1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (C) 2016-2019 Christoph Hellwig.
6 #include <linux/module.h>
7 #include <linux/compiler.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
22 #include "../internal.h"
24 #define IOEND_BATCH_SIZE 4096
26 typedef int (*iomap_punch_t)(struct inode *inode, loff_t offset, loff_t length);
28 * Structure allocated for each folio to track per-block uptodate, dirty state
29 * and I/O completions.
31 struct iomap_folio_state {
32 atomic_t read_bytes_pending;
33 atomic_t write_bytes_pending;
34 spinlock_t state_lock;
37 * Each block has two bits in this bitmap:
38 * Bits [0..blocks_per_folio) has the uptodate status.
39 * Bits [b_p_f...(2*b_p_f)) has the dirty status.
41 unsigned long state[];
44 static struct bio_set iomap_ioend_bioset;
46 static inline bool ifs_is_fully_uptodate(struct folio *folio,
47 struct iomap_folio_state *ifs)
49 struct inode *inode = folio->mapping->host;
51 return bitmap_full(ifs->state, i_blocks_per_folio(inode, folio));
54 static inline bool ifs_block_is_uptodate(struct iomap_folio_state *ifs,
57 return test_bit(block, ifs->state);
60 static void ifs_set_range_uptodate(struct folio *folio,
61 struct iomap_folio_state *ifs, size_t off, size_t len)
63 struct inode *inode = folio->mapping->host;
64 unsigned int first_blk = off >> inode->i_blkbits;
65 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
66 unsigned int nr_blks = last_blk - first_blk + 1;
69 spin_lock_irqsave(&ifs->state_lock, flags);
70 bitmap_set(ifs->state, first_blk, nr_blks);
71 if (ifs_is_fully_uptodate(folio, ifs))
72 folio_mark_uptodate(folio);
73 spin_unlock_irqrestore(&ifs->state_lock, flags);
76 static void iomap_set_range_uptodate(struct folio *folio, size_t off,
79 struct iomap_folio_state *ifs = folio->private;
82 ifs_set_range_uptodate(folio, ifs, off, len);
84 folio_mark_uptodate(folio);
87 static inline bool ifs_block_is_dirty(struct folio *folio,
88 struct iomap_folio_state *ifs, int block)
90 struct inode *inode = folio->mapping->host;
91 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
93 return test_bit(block + blks_per_folio, ifs->state);
96 static void ifs_clear_range_dirty(struct folio *folio,
97 struct iomap_folio_state *ifs, size_t off, size_t len)
99 struct inode *inode = folio->mapping->host;
100 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
101 unsigned int first_blk = (off >> inode->i_blkbits);
102 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
103 unsigned int nr_blks = last_blk - first_blk + 1;
106 spin_lock_irqsave(&ifs->state_lock, flags);
107 bitmap_clear(ifs->state, first_blk + blks_per_folio, nr_blks);
108 spin_unlock_irqrestore(&ifs->state_lock, flags);
111 static void iomap_clear_range_dirty(struct folio *folio, size_t off, size_t len)
113 struct iomap_folio_state *ifs = folio->private;
116 ifs_clear_range_dirty(folio, ifs, off, len);
119 static void ifs_set_range_dirty(struct folio *folio,
120 struct iomap_folio_state *ifs, size_t off, size_t len)
122 struct inode *inode = folio->mapping->host;
123 unsigned int blks_per_folio = i_blocks_per_folio(inode, folio);
124 unsigned int first_blk = (off >> inode->i_blkbits);
125 unsigned int last_blk = (off + len - 1) >> inode->i_blkbits;
126 unsigned int nr_blks = last_blk - first_blk + 1;
129 spin_lock_irqsave(&ifs->state_lock, flags);
130 bitmap_set(ifs->state, first_blk + blks_per_folio, nr_blks);
131 spin_unlock_irqrestore(&ifs->state_lock, flags);
134 static void iomap_set_range_dirty(struct folio *folio, size_t off, size_t len)
136 struct iomap_folio_state *ifs = folio->private;
139 ifs_set_range_dirty(folio, ifs, off, len);
142 static struct iomap_folio_state *ifs_alloc(struct inode *inode,
143 struct folio *folio, unsigned int flags)
145 struct iomap_folio_state *ifs = folio->private;
146 unsigned int nr_blocks = i_blocks_per_folio(inode, folio);
149 if (ifs || nr_blocks <= 1)
152 if (flags & IOMAP_NOWAIT)
155 gfp = GFP_NOFS | __GFP_NOFAIL;
158 * ifs->state tracks two sets of state flags when the
159 * filesystem block size is smaller than the folio size.
160 * The first state tracks per-block uptodate and the
161 * second tracks per-block dirty state.
163 ifs = kzalloc(struct_size(ifs, state,
164 BITS_TO_LONGS(2 * nr_blocks)), gfp);
168 spin_lock_init(&ifs->state_lock);
169 if (folio_test_uptodate(folio))
170 bitmap_set(ifs->state, 0, nr_blocks);
171 if (folio_test_dirty(folio))
172 bitmap_set(ifs->state, nr_blocks, nr_blocks);
173 folio_attach_private(folio, ifs);
178 static void ifs_free(struct folio *folio)
180 struct iomap_folio_state *ifs = folio_detach_private(folio);
184 WARN_ON_ONCE(atomic_read(&ifs->read_bytes_pending));
185 WARN_ON_ONCE(atomic_read(&ifs->write_bytes_pending));
186 WARN_ON_ONCE(ifs_is_fully_uptodate(folio, ifs) !=
187 folio_test_uptodate(folio));
192 * Calculate the range inside the folio that we actually need to read.
194 static void iomap_adjust_read_range(struct inode *inode, struct folio *folio,
195 loff_t *pos, loff_t length, size_t *offp, size_t *lenp)
197 struct iomap_folio_state *ifs = folio->private;
198 loff_t orig_pos = *pos;
199 loff_t isize = i_size_read(inode);
200 unsigned block_bits = inode->i_blkbits;
201 unsigned block_size = (1 << block_bits);
202 size_t poff = offset_in_folio(folio, *pos);
203 size_t plen = min_t(loff_t, folio_size(folio) - poff, length);
204 unsigned first = poff >> block_bits;
205 unsigned last = (poff + plen - 1) >> block_bits;
208 * If the block size is smaller than the page size, we need to check the
209 * per-block uptodate status and adjust the offset and length if needed
210 * to avoid reading in already uptodate ranges.
215 /* move forward for each leading block marked uptodate */
216 for (i = first; i <= last; i++) {
217 if (!ifs_block_is_uptodate(ifs, i))
225 /* truncate len if we find any trailing uptodate block(s) */
226 for ( ; i <= last; i++) {
227 if (ifs_block_is_uptodate(ifs, i)) {
228 plen -= (last - i + 1) * block_size;
236 * If the extent spans the block that contains the i_size, we need to
237 * handle both halves separately so that we properly zero data in the
238 * page cache for blocks that are entirely outside of i_size.
240 if (orig_pos <= isize && orig_pos + length > isize) {
241 unsigned end = offset_in_folio(folio, isize - 1) >> block_bits;
243 if (first <= end && last > end)
244 plen -= (last - end) * block_size;
251 static void iomap_finish_folio_read(struct folio *folio, size_t offset,
252 size_t len, int error)
254 struct iomap_folio_state *ifs = folio->private;
256 if (unlikely(error)) {
257 folio_clear_uptodate(folio);
258 folio_set_error(folio);
260 iomap_set_range_uptodate(folio, offset, len);
263 if (!ifs || atomic_sub_and_test(len, &ifs->read_bytes_pending))
267 static void iomap_read_end_io(struct bio *bio)
269 int error = blk_status_to_errno(bio->bi_status);
270 struct folio_iter fi;
272 bio_for_each_folio_all(fi, bio)
273 iomap_finish_folio_read(fi.folio, fi.offset, fi.length, error);
277 struct iomap_readpage_ctx {
278 struct folio *cur_folio;
279 bool cur_folio_in_bio;
281 struct readahead_control *rac;
285 * iomap_read_inline_data - copy inline data into the page cache
286 * @iter: iteration structure
287 * @folio: folio to copy to
289 * Copy the inline data in @iter into @folio and zero out the rest of the folio.
290 * Only a single IOMAP_INLINE extent is allowed at the end of each file.
291 * Returns zero for success to complete the read, or the usual negative errno.
293 static int iomap_read_inline_data(const struct iomap_iter *iter,
296 const struct iomap *iomap = iomap_iter_srcmap(iter);
297 size_t size = i_size_read(iter->inode) - iomap->offset;
298 size_t poff = offset_in_page(iomap->offset);
299 size_t offset = offset_in_folio(folio, iomap->offset);
302 if (folio_test_uptodate(folio))
305 if (WARN_ON_ONCE(size > PAGE_SIZE - poff))
307 if (WARN_ON_ONCE(size > PAGE_SIZE -
308 offset_in_page(iomap->inline_data)))
310 if (WARN_ON_ONCE(size > iomap->length))
313 ifs_alloc(iter->inode, folio, iter->flags);
315 addr = kmap_local_folio(folio, offset);
316 memcpy(addr, iomap->inline_data, size);
317 memset(addr + size, 0, PAGE_SIZE - poff - size);
319 iomap_set_range_uptodate(folio, offset, PAGE_SIZE - poff);
323 static inline bool iomap_block_needs_zeroing(const struct iomap_iter *iter,
326 const struct iomap *srcmap = iomap_iter_srcmap(iter);
328 return srcmap->type != IOMAP_MAPPED ||
329 (srcmap->flags & IOMAP_F_NEW) ||
330 pos >= i_size_read(iter->inode);
333 static loff_t iomap_readpage_iter(const struct iomap_iter *iter,
334 struct iomap_readpage_ctx *ctx, loff_t offset)
336 const struct iomap *iomap = &iter->iomap;
337 loff_t pos = iter->pos + offset;
338 loff_t length = iomap_length(iter) - offset;
339 struct folio *folio = ctx->cur_folio;
340 struct iomap_folio_state *ifs;
341 loff_t orig_pos = pos;
345 if (iomap->type == IOMAP_INLINE)
346 return iomap_read_inline_data(iter, folio);
348 /* zero post-eof blocks as the page may be mapped */
349 ifs = ifs_alloc(iter->inode, folio, iter->flags);
350 iomap_adjust_read_range(iter->inode, folio, &pos, length, &poff, &plen);
354 if (iomap_block_needs_zeroing(iter, pos)) {
355 folio_zero_range(folio, poff, plen);
356 iomap_set_range_uptodate(folio, poff, plen);
360 ctx->cur_folio_in_bio = true;
362 atomic_add(plen, &ifs->read_bytes_pending);
364 sector = iomap_sector(iomap, pos);
366 bio_end_sector(ctx->bio) != sector ||
367 !bio_add_folio(ctx->bio, folio, plen, poff)) {
368 gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
369 gfp_t orig_gfp = gfp;
370 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
373 submit_bio(ctx->bio);
375 if (ctx->rac) /* same as readahead_gfp_mask */
376 gfp |= __GFP_NORETRY | __GFP_NOWARN;
377 ctx->bio = bio_alloc(iomap->bdev, bio_max_segs(nr_vecs),
380 * If the bio_alloc fails, try it again for a single page to
381 * avoid having to deal with partial page reads. This emulates
382 * what do_mpage_read_folio does.
385 ctx->bio = bio_alloc(iomap->bdev, 1, REQ_OP_READ,
389 ctx->bio->bi_opf |= REQ_RAHEAD;
390 ctx->bio->bi_iter.bi_sector = sector;
391 ctx->bio->bi_end_io = iomap_read_end_io;
392 bio_add_folio_nofail(ctx->bio, folio, plen, poff);
397 * Move the caller beyond our range so that it keeps making progress.
398 * For that, we have to include any leading non-uptodate ranges, but
399 * we can skip trailing ones as they will be handled in the next
402 return pos - orig_pos + plen;
405 int iomap_read_folio(struct folio *folio, const struct iomap_ops *ops)
407 struct iomap_iter iter = {
408 .inode = folio->mapping->host,
409 .pos = folio_pos(folio),
410 .len = folio_size(folio),
412 struct iomap_readpage_ctx ctx = {
417 trace_iomap_readpage(iter.inode, 1);
419 while ((ret = iomap_iter(&iter, ops)) > 0)
420 iter.processed = iomap_readpage_iter(&iter, &ctx, 0);
423 folio_set_error(folio);
427 WARN_ON_ONCE(!ctx.cur_folio_in_bio);
429 WARN_ON_ONCE(ctx.cur_folio_in_bio);
434 * Just like mpage_readahead and block_read_full_folio, we always
435 * return 0 and just set the folio error flag on errors. This
436 * should be cleaned up throughout the stack eventually.
440 EXPORT_SYMBOL_GPL(iomap_read_folio);
442 static loff_t iomap_readahead_iter(const struct iomap_iter *iter,
443 struct iomap_readpage_ctx *ctx)
445 loff_t length = iomap_length(iter);
448 for (done = 0; done < length; done += ret) {
449 if (ctx->cur_folio &&
450 offset_in_folio(ctx->cur_folio, iter->pos + done) == 0) {
451 if (!ctx->cur_folio_in_bio)
452 folio_unlock(ctx->cur_folio);
453 ctx->cur_folio = NULL;
455 if (!ctx->cur_folio) {
456 ctx->cur_folio = readahead_folio(ctx->rac);
457 ctx->cur_folio_in_bio = false;
459 ret = iomap_readpage_iter(iter, ctx, done);
468 * iomap_readahead - Attempt to read pages from a file.
469 * @rac: Describes the pages to be read.
470 * @ops: The operations vector for the filesystem.
472 * This function is for filesystems to call to implement their readahead
473 * address_space operation.
475 * Context: The @ops callbacks may submit I/O (eg to read the addresses of
476 * blocks from disc), and may wait for it. The caller may be trying to
477 * access a different page, and so sleeping excessively should be avoided.
478 * It may allocate memory, but should avoid costly allocations. This
479 * function is called with memalloc_nofs set, so allocations will not cause
480 * the filesystem to be reentered.
482 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
484 struct iomap_iter iter = {
485 .inode = rac->mapping->host,
486 .pos = readahead_pos(rac),
487 .len = readahead_length(rac),
489 struct iomap_readpage_ctx ctx = {
493 trace_iomap_readahead(rac->mapping->host, readahead_count(rac));
495 while (iomap_iter(&iter, ops) > 0)
496 iter.processed = iomap_readahead_iter(&iter, &ctx);
501 if (!ctx.cur_folio_in_bio)
502 folio_unlock(ctx.cur_folio);
505 EXPORT_SYMBOL_GPL(iomap_readahead);
508 * iomap_is_partially_uptodate checks whether blocks within a folio are
511 * Returns true if all blocks which correspond to the specified part
512 * of the folio are uptodate.
514 bool iomap_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
516 struct iomap_folio_state *ifs = folio->private;
517 struct inode *inode = folio->mapping->host;
518 unsigned first, last, i;
523 /* Caller's range may extend past the end of this folio */
524 count = min(folio_size(folio) - from, count);
526 /* First and last blocks in range within folio */
527 first = from >> inode->i_blkbits;
528 last = (from + count - 1) >> inode->i_blkbits;
530 for (i = first; i <= last; i++)
531 if (!ifs_block_is_uptodate(ifs, i))
535 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
538 * iomap_get_folio - get a folio reference for writing
539 * @iter: iteration structure
540 * @pos: start offset of write
541 * @len: Suggested size of folio to create.
543 * Returns a locked reference to the folio at @pos, or an error pointer if the
544 * folio could not be obtained.
546 struct folio *iomap_get_folio(struct iomap_iter *iter, loff_t pos, size_t len)
548 fgf_t fgp = FGP_WRITEBEGIN | FGP_NOFS;
550 if (iter->flags & IOMAP_NOWAIT)
552 fgp |= fgf_set_order(len);
554 return __filemap_get_folio(iter->inode->i_mapping, pos >> PAGE_SHIFT,
555 fgp, mapping_gfp_mask(iter->inode->i_mapping));
557 EXPORT_SYMBOL_GPL(iomap_get_folio);
559 bool iomap_release_folio(struct folio *folio, gfp_t gfp_flags)
561 trace_iomap_release_folio(folio->mapping->host, folio_pos(folio),
565 * If the folio is dirty, we refuse to release our metadata because
566 * it may be partially dirty. Once we track per-block dirty state,
567 * we can release the metadata if every block is dirty.
569 if (folio_test_dirty(folio))
574 EXPORT_SYMBOL_GPL(iomap_release_folio);
576 void iomap_invalidate_folio(struct folio *folio, size_t offset, size_t len)
578 trace_iomap_invalidate_folio(folio->mapping->host,
579 folio_pos(folio) + offset, len);
582 * If we're invalidating the entire folio, clear the dirty state
583 * from it and release it to avoid unnecessary buildup of the LRU.
585 if (offset == 0 && len == folio_size(folio)) {
586 WARN_ON_ONCE(folio_test_writeback(folio));
587 folio_cancel_dirty(folio);
591 EXPORT_SYMBOL_GPL(iomap_invalidate_folio);
593 bool iomap_dirty_folio(struct address_space *mapping, struct folio *folio)
595 struct inode *inode = mapping->host;
596 size_t len = folio_size(folio);
598 ifs_alloc(inode, folio, 0);
599 iomap_set_range_dirty(folio, 0, len);
600 return filemap_dirty_folio(mapping, folio);
602 EXPORT_SYMBOL_GPL(iomap_dirty_folio);
605 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
607 loff_t i_size = i_size_read(inode);
610 * Only truncate newly allocated pages beyoned EOF, even if the
611 * write started inside the existing inode size.
613 if (pos + len > i_size)
614 truncate_pagecache_range(inode, max(pos, i_size),
618 static int iomap_read_folio_sync(loff_t block_start, struct folio *folio,
619 size_t poff, size_t plen, const struct iomap *iomap)
624 bio_init(&bio, iomap->bdev, &bvec, 1, REQ_OP_READ);
625 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
626 bio_add_folio_nofail(&bio, folio, plen, poff);
627 return submit_bio_wait(&bio);
630 static int __iomap_write_begin(const struct iomap_iter *iter, loff_t pos,
631 size_t len, struct folio *folio)
633 const struct iomap *srcmap = iomap_iter_srcmap(iter);
634 struct iomap_folio_state *ifs;
635 loff_t block_size = i_blocksize(iter->inode);
636 loff_t block_start = round_down(pos, block_size);
637 loff_t block_end = round_up(pos + len, block_size);
638 unsigned int nr_blocks = i_blocks_per_folio(iter->inode, folio);
639 size_t from = offset_in_folio(folio, pos), to = from + len;
643 * If the write or zeroing completely overlaps the current folio, then
644 * entire folio will be dirtied so there is no need for
645 * per-block state tracking structures to be attached to this folio.
646 * For the unshare case, we must read in the ondisk contents because we
647 * are not changing pagecache contents.
649 if (!(iter->flags & IOMAP_UNSHARE) && pos <= folio_pos(folio) &&
650 pos + len >= folio_pos(folio) + folio_size(folio))
653 ifs = ifs_alloc(iter->inode, folio, iter->flags);
654 if ((iter->flags & IOMAP_NOWAIT) && !ifs && nr_blocks > 1)
657 if (folio_test_uptodate(folio))
659 folio_clear_error(folio);
662 iomap_adjust_read_range(iter->inode, folio, &block_start,
663 block_end - block_start, &poff, &plen);
667 if (!(iter->flags & IOMAP_UNSHARE) &&
668 (from <= poff || from >= poff + plen) &&
669 (to <= poff || to >= poff + plen))
672 if (iomap_block_needs_zeroing(iter, block_start)) {
673 if (WARN_ON_ONCE(iter->flags & IOMAP_UNSHARE))
675 folio_zero_segments(folio, poff, from, to, poff + plen);
679 if (iter->flags & IOMAP_NOWAIT)
682 status = iomap_read_folio_sync(block_start, folio,
687 iomap_set_range_uptodate(folio, poff, plen);
688 } while ((block_start += plen) < block_end);
693 static struct folio *__iomap_get_folio(struct iomap_iter *iter, loff_t pos,
696 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
698 if (folio_ops && folio_ops->get_folio)
699 return folio_ops->get_folio(iter, pos, len);
701 return iomap_get_folio(iter, pos, len);
704 static void __iomap_put_folio(struct iomap_iter *iter, loff_t pos, size_t ret,
707 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
709 if (folio_ops && folio_ops->put_folio) {
710 folio_ops->put_folio(iter->inode, pos, ret, folio);
717 static int iomap_write_begin_inline(const struct iomap_iter *iter,
720 /* needs more work for the tailpacking case; disable for now */
721 if (WARN_ON_ONCE(iomap_iter_srcmap(iter)->offset != 0))
723 return iomap_read_inline_data(iter, folio);
726 static int iomap_write_begin(struct iomap_iter *iter, loff_t pos,
727 size_t len, struct folio **foliop)
729 const struct iomap_folio_ops *folio_ops = iter->iomap.folio_ops;
730 const struct iomap *srcmap = iomap_iter_srcmap(iter);
734 BUG_ON(pos + len > iter->iomap.offset + iter->iomap.length);
735 if (srcmap != &iter->iomap)
736 BUG_ON(pos + len > srcmap->offset + srcmap->length);
738 if (fatal_signal_pending(current))
741 if (!mapping_large_folio_support(iter->inode->i_mapping))
742 len = min_t(size_t, len, PAGE_SIZE - offset_in_page(pos));
744 folio = __iomap_get_folio(iter, pos, len);
746 return PTR_ERR(folio);
749 * Now we have a locked folio, before we do anything with it we need to
750 * check that the iomap we have cached is not stale. The inode extent
751 * mapping can change due to concurrent IO in flight (e.g.
752 * IOMAP_UNWRITTEN state can change and memory reclaim could have
753 * reclaimed a previously partially written page at this index after IO
754 * completion before this write reaches this file offset) and hence we
755 * could do the wrong thing here (zero a page range incorrectly or fail
756 * to zero) and corrupt data.
758 if (folio_ops && folio_ops->iomap_valid) {
759 bool iomap_valid = folio_ops->iomap_valid(iter->inode,
762 iter->iomap.flags |= IOMAP_F_STALE;
768 if (pos + len > folio_pos(folio) + folio_size(folio))
769 len = folio_pos(folio) + folio_size(folio) - pos;
771 if (srcmap->type == IOMAP_INLINE)
772 status = iomap_write_begin_inline(iter, folio);
773 else if (srcmap->flags & IOMAP_F_BUFFER_HEAD)
774 status = __block_write_begin_int(folio, pos, len, NULL, srcmap);
776 status = __iomap_write_begin(iter, pos, len, folio);
778 if (unlikely(status))
785 __iomap_put_folio(iter, pos, 0, folio);
786 iomap_write_failed(iter->inode, pos, len);
791 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
792 size_t copied, struct folio *folio)
794 flush_dcache_folio(folio);
797 * The blocks that were entirely written will now be uptodate, so we
798 * don't have to worry about a read_folio reading them and overwriting a
799 * partial write. However, if we've encountered a short write and only
800 * partially written into a block, it will not be marked uptodate, so a
801 * read_folio might come in and destroy our partial write.
803 * Do the simplest thing and just treat any short write to a
804 * non-uptodate page as a zero-length write, and force the caller to
805 * redo the whole thing.
807 if (unlikely(copied < len && !folio_test_uptodate(folio)))
809 iomap_set_range_uptodate(folio, offset_in_folio(folio, pos), len);
810 iomap_set_range_dirty(folio, offset_in_folio(folio, pos), copied);
811 filemap_dirty_folio(inode->i_mapping, folio);
815 static size_t iomap_write_end_inline(const struct iomap_iter *iter,
816 struct folio *folio, loff_t pos, size_t copied)
818 const struct iomap *iomap = &iter->iomap;
821 WARN_ON_ONCE(!folio_test_uptodate(folio));
822 BUG_ON(!iomap_inline_data_valid(iomap));
824 flush_dcache_folio(folio);
825 addr = kmap_local_folio(folio, pos);
826 memcpy(iomap_inline_data(iomap, pos), addr, copied);
829 mark_inode_dirty(iter->inode);
833 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */
834 static size_t iomap_write_end(struct iomap_iter *iter, loff_t pos, size_t len,
835 size_t copied, struct folio *folio)
837 const struct iomap *srcmap = iomap_iter_srcmap(iter);
838 loff_t old_size = iter->inode->i_size;
841 if (srcmap->type == IOMAP_INLINE) {
842 ret = iomap_write_end_inline(iter, folio, pos, copied);
843 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
844 ret = block_write_end(NULL, iter->inode->i_mapping, pos, len,
845 copied, &folio->page, NULL);
847 ret = __iomap_write_end(iter->inode, pos, len, copied, folio);
851 * Update the in-memory inode size after copying the data into the page
852 * cache. It's up to the file system to write the updated size to disk,
853 * preferably after I/O completion so that no stale data is exposed.
855 if (pos + ret > old_size) {
856 i_size_write(iter->inode, pos + ret);
857 iter->iomap.flags |= IOMAP_F_SIZE_CHANGED;
859 __iomap_put_folio(iter, pos, ret, folio);
862 pagecache_isize_extended(iter->inode, old_size, pos);
864 iomap_write_failed(iter->inode, pos + ret, len - ret);
868 static loff_t iomap_write_iter(struct iomap_iter *iter, struct iov_iter *i)
870 loff_t length = iomap_length(iter);
871 size_t chunk = PAGE_SIZE << MAX_PAGECACHE_ORDER;
872 loff_t pos = iter->pos;
875 struct address_space *mapping = iter->inode->i_mapping;
876 unsigned int bdp_flags = (iter->flags & IOMAP_NOWAIT) ? BDP_ASYNC : 0;
880 size_t offset; /* Offset into folio */
881 size_t bytes; /* Bytes to write to folio */
882 size_t copied; /* Bytes copied from user */
884 offset = pos & (chunk - 1);
885 bytes = min(chunk - offset, iov_iter_count(i));
886 status = balance_dirty_pages_ratelimited_flags(mapping,
888 if (unlikely(status))
895 * Bring in the user page that we'll copy from _first_.
896 * Otherwise there's a nasty deadlock on copying from the
897 * same page as we're writing to, without it being marked
900 * For async buffered writes the assumption is that the user
901 * page has already been faulted in. This can be optimized by
902 * faulting the user page.
904 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
909 status = iomap_write_begin(iter, pos, bytes, &folio);
910 if (unlikely(status))
912 if (iter->iomap.flags & IOMAP_F_STALE)
915 offset = offset_in_folio(folio, pos);
916 if (bytes > folio_size(folio) - offset)
917 bytes = folio_size(folio) - offset;
919 if (mapping_writably_mapped(mapping))
920 flush_dcache_folio(folio);
922 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
923 status = iomap_write_end(iter, pos, bytes, copied, folio);
925 if (unlikely(copied != status))
926 iov_iter_revert(i, copied - status);
929 if (unlikely(status == 0)) {
931 * A short copy made iomap_write_end() reject the
932 * thing entirely. Might be memory poisoning
933 * halfway through, might be a race with munmap,
934 * might be severe memory pressure.
938 if (chunk > PAGE_SIZE)
945 } while (iov_iter_count(i) && length);
947 if (status == -EAGAIN) {
948 iov_iter_revert(i, written);
951 return written ? written : status;
955 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *i,
956 const struct iomap_ops *ops)
958 struct iomap_iter iter = {
959 .inode = iocb->ki_filp->f_mapping->host,
961 .len = iov_iter_count(i),
962 .flags = IOMAP_WRITE,
966 if (iocb->ki_flags & IOCB_NOWAIT)
967 iter.flags |= IOMAP_NOWAIT;
969 while ((ret = iomap_iter(&iter, ops)) > 0)
970 iter.processed = iomap_write_iter(&iter, i);
972 if (unlikely(iter.pos == iocb->ki_pos))
974 ret = iter.pos - iocb->ki_pos;
975 iocb->ki_pos = iter.pos;
978 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
980 static int iomap_write_delalloc_ifs_punch(struct inode *inode,
981 struct folio *folio, loff_t start_byte, loff_t end_byte,
984 unsigned int first_blk, last_blk, i;
986 u8 blkbits = inode->i_blkbits;
987 struct iomap_folio_state *ifs;
991 * When we have per-block dirty tracking, there can be
992 * blocks within a folio which are marked uptodate
993 * but not dirty. In that case it is necessary to punch
994 * out such blocks to avoid leaking any delalloc blocks.
996 ifs = folio->private;
1000 last_byte = min_t(loff_t, end_byte - 1,
1001 folio_pos(folio) + folio_size(folio) - 1);
1002 first_blk = offset_in_folio(folio, start_byte) >> blkbits;
1003 last_blk = offset_in_folio(folio, last_byte) >> blkbits;
1004 for (i = first_blk; i <= last_blk; i++) {
1005 if (!ifs_block_is_dirty(folio, ifs, i)) {
1006 ret = punch(inode, folio_pos(folio) + (i << blkbits),
1017 static int iomap_write_delalloc_punch(struct inode *inode, struct folio *folio,
1018 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1019 iomap_punch_t punch)
1023 if (!folio_test_dirty(folio))
1026 /* if dirty, punch up to offset */
1027 if (start_byte > *punch_start_byte) {
1028 ret = punch(inode, *punch_start_byte,
1029 start_byte - *punch_start_byte);
1034 /* Punch non-dirty blocks within folio */
1035 ret = iomap_write_delalloc_ifs_punch(inode, folio, start_byte,
1041 * Make sure the next punch start is correctly bound to
1042 * the end of this data range, not the end of the folio.
1044 *punch_start_byte = min_t(loff_t, end_byte,
1045 folio_pos(folio) + folio_size(folio));
1051 * Scan the data range passed to us for dirty page cache folios. If we find a
1052 * dirty folio, punch out the preceeding range and update the offset from which
1053 * the next punch will start from.
1055 * We can punch out storage reservations under clean pages because they either
1056 * contain data that has been written back - in which case the delalloc punch
1057 * over that range is a no-op - or they have been read faults in which case they
1058 * contain zeroes and we can remove the delalloc backing range and any new
1059 * writes to those pages will do the normal hole filling operation...
1061 * This makes the logic simple: we only need to keep the delalloc extents only
1062 * over the dirty ranges of the page cache.
1064 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1065 * simplify range iterations.
1067 static int iomap_write_delalloc_scan(struct inode *inode,
1068 loff_t *punch_start_byte, loff_t start_byte, loff_t end_byte,
1069 iomap_punch_t punch)
1071 while (start_byte < end_byte) {
1072 struct folio *folio;
1075 /* grab locked page */
1076 folio = filemap_lock_folio(inode->i_mapping,
1077 start_byte >> PAGE_SHIFT);
1078 if (IS_ERR(folio)) {
1079 start_byte = ALIGN_DOWN(start_byte, PAGE_SIZE) +
1084 ret = iomap_write_delalloc_punch(inode, folio, punch_start_byte,
1085 start_byte, end_byte, punch);
1087 folio_unlock(folio);
1092 /* move offset to start of next folio in range */
1093 start_byte = folio_next_index(folio) << PAGE_SHIFT;
1094 folio_unlock(folio);
1101 * Punch out all the delalloc blocks in the range given except for those that
1102 * have dirty data still pending in the page cache - those are going to be
1103 * written and so must still retain the delalloc backing for writeback.
1105 * As we are scanning the page cache for data, we don't need to reimplement the
1106 * wheel - mapping_seek_hole_data() does exactly what we need to identify the
1107 * start and end of data ranges correctly even for sub-folio block sizes. This
1108 * byte range based iteration is especially convenient because it means we
1109 * don't have to care about variable size folios, nor where the start or end of
1110 * the data range lies within a folio, if they lie within the same folio or even
1111 * if there are multiple discontiguous data ranges within the folio.
1113 * It should be noted that mapping_seek_hole_data() is not aware of EOF, and so
1114 * can return data ranges that exist in the cache beyond EOF. e.g. a page fault
1115 * spanning EOF will initialise the post-EOF data to zeroes and mark it up to
1116 * date. A write page fault can then mark it dirty. If we then fail a write()
1117 * beyond EOF into that up to date cached range, we allocate a delalloc block
1118 * beyond EOF and then have to punch it out. Because the range is up to date,
1119 * mapping_seek_hole_data() will return it, and we will skip the punch because
1120 * the folio is dirty. THis is incorrect - we always need to punch out delalloc
1121 * beyond EOF in this case as writeback will never write back and covert that
1122 * delalloc block beyond EOF. Hence we limit the cached data scan range to EOF,
1123 * resulting in always punching out the range from the EOF to the end of the
1124 * range the iomap spans.
1126 * Intervals are of the form [start_byte, end_byte) (i.e. open ended) because it
1127 * matches the intervals returned by mapping_seek_hole_data(). i.e. SEEK_DATA
1128 * returns the start of a data range (start_byte), and SEEK_HOLE(start_byte)
1129 * returns the end of the data range (data_end). Using closed intervals would
1130 * require sprinkling this code with magic "+ 1" and "- 1" arithmetic and expose
1131 * the code to subtle off-by-one bugs....
1133 static int iomap_write_delalloc_release(struct inode *inode,
1134 loff_t start_byte, loff_t end_byte, iomap_punch_t punch)
1136 loff_t punch_start_byte = start_byte;
1137 loff_t scan_end_byte = min(i_size_read(inode), end_byte);
1141 * Lock the mapping to avoid races with page faults re-instantiating
1142 * folios and dirtying them via ->page_mkwrite whilst we walk the
1143 * cache and perform delalloc extent removal. Failing to do this can
1144 * leave dirty pages with no space reservation in the cache.
1146 filemap_invalidate_lock(inode->i_mapping);
1147 while (start_byte < scan_end_byte) {
1150 start_byte = mapping_seek_hole_data(inode->i_mapping,
1151 start_byte, scan_end_byte, SEEK_DATA);
1153 * If there is no more data to scan, all that is left is to
1154 * punch out the remaining range.
1156 if (start_byte == -ENXIO || start_byte == scan_end_byte)
1158 if (start_byte < 0) {
1162 WARN_ON_ONCE(start_byte < punch_start_byte);
1163 WARN_ON_ONCE(start_byte > scan_end_byte);
1166 * We find the end of this contiguous cached data range by
1167 * seeking from start_byte to the beginning of the next hole.
1169 data_end = mapping_seek_hole_data(inode->i_mapping, start_byte,
1170 scan_end_byte, SEEK_HOLE);
1175 WARN_ON_ONCE(data_end <= start_byte);
1176 WARN_ON_ONCE(data_end > scan_end_byte);
1178 error = iomap_write_delalloc_scan(inode, &punch_start_byte,
1179 start_byte, data_end, punch);
1183 /* The next data search starts at the end of this one. */
1184 start_byte = data_end;
1187 if (punch_start_byte < end_byte)
1188 error = punch(inode, punch_start_byte,
1189 end_byte - punch_start_byte);
1191 filemap_invalidate_unlock(inode->i_mapping);
1196 * When a short write occurs, the filesystem may need to remove reserved space
1197 * that was allocated in ->iomap_begin from it's ->iomap_end method. For
1198 * filesystems that use delayed allocation, we need to punch out delalloc
1199 * extents from the range that are not dirty in the page cache. As the write can
1200 * race with page faults, there can be dirty pages over the delalloc extent
1201 * outside the range of a short write but still within the delalloc extent
1202 * allocated for this iomap.
1204 * This function uses [start_byte, end_byte) intervals (i.e. open ended) to
1205 * simplify range iterations.
1207 * The punch() callback *must* only punch delalloc extents in the range passed
1208 * to it. It must skip over all other types of extents in the range and leave
1209 * them completely unchanged. It must do this punch atomically with respect to
1210 * other extent modifications.
1212 * The punch() callback may be called with a folio locked to prevent writeback
1213 * extent allocation racing at the edge of the range we are currently punching.
1214 * The locked folio may or may not cover the range being punched, so it is not
1215 * safe for the punch() callback to lock folios itself.
1219 * inode->i_rwsem (shared or exclusive)
1220 * inode->i_mapping->invalidate_lock (exclusive)
1223 * internal filesystem allocation lock
1225 int iomap_file_buffered_write_punch_delalloc(struct inode *inode,
1226 struct iomap *iomap, loff_t pos, loff_t length,
1227 ssize_t written, iomap_punch_t punch)
1231 unsigned int blocksize = i_blocksize(inode);
1233 if (iomap->type != IOMAP_DELALLOC)
1236 /* If we didn't reserve the blocks, we're not allowed to punch them. */
1237 if (!(iomap->flags & IOMAP_F_NEW))
1241 * start_byte refers to the first unused block after a short write. If
1242 * nothing was written, round offset down to point at the first block in
1245 if (unlikely(!written))
1246 start_byte = round_down(pos, blocksize);
1248 start_byte = round_up(pos + written, blocksize);
1249 end_byte = round_up(pos + length, blocksize);
1251 /* Nothing to do if we've written the entire delalloc extent */
1252 if (start_byte >= end_byte)
1255 return iomap_write_delalloc_release(inode, start_byte, end_byte,
1258 EXPORT_SYMBOL_GPL(iomap_file_buffered_write_punch_delalloc);
1260 static loff_t iomap_unshare_iter(struct iomap_iter *iter)
1262 struct iomap *iomap = &iter->iomap;
1263 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1264 loff_t pos = iter->pos;
1265 loff_t length = iomap_length(iter);
1268 /* don't bother with blocks that are not shared to start with */
1269 if (!(iomap->flags & IOMAP_F_SHARED))
1271 /* don't bother with holes or unwritten extents */
1272 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1276 struct folio *folio;
1279 size_t bytes = min_t(u64, SIZE_MAX, length);
1281 status = iomap_write_begin(iter, pos, bytes, &folio);
1282 if (unlikely(status))
1284 if (iomap->flags & IOMAP_F_STALE)
1287 offset = offset_in_folio(folio, pos);
1288 if (bytes > folio_size(folio) - offset)
1289 bytes = folio_size(folio) - offset;
1291 bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1292 if (WARN_ON_ONCE(bytes == 0))
1301 balance_dirty_pages_ratelimited(iter->inode->i_mapping);
1302 } while (length > 0);
1308 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1309 const struct iomap_ops *ops)
1311 struct iomap_iter iter = {
1315 .flags = IOMAP_WRITE | IOMAP_UNSHARE,
1319 while ((ret = iomap_iter(&iter, ops)) > 0)
1320 iter.processed = iomap_unshare_iter(&iter);
1323 EXPORT_SYMBOL_GPL(iomap_file_unshare);
1325 static loff_t iomap_zero_iter(struct iomap_iter *iter, bool *did_zero)
1327 const struct iomap *srcmap = iomap_iter_srcmap(iter);
1328 loff_t pos = iter->pos;
1329 loff_t length = iomap_length(iter);
1332 /* already zeroed? we're done. */
1333 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1337 struct folio *folio;
1340 size_t bytes = min_t(u64, SIZE_MAX, length);
1342 status = iomap_write_begin(iter, pos, bytes, &folio);
1345 if (iter->iomap.flags & IOMAP_F_STALE)
1348 offset = offset_in_folio(folio, pos);
1349 if (bytes > folio_size(folio) - offset)
1350 bytes = folio_size(folio) - offset;
1352 folio_zero_range(folio, offset, bytes);
1353 folio_mark_accessed(folio);
1355 bytes = iomap_write_end(iter, pos, bytes, bytes, folio);
1356 if (WARN_ON_ONCE(bytes == 0))
1362 } while (length > 0);
1370 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1371 const struct iomap_ops *ops)
1373 struct iomap_iter iter = {
1377 .flags = IOMAP_ZERO,
1381 while ((ret = iomap_iter(&iter, ops)) > 0)
1382 iter.processed = iomap_zero_iter(&iter, did_zero);
1385 EXPORT_SYMBOL_GPL(iomap_zero_range);
1388 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1389 const struct iomap_ops *ops)
1391 unsigned int blocksize = i_blocksize(inode);
1392 unsigned int off = pos & (blocksize - 1);
1394 /* Block boundary? Nothing to do */
1397 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1399 EXPORT_SYMBOL_GPL(iomap_truncate_page);
1401 static loff_t iomap_folio_mkwrite_iter(struct iomap_iter *iter,
1402 struct folio *folio)
1404 loff_t length = iomap_length(iter);
1407 if (iter->iomap.flags & IOMAP_F_BUFFER_HEAD) {
1408 ret = __block_write_begin_int(folio, iter->pos, length, NULL,
1412 block_commit_write(&folio->page, 0, length);
1414 WARN_ON_ONCE(!folio_test_uptodate(folio));
1415 folio_mark_dirty(folio);
1421 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1423 struct iomap_iter iter = {
1424 .inode = file_inode(vmf->vma->vm_file),
1425 .flags = IOMAP_WRITE | IOMAP_FAULT,
1427 struct folio *folio = page_folio(vmf->page);
1431 ret = folio_mkwrite_check_truncate(folio, iter.inode);
1434 iter.pos = folio_pos(folio);
1436 while ((ret = iomap_iter(&iter, ops)) > 0)
1437 iter.processed = iomap_folio_mkwrite_iter(&iter, folio);
1441 folio_wait_stable(folio);
1442 return VM_FAULT_LOCKED;
1444 folio_unlock(folio);
1445 return vmf_fs_error(ret);
1447 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1449 static void iomap_finish_folio_write(struct inode *inode, struct folio *folio,
1450 size_t len, int error)
1452 struct iomap_folio_state *ifs = folio->private;
1455 folio_set_error(folio);
1456 mapping_set_error(inode->i_mapping, error);
1459 WARN_ON_ONCE(i_blocks_per_folio(inode, folio) > 1 && !ifs);
1460 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) <= 0);
1462 if (!ifs || atomic_sub_and_test(len, &ifs->write_bytes_pending))
1463 folio_end_writeback(folio);
1467 * We're now finished for good with this ioend structure. Update the page
1468 * state, release holds on bios, and finally free up memory. Do not use the
1472 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1474 struct inode *inode = ioend->io_inode;
1475 struct bio *bio = &ioend->io_inline_bio;
1476 struct bio *last = ioend->io_bio, *next;
1477 u64 start = bio->bi_iter.bi_sector;
1478 loff_t offset = ioend->io_offset;
1479 bool quiet = bio_flagged(bio, BIO_QUIET);
1480 u32 folio_count = 0;
1482 for (bio = &ioend->io_inline_bio; bio; bio = next) {
1483 struct folio_iter fi;
1486 * For the last bio, bi_private points to the ioend, so we
1487 * need to explicitly end the iteration here.
1492 next = bio->bi_private;
1494 /* walk all folios in bio, ending page IO on them */
1495 bio_for_each_folio_all(fi, bio) {
1496 iomap_finish_folio_write(inode, fi.folio, fi.length,
1502 /* The ioend has been freed by bio_put() */
1504 if (unlikely(error && !quiet)) {
1505 printk_ratelimited(KERN_ERR
1506 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1507 inode->i_sb->s_id, inode->i_ino, offset, start);
1513 * Ioend completion routine for merged bios. This can only be called from task
1514 * contexts as merged ioends can be of unbound length. Hence we have to break up
1515 * the writeback completions into manageable chunks to avoid long scheduler
1516 * holdoffs. We aim to keep scheduler holdoffs down below 10ms so that we get
1517 * good batch processing throughput without creating adverse scheduler latency
1521 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1523 struct list_head tmp;
1528 list_replace_init(&ioend->io_list, &tmp);
1529 completions = iomap_finish_ioend(ioend, error);
1531 while (!list_empty(&tmp)) {
1532 if (completions > IOEND_BATCH_SIZE * 8) {
1536 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1537 list_del_init(&ioend->io_list);
1538 completions += iomap_finish_ioend(ioend, error);
1541 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1544 * We can merge two adjacent ioends if they have the same set of work to do.
1547 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1549 if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1551 if ((ioend->io_flags & IOMAP_F_SHARED) ^
1552 (next->io_flags & IOMAP_F_SHARED))
1554 if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1555 (next->io_type == IOMAP_UNWRITTEN))
1557 if (ioend->io_offset + ioend->io_size != next->io_offset)
1560 * Do not merge physically discontiguous ioends. The filesystem
1561 * completion functions will have to iterate the physical
1562 * discontiguities even if we merge the ioends at a logical level, so
1563 * we don't gain anything by merging physical discontiguities here.
1565 * We cannot use bio->bi_iter.bi_sector here as it is modified during
1566 * submission so does not point to the start sector of the bio at
1569 if (ioend->io_sector + (ioend->io_size >> 9) != next->io_sector)
1575 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1577 struct iomap_ioend *next;
1579 INIT_LIST_HEAD(&ioend->io_list);
1581 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1583 if (!iomap_ioend_can_merge(ioend, next))
1585 list_move_tail(&next->io_list, &ioend->io_list);
1586 ioend->io_size += next->io_size;
1589 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1592 iomap_ioend_compare(void *priv, const struct list_head *a,
1593 const struct list_head *b)
1595 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1596 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1598 if (ia->io_offset < ib->io_offset)
1600 if (ia->io_offset > ib->io_offset)
1606 iomap_sort_ioends(struct list_head *ioend_list)
1608 list_sort(NULL, ioend_list, iomap_ioend_compare);
1610 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1612 static void iomap_writepage_end_bio(struct bio *bio)
1614 struct iomap_ioend *ioend = bio->bi_private;
1616 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1620 * Submit the final bio for an ioend.
1622 * If @error is non-zero, it means that we have a situation where some part of
1623 * the submission process has failed after we've marked pages for writeback
1624 * and unlocked them. In this situation, we need to fail the bio instead of
1625 * submitting it. This typically only happens on a filesystem shutdown.
1628 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1631 ioend->io_bio->bi_private = ioend;
1632 ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1634 if (wpc->ops->prepare_ioend)
1635 error = wpc->ops->prepare_ioend(ioend, error);
1638 * If we're failing the IO now, just mark the ioend with an
1639 * error and finish it. This will run IO completion immediately
1640 * as there is only one reference to the ioend at this point in
1643 ioend->io_bio->bi_status = errno_to_blk_status(error);
1644 bio_endio(ioend->io_bio);
1648 submit_bio(ioend->io_bio);
1652 static struct iomap_ioend *
1653 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1654 loff_t offset, sector_t sector, struct writeback_control *wbc)
1656 struct iomap_ioend *ioend;
1659 bio = bio_alloc_bioset(wpc->iomap.bdev, BIO_MAX_VECS,
1660 REQ_OP_WRITE | wbc_to_write_flags(wbc),
1661 GFP_NOFS, &iomap_ioend_bioset);
1662 bio->bi_iter.bi_sector = sector;
1663 wbc_init_bio(wbc, bio);
1665 ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1666 INIT_LIST_HEAD(&ioend->io_list);
1667 ioend->io_type = wpc->iomap.type;
1668 ioend->io_flags = wpc->iomap.flags;
1669 ioend->io_inode = inode;
1671 ioend->io_folios = 0;
1672 ioend->io_offset = offset;
1673 ioend->io_bio = bio;
1674 ioend->io_sector = sector;
1679 * Allocate a new bio, and chain the old bio to the new one.
1681 * Note that we have to perform the chaining in this unintuitive order
1682 * so that the bi_private linkage is set up in the right direction for the
1683 * traversal in iomap_finish_ioend().
1686 iomap_chain_bio(struct bio *prev)
1690 new = bio_alloc(prev->bi_bdev, BIO_MAX_VECS, prev->bi_opf, GFP_NOFS);
1691 bio_clone_blkg_association(new, prev);
1692 new->bi_iter.bi_sector = bio_end_sector(prev);
1694 bio_chain(prev, new);
1695 bio_get(prev); /* for iomap_finish_ioend */
1701 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1704 if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1705 (wpc->ioend->io_flags & IOMAP_F_SHARED))
1707 if (wpc->iomap.type != wpc->ioend->io_type)
1709 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1711 if (sector != bio_end_sector(wpc->ioend->io_bio))
1714 * Limit ioend bio chain lengths to minimise IO completion latency. This
1715 * also prevents long tight loops ending page writeback on all the
1716 * folios in the ioend.
1718 if (wpc->ioend->io_folios >= IOEND_BATCH_SIZE)
1724 * Test to see if we have an existing ioend structure that we could append to
1725 * first; otherwise finish off the current ioend and start another.
1728 iomap_add_to_ioend(struct inode *inode, loff_t pos, struct folio *folio,
1729 struct iomap_folio_state *ifs, struct iomap_writepage_ctx *wpc,
1730 struct writeback_control *wbc, struct list_head *iolist)
1732 sector_t sector = iomap_sector(&wpc->iomap, pos);
1733 unsigned len = i_blocksize(inode);
1734 size_t poff = offset_in_folio(folio, pos);
1736 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, pos, sector)) {
1738 list_add(&wpc->ioend->io_list, iolist);
1739 wpc->ioend = iomap_alloc_ioend(inode, wpc, pos, sector, wbc);
1742 if (!bio_add_folio(wpc->ioend->io_bio, folio, len, poff)) {
1743 wpc->ioend->io_bio = iomap_chain_bio(wpc->ioend->io_bio);
1744 bio_add_folio_nofail(wpc->ioend->io_bio, folio, len, poff);
1748 atomic_add(len, &ifs->write_bytes_pending);
1749 wpc->ioend->io_size += len;
1750 wbc_account_cgroup_owner(wbc, &folio->page, len);
1754 * We implement an immediate ioend submission policy here to avoid needing to
1755 * chain multiple ioends and hence nest mempool allocations which can violate
1756 * the forward progress guarantees we need to provide. The current ioend we're
1757 * adding blocks to is cached in the writepage context, and if the new block
1758 * doesn't append to the cached ioend, it will create a new ioend and cache that
1761 * If a new ioend is created and cached, the old ioend is returned and queued
1762 * locally for submission once the entire page is processed or an error has been
1763 * detected. While ioends are submitted immediately after they are completed,
1764 * batching optimisations are provided by higher level block plugging.
1766 * At the end of a writeback pass, there will be a cached ioend remaining on the
1767 * writepage context that the caller will need to submit.
1770 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1771 struct writeback_control *wbc, struct inode *inode,
1772 struct folio *folio, u64 end_pos)
1774 struct iomap_folio_state *ifs = folio->private;
1775 struct iomap_ioend *ioend, *next;
1776 unsigned len = i_blocksize(inode);
1777 unsigned nblocks = i_blocks_per_folio(inode, folio);
1778 u64 pos = folio_pos(folio);
1779 int error = 0, count = 0, i;
1780 LIST_HEAD(submit_list);
1782 WARN_ON_ONCE(end_pos <= pos);
1784 if (!ifs && nblocks > 1) {
1785 ifs = ifs_alloc(inode, folio, 0);
1786 iomap_set_range_dirty(folio, 0, end_pos - pos);
1789 WARN_ON_ONCE(ifs && atomic_read(&ifs->write_bytes_pending) != 0);
1792 * Walk through the folio to find areas to write back. If we
1793 * run off the end of the current map or find the current map
1794 * invalid, grab a new one.
1796 for (i = 0; i < nblocks && pos < end_pos; i++, pos += len) {
1797 if (ifs && !ifs_block_is_dirty(folio, ifs, i))
1800 error = wpc->ops->map_blocks(wpc, inode, pos);
1803 trace_iomap_writepage_map(inode, &wpc->iomap);
1804 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1806 if (wpc->iomap.type == IOMAP_HOLE)
1808 iomap_add_to_ioend(inode, pos, folio, ifs, wpc, wbc,
1813 wpc->ioend->io_folios++;
1815 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1816 WARN_ON_ONCE(!folio_test_locked(folio));
1817 WARN_ON_ONCE(folio_test_writeback(folio));
1818 WARN_ON_ONCE(folio_test_dirty(folio));
1821 * We cannot cancel the ioend directly here on error. We may have
1822 * already set other pages under writeback and hence we have to run I/O
1823 * completion to mark the error state of the pages under writeback
1826 if (unlikely(error)) {
1828 * Let the filesystem know what portion of the current page
1829 * failed to map. If the page hasn't been added to ioend, it
1830 * won't be affected by I/O completion and we must unlock it
1833 if (wpc->ops->discard_folio)
1834 wpc->ops->discard_folio(folio, pos);
1836 folio_unlock(folio);
1842 * We can have dirty bits set past end of file in page_mkwrite path
1843 * while mapping the last partial folio. Hence it's better to clear
1844 * all the dirty bits in the folio here.
1846 iomap_clear_range_dirty(folio, 0, folio_size(folio));
1847 folio_start_writeback(folio);
1848 folio_unlock(folio);
1851 * Preserve the original error if there was one; catch
1852 * submission errors here and propagate into subsequent ioend
1855 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1858 list_del_init(&ioend->io_list);
1859 error2 = iomap_submit_ioend(wpc, ioend, error);
1860 if (error2 && !error)
1865 * We can end up here with no error and nothing to write only if we race
1866 * with a partial page truncate on a sub-page block sized filesystem.
1869 folio_end_writeback(folio);
1871 mapping_set_error(inode->i_mapping, error);
1876 * Write out a dirty page.
1878 * For delalloc space on the page, we need to allocate space and flush it.
1879 * For unwritten space on the page, we need to start the conversion to
1880 * regular allocated space.
1882 static int iomap_do_writepage(struct folio *folio,
1883 struct writeback_control *wbc, void *data)
1885 struct iomap_writepage_ctx *wpc = data;
1886 struct inode *inode = folio->mapping->host;
1889 trace_iomap_writepage(inode, folio_pos(folio), folio_size(folio));
1892 * Refuse to write the folio out if we're called from reclaim context.
1894 * This avoids stack overflows when called from deeply used stacks in
1895 * random callers for direct reclaim or memcg reclaim. We explicitly
1896 * allow reclaim from kswapd as the stack usage there is relatively low.
1898 * This should never happen except in the case of a VM regression so
1901 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1906 * Is this folio beyond the end of the file?
1908 * The folio index is less than the end_index, adjust the end_pos
1909 * to the highest offset that this folio should represent.
1910 * -----------------------------------------------------
1911 * | file mapping | <EOF> |
1912 * -----------------------------------------------------
1913 * | Page ... | Page N-2 | Page N-1 | Page N | |
1914 * ^--------------------------------^----------|--------
1915 * | desired writeback range | see else |
1916 * ---------------------------------^------------------|
1918 isize = i_size_read(inode);
1919 end_pos = folio_pos(folio) + folio_size(folio);
1920 if (end_pos > isize) {
1922 * Check whether the page to write out is beyond or straddles
1924 * -------------------------------------------------------
1925 * | file mapping | <EOF> |
1926 * -------------------------------------------------------
1927 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1928 * ^--------------------------------^-----------|---------
1930 * ---------------------------------^-----------|--------|
1932 size_t poff = offset_in_folio(folio, isize);
1933 pgoff_t end_index = isize >> PAGE_SHIFT;
1936 * Skip the page if it's fully outside i_size, e.g.
1937 * due to a truncate operation that's in progress. We've
1938 * cleaned this page and truncate will finish things off for
1941 * Note that the end_index is unsigned long. If the given
1942 * offset is greater than 16TB on a 32-bit system then if we
1943 * checked if the page is fully outside i_size with
1944 * "if (page->index >= end_index + 1)", "end_index + 1" would
1945 * overflow and evaluate to 0. Hence this page would be
1946 * redirtied and written out repeatedly, which would result in
1947 * an infinite loop; the user program performing this operation
1948 * would hang. Instead, we can detect this situation by
1949 * checking if the page is totally beyond i_size or if its
1950 * offset is just equal to the EOF.
1952 if (folio->index > end_index ||
1953 (folio->index == end_index && poff == 0))
1957 * The page straddles i_size. It must be zeroed out on each
1958 * and every writepage invocation because it may be mmapped.
1959 * "A file is mapped in multiples of the page size. For a file
1960 * that is not a multiple of the page size, the remaining
1961 * memory is zeroed when mapped, and writes to that region are
1962 * not written out to the file."
1964 folio_zero_segment(folio, poff, folio_size(folio));
1968 return iomap_writepage_map(wpc, wbc, inode, folio, end_pos);
1971 folio_redirty_for_writepage(wbc, folio);
1973 folio_unlock(folio);
1978 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1979 struct iomap_writepage_ctx *wpc,
1980 const struct iomap_writeback_ops *ops)
1985 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1988 return iomap_submit_ioend(wpc, wpc->ioend, ret);
1990 EXPORT_SYMBOL_GPL(iomap_writepages);
1992 static int __init iomap_init(void)
1994 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1995 offsetof(struct iomap_ioend, io_inline_bio),
1998 fs_initcall(iomap_init);