2 * Copyright (C) 2010 Red Hat, Inc.
3 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #include <linux/module.h>
15 #include <linux/compiler.h>
17 #include <linux/iomap.h>
18 #include <linux/uaccess.h>
19 #include <linux/gfp.h>
20 #include <linux/migrate.h>
22 #include <linux/mm_inline.h>
23 #include <linux/swap.h>
24 #include <linux/pagemap.h>
25 #include <linux/pagevec.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/backing-dev.h>
29 #include <linux/buffer_head.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/dax.h>
32 #include <linux/sched/signal.h>
33 #include <linux/swap.h>
38 * Execute a iomap write on a segment of the mapping that spans a
39 * contiguous range of pages that have identical block mapping state.
41 * This avoids the need to map pages individually, do individual allocations
42 * for each page and most importantly avoid the need for filesystem specific
43 * locking per page. Instead, all the operations are amortised over the entire
44 * range of pages. It is assumed that the filesystems will lock whatever
45 * resources they require in the iomap_begin call, and release them in the
49 iomap_apply(struct inode *inode, loff_t pos, loff_t length, unsigned flags,
50 const struct iomap_ops *ops, void *data, iomap_actor_t actor)
52 struct iomap iomap = { 0 };
53 loff_t written = 0, ret;
56 * Need to map a range from start position for length bytes. This can
57 * span multiple pages - it is only guaranteed to return a range of a
58 * single type of pages (e.g. all into a hole, all mapped or all
59 * unwritten). Failure at this point has nothing to undo.
61 * If allocation is required for this range, reserve the space now so
62 * that the allocation is guaranteed to succeed later on. Once we copy
63 * the data into the page cache pages, then we cannot fail otherwise we
64 * expose transient stale data. If the reserve fails, we can safely
65 * back out at this point as there is nothing to undo.
67 ret = ops->iomap_begin(inode, pos, length, flags, &iomap);
70 if (WARN_ON(iomap.offset > pos))
72 if (WARN_ON(iomap.length == 0))
76 * Cut down the length to the one actually provided by the filesystem,
77 * as it might not be able to give us the whole size that we requested.
79 if (iomap.offset + iomap.length < pos + length)
80 length = iomap.offset + iomap.length - pos;
83 * Now that we have guaranteed that the space allocation will succeed.
84 * we can do the copy-in page by page without having to worry about
85 * failures exposing transient data.
87 written = actor(inode, pos, length, data, &iomap);
90 * Now the data has been copied, commit the range we've copied. This
91 * should not fail unless the filesystem has had a fatal error.
94 ret = ops->iomap_end(inode, pos, length,
95 written > 0 ? written : 0,
99 return written ? written : ret;
103 iomap_sector(struct iomap *iomap, loff_t pos)
105 return (iomap->addr + pos - iomap->offset) >> SECTOR_SHIFT;
108 static struct iomap_page *
109 iomap_page_create(struct inode *inode, struct page *page)
111 struct iomap_page *iop = to_iomap_page(page);
113 if (iop || i_blocksize(inode) == PAGE_SIZE)
116 iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
117 atomic_set(&iop->read_count, 0);
118 atomic_set(&iop->write_count, 0);
119 bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
122 * migrate_page_move_mapping() assumes that pages with private data have
123 * their count elevated by 1.
126 set_page_private(page, (unsigned long)iop);
127 SetPagePrivate(page);
132 iomap_page_release(struct page *page)
134 struct iomap_page *iop = to_iomap_page(page);
138 WARN_ON_ONCE(atomic_read(&iop->read_count));
139 WARN_ON_ONCE(atomic_read(&iop->write_count));
140 ClearPagePrivate(page);
141 set_page_private(page, 0);
147 * Calculate the range inside the page that we actually need to read.
150 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
151 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
153 unsigned block_bits = inode->i_blkbits;
154 unsigned block_size = (1 << block_bits);
155 unsigned poff = offset_in_page(*pos);
156 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
157 unsigned first = poff >> block_bits;
158 unsigned last = (poff + plen - 1) >> block_bits;
159 unsigned end = offset_in_page(i_size_read(inode)) >> block_bits;
162 * If the block size is smaller than the page size we need to check the
163 * per-block uptodate status and adjust the offset and length if needed
164 * to avoid reading in already uptodate ranges.
169 /* move forward for each leading block marked uptodate */
170 for (i = first; i <= last; i++) {
171 if (!test_bit(i, iop->uptodate))
179 /* truncate len if we find any trailing uptodate block(s) */
180 for ( ; i <= last; i++) {
181 if (test_bit(i, iop->uptodate)) {
182 plen -= (last - i + 1) * block_size;
190 * If the extent spans the block that contains the i_size we need to
191 * handle both halves separately so that we properly zero data in the
192 * page cache for blocks that are entirely outside of i_size.
194 if (first <= end && last > end)
195 plen -= (last - end) * block_size;
202 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
204 struct iomap_page *iop = to_iomap_page(page);
205 struct inode *inode = page->mapping->host;
206 unsigned first = off >> inode->i_blkbits;
207 unsigned last = (off + len - 1) >> inode->i_blkbits;
209 bool uptodate = true;
212 for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
213 if (i >= first && i <= last)
214 set_bit(i, iop->uptodate);
215 else if (!test_bit(i, iop->uptodate))
220 if (uptodate && !PageError(page))
221 SetPageUptodate(page);
225 iomap_read_finish(struct iomap_page *iop, struct page *page)
227 if (!iop || atomic_dec_and_test(&iop->read_count))
232 iomap_read_page_end_io(struct bio_vec *bvec, int error)
234 struct page *page = bvec->bv_page;
235 struct iomap_page *iop = to_iomap_page(page);
237 if (unlikely(error)) {
238 ClearPageUptodate(page);
241 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
244 iomap_read_finish(iop, page);
248 iomap_read_inline_data(struct inode *inode, struct page *page,
251 size_t size = i_size_read(inode);
254 if (PageUptodate(page))
258 BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
260 addr = kmap_atomic(page);
261 memcpy(addr, iomap->inline_data, size);
262 memset(addr + size, 0, PAGE_SIZE - size);
264 SetPageUptodate(page);
268 iomap_read_end_io(struct bio *bio)
270 int error = blk_status_to_errno(bio->bi_status);
271 struct bio_vec *bvec;
274 bio_for_each_segment_all(bvec, bio, i)
275 iomap_read_page_end_io(bvec, error);
279 struct iomap_readpage_ctx {
280 struct page *cur_page;
281 bool cur_page_in_bio;
284 struct list_head *pages;
288 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
291 struct iomap_readpage_ctx *ctx = data;
292 struct page *page = ctx->cur_page;
293 struct iomap_page *iop = iomap_page_create(inode, page);
294 bool is_contig = false;
295 loff_t orig_pos = pos;
299 if (iomap->type == IOMAP_INLINE) {
301 iomap_read_inline_data(inode, page, iomap);
305 /* zero post-eof blocks as the page may be mapped */
306 iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
310 if (iomap->type != IOMAP_MAPPED || pos >= i_size_read(inode)) {
311 zero_user(page, poff, plen);
312 iomap_set_range_uptodate(page, poff, plen);
316 ctx->cur_page_in_bio = true;
319 * Try to merge into a previous segment if we can.
321 sector = iomap_sector(iomap, pos);
322 if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
323 if (__bio_try_merge_page(ctx->bio, page, plen, poff))
329 * If we start a new segment we need to increase the read count, and we
330 * need to do so before submitting any previous full bio to make sure
331 * that we don't prematurely unlock the page.
334 atomic_inc(&iop->read_count);
336 if (!ctx->bio || !is_contig || bio_full(ctx->bio)) {
337 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
338 int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
341 submit_bio(ctx->bio);
343 if (ctx->is_readahead) /* same as readahead_gfp_mask */
344 gfp |= __GFP_NORETRY | __GFP_NOWARN;
345 ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
346 ctx->bio->bi_opf = REQ_OP_READ;
347 if (ctx->is_readahead)
348 ctx->bio->bi_opf |= REQ_RAHEAD;
349 ctx->bio->bi_iter.bi_sector = sector;
350 bio_set_dev(ctx->bio, iomap->bdev);
351 ctx->bio->bi_end_io = iomap_read_end_io;
354 __bio_add_page(ctx->bio, page, plen, poff);
357 * Move the caller beyond our range so that it keeps making progress.
358 * For that we have to include any leading non-uptodate ranges, but
359 * we can skip trailing ones as they will be handled in the next
362 return pos - orig_pos + plen;
366 iomap_readpage(struct page *page, const struct iomap_ops *ops)
368 struct iomap_readpage_ctx ctx = { .cur_page = page };
369 struct inode *inode = page->mapping->host;
373 for (poff = 0; poff < PAGE_SIZE; poff += ret) {
374 ret = iomap_apply(inode, page_offset(page) + poff,
375 PAGE_SIZE - poff, 0, ops, &ctx,
376 iomap_readpage_actor);
378 WARN_ON_ONCE(ret == 0);
386 WARN_ON_ONCE(!ctx.cur_page_in_bio);
388 WARN_ON_ONCE(ctx.cur_page_in_bio);
393 * Just like mpage_readpages and block_read_full_page we always
394 * return 0 and just mark the page as PageError on errors. This
395 * should be cleaned up all through the stack eventually.
399 EXPORT_SYMBOL_GPL(iomap_readpage);
402 iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
403 loff_t length, loff_t *done)
405 while (!list_empty(pages)) {
406 struct page *page = lru_to_page(pages);
408 if (page_offset(page) >= (u64)pos + length)
411 list_del(&page->lru);
412 if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
417 * If we already have a page in the page cache at index we are
418 * done. Upper layers don't care if it is uptodate after the
419 * readpages call itself as every page gets checked again once
430 iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
431 void *data, struct iomap *iomap)
433 struct iomap_readpage_ctx *ctx = data;
436 for (done = 0; done < length; done += ret) {
437 if (ctx->cur_page && offset_in_page(pos + done) == 0) {
438 if (!ctx->cur_page_in_bio)
439 unlock_page(ctx->cur_page);
440 put_page(ctx->cur_page);
441 ctx->cur_page = NULL;
443 if (!ctx->cur_page) {
444 ctx->cur_page = iomap_next_page(inode, ctx->pages,
448 ctx->cur_page_in_bio = false;
450 ret = iomap_readpage_actor(inode, pos + done, length - done,
458 iomap_readpages(struct address_space *mapping, struct list_head *pages,
459 unsigned nr_pages, const struct iomap_ops *ops)
461 struct iomap_readpage_ctx ctx = {
463 .is_readahead = true,
465 loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
466 loff_t last = page_offset(list_entry(pages->next, struct page, lru));
467 loff_t length = last - pos + PAGE_SIZE, ret = 0;
470 ret = iomap_apply(mapping->host, pos, length, 0, ops,
471 &ctx, iomap_readpages_actor);
473 WARN_ON_ONCE(ret == 0);
484 if (!ctx.cur_page_in_bio)
485 unlock_page(ctx.cur_page);
486 put_page(ctx.cur_page);
490 * Check that we didn't lose a page due to the arcance calling
493 WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
496 EXPORT_SYMBOL_GPL(iomap_readpages);
499 * iomap_is_partially_uptodate checks whether blocks within a page are
502 * Returns true if all blocks which correspond to a file portion
503 * we want to read within the page are uptodate.
506 iomap_is_partially_uptodate(struct page *page, unsigned long from,
509 struct iomap_page *iop = to_iomap_page(page);
510 struct inode *inode = page->mapping->host;
511 unsigned len, first, last;
514 /* Limit range to one page */
515 len = min_t(unsigned, PAGE_SIZE - from, count);
517 /* First and last blocks in range within page */
518 first = from >> inode->i_blkbits;
519 last = (from + len - 1) >> inode->i_blkbits;
522 for (i = first; i <= last; i++)
523 if (!test_bit(i, iop->uptodate))
530 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
533 iomap_releasepage(struct page *page, gfp_t gfp_mask)
536 * mm accommodates an old ext3 case where clean pages might not have had
537 * the dirty bit cleared. Thus, it can send actual dirty pages to
538 * ->releasepage() via shrink_active_list(), skip those here.
540 if (PageDirty(page) || PageWriteback(page))
542 iomap_page_release(page);
545 EXPORT_SYMBOL_GPL(iomap_releasepage);
548 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
551 * If we are invalidating the entire page, clear the dirty state from it
552 * and release it to avoid unnecessary buildup of the LRU.
554 if (offset == 0 && len == PAGE_SIZE) {
555 WARN_ON_ONCE(PageWriteback(page));
556 cancel_dirty_page(page);
557 iomap_page_release(page);
560 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
562 #ifdef CONFIG_MIGRATION
564 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
565 struct page *page, enum migrate_mode mode)
569 ret = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
570 if (ret != MIGRATEPAGE_SUCCESS)
573 if (page_has_private(page)) {
574 ClearPagePrivate(page);
576 set_page_private(newpage, page_private(page));
577 set_page_private(page, 0);
579 SetPagePrivate(newpage);
582 if (mode != MIGRATE_SYNC_NO_COPY)
583 migrate_page_copy(newpage, page);
585 migrate_page_states(newpage, page);
586 return MIGRATEPAGE_SUCCESS;
588 EXPORT_SYMBOL_GPL(iomap_migrate_page);
589 #endif /* CONFIG_MIGRATION */
592 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
594 loff_t i_size = i_size_read(inode);
597 * Only truncate newly allocated pages beyoned EOF, even if the
598 * write started inside the existing inode size.
600 if (pos + len > i_size)
601 truncate_pagecache_range(inode, max(pos, i_size), pos + len);
605 iomap_read_page_sync(struct inode *inode, loff_t block_start, struct page *page,
606 unsigned poff, unsigned plen, unsigned from, unsigned to,
612 if (iomap->type != IOMAP_MAPPED || block_start >= i_size_read(inode)) {
613 zero_user_segments(page, poff, from, to, poff + plen);
614 iomap_set_range_uptodate(page, poff, plen);
618 bio_init(&bio, &bvec, 1);
619 bio.bi_opf = REQ_OP_READ;
620 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
621 bio_set_dev(&bio, iomap->bdev);
622 __bio_add_page(&bio, page, plen, poff);
623 return submit_bio_wait(&bio);
627 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len,
628 struct page *page, struct iomap *iomap)
630 struct iomap_page *iop = iomap_page_create(inode, page);
631 loff_t block_size = i_blocksize(inode);
632 loff_t block_start = pos & ~(block_size - 1);
633 loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
634 unsigned from = offset_in_page(pos), to = from + len, poff, plen;
637 if (PageUptodate(page))
641 iomap_adjust_read_range(inode, iop, &block_start,
642 block_end - block_start, &poff, &plen);
646 if ((from > poff && from < poff + plen) ||
647 (to > poff && to < poff + plen)) {
648 status = iomap_read_page_sync(inode, block_start, page,
649 poff, plen, from, to, iomap);
654 } while ((block_start += plen) < block_end);
660 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
661 struct page **pagep, struct iomap *iomap)
663 pgoff_t index = pos >> PAGE_SHIFT;
667 BUG_ON(pos + len > iomap->offset + iomap->length);
669 if (fatal_signal_pending(current))
672 page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
676 if (iomap->type == IOMAP_INLINE)
677 iomap_read_inline_data(inode, page, iomap);
678 else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
679 status = __block_write_begin_int(page, pos, len, NULL, iomap);
681 status = __iomap_write_begin(inode, pos, len, page, iomap);
682 if (unlikely(status)) {
687 iomap_write_failed(inode, pos, len);
695 iomap_set_page_dirty(struct page *page)
697 struct address_space *mapping = page_mapping(page);
700 if (unlikely(!mapping))
701 return !TestSetPageDirty(page);
704 * Lock out page->mem_cgroup migration to keep PageDirty
705 * synchronized with per-memcg dirty page counters.
707 lock_page_memcg(page);
708 newly_dirty = !TestSetPageDirty(page);
710 __set_page_dirty(page, mapping, 0);
711 unlock_page_memcg(page);
714 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
717 EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
720 __iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
721 unsigned copied, struct page *page, struct iomap *iomap)
723 flush_dcache_page(page);
726 * The blocks that were entirely written will now be uptodate, so we
727 * don't have to worry about a readpage reading them and overwriting a
728 * partial write. However if we have encountered a short write and only
729 * partially written into a block, it will not be marked uptodate, so a
730 * readpage might come in and destroy our partial write.
732 * Do the simplest thing, and just treat any short write to a non
733 * uptodate page as a zero-length write, and force the caller to redo
736 if (unlikely(copied < len && !PageUptodate(page))) {
739 iomap_set_range_uptodate(page, offset_in_page(pos), len);
740 iomap_set_page_dirty(page);
742 return __generic_write_end(inode, pos, copied, page);
746 iomap_write_end_inline(struct inode *inode, struct page *page,
747 struct iomap *iomap, loff_t pos, unsigned copied)
751 WARN_ON_ONCE(!PageUptodate(page));
752 BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
754 addr = kmap_atomic(page);
755 memcpy(iomap->inline_data + pos, addr + pos, copied);
758 mark_inode_dirty(inode);
759 __generic_write_end(inode, pos, copied, page);
764 iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
765 unsigned copied, struct page *page, struct iomap *iomap)
769 if (iomap->type == IOMAP_INLINE) {
770 ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
771 } else if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
772 ret = generic_write_end(NULL, inode->i_mapping, pos, len,
775 ret = __iomap_write_end(inode, pos, len, copied, page, iomap);
778 if (iomap->page_done)
779 iomap->page_done(inode, pos, copied, page, iomap);
782 iomap_write_failed(inode, pos, len);
787 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
790 struct iov_iter *i = data;
793 unsigned int flags = AOP_FLAG_NOFS;
797 unsigned long offset; /* Offset into pagecache page */
798 unsigned long bytes; /* Bytes to write to page */
799 size_t copied; /* Bytes copied from user */
801 offset = offset_in_page(pos);
802 bytes = min_t(unsigned long, PAGE_SIZE - offset,
809 * Bring in the user page that we will copy from _first_.
810 * Otherwise there's a nasty deadlock on copying from the
811 * same page as we're writing to, without it being marked
814 * Not only is this an optimisation, but it is also required
815 * to check that the address is actually valid, when atomic
816 * usercopies are used, below.
818 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
823 status = iomap_write_begin(inode, pos, bytes, flags, &page,
825 if (unlikely(status))
828 if (mapping_writably_mapped(inode->i_mapping))
829 flush_dcache_page(page);
831 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
833 flush_dcache_page(page);
835 status = iomap_write_end(inode, pos, bytes, copied, page,
837 if (unlikely(status < 0))
843 iov_iter_advance(i, copied);
844 if (unlikely(copied == 0)) {
846 * If we were unable to copy any data at all, we must
847 * fall back to a single segment length write.
849 * If we didn't fallback here, we could livelock
850 * because not all segments in the iov can be copied at
851 * once without a pagefault.
853 bytes = min_t(unsigned long, PAGE_SIZE - offset,
854 iov_iter_single_seg_count(i));
861 balance_dirty_pages_ratelimited(inode->i_mapping);
862 } while (iov_iter_count(i) && length);
864 return written ? written : status;
868 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
869 const struct iomap_ops *ops)
871 struct inode *inode = iocb->ki_filp->f_mapping->host;
872 loff_t pos = iocb->ki_pos, ret = 0, written = 0;
874 while (iov_iter_count(iter)) {
875 ret = iomap_apply(inode, pos, iov_iter_count(iter),
876 IOMAP_WRITE, ops, iter, iomap_write_actor);
883 return written ? written : ret;
885 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
888 __iomap_read_page(struct inode *inode, loff_t offset)
890 struct address_space *mapping = inode->i_mapping;
893 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
896 if (!PageUptodate(page)) {
898 return ERR_PTR(-EIO);
904 iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
911 struct page *page, *rpage;
912 unsigned long offset; /* Offset into pagecache page */
913 unsigned long bytes; /* Bytes to write to page */
915 offset = offset_in_page(pos);
916 bytes = min_t(loff_t, PAGE_SIZE - offset, length);
918 rpage = __iomap_read_page(inode, pos);
920 return PTR_ERR(rpage);
922 status = iomap_write_begin(inode, pos, bytes,
923 AOP_FLAG_NOFS, &page, iomap);
925 if (unlikely(status))
928 WARN_ON_ONCE(!PageUptodate(page));
930 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap);
931 if (unlikely(status <= 0)) {
932 if (WARN_ON_ONCE(status == 0))
943 balance_dirty_pages_ratelimited(inode->i_mapping);
950 iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
951 const struct iomap_ops *ops)
956 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
966 EXPORT_SYMBOL_GPL(iomap_file_dirty);
968 static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
969 unsigned bytes, struct iomap *iomap)
974 status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page,
979 zero_user(page, offset, bytes);
980 mark_page_accessed(page);
982 return iomap_write_end(inode, pos, bytes, bytes, page, iomap);
985 static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
988 return __dax_zero_page_range(iomap->bdev, iomap->dax_dev,
989 iomap_sector(iomap, pos & PAGE_MASK), offset, bytes);
993 iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
994 void *data, struct iomap *iomap)
996 bool *did_zero = data;
1000 /* already zeroed? we're done. */
1001 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1005 unsigned offset, bytes;
1007 offset = offset_in_page(pos);
1008 bytes = min_t(loff_t, PAGE_SIZE - offset, count);
1011 status = iomap_dax_zero(pos, offset, bytes, iomap);
1013 status = iomap_zero(inode, pos, offset, bytes, iomap);
1022 } while (count > 0);
1028 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1029 const struct iomap_ops *ops)
1034 ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
1035 ops, did_zero, iomap_zero_range_actor);
1045 EXPORT_SYMBOL_GPL(iomap_zero_range);
1048 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1049 const struct iomap_ops *ops)
1051 unsigned int blocksize = i_blocksize(inode);
1052 unsigned int off = pos & (blocksize - 1);
1054 /* Block boundary? Nothing to do */
1057 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1059 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1062 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1063 void *data, struct iomap *iomap)
1065 struct page *page = data;
1068 if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1069 ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1072 block_commit_write(page, 0, length);
1074 WARN_ON_ONCE(!PageUptodate(page));
1075 iomap_page_create(inode, page);
1076 set_page_dirty(page);
1082 int iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1084 struct page *page = vmf->page;
1085 struct inode *inode = file_inode(vmf->vma->vm_file);
1086 unsigned long length;
1087 loff_t offset, size;
1091 size = i_size_read(inode);
1092 if ((page->mapping != inode->i_mapping) ||
1093 (page_offset(page) > size)) {
1094 /* We overload EFAULT to mean page got truncated */
1099 /* page is wholly or partially inside EOF */
1100 if (((page->index + 1) << PAGE_SHIFT) > size)
1101 length = offset_in_page(size);
1105 offset = page_offset(page);
1106 while (length > 0) {
1107 ret = iomap_apply(inode, offset, length,
1108 IOMAP_WRITE | IOMAP_FAULT, ops, page,
1109 iomap_page_mkwrite_actor);
1110 if (unlikely(ret <= 0))
1116 wait_for_stable_page(page);
1117 return VM_FAULT_LOCKED;
1120 return block_page_mkwrite_return(ret);
1122 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1125 struct fiemap_extent_info *fi;
1129 static int iomap_to_fiemap(struct fiemap_extent_info *fi,
1130 struct iomap *iomap, u32 flags)
1132 switch (iomap->type) {
1136 case IOMAP_DELALLOC:
1137 flags |= FIEMAP_EXTENT_DELALLOC | FIEMAP_EXTENT_UNKNOWN;
1141 case IOMAP_UNWRITTEN:
1142 flags |= FIEMAP_EXTENT_UNWRITTEN;
1145 flags |= FIEMAP_EXTENT_DATA_INLINE;
1149 if (iomap->flags & IOMAP_F_MERGED)
1150 flags |= FIEMAP_EXTENT_MERGED;
1151 if (iomap->flags & IOMAP_F_SHARED)
1152 flags |= FIEMAP_EXTENT_SHARED;
1154 return fiemap_fill_next_extent(fi, iomap->offset,
1155 iomap->addr != IOMAP_NULL_ADDR ? iomap->addr : 0,
1156 iomap->length, flags);
1160 iomap_fiemap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1161 struct iomap *iomap)
1163 struct fiemap_ctx *ctx = data;
1164 loff_t ret = length;
1166 if (iomap->type == IOMAP_HOLE)
1169 ret = iomap_to_fiemap(ctx->fi, &ctx->prev, 0);
1172 case 0: /* success */
1174 case 1: /* extent array full */
1181 int iomap_fiemap(struct inode *inode, struct fiemap_extent_info *fi,
1182 loff_t start, loff_t len, const struct iomap_ops *ops)
1184 struct fiemap_ctx ctx;
1187 memset(&ctx, 0, sizeof(ctx));
1189 ctx.prev.type = IOMAP_HOLE;
1191 ret = fiemap_check_flags(fi, FIEMAP_FLAG_SYNC);
1195 if (fi->fi_flags & FIEMAP_FLAG_SYNC) {
1196 ret = filemap_write_and_wait(inode->i_mapping);
1202 ret = iomap_apply(inode, start, len, IOMAP_REPORT, ops, &ctx,
1203 iomap_fiemap_actor);
1204 /* inode with no (attribute) mapping will give ENOENT */
1216 if (ctx.prev.type != IOMAP_HOLE) {
1217 ret = iomap_to_fiemap(fi, &ctx.prev, FIEMAP_EXTENT_LAST);
1224 EXPORT_SYMBOL_GPL(iomap_fiemap);
1227 * Seek for SEEK_DATA / SEEK_HOLE within @page, starting at @lastoff.
1228 * Returns true if found and updates @lastoff to the offset in file.
1231 page_seek_hole_data(struct inode *inode, struct page *page, loff_t *lastoff,
1234 const struct address_space_operations *ops = inode->i_mapping->a_ops;
1235 unsigned int bsize = i_blocksize(inode), off;
1236 bool seek_data = whence == SEEK_DATA;
1237 loff_t poff = page_offset(page);
1239 if (WARN_ON_ONCE(*lastoff >= poff + PAGE_SIZE))
1242 if (*lastoff < poff) {
1244 * Last offset smaller than the start of the page means we found
1247 if (whence == SEEK_HOLE)
1253 * Just check the page unless we can and should check block ranges:
1255 if (bsize == PAGE_SIZE || !ops->is_partially_uptodate)
1256 return PageUptodate(page) == seek_data;
1259 if (unlikely(page->mapping != inode->i_mapping))
1260 goto out_unlock_not_found;
1262 for (off = 0; off < PAGE_SIZE; off += bsize) {
1263 if (offset_in_page(*lastoff) >= off + bsize)
1265 if (ops->is_partially_uptodate(page, off, bsize) == seek_data) {
1269 *lastoff = poff + off + bsize;
1272 out_unlock_not_found:
1278 * Seek for SEEK_DATA / SEEK_HOLE in the page cache.
1280 * Within unwritten extents, the page cache determines which parts are holes
1281 * and which are data: uptodate buffer heads count as data; everything else
1284 * Returns the resulting offset on successs, and -ENOENT otherwise.
1287 page_cache_seek_hole_data(struct inode *inode, loff_t offset, loff_t length,
1290 pgoff_t index = offset >> PAGE_SHIFT;
1291 pgoff_t end = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1292 loff_t lastoff = offset;
1293 struct pagevec pvec;
1298 pagevec_init(&pvec);
1301 unsigned nr_pages, i;
1303 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping, &index,
1308 for (i = 0; i < nr_pages; i++) {
1309 struct page *page = pvec.pages[i];
1311 if (page_seek_hole_data(inode, page, &lastoff, whence))
1313 lastoff = page_offset(page) + PAGE_SIZE;
1315 pagevec_release(&pvec);
1316 } while (index < end);
1318 /* When no page at lastoff and we are not done, we found a hole. */
1319 if (whence != SEEK_HOLE)
1323 if (lastoff < offset + length)
1328 pagevec_release(&pvec);
1334 iomap_seek_hole_actor(struct inode *inode, loff_t offset, loff_t length,
1335 void *data, struct iomap *iomap)
1337 switch (iomap->type) {
1338 case IOMAP_UNWRITTEN:
1339 offset = page_cache_seek_hole_data(inode, offset, length,
1345 *(loff_t *)data = offset;
1353 iomap_seek_hole(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1355 loff_t size = i_size_read(inode);
1356 loff_t length = size - offset;
1359 /* Nothing to be found before or beyond the end of the file. */
1360 if (offset < 0 || offset >= size)
1363 while (length > 0) {
1364 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1365 &offset, iomap_seek_hole_actor);
1377 EXPORT_SYMBOL_GPL(iomap_seek_hole);
1380 iomap_seek_data_actor(struct inode *inode, loff_t offset, loff_t length,
1381 void *data, struct iomap *iomap)
1383 switch (iomap->type) {
1386 case IOMAP_UNWRITTEN:
1387 offset = page_cache_seek_hole_data(inode, offset, length,
1393 *(loff_t *)data = offset;
1399 iomap_seek_data(struct inode *inode, loff_t offset, const struct iomap_ops *ops)
1401 loff_t size = i_size_read(inode);
1402 loff_t length = size - offset;
1405 /* Nothing to be found before or beyond the end of the file. */
1406 if (offset < 0 || offset >= size)
1409 while (length > 0) {
1410 ret = iomap_apply(inode, offset, length, IOMAP_REPORT, ops,
1411 &offset, iomap_seek_data_actor);
1425 EXPORT_SYMBOL_GPL(iomap_seek_data);
1428 * Private flags for iomap_dio, must not overlap with the public ones in
1431 #define IOMAP_DIO_WRITE_FUA (1 << 28)
1432 #define IOMAP_DIO_NEED_SYNC (1 << 29)
1433 #define IOMAP_DIO_WRITE (1 << 30)
1434 #define IOMAP_DIO_DIRTY (1 << 31)
1438 iomap_dio_end_io_t *end_io;
1444 bool wait_for_completion;
1447 /* used during submission and for synchronous completion: */
1449 struct iov_iter *iter;
1450 struct task_struct *waiter;
1451 struct request_queue *last_queue;
1455 /* used for aio completion: */
1457 struct work_struct work;
1462 static ssize_t iomap_dio_complete(struct iomap_dio *dio)
1464 struct kiocb *iocb = dio->iocb;
1465 struct inode *inode = file_inode(iocb->ki_filp);
1466 loff_t offset = iocb->ki_pos;
1470 ret = dio->end_io(iocb,
1471 dio->error ? dio->error : dio->size,
1479 /* check for short read */
1480 if (offset + ret > dio->i_size &&
1481 !(dio->flags & IOMAP_DIO_WRITE))
1482 ret = dio->i_size - offset;
1483 iocb->ki_pos += ret;
1487 * Try again to invalidate clean pages which might have been cached by
1488 * non-direct readahead, or faulted in by get_user_pages() if the source
1489 * of the write was an mmap'ed region of the file we're writing. Either
1490 * one is a pretty crazy thing to do, so we don't support it 100%. If
1491 * this invalidation fails, tough, the write still worked...
1493 * And this page cache invalidation has to be after dio->end_io(), as
1494 * some filesystems convert unwritten extents to real allocations in
1495 * end_io() when necessary, otherwise a racing buffer read would cache
1496 * zeros from unwritten extents.
1499 (dio->flags & IOMAP_DIO_WRITE) && inode->i_mapping->nrpages) {
1501 err = invalidate_inode_pages2_range(inode->i_mapping,
1502 offset >> PAGE_SHIFT,
1503 (offset + dio->size - 1) >> PAGE_SHIFT);
1505 dio_warn_stale_pagecache(iocb->ki_filp);
1509 * If this is a DSYNC write, make sure we push it to stable storage now
1510 * that we've written data.
1512 if (ret > 0 && (dio->flags & IOMAP_DIO_NEED_SYNC))
1513 ret = generic_write_sync(iocb, ret);
1515 inode_dio_end(file_inode(iocb->ki_filp));
1521 static void iomap_dio_complete_work(struct work_struct *work)
1523 struct iomap_dio *dio = container_of(work, struct iomap_dio, aio.work);
1524 struct kiocb *iocb = dio->iocb;
1526 iocb->ki_complete(iocb, iomap_dio_complete(dio), 0);
1530 * Set an error in the dio if none is set yet. We have to use cmpxchg
1531 * as the submission context and the completion context(s) can race to
1534 static inline void iomap_dio_set_error(struct iomap_dio *dio, int ret)
1536 cmpxchg(&dio->error, 0, ret);
1539 static void iomap_dio_bio_end_io(struct bio *bio)
1541 struct iomap_dio *dio = bio->bi_private;
1542 bool should_dirty = (dio->flags & IOMAP_DIO_DIRTY);
1545 iomap_dio_set_error(dio, blk_status_to_errno(bio->bi_status));
1547 if (atomic_dec_and_test(&dio->ref)) {
1548 if (dio->wait_for_completion) {
1549 struct task_struct *waiter = dio->submit.waiter;
1550 WRITE_ONCE(dio->submit.waiter, NULL);
1551 wake_up_process(waiter);
1552 } else if (dio->flags & IOMAP_DIO_WRITE) {
1553 struct inode *inode = file_inode(dio->iocb->ki_filp);
1555 INIT_WORK(&dio->aio.work, iomap_dio_complete_work);
1556 queue_work(inode->i_sb->s_dio_done_wq, &dio->aio.work);
1558 iomap_dio_complete_work(&dio->aio.work);
1563 bio_check_pages_dirty(bio);
1565 struct bio_vec *bvec;
1568 bio_for_each_segment_all(bvec, bio, i)
1569 put_page(bvec->bv_page);
1575 iomap_dio_zero(struct iomap_dio *dio, struct iomap *iomap, loff_t pos,
1578 struct page *page = ZERO_PAGE(0);
1581 bio = bio_alloc(GFP_KERNEL, 1);
1582 bio_set_dev(bio, iomap->bdev);
1583 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1584 bio->bi_private = dio;
1585 bio->bi_end_io = iomap_dio_bio_end_io;
1588 __bio_add_page(bio, page, len, 0);
1589 bio_set_op_attrs(bio, REQ_OP_WRITE, REQ_SYNC | REQ_IDLE);
1591 atomic_inc(&dio->ref);
1592 return submit_bio(bio);
1596 iomap_dio_bio_actor(struct inode *inode, loff_t pos, loff_t length,
1597 struct iomap_dio *dio, struct iomap *iomap)
1599 unsigned int blkbits = blksize_bits(bdev_logical_block_size(iomap->bdev));
1600 unsigned int fs_block_size = i_blocksize(inode), pad;
1601 unsigned int align = iov_iter_alignment(dio->submit.iter);
1602 struct iov_iter iter;
1604 bool need_zeroout = false;
1605 bool use_fua = false;
1609 if ((pos | length | align) & ((1 << blkbits) - 1))
1612 if (iomap->type == IOMAP_UNWRITTEN) {
1613 dio->flags |= IOMAP_DIO_UNWRITTEN;
1614 need_zeroout = true;
1617 if (iomap->flags & IOMAP_F_SHARED)
1618 dio->flags |= IOMAP_DIO_COW;
1620 if (iomap->flags & IOMAP_F_NEW) {
1621 need_zeroout = true;
1624 * Use a FUA write if we need datasync semantics, this
1625 * is a pure data IO that doesn't require any metadata
1626 * updates and the underlying device supports FUA. This
1627 * allows us to avoid cache flushes on IO completion.
1629 if (!(iomap->flags & (IOMAP_F_SHARED|IOMAP_F_DIRTY)) &&
1630 (dio->flags & IOMAP_DIO_WRITE_FUA) &&
1631 blk_queue_fua(bdev_get_queue(iomap->bdev)))
1636 * Operate on a partial iter trimmed to the extent we were called for.
1637 * We'll update the iter in the dio once we're done with this extent.
1639 iter = *dio->submit.iter;
1640 iov_iter_truncate(&iter, length);
1642 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1647 /* zero out from the start of the block to the write offset */
1648 pad = pos & (fs_block_size - 1);
1650 iomap_dio_zero(dio, iomap, pos - pad, pad);
1656 iov_iter_revert(dio->submit.iter, copied);
1660 bio = bio_alloc(GFP_KERNEL, nr_pages);
1661 bio_set_dev(bio, iomap->bdev);
1662 bio->bi_iter.bi_sector = iomap_sector(iomap, pos);
1663 bio->bi_write_hint = dio->iocb->ki_hint;
1664 bio->bi_ioprio = dio->iocb->ki_ioprio;
1665 bio->bi_private = dio;
1666 bio->bi_end_io = iomap_dio_bio_end_io;
1668 ret = bio_iov_iter_get_pages(bio, &iter);
1669 if (unlikely(ret)) {
1671 return copied ? copied : ret;
1674 n = bio->bi_iter.bi_size;
1675 if (dio->flags & IOMAP_DIO_WRITE) {
1676 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
1678 bio->bi_opf |= REQ_FUA;
1680 dio->flags &= ~IOMAP_DIO_WRITE_FUA;
1681 task_io_account_write(n);
1683 bio->bi_opf = REQ_OP_READ;
1684 if (dio->flags & IOMAP_DIO_DIRTY)
1685 bio_set_pages_dirty(bio);
1688 iov_iter_advance(dio->submit.iter, n);
1694 nr_pages = iov_iter_npages(&iter, BIO_MAX_PAGES);
1696 atomic_inc(&dio->ref);
1698 dio->submit.last_queue = bdev_get_queue(iomap->bdev);
1699 dio->submit.cookie = submit_bio(bio);
1703 /* zero out from the end of the write to the end of the block */
1704 pad = pos & (fs_block_size - 1);
1706 iomap_dio_zero(dio, iomap, pos, fs_block_size - pad);
1712 iomap_dio_hole_actor(loff_t length, struct iomap_dio *dio)
1714 length = iov_iter_zero(length, dio->submit.iter);
1715 dio->size += length;
1720 iomap_dio_inline_actor(struct inode *inode, loff_t pos, loff_t length,
1721 struct iomap_dio *dio, struct iomap *iomap)
1723 struct iov_iter *iter = dio->submit.iter;
1726 BUG_ON(pos + length > PAGE_SIZE - offset_in_page(iomap->inline_data));
1728 if (dio->flags & IOMAP_DIO_WRITE) {
1729 loff_t size = inode->i_size;
1732 memset(iomap->inline_data + size, 0, pos - size);
1733 copied = copy_from_iter(iomap->inline_data + pos, length, iter);
1735 if (pos + copied > size)
1736 i_size_write(inode, pos + copied);
1737 mark_inode_dirty(inode);
1740 copied = copy_to_iter(iomap->inline_data + pos, length, iter);
1742 dio->size += copied;
1747 iomap_dio_actor(struct inode *inode, loff_t pos, loff_t length,
1748 void *data, struct iomap *iomap)
1750 struct iomap_dio *dio = data;
1752 switch (iomap->type) {
1754 if (WARN_ON_ONCE(dio->flags & IOMAP_DIO_WRITE))
1756 return iomap_dio_hole_actor(length, dio);
1757 case IOMAP_UNWRITTEN:
1758 if (!(dio->flags & IOMAP_DIO_WRITE))
1759 return iomap_dio_hole_actor(length, dio);
1760 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1762 return iomap_dio_bio_actor(inode, pos, length, dio, iomap);
1764 return iomap_dio_inline_actor(inode, pos, length, dio, iomap);
1772 * iomap_dio_rw() always completes O_[D]SYNC writes regardless of whether the IO
1773 * is being issued as AIO or not. This allows us to optimise pure data writes
1774 * to use REQ_FUA rather than requiring generic_write_sync() to issue a
1775 * REQ_FLUSH post write. This is slightly tricky because a single request here
1776 * can be mapped into multiple disjoint IOs and only a subset of the IOs issued
1777 * may be pure data writes. In that case, we still need to do a full data sync
1781 iomap_dio_rw(struct kiocb *iocb, struct iov_iter *iter,
1782 const struct iomap_ops *ops, iomap_dio_end_io_t end_io)
1784 struct address_space *mapping = iocb->ki_filp->f_mapping;
1785 struct inode *inode = file_inode(iocb->ki_filp);
1786 size_t count = iov_iter_count(iter);
1787 loff_t pos = iocb->ki_pos, start = pos;
1788 loff_t end = iocb->ki_pos + count - 1, ret = 0;
1789 unsigned int flags = IOMAP_DIRECT;
1790 bool wait_for_completion = is_sync_kiocb(iocb);
1791 struct blk_plug plug;
1792 struct iomap_dio *dio;
1794 lockdep_assert_held(&inode->i_rwsem);
1799 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1804 atomic_set(&dio->ref, 1);
1806 dio->i_size = i_size_read(inode);
1807 dio->end_io = end_io;
1811 dio->submit.iter = iter;
1812 dio->submit.waiter = current;
1813 dio->submit.cookie = BLK_QC_T_NONE;
1814 dio->submit.last_queue = NULL;
1816 if (iov_iter_rw(iter) == READ) {
1817 if (pos >= dio->i_size)
1820 if (iter->type == ITER_IOVEC)
1821 dio->flags |= IOMAP_DIO_DIRTY;
1823 flags |= IOMAP_WRITE;
1824 dio->flags |= IOMAP_DIO_WRITE;
1826 /* for data sync or sync, we need sync completion processing */
1827 if (iocb->ki_flags & IOCB_DSYNC)
1828 dio->flags |= IOMAP_DIO_NEED_SYNC;
1831 * For datasync only writes, we optimistically try using FUA for
1832 * this IO. Any non-FUA write that occurs will clear this flag,
1833 * hence we know before completion whether a cache flush is
1836 if ((iocb->ki_flags & (IOCB_DSYNC | IOCB_SYNC)) == IOCB_DSYNC)
1837 dio->flags |= IOMAP_DIO_WRITE_FUA;
1840 if (iocb->ki_flags & IOCB_NOWAIT) {
1841 if (filemap_range_has_page(mapping, start, end)) {
1845 flags |= IOMAP_NOWAIT;
1848 ret = filemap_write_and_wait_range(mapping, start, end);
1853 * Try to invalidate cache pages for the range we're direct
1854 * writing. If this invalidation fails, tough, the write will
1855 * still work, but racing two incompatible write paths is a
1856 * pretty crazy thing to do, so we don't support it 100%.
1858 ret = invalidate_inode_pages2_range(mapping,
1859 start >> PAGE_SHIFT, end >> PAGE_SHIFT);
1861 dio_warn_stale_pagecache(iocb->ki_filp);
1864 if (iov_iter_rw(iter) == WRITE && !wait_for_completion &&
1865 !inode->i_sb->s_dio_done_wq) {
1866 ret = sb_init_dio_done_wq(inode->i_sb);
1871 inode_dio_begin(inode);
1873 blk_start_plug(&plug);
1875 ret = iomap_apply(inode, pos, count, flags, ops, dio,
1878 /* magic error code to fall back to buffered I/O */
1879 if (ret == -ENOTBLK) {
1880 wait_for_completion = true;
1887 if (iov_iter_rw(iter) == READ && pos >= dio->i_size)
1889 } while ((count = iov_iter_count(iter)) > 0);
1890 blk_finish_plug(&plug);
1893 iomap_dio_set_error(dio, ret);
1896 * If all the writes we issued were FUA, we don't need to flush the
1897 * cache on IO completion. Clear the sync flag for this case.
1899 if (dio->flags & IOMAP_DIO_WRITE_FUA)
1900 dio->flags &= ~IOMAP_DIO_NEED_SYNC;
1903 * We are about to drop our additional submission reference, which
1904 * might be the last reference to the dio. There are three three
1905 * different ways we can progress here:
1907 * (a) If this is the last reference we will always complete and free
1908 * the dio ourselves.
1909 * (b) If this is not the last reference, and we serve an asynchronous
1910 * iocb, we must never touch the dio after the decrement, the
1911 * I/O completion handler will complete and free it.
1912 * (c) If this is not the last reference, but we serve a synchronous
1913 * iocb, the I/O completion handler will wake us up on the drop
1914 * of the final reference, and we will complete and free it here
1915 * after we got woken by the I/O completion handler.
1917 dio->wait_for_completion = wait_for_completion;
1918 if (!atomic_dec_and_test(&dio->ref)) {
1919 if (!wait_for_completion)
1920 return -EIOCBQUEUED;
1923 set_current_state(TASK_UNINTERRUPTIBLE);
1924 if (!READ_ONCE(dio->submit.waiter))
1927 if (!(iocb->ki_flags & IOCB_HIPRI) ||
1928 !dio->submit.last_queue ||
1929 !blk_poll(dio->submit.last_queue,
1930 dio->submit.cookie))
1933 __set_current_state(TASK_RUNNING);
1936 return iomap_dio_complete(dio);
1942 EXPORT_SYMBOL_GPL(iomap_dio_rw);
1944 /* Swapfile activation */
1947 struct iomap_swapfile_info {
1948 struct iomap iomap; /* accumulated iomap */
1949 struct swap_info_struct *sis;
1950 uint64_t lowest_ppage; /* lowest physical addr seen (pages) */
1951 uint64_t highest_ppage; /* highest physical addr seen (pages) */
1952 unsigned long nr_pages; /* number of pages collected */
1953 int nr_extents; /* extent count */
1957 * Collect physical extents for this swap file. Physical extents reported to
1958 * the swap code must be trimmed to align to a page boundary. The logical
1959 * offset within the file is irrelevant since the swapfile code maps logical
1960 * page numbers of the swap device to the physical page-aligned extents.
1962 static int iomap_swapfile_add_extent(struct iomap_swapfile_info *isi)
1964 struct iomap *iomap = &isi->iomap;
1965 unsigned long nr_pages;
1966 uint64_t first_ppage;
1967 uint64_t first_ppage_reported;
1968 uint64_t next_ppage;
1972 * Round the start up and the end down so that the physical
1973 * extent aligns to a page boundary.
1975 first_ppage = ALIGN(iomap->addr, PAGE_SIZE) >> PAGE_SHIFT;
1976 next_ppage = ALIGN_DOWN(iomap->addr + iomap->length, PAGE_SIZE) >>
1979 /* Skip too-short physical extents. */
1980 if (first_ppage >= next_ppage)
1982 nr_pages = next_ppage - first_ppage;
1985 * Calculate how much swap space we're adding; the first page contains
1986 * the swap header and doesn't count. The mm still wants that first
1987 * page fed to add_swap_extent, however.
1989 first_ppage_reported = first_ppage;
1990 if (iomap->offset == 0)
1991 first_ppage_reported++;
1992 if (isi->lowest_ppage > first_ppage_reported)
1993 isi->lowest_ppage = first_ppage_reported;
1994 if (isi->highest_ppage < (next_ppage - 1))
1995 isi->highest_ppage = next_ppage - 1;
1997 /* Add extent, set up for the next call. */
1998 error = add_swap_extent(isi->sis, isi->nr_pages, nr_pages, first_ppage);
2001 isi->nr_extents += error;
2002 isi->nr_pages += nr_pages;
2007 * Accumulate iomaps for this swap file. We have to accumulate iomaps because
2008 * swap only cares about contiguous page-aligned physical extents and makes no
2009 * distinction between written and unwritten extents.
2011 static loff_t iomap_swapfile_activate_actor(struct inode *inode, loff_t pos,
2012 loff_t count, void *data, struct iomap *iomap)
2014 struct iomap_swapfile_info *isi = data;
2017 switch (iomap->type) {
2019 case IOMAP_UNWRITTEN:
2020 /* Only real or unwritten extents. */
2023 /* No inline data. */
2024 pr_err("swapon: file is inline\n");
2027 pr_err("swapon: file has unallocated extents\n");
2031 /* No uncommitted metadata or shared blocks. */
2032 if (iomap->flags & IOMAP_F_DIRTY) {
2033 pr_err("swapon: file is not committed\n");
2036 if (iomap->flags & IOMAP_F_SHARED) {
2037 pr_err("swapon: file has shared extents\n");
2041 /* Only one bdev per swap file. */
2042 if (iomap->bdev != isi->sis->bdev) {
2043 pr_err("swapon: file is on multiple devices\n");
2047 if (isi->iomap.length == 0) {
2048 /* No accumulated extent, so just store it. */
2049 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2050 } else if (isi->iomap.addr + isi->iomap.length == iomap->addr) {
2051 /* Append this to the accumulated extent. */
2052 isi->iomap.length += iomap->length;
2054 /* Otherwise, add the retained iomap and store this one. */
2055 error = iomap_swapfile_add_extent(isi);
2058 memcpy(&isi->iomap, iomap, sizeof(isi->iomap));
2064 * Iterate a swap file's iomaps to construct physical extents that can be
2065 * passed to the swapfile subsystem.
2067 int iomap_swapfile_activate(struct swap_info_struct *sis,
2068 struct file *swap_file, sector_t *pagespan,
2069 const struct iomap_ops *ops)
2071 struct iomap_swapfile_info isi = {
2073 .lowest_ppage = (sector_t)-1ULL,
2075 struct address_space *mapping = swap_file->f_mapping;
2076 struct inode *inode = mapping->host;
2078 loff_t len = ALIGN_DOWN(i_size_read(inode), PAGE_SIZE);
2082 * Persist all file mapping metadata so that we won't have any
2083 * IOMAP_F_DIRTY iomaps.
2085 ret = vfs_fsync(swap_file, 1);
2090 ret = iomap_apply(inode, pos, len, IOMAP_REPORT,
2091 ops, &isi, iomap_swapfile_activate_actor);
2099 if (isi.iomap.length) {
2100 ret = iomap_swapfile_add_extent(&isi);
2105 *pagespan = 1 + isi.highest_ppage - isi.lowest_ppage;
2106 sis->max = isi.nr_pages;
2107 sis->pages = isi.nr_pages - 1;
2108 sis->highest_bit = isi.nr_pages - 1;
2109 return isi.nr_extents;
2111 EXPORT_SYMBOL_GPL(iomap_swapfile_activate);
2112 #endif /* CONFIG_SWAP */
2115 iomap_bmap_actor(struct inode *inode, loff_t pos, loff_t length,
2116 void *data, struct iomap *iomap)
2118 sector_t *bno = data, addr;
2120 if (iomap->type == IOMAP_MAPPED) {
2121 addr = (pos - iomap->offset + iomap->addr) >> inode->i_blkbits;
2123 WARN(1, "would truncate bmap result\n");
2130 /* legacy ->bmap interface. 0 is the error return (!) */
2132 iomap_bmap(struct address_space *mapping, sector_t bno,
2133 const struct iomap_ops *ops)
2135 struct inode *inode = mapping->host;
2136 loff_t pos = bno << inode->i_blkbits;
2137 unsigned blocksize = i_blocksize(inode);
2139 if (filemap_write_and_wait(mapping))
2143 iomap_apply(inode, pos, blocksize, 0, ops, &bno, iomap_bmap_actor);
2146 EXPORT_SYMBOL_GPL(iomap_bmap);