* zero out from the start of the block to the write offset */
1681                 pad = pos & (fs_block_size - 1);
1682                 if (pad)
1683                         iomap_dio_zero(dio, iomap, pos - pad, pad);
1684         }
1685
1686         do {
1687                 size_t n;
1688                 if (dio->error) {
1689                         iov_iter_revert(dio->submit.iter, copied);
1690                         return 0;
1691                 }
1692
1693                 bio = bio_alloc(GFP_KERNEL, nr_pages);
1694                 bio_set_dev(bio, iomap->bdev);
1695                 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1696                 bio->bi_write_hint = dio->iocb->ki_hint;
1697                 bio->bi_ioprio = dio->iocb->ki_ioprio;
1698                 bio->bi_private = dio;
1699                 bio->bi_end_io = iomap_dio_bio_end_io;
1700
1701                 ret = bio_iov_iter_get_pages(bio, &iter);
1702                 if (unlikely(ret)) {
1703                         /*
1704                          * We have to stop part way through an IO. We must fall
1705                          * through to the sub-block tail zeroing here, otherwise
1706                          * this short IO may expose stale data in the tail of
1707                          * the block we haven't written data to.
1708                          */
1709                         bio_put(bio);
1710                         goto zero_tail;
1711                 }
1712
1713                 n = bio->bi_iter.bi_size;
1714                 if (dio->flags & IOMAP_DIO_WRITE) {
1715                         bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1716                         if (use_fua)
1717                                 bio->bi_opf |= REQ_FUA;
1718                         else
1719                                 dio->flags &= ~IOMAP_DIO_WRITE_FUA;
1720                         task_io_account_write(n);
1721                 } else {
1722                         bio->bi_opf = REQ_OP_READ;
1723                         if (dio->flags & IOMAP_DIO_DIRTY)
1724                                 bio_set_pages_dirty(bio);
1725                 }
1726
1727                 iov_iter_advance(dio->submit.iter, n);
1728
1729                 dio->size += n;
1730                 pos += n;
1731                 copied += n;
1732
1733                 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1734                 iomap_dio_submit_bio(dio, iomap, bio);
1735         } while (nr_pages);
1736
1737         /*
1738          * We need to zeroout the tail of a sub-block write if the extent type
1739          * requires zeroing or the write extends beyond EOF. If we don't zero
1740          * the block tail in the latter case, we can expose stale data via mmap
1741          * reads of the EOF block.
1742          */
1743 zero_tail:
1744         if (need_zeroout ||
1745             ((dio->flags & IOMAP_DIO_WRITE) && pos >= i_size_read(inode))) {
1746                 /* zero out from the end of the write to the end of the block */
1747                 pad = pos & (fs_block_size - 1);
1748                 if (pad)
1749                         iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
1750         }
1751         return copied ? copied : ret;
1752 }
1753
1754 static loff_t
1755 iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
1756 {
1757         length = iov_iter_zero(length, dio->submit.iter);
1758         dio->size += length;
1759         return length;
1760 }
1761
1762 static loff_t
1763 iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
1764                 struct iomap_dio *dio, struct iomap *iomap)
1765 {
1766         struct iov_iter *iter = dio->submit.iter;
1767         size_t copied;
1768
1769         BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));
1770
1771         if (dio->flags & IOMAP_DIO_WRITE) {
1772                 loff_t size = inode->i_size;
1773
1774                 if (pos > size)
1775                         memset(iomap->inline_data + size, 0, pos - size);
1776                 copied = copy_from_iter(iomap->inline_data + pos, length, iter);
1777                 if (copied) {
1778                         if (pos + copied > size)
1779                                 i_size_write(inode, pos + copied);
1780                         mark_inode_dirty(inode);
1781                 }
1782         } else {
1783                 copied = copy_to_iter(iomap->inline_data + pos, length, iter);
1784         }
1785         dio->size += copied;
1786         return copied;
1787 }
1788
1789 static loff_t
1790 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
1791                 void *data, struct iomap *iomap)
1792 {
1793         struct iomap_dio *dio = data;
1794
1795         switch (iomap->type) {
1796         case IOMAP_HOLE:
1797                 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
1798                         return -EIO;
1799                 return iomap_dio_hole_actor(length, dio);
1800         case IOMAP_UNWRITTEN:
1801                 if (!(dio->flags & IOMAP_DIO_WRITE))
1802                         return iomap_dio_hole_actor(length, dio);
1803                 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1804         case IOMAP_MAPPED:
1805                 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1806         case IOMAP_INLINE:
1807                 return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
1808         default:
1809                 WARN_ON_ONCE(1);
1810                 return -EIO;
1811         }
1812 }
1813
1814 /*
1815  * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
1816  * is being issued as AIO or not.  This allows us to optimise pure data writes
1817  * to use REQ_FUA rather than requiring generic_write_sync() to issue a
1818  * REQ_FLUSH post write. This is slightly tricky because a single request here
1819  * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
1820  * may be pure data writes. In that case, we still need to do a full data sync
1821  * completion.
1822  */
1823 ssize_t
1824 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
1825                 const struct iomap_ops *ops, iomap_dio_end_io_t end_io)
1826 {
1827         struct address_space *mapping = iocb->ki_filp->f_mapping;
1828         struct inode *inode = file_inode(iocb->ki_filp);
1829         size_t count = iov_iter_count(iter);
1830         loff_t pos = iocb->ki_pos, start = pos;
1831         loff_t end = iocb->ki_pos + count - 1, ret = 0;
1832         unsigned int flags = IOMAP_DIRECT;
1833         bool wait_for_completion = is_sync_kiocb(iocb);
1834         struct blk_plug plug;
1835         struct iomap_dio *dio;
1836
1837         lockdep_assert_held(&inode->i_rwsem);
1838
1839         if (!count)
1840                 return 0;
1841
1842         dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1843         if (!dio)
1844                 return -ENOMEM;
1845
1846         dio->iocb = iocb;
1847         atomic_set(&dio->ref, 1);
1848         dio->size = 0;
1849         dio->i_size = i_size_read(inode);
1850         dio->end_io = end_io;
1851         dio->error = 0;
1852         dio->flags = 0;
1853
1854         dio->submit.iter = iter;
1855         dio->submit.waiter = current;
1856         dio->submit.cookie = BLK_QC_T_NONE;
1857         dio->submit.last_queue = NULL;
1858
1859         if (iov_iter_rw(iter) == READ) {
1860                 if (pos >= dio->i_size)
1861                         goto out_free_dio;
1862
1863                 if (iter_is_iovec(iter) && iov_iter_rw(iter) == READ)
1864                         dio->flags |= IOMAP_DIO_DIRTY;
1865         } else {
1866                 flags |= IOMAP_WRITE;
1867                 dio->flags |= IOMAP_DIO_WRITE;
1868
1869                 /* for data sync or sync, we need sync completion processing */
1870                 if (iocb->ki_flags & IOCB_DSYNC)
1871                         dio->flags |= IOMAP_DIO_NEED_SYNC;
1872
1873                 /*
1874                  * For datasync only writes, we optimistically try using FUA for
1875                  * this IO.  Any non-FUA write that occurs will clear this flag,
1876                  * hence we know before completion whether a cache flush is
1877                  * necessary.
1878                  */
1879                 if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
1880                         dio->flags |= IOMAP_DIO_WRITE_FUA;
1881         }
1882
1883         if (iocb->ki_flags & IOCB_NOWAIT) {
1884                 if (filemap_range_has_page(mapping, start, end)) {
1885                         ret = -EAGAIN;
1886                         goto out_free_dio;
1887                 }
1888                 flags |= IOMAP_NOWAIT;
1889         }
1890
1891         ret = filemap_write_and_wait_range(mapping, start, end);
1892         if (ret)
1893                 goto out_free_dio;
1894
1895         /*
1896          * Try to invalidate cache pages for the range we're direct
1897          * writing.  If this invalidation fails, tough, the write will
1898          * still work, but racing two incompatible write paths is a
1899          * pretty crazy thing to do, so we don't support it 100%.
1900          */
1901         ret = invalidate_inode_pages2_range(mapping,
1902                         start >> PAGE_SHIFT, end >> PAGE_SHIFT);
1903         if (ret)
1904                 dio_warn_stale_pagecache(iocb->ki_filp);
1905         ret = 0;
1906
1907         if (iov_iter_rw(iter) == WRITE && !wait_for_completion &&
1908             !inode->i_sb->s_dio_done_wq) {
1909                 ret = sb_init_dio_done_wq(inode->i_sb);
1910                 if (ret < 0)
1911                         goto out_free_dio;
1912         }
1913
1914         inode_dio_begin(inode);
1915
1916         blk_start_plug(&plug);
1917         do {
1918                 ret = iomap_apply(inode, pos, count, flags, ops, dio,
1919                                 iomap_dio_actor);
1920                 if (ret <= 0) {
1921                         /* magic error code to fall back to buffered I/O */
1922                         if (ret == -ENOTBLK) {
1923                                 wait_for_completion = true;
1924                                 ret = 0;
1925                         }
1926                         break;
1927                 }
1928                 pos += ret;
1929
1930                 if (iov_iter_rw(iter) == READ && pos >= dio->i_size)
1931                         break;
1932         } while ((count = iov_iter_count(iter)) > 0);
1933         blk_finish_plug(&plug);
1934
1935         if (ret < 0)
1936                 iomap_dio_set_error(dio, ret);
1937
1938         /*
1939          * If all the writes we issued were FUA, we don't need to flush the
1940          * cache on IO completion. Clear the sync flag for this case.
1941          */
1942         if (dio->flags & IOMAP_DIO_WRITE_FUA)
1943                 dio->flags &= ~IOMAP_DIO_NEED_SYNC;
1944
1945         WRITE_ONCE(iocb->ki_cookie, dio->submit.cookie);
1946         WRITE_ONCE(iocb->private, dio->submit.last_queue);
1947
1948         /*
1949          * We are about to drop our additional submission reference, which
1950          * might be the last reference to the dio.  There are three three
1951          * different ways we can progress here:
1952          *
1953          *  (a) If this is the last reference we will always complete and free
1954          *      the dio ourselves.
1955          *  (b) If this is not the last reference, and we serve an asynchronous
1956          *      iocb, we must never touch the dio after the decrement, the
1957          *      I/O completion handler will complete and free it.
1958          *  (c) If this is not the last reference, but we serve a synchronous
1959          *      iocb, the I/O completion handler will wake us up on the drop
1960          *      of the final reference, and we will complete and free it here
1961          *      after we got woken by the I/O completion handler.
1962          */
1963         dio->wait_for_completion = wait_for_completion;
1964         if (!atomic_dec_and_test(&dio->ref)) {
1965                 if (!wait_for_completion)
1966                         return -EIOCBQUEUED;
1967
1968                 for (;;) {
1969                         set_current_state(TASK_UNINTERRUPTIBLE);
1970                         if (!READ_ONCE(dio->submit.waiter))
1971                                 break;
1972
1973                         if (!(iocb->ki_flags & IOCB_HIPRI) ||
1974                             !dio->submit.last_queue ||
1975                             !blk_poll(dio->submit.last_queue,
1976                                          dio->submit.cookie, true))
1977                                 io_schedule();
1978                 }
1979                 __set_current_state(TASK_RUNNING);
1980         }
1981
1982         return iomap_dio_complete(dio);
1983
1984 out_free_dio:
1985         kfree(dio);
1986         return ret;
1987 }
1988 EXPORT_SYMBOL_GPL(iomap_dio_rw);
1989
1990 /* Swapfile activation */
1991
1992 #ifdef CONFIG_SWAP
1993 struct iomap_swapfile_info {
1994         struct iomap iomap;             /* accumulated iomap */
1995         struct swap_info_struct *sis;
1996         uint64_t lowest_ppage;          /* lowest physical addr seen (pages) */
1997         uint64_t highest_ppage;         /* highest physical addr seen (pages) */
1998         unsigned long nr_pages;         /* number of pages collected */
1999         int nr_extents;                 /* extent count */
2000 };
2001
2002 /*
2003  * Collect physical extents for this swap file.  Physical extents reported to
2004  * the swap code must be trimmed to align to a page boundary.  The logical
2005  * offset within the file is irrelevant since the swapfile code maps logical
2006  * page numbers of the swap device to the physical page-aligned extents.
2007  */
2008 static int iomap_swapfile_add_extent(struct iomap_swapfile_info *isi)
2009 {
2010         struct iomap *iomap = &isi->iomap;
2011         unsigned long nr_pages;
2012         uint64_t first_ppage;
2013         uint64_t first_ppage_reported;
2014         uint64_t next_ppage;
2015         int error;
2016
2017         /*
2018          * Round the start up and the end down so that the physical
2019          * extent aligns to a page boundary.
2020          */
2021         first_ppage = ALIGN(iomap->addr, PAGE_SIZE) >> PAGE_SHIFT;
2022         next_ppage = ALIGN_DOWN(iomap->addr + iomap->length, PAGE_SIZE) >>
2023                         PAGE_SHIFT;
2024
2025         /* Skip too-short physical extents. */
2026         if (first_ppage >= next_ppage)
2027                 return 0;
2028         nr_pages = next_ppage - first_ppage;
2029
2030         /*
2031          * Calculate how much swap space we're adding; the first page contains
2032          * the swap header and doesn't count.  The mm still wants that first
2033          * page fed to add_swap_extent, however.
2034          */
2035         first_ppage_reported = first_ppage;
2036         if (iomap->offset == 0)
2037                 first_ppage_reported++;
2038         if (isi->lowest_ppage > first_ppage_reported)
2039                 isi->lowest_ppage = first_ppage_reported;
2040         if (isi->highest_ppage < (next_ppage - 1))
2041                 isi->highest_ppage = next_ppage - 1;
2042
2043         /* Add extent, set up for the next call. */
2044         error = add_swap_extent(isi->sis, isi->nr_pages, nr_pages, first_ppage);
2045         if (error < 0)
2046                 return error;
2047         isi->nr_extents += error;
2048         isi->nr_pages += nr_pages;
2049         return 0;
2050 }
2051
2052 /*
2053  * Accumulate iomaps for this swap file.  We have to accumulate iomaps because
2054  * swap only cares about contiguous page-aligned physical extents and makes no
2055  * distinction between written and unwritten extents.
2056  */
2057 static loff_t iomap_swapfile_activate_actor(struct inode *inode, loff_t pos,
2058                 loff_t count, void *data, struct iomap *iomap)
2059 {
2060         struct iomap_swapfile_info *isi = data;
2061         int error;
2062
2063         switch (iomap->type) {
2064         case IOMAP_MAPPED:
2065         case IOMAP_UNWRITTEN:
2066                 /* Only real or unwritten extents. */
2067                 break;
2068         case IOMAP_INLINE:
2069                 /* No inline data. */
2070                 pr_err("swapon: file is inline\n");
2071                 return -EINVAL;
2072         default:
2073                 pr_err("swapon: file has unallocated extents\n");
2074                 return -EINVAL;
2075         }
2076
2077         /* No uncommitted metadata or shared blocks. */
2078         if (iomap->flags & IOMAP_F_DIRTY) {
2079                 pr_err("swapon: file is not committed\n");
2080                 return -EINVAL;
2081         }
2082         if (iomap->flags & IOMAP_F_SHARED) {
2083                 pr_err("swapon: file has shared extents\n");
2084                 return -EINVAL;
2085         }
2086
2087         /* Only one bdev per swap file. */
2088         if (iomap->bdev != isi->sis->bdev) {
2089                 pr_err("swapon: file is on multiple devices\n");
2090                 return -EINVAL;
2091         }
2092
2093         if (isi->iomap.length == 0) {
2094                 /* No accumulated extent, so just store it. */
2095                 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2096         } else if (isi->iomap.addr + isi->iomap.length == iomap->addr) {
2097                 /* Append this to the accumulated extent. */
2098                 isi->iomap.length += iomap->length;
2099         } else {
2100                 /* Otherwise, add the retained iomap and store this one. */
2101                 error = iomap_swapfile_add_extent(isi);
2102                 if (error)
2103                         return error;
2104                 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2105         }
2106         return count;
2107 }
2108
2109 /*
2110  * Iterate a swap file's iomaps to construct physical extents that can be
2111  * passed to the swapfile subsystem.
2112  */
2113 int iomap_swapfile_activate(struct swap_info_struct *sis,
2114                 struct file *swap_file, sector_t *pagespan,
2115                 const struct iomap_ops *ops)
2116 {
2117         struct iomap_swapfile_info isi = {
2118                 .sis = sis,
2119                 .lowest_ppage = (sector_t)-1ULL,
2120         };
2121         struct address_space *mapping = swap_file->f_mapping;
2122         struct inode *inode = mapping->host;
2123         loff_t pos = 0;
2124         loff_t len = ALIGN_DOWN(i_size_read(inode), PAGE_SIZE);
2125         loff_t ret;
2126
2127         /*
2128          * Persist all file mapping metadata so that we won't have any
2129          * IOMAP_F_DIRTY iomaps.
2130          */
2131         ret = vfs_fsync(swap_file, 1);
2132         if (ret)
2133                 return ret;
2134
2135         while (len > 0) {
2136                 ret = iomap_apply(inode, pos, len, IOMAP_REPORT,
2137                                 ops, &isi, iomap_swapfile_activate_actor);
2138                 if (ret <= 0)
2139                         return ret;
2140
2141                 pos += ret;
2142                 len -= ret;
2143         }
2144
2145         if (isi.iomap.length) {
2146                 ret = iomap_swapfile_add_extent(&isi);
2147                 if (ret)
2148                         return ret;
2149         }
2150
2151         *pagespan = 1 + isi.highest_ppage - isi.lowest_ppage;
2152         sis->max = isi.nr_pages;
2153         sis->pages = isi.nr_pages - 1;
2154         sis->highest_bit = isi.nr_pages - 1;
2155         return isi.nr_extents;
2156 }
2157 EXPORT_SYMBOL_GPL(iomap_swapfile_activate);
2158 #endif /* CONFIG_SWAP */
2159
2160 static loff_t
2161 iomap_bmap_actor(struct inode *inode, loff_t pos, loff_t length,
2162                 void *data, struct iomap *iomap)
2163 {
2164         sector_t *bno = data, addr;
2165
2166         if (iomap->type == IOMAP_MAPPED) {
2167                 addr = (pos - iomap->offset + iomap->addr) >> inode->i_blkbits;
2168                 if (addr > INT_MAX)
2169                         WARN(1, "would truncate bmap result\n");
2170                 else
2171                         *bno = addr;
2172         }
2173         return 0;
2174 }
2175
2176 /* legacy ->bmap interface.  0 is the error return (!) */
2177 sector_t
2178 iomap_bmap(struct address_space *mapping, sector_t bno,
2179                 const struct iomap_ops *ops)
2180 {
2181         struct inode *inode = mapping->host;
2182         loff_t pos = bno << inode->i_blkbits;
2183         unsigned blocksize = i_blocksize(inode);
2184
2185         if (filemap_write_and_wait(mapping))
2186                 return 0;
2187
2188         bno = 0;
2189         iomap_apply(inode, pos, blocksize, 0, ops, &bno, iomap_bmap_actor);
2190         return bno;
2191 }
2192 EXPORT_SYMBOL_GPL(iomap_bmap);