1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2010 Red Hat, Inc.
4 * Copyright (C) 2016-2019 Christoph Hellwig.
6 #include <linux/module.h>
7 #include <linux/compiler.h>
9 #include <linux/iomap.h>
10 #include <linux/pagemap.h>
11 #include <linux/uio.h>
12 #include <linux/buffer_head.h>
13 #include <linux/dax.h>
14 #include <linux/writeback.h>
15 #include <linux/list_sort.h>
16 #include <linux/swap.h>
17 #include <linux/bio.h>
18 #include <linux/sched/signal.h>
19 #include <linux/migrate.h>
22 #include "../internal.h"
25 * Structure allocated for each page or THP when block size < page size
26 * to track sub-page uptodate status and I/O completions.
29 atomic_t read_bytes_pending;
30 atomic_t write_bytes_pending;
31 spinlock_t uptodate_lock;
32 unsigned long uptodate[];
35 static inline struct iomap_page *to_iomap_page(struct page *page)
38 * per-block data is stored in the head page. Callers should
39 * not be dealing with tail pages (and if they are, they can
40 * call thp_head() first.
42 VM_BUG_ON_PGFLAGS(PageTail(page), page);
44 if (page_has_private(page))
45 return (struct iomap_page *)page_private(page);
49 static struct bio_set iomap_ioend_bioset;
51 static struct iomap_page *
52 iomap_page_create(struct inode *inode, struct page *page)
54 struct iomap_page *iop = to_iomap_page(page);
55 unsigned int nr_blocks = i_blocks_per_page(inode, page);
57 if (iop || nr_blocks <= 1)
60 iop = kzalloc(struct_size(iop, uptodate, BITS_TO_LONGS(nr_blocks)),
61 GFP_NOFS | __GFP_NOFAIL);
62 spin_lock_init(&iop->uptodate_lock);
63 if (PageUptodate(page))
64 bitmap_fill(iop->uptodate, nr_blocks);
65 attach_page_private(page, iop);
70 iomap_page_release(struct page *page)
72 struct iomap_page *iop = detach_page_private(page);
73 unsigned int nr_blocks = i_blocks_per_page(page->mapping->host, page);
77 WARN_ON_ONCE(atomic_read(&iop->read_bytes_pending));
78 WARN_ON_ONCE(atomic_read(&iop->write_bytes_pending));
79 WARN_ON_ONCE(bitmap_full(iop->uptodate, nr_blocks) !=
85 * Calculate the range inside the page that we actually need to read.
88 iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
89 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
91 loff_t orig_pos = *pos;
92 loff_t isize = i_size_read(inode);
93 unsigned block_bits = inode->i_blkbits;
94 unsigned block_size = (1 << block_bits);
95 unsigned poff = offset_in_page(*pos);
96 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
97 unsigned first = poff >> block_bits;
98 unsigned last = (poff + plen - 1) >> block_bits;
101 * If the block size is smaller than the page size we need to check the
102 * per-block uptodate status and adjust the offset and length if needed
103 * to avoid reading in already uptodate ranges.
108 /* move forward for each leading block marked uptodate */
109 for (i = first; i <= last; i++) {
110 if (!test_bit(i, iop->uptodate))
118 /* truncate len if we find any trailing uptodate block(s) */
119 for ( ; i <= last; i++) {
120 if (test_bit(i, iop->uptodate)) {
121 plen -= (last - i + 1) * block_size;
129 * If the extent spans the block that contains the i_size we need to
130 * handle both halves separately so that we properly zero data in the
131 * page cache for blocks that are entirely outside of i_size.
133 if (orig_pos <= isize && orig_pos + length > isize) {
134 unsigned end = offset_in_page(isize - 1) >> block_bits;
136 if (first <= end && last > end)
137 plen -= (last - end) * block_size;
145 iomap_iop_set_range_uptodate(struct page *page, unsigned off, unsigned len)
147 struct iomap_page *iop = to_iomap_page(page);
148 struct inode *inode = page->mapping->host;
149 unsigned first = off >> inode->i_blkbits;
150 unsigned last = (off + len - 1) >> inode->i_blkbits;
153 spin_lock_irqsave(&iop->uptodate_lock, flags);
154 bitmap_set(iop->uptodate, first, last - first + 1);
155 if (bitmap_full(iop->uptodate, i_blocks_per_page(inode, page)))
156 SetPageUptodate(page);
157 spin_unlock_irqrestore(&iop->uptodate_lock, flags);
161 iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
166 if (page_has_private(page))
167 iomap_iop_set_range_uptodate(page, off, len);
169 SetPageUptodate(page);
173 iomap_read_page_end_io(struct bio_vec *bvec, int error)
175 struct page *page = bvec->bv_page;
176 struct iomap_page *iop = to_iomap_page(page);
178 if (unlikely(error)) {
179 ClearPageUptodate(page);
182 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
185 if (!iop || atomic_sub_and_test(bvec->bv_len, &iop->read_bytes_pending))
190 iomap_read_end_io(struct bio *bio)
192 int error = blk_status_to_errno(bio->bi_status);
193 struct bio_vec *bvec;
194 struct bvec_iter_all iter_all;
196 bio_for_each_segment_all(bvec, bio, iter_all)
197 iomap_read_page_end_io(bvec, error);
201 struct iomap_readpage_ctx {
202 struct page *cur_page;
203 bool cur_page_in_bio;
205 struct readahead_control *rac;
209 iomap_read_inline_data(struct inode *inode, struct page *page,
212 size_t size = i_size_read(inode);
215 if (PageUptodate(page))
218 BUG_ON(page_has_private(page));
220 BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
222 addr = kmap_atomic(page);
223 memcpy(addr, iomap->inline_data, size);
224 memset(addr + size, 0, PAGE_SIZE - size);
226 SetPageUptodate(page);
229 static inline bool iomap_block_needs_zeroing(struct inode *inode,
230 struct iomap *iomap, loff_t pos)
232 return iomap->type != IOMAP_MAPPED ||
233 (iomap->flags & IOMAP_F_NEW) ||
234 pos >= i_size_read(inode);
238 iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
239 struct iomap *iomap, struct iomap *srcmap)
241 struct iomap_readpage_ctx *ctx = data;
242 struct page *page = ctx->cur_page;
243 struct iomap_page *iop;
244 bool same_page = false, is_contig = false;
245 loff_t orig_pos = pos;
249 if (iomap->type == IOMAP_INLINE) {
251 iomap_read_inline_data(inode, page, iomap);
255 /* zero post-eof blocks as the page may be mapped */
256 iop = iomap_page_create(inode, page);
257 iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
261 if (iomap_block_needs_zeroing(inode, iomap, pos)) {
262 zero_user(page, poff, plen);
263 iomap_set_range_uptodate(page, poff, plen);
267 ctx->cur_page_in_bio = true;
269 atomic_add(plen, &iop->read_bytes_pending);
271 /* Try to merge into a previous segment if we can */
272 sector = iomap_sector(iomap, pos);
273 if (ctx->bio && bio_end_sector(ctx->bio) == sector) {
274 if (__bio_try_merge_page(ctx->bio, page, plen, poff,
280 if (!is_contig || bio_full(ctx->bio, plen)) {
281 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
282 gfp_t orig_gfp = gfp;
283 unsigned int nr_vecs = DIV_ROUND_UP(length, PAGE_SIZE);
286 submit_bio(ctx->bio);
288 if (ctx->rac) /* same as readahead_gfp_mask */
289 gfp |= __GFP_NORETRY | __GFP_NOWARN;
290 ctx->bio = bio_alloc(gfp, bio_max_segs(nr_vecs));
292 * If the bio_alloc fails, try it again for a single page to
293 * avoid having to deal with partial page reads. This emulates
294 * what do_mpage_readpage does.
297 ctx->bio = bio_alloc(orig_gfp, 1);
298 ctx->bio->bi_opf = REQ_OP_READ;
300 ctx->bio->bi_opf |= REQ_RAHEAD;
301 ctx->bio->bi_iter.bi_sector = sector;
302 bio_set_dev(ctx->bio, iomap->bdev);
303 ctx->bio->bi_end_io = iomap_read_end_io;
306 bio_add_page(ctx->bio, page, plen, poff);
309 * Move the caller beyond our range so that it keeps making progress.
310 * For that we have to include any leading non-uptodate ranges, but
311 * we can skip trailing ones as they will be handled in the next
314 return pos - orig_pos + plen;
318 iomap_readpage(struct page *page, const struct iomap_ops *ops)
320 struct iomap_readpage_ctx ctx = { .cur_page = page };
321 struct inode *inode = page->mapping->host;
325 trace_iomap_readpage(page->mapping->host, 1);
327 for (poff = 0; poff < PAGE_SIZE; poff += ret) {
328 ret = iomap_apply(inode, page_offset(page) + poff,
329 PAGE_SIZE - poff, 0, ops, &ctx,
330 iomap_readpage_actor);
332 WARN_ON_ONCE(ret == 0);
340 WARN_ON_ONCE(!ctx.cur_page_in_bio);
342 WARN_ON_ONCE(ctx.cur_page_in_bio);
347 * Just like mpage_readahead and block_read_full_page we always
348 * return 0 and just mark the page as PageError on errors. This
349 * should be cleaned up all through the stack eventually.
353 EXPORT_SYMBOL_GPL(iomap_readpage);
356 iomap_readahead_actor(struct inode *inode, loff_t pos, loff_t length,
357 void *data, struct iomap *iomap, struct iomap *srcmap)
359 struct iomap_readpage_ctx *ctx = data;
362 for (done = 0; done < length; done += ret) {
363 if (ctx->cur_page && offset_in_page(pos + done) == 0) {
364 if (!ctx->cur_page_in_bio)
365 unlock_page(ctx->cur_page);
366 put_page(ctx->cur_page);
367 ctx->cur_page = NULL;
369 if (!ctx->cur_page) {
370 ctx->cur_page = readahead_page(ctx->rac);
371 ctx->cur_page_in_bio = false;
373 ret = iomap_readpage_actor(inode, pos + done, length - done,
381 * iomap_readahead - Attempt to read pages from a file.
382 * @rac: Describes the pages to be read.
383 * @ops: The operations vector for the filesystem.
385 * This function is for filesystems to call to implement their readahead
386 * address_space operation.
388 * Context: The @ops callbacks may submit I/O (eg to read the addresses of
389 * blocks from disc), and may wait for it. The caller may be trying to
390 * access a different page, and so sleeping excessively should be avoided.
391 * It may allocate memory, but should avoid costly allocations. This
392 * function is called with memalloc_nofs set, so allocations will not cause
393 * the filesystem to be reentered.
395 void iomap_readahead(struct readahead_control *rac, const struct iomap_ops *ops)
397 struct inode *inode = rac->mapping->host;
398 loff_t pos = readahead_pos(rac);
399 size_t length = readahead_length(rac);
400 struct iomap_readpage_ctx ctx = {
404 trace_iomap_readahead(inode, readahead_count(rac));
407 ssize_t ret = iomap_apply(inode, pos, length, 0, ops,
408 &ctx, iomap_readahead_actor);
410 WARN_ON_ONCE(ret == 0);
420 if (!ctx.cur_page_in_bio)
421 unlock_page(ctx.cur_page);
422 put_page(ctx.cur_page);
425 EXPORT_SYMBOL_GPL(iomap_readahead);
428 * iomap_is_partially_uptodate checks whether blocks within a page are
431 * Returns true if all blocks which correspond to a file portion
432 * we want to read within the page are uptodate.
435 iomap_is_partially_uptodate(struct page *page, unsigned long from,
438 struct iomap_page *iop = to_iomap_page(page);
439 struct inode *inode = page->mapping->host;
440 unsigned len, first, last;
443 /* Limit range to one page */
444 len = min_t(unsigned, PAGE_SIZE - from, count);
446 /* First and last blocks in range within page */
447 first = from >> inode->i_blkbits;
448 last = (from + len - 1) >> inode->i_blkbits;
451 for (i = first; i <= last; i++)
452 if (!test_bit(i, iop->uptodate))
459 EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
462 iomap_releasepage(struct page *page, gfp_t gfp_mask)
464 trace_iomap_releasepage(page->mapping->host, page_offset(page),
468 * mm accommodates an old ext3 case where clean pages might not have had
469 * the dirty bit cleared. Thus, it can send actual dirty pages to
470 * ->releasepage() via shrink_active_list(), skip those here.
472 if (PageDirty(page) || PageWriteback(page))
474 iomap_page_release(page);
477 EXPORT_SYMBOL_GPL(iomap_releasepage);
480 iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
482 trace_iomap_invalidatepage(page->mapping->host, offset, len);
485 * If we are invalidating the entire page, clear the dirty state from it
486 * and release it to avoid unnecessary buildup of the LRU.
488 if (offset == 0 && len == PAGE_SIZE) {
489 WARN_ON_ONCE(PageWriteback(page));
490 cancel_dirty_page(page);
491 iomap_page_release(page);
494 EXPORT_SYMBOL_GPL(iomap_invalidatepage);
496 #ifdef CONFIG_MIGRATION
498 iomap_migrate_page(struct address_space *mapping, struct page *newpage,
499 struct page *page, enum migrate_mode mode)
503 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
504 if (ret != MIGRATEPAGE_SUCCESS)
507 if (page_has_private(page))
508 attach_page_private(newpage, detach_page_private(page));
510 if (mode != MIGRATE_SYNC_NO_COPY)
511 migrate_page_copy(newpage, page);
513 migrate_page_states(newpage, page);
514 return MIGRATEPAGE_SUCCESS;
516 EXPORT_SYMBOL_GPL(iomap_migrate_page);
517 #endif /* CONFIG_MIGRATION */
520 IOMAP_WRITE_F_UNSHARE = (1 << 0),
524 iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
526 loff_t i_size = i_size_read(inode);
529 * Only truncate newly allocated pages beyoned EOF, even if the
530 * write started inside the existing inode size.
532 if (pos + len > i_size)
533 truncate_pagecache_range(inode, max(pos, i_size), pos + len);
537 iomap_read_page_sync(loff_t block_start, struct page *page, unsigned poff,
538 unsigned plen, struct iomap *iomap)
543 bio_init(&bio, &bvec, 1);
544 bio.bi_opf = REQ_OP_READ;
545 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
546 bio_set_dev(&bio, iomap->bdev);
547 __bio_add_page(&bio, page, plen, poff);
548 return submit_bio_wait(&bio);
552 __iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, int flags,
553 struct page *page, struct iomap *srcmap)
555 struct iomap_page *iop = iomap_page_create(inode, page);
556 loff_t block_size = i_blocksize(inode);
557 loff_t block_start = round_down(pos, block_size);
558 loff_t block_end = round_up(pos + len, block_size);
559 unsigned from = offset_in_page(pos), to = from + len, poff, plen;
561 if (PageUptodate(page))
563 ClearPageError(page);
566 iomap_adjust_read_range(inode, iop, &block_start,
567 block_end - block_start, &poff, &plen);
571 if (!(flags & IOMAP_WRITE_F_UNSHARE) &&
572 (from <= poff || from >= poff + plen) &&
573 (to <= poff || to >= poff + plen))
576 if (iomap_block_needs_zeroing(inode, srcmap, block_start)) {
577 if (WARN_ON_ONCE(flags & IOMAP_WRITE_F_UNSHARE))
579 zero_user_segments(page, poff, from, to, poff + plen);
581 int status = iomap_read_page_sync(block_start, page,
586 iomap_set_range_uptodate(page, poff, plen);
587 } while ((block_start += plen) < block_end);
593 iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
594 struct page **pagep, struct iomap *iomap, struct iomap *srcmap)
596 const struct iomap_page_ops *page_ops = iomap->page_ops;
600 BUG_ON(pos + len > iomap->offset + iomap->length);
602 BUG_ON(pos + len > srcmap->offset + srcmap->length);
604 if (fatal_signal_pending(current))
607 if (page_ops && page_ops->page_prepare) {
608 status = page_ops->page_prepare(inode, pos, len, iomap);
613 page = grab_cache_page_write_begin(inode->i_mapping, pos >> PAGE_SHIFT,
620 if (srcmap->type == IOMAP_INLINE)
621 iomap_read_inline_data(inode, page, srcmap);
622 else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
623 status = __block_write_begin_int(page, pos, len, NULL, srcmap);
625 status = __iomap_write_begin(inode, pos, len, flags, page,
628 if (unlikely(status))
637 iomap_write_failed(inode, pos, len);
640 if (page_ops && page_ops->page_done)
641 page_ops->page_done(inode, pos, 0, NULL, iomap);
645 static size_t __iomap_write_end(struct inode *inode, loff_t pos, size_t len,
646 size_t copied, struct page *page)
648 flush_dcache_page(page);
651 * The blocks that were entirely written will now be uptodate, so we
652 * don't have to worry about a readpage reading them and overwriting a
653 * partial write. However if we have encountered a short write and only
654 * partially written into a block, it will not be marked uptodate, so a
655 * readpage might come in and destroy our partial write.
657 * Do the simplest thing, and just treat any short write to a non
658 * uptodate page as a zero-length write, and force the caller to redo
661 if (unlikely(copied < len && !PageUptodate(page)))
663 iomap_set_range_uptodate(page, offset_in_page(pos), len);
664 __set_page_dirty_nobuffers(page);
668 static size_t iomap_write_end_inline(struct inode *inode, struct page *page,
669 struct iomap *iomap, loff_t pos, size_t copied)
673 WARN_ON_ONCE(!PageUptodate(page));
674 BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
676 flush_dcache_page(page);
677 addr = kmap_atomic(page);
678 memcpy(iomap->inline_data + pos, addr + pos, copied);
681 mark_inode_dirty(inode);
685 /* Returns the number of bytes copied. May be 0. Cannot be an errno. */
686 static size_t iomap_write_end(struct inode *inode, loff_t pos, size_t len,
687 size_t copied, struct page *page, struct iomap *iomap,
688 struct iomap *srcmap)
690 const struct iomap_page_ops *page_ops = iomap->page_ops;
691 loff_t old_size = inode->i_size;
694 if (srcmap->type == IOMAP_INLINE) {
695 ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
696 } else if (srcmap->flags & IOMAP_F_BUFFER_HEAD) {
697 ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
700 ret = __iomap_write_end(inode, pos, len, copied, page);
704 * Update the in-memory inode size after copying the data into the page
705 * cache. It's up to the file system to write the updated size to disk,
706 * preferably after I/O completion so that no stale data is exposed.
708 if (pos + ret > old_size) {
709 i_size_write(inode, pos + ret);
710 iomap->flags |= IOMAP_F_SIZE_CHANGED;
715 pagecache_isize_extended(inode, old_size, pos);
716 if (page_ops && page_ops->page_done)
717 page_ops->page_done(inode, pos, ret, page, iomap);
721 iomap_write_failed(inode, pos, len);
726 iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
727 struct iomap *iomap, struct iomap *srcmap)
729 struct iov_iter *i = data;
735 unsigned long offset; /* Offset into pagecache page */
736 unsigned long bytes; /* Bytes to write to page */
737 size_t copied; /* Bytes copied from user */
739 offset = offset_in_page(pos);
740 bytes = min_t(unsigned long, PAGE_SIZE - offset,
747 * Bring in the user page that we will copy from _first_.
748 * Otherwise there's a nasty deadlock on copying from the
749 * same page as we're writing to, without it being marked
752 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
757 status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap,
759 if (unlikely(status))
762 if (mapping_writably_mapped(inode->i_mapping))
763 flush_dcache_page(page);
765 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
767 status = iomap_write_end(inode, pos, bytes, copied, page, iomap,
770 if (unlikely(copied != status))
771 iov_iter_revert(i, copied - status);
774 if (unlikely(status == 0)) {
776 * A short copy made iomap_write_end() reject the
777 * thing entirely. Might be memory poisoning
778 * halfway through, might be a race with munmap,
779 * might be severe memory pressure.
789 balance_dirty_pages_ratelimited(inode->i_mapping);
790 } while (iov_iter_count(i) && length);
792 return written ? written : status;
796 iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
797 const struct iomap_ops *ops)
799 struct inode *inode = iocb->ki_filp->f_mapping->host;
800 loff_t pos = iocb->ki_pos, ret = 0, written = 0;
802 while (iov_iter_count(iter)) {
803 ret = iomap_apply(inode, pos, iov_iter_count(iter),
804 IOMAP_WRITE, ops, iter, iomap_write_actor);
811 return written ? written : ret;
813 EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
816 iomap_unshare_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
817 struct iomap *iomap, struct iomap *srcmap)
822 /* don't bother with blocks that are not shared to start with */
823 if (!(iomap->flags & IOMAP_F_SHARED))
825 /* don't bother with holes or unwritten extents */
826 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
830 unsigned long offset = offset_in_page(pos);
831 unsigned long bytes = min_t(loff_t, PAGE_SIZE - offset, length);
834 status = iomap_write_begin(inode, pos, bytes,
835 IOMAP_WRITE_F_UNSHARE, &page, iomap, srcmap);
836 if (unlikely(status))
839 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap,
841 if (WARN_ON_ONCE(status == 0))
850 balance_dirty_pages_ratelimited(inode->i_mapping);
857 iomap_file_unshare(struct inode *inode, loff_t pos, loff_t len,
858 const struct iomap_ops *ops)
863 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
864 iomap_unshare_actor);
873 EXPORT_SYMBOL_GPL(iomap_file_unshare);
875 static s64 iomap_zero(struct inode *inode, loff_t pos, u64 length,
876 struct iomap *iomap, struct iomap *srcmap)
880 unsigned offset = offset_in_page(pos);
881 unsigned bytes = min_t(u64, PAGE_SIZE - offset, length);
883 status = iomap_write_begin(inode, pos, bytes, 0, &page, iomap, srcmap);
887 zero_user(page, offset, bytes);
888 mark_page_accessed(page);
890 return iomap_write_end(inode, pos, bytes, bytes, page, iomap, srcmap);
893 static loff_t iomap_zero_range_actor(struct inode *inode, loff_t pos,
894 loff_t length, void *data, struct iomap *iomap,
895 struct iomap *srcmap)
897 bool *did_zero = data;
900 /* already zeroed? we're done. */
901 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
908 bytes = dax_iomap_zero(pos, length, iomap);
910 bytes = iomap_zero(inode, pos, length, iomap, srcmap);
919 } while (length > 0);
925 iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
926 const struct iomap_ops *ops)
931 ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
932 ops, did_zero, iomap_zero_range_actor);
942 EXPORT_SYMBOL_GPL(iomap_zero_range);
945 iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
946 const struct iomap_ops *ops)
948 unsigned int blocksize = i_blocksize(inode);
949 unsigned int off = pos & (blocksize - 1);
951 /* Block boundary? Nothing to do */
954 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
956 EXPORT_SYMBOL_GPL(iomap_truncate_page);
959 iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
960 void *data, struct iomap *iomap, struct iomap *srcmap)
962 struct page *page = data;
965 if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
966 ret = __block_write_begin_int(page, pos, length, NULL, iomap);
969 block_commit_write(page, 0, length);
971 WARN_ON_ONCE(!PageUptodate(page));
972 set_page_dirty(page);
978 vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
980 struct page *page = vmf->page;
981 struct inode *inode = file_inode(vmf->vma->vm_file);
982 unsigned long length;
987 ret = page_mkwrite_check_truncate(page, inode);
992 offset = page_offset(page);
994 ret = iomap_apply(inode, offset, length,
995 IOMAP_WRITE | IOMAP_FAULT, ops, page,
996 iomap_page_mkwrite_actor);
997 if (unlikely(ret <= 0))
1003 wait_for_stable_page(page);
1004 return VM_FAULT_LOCKED;
1007 return block_page_mkwrite_return(ret);
1009 EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
1012 iomap_finish_page_writeback(struct inode *inode, struct page *page,
1013 int error, unsigned int len)
1015 struct iomap_page *iop = to_iomap_page(page);
1019 mapping_set_error(inode->i_mapping, -EIO);
1022 WARN_ON_ONCE(i_blocks_per_page(inode, page) > 1 && !iop);
1023 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) <= 0);
1025 if (!iop || atomic_sub_and_test(len, &iop->write_bytes_pending))
1026 end_page_writeback(page);
1030 * We're now finished for good with this ioend structure. Update the page
1031 * state, release holds on bios, and finally free up memory. Do not use the
1035 iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1037 struct inode *inode = ioend->io_inode;
1038 struct bio *bio = &ioend->io_inline_bio;
1039 struct bio *last = ioend->io_bio, *next;
1040 u64 start = bio->bi_iter.bi_sector;
1041 loff_t offset = ioend->io_offset;
1042 bool quiet = bio_flagged(bio, BIO_QUIET);
1044 for (bio = &ioend->io_inline_bio; bio; bio = next) {
1046 struct bvec_iter_all iter_all;
1049 * For the last bio, bi_private points to the ioend, so we
1050 * need to explicitly end the iteration here.
1055 next = bio->bi_private;
1057 /* walk each page on bio, ending page IO on them */
1058 bio_for_each_segment_all(bv, bio, iter_all)
1059 iomap_finish_page_writeback(inode, bv->bv_page, error,
1063 /* The ioend has been freed by bio_put() */
1065 if (unlikely(error && !quiet)) {
1066 printk_ratelimited(KERN_ERR
1067 "%s: writeback error on inode %lu, offset %lld, sector %llu",
1068 inode->i_sb->s_id, inode->i_ino, offset, start);
1073 iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1075 struct list_head tmp;
1077 list_replace_init(&ioend->io_list, &tmp);
1078 iomap_finish_ioend(ioend, error);
1080 while (!list_empty(&tmp)) {
1081 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1082 list_del_init(&ioend->io_list);
1083 iomap_finish_ioend(ioend, error);
1086 EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1089 * We can merge two adjacent ioends if they have the same set of work to do.
1092 iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1094 if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1096 if ((ioend->io_flags & IOMAP_F_SHARED) ^
1097 (next->io_flags & IOMAP_F_SHARED))
1099 if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1100 (next->io_type == IOMAP_UNWRITTEN))
1102 if (ioend->io_offset + ioend->io_size != next->io_offset)
1108 iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends)
1110 struct iomap_ioend *next;
1112 INIT_LIST_HEAD(&ioend->io_list);
1114 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1116 if (!iomap_ioend_can_merge(ioend, next))
1118 list_move_tail(&next->io_list, &ioend->io_list);
1119 ioend->io_size += next->io_size;
1122 EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1125 iomap_ioend_compare(void *priv, const struct list_head *a,
1126 const struct list_head *b)
1128 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1129 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
1131 if (ia->io_offset < ib->io_offset)
1133 if (ia->io_offset > ib->io_offset)
1139 iomap_sort_ioends(struct list_head *ioend_list)
1141 list_sort(NULL, ioend_list, iomap_ioend_compare);
1143 EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1145 static void iomap_writepage_end_bio(struct bio *bio)
1147 struct iomap_ioend *ioend = bio->bi_private;
1149 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1153 * Submit the final bio for an ioend.
1155 * If @error is non-zero, it means that we have a situation where some part of
1156 * the submission process has failed after we have marked paged for writeback
1157 * and unlocked them. In this situation, we need to fail the bio instead of
1158 * submitting it. This typically only happens on a filesystem shutdown.
1161 iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1164 ioend->io_bio->bi_private = ioend;
1165 ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1167 if (wpc->ops->prepare_ioend)
1168 error = wpc->ops->prepare_ioend(ioend, error);
1171 * If we are failing the IO now, just mark the ioend with an
1172 * error and finish it. This will run IO completion immediately
1173 * as there is only one reference to the ioend at this point in
1176 ioend->io_bio->bi_status = errno_to_blk_status(error);
1177 bio_endio(ioend->io_bio);
1181 submit_bio(ioend->io_bio);
1185 static struct iomap_ioend *
1186 iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1187 loff_t offset, sector_t sector, struct writeback_control *wbc)
1189 struct iomap_ioend *ioend;
1192 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &iomap_ioend_bioset);
1193 bio_set_dev(bio, wpc->iomap.bdev);
1194 bio->bi_iter.bi_sector = sector;
1195 bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1196 bio->bi_write_hint = inode->i_write_hint;
1197 wbc_init_bio(wbc, bio);
1199 ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1200 INIT_LIST_HEAD(&ioend->io_list);
1201 ioend->io_type = wpc->iomap.type;
1202 ioend->io_flags = wpc->iomap.flags;
1203 ioend->io_inode = inode;
1205 ioend->io_offset = offset;
1206 ioend->io_bio = bio;
1211 * Allocate a new bio, and chain the old bio to the new one.
1213 * Note that we have to do perform the chaining in this unintuitive order
1214 * so that the bi_private linkage is set up in the right direction for the
1215 * traversal in iomap_finish_ioend().
1218 iomap_chain_bio(struct bio *prev)
1222 new = bio_alloc(GFP_NOFS, BIO_MAX_VECS);
1223 bio_copy_dev(new, prev);/* also copies over blkcg information */
1224 new->bi_iter.bi_sector = bio_end_sector(prev);
1225 new->bi_opf = prev->bi_opf;
1226 new->bi_write_hint = prev->bi_write_hint;
1228 bio_chain(prev, new);
1229 bio_get(prev); /* for iomap_finish_ioend */
1235 iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1238 if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1239 (wpc->ioend->io_flags & IOMAP_F_SHARED))
1241 if (wpc->iomap.type != wpc->ioend->io_type)
1243 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1245 if (sector != bio_end_sector(wpc->ioend->io_bio))
1251 * Test to see if we have an existing ioend structure that we could append to
1252 * first, otherwise finish off the current ioend and start another.
1255 iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
1256 struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1257 struct writeback_control *wbc, struct list_head *iolist)
1259 sector_t sector = iomap_sector(&wpc->iomap, offset);
1260 unsigned len = i_blocksize(inode);
1261 unsigned poff = offset & (PAGE_SIZE - 1);
1262 bool merged, same_page = false;
1264 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
1266 list_add(&wpc->ioend->io_list, iolist);
1267 wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
1270 merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
1273 atomic_add(len, &iop->write_bytes_pending);
1276 if (bio_full(wpc->ioend->io_bio, len)) {
1277 wpc->ioend->io_bio =
1278 iomap_chain_bio(wpc->ioend->io_bio);
1280 bio_add_page(wpc->ioend->io_bio, page, len, poff);
1283 wpc->ioend->io_size += len;
1284 wbc_account_cgroup_owner(wbc, page, len);
1288 * We implement an immediate ioend submission policy here to avoid needing to
1289 * chain multiple ioends and hence nest mempool allocations which can violate
1290 * forward progress guarantees we need to provide. The current ioend we are
1291 * adding blocks to is cached on the writepage context, and if the new block
1292 * does not append to the cached ioend it will create a new ioend and cache that
1295 * If a new ioend is created and cached, the old ioend is returned and queued
1296 * locally for submission once the entire page is processed or an error has been
1297 * detected. While ioends are submitted immediately after they are completed,
1298 * batching optimisations are provided by higher level block plugging.
1300 * At the end of a writeback pass, there will be a cached ioend remaining on the
1301 * writepage context that the caller will need to submit.
1304 iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1305 struct writeback_control *wbc, struct inode *inode,
1306 struct page *page, u64 end_offset)
1308 struct iomap_page *iop = iomap_page_create(inode, page);
1309 struct iomap_ioend *ioend, *next;
1310 unsigned len = i_blocksize(inode);
1311 u64 file_offset; /* file offset of page */
1312 int error = 0, count = 0, i;
1313 LIST_HEAD(submit_list);
1315 WARN_ON_ONCE(iop && atomic_read(&iop->write_bytes_pending) != 0);
1318 * Walk through the page to find areas to write back. If we run off the
1319 * end of the current map or find the current map invalid, grab a new
1322 for (i = 0, file_offset = page_offset(page);
1323 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
1324 i++, file_offset += len) {
1325 if (iop && !test_bit(i, iop->uptodate))
1328 error = wpc->ops->map_blocks(wpc, inode, file_offset);
1331 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1333 if (wpc->iomap.type == IOMAP_HOLE)
1335 iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
1340 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1341 WARN_ON_ONCE(!PageLocked(page));
1342 WARN_ON_ONCE(PageWriteback(page));
1343 WARN_ON_ONCE(PageDirty(page));
1346 * We cannot cancel the ioend directly here on error. We may have
1347 * already set other pages under writeback and hence we have to run I/O
1348 * completion to mark the error state of the pages under writeback
1351 if (unlikely(error)) {
1353 * Let the filesystem know what portion of the current page
1354 * failed to map. If the page wasn't been added to ioend, it
1355 * won't be affected by I/O completion and we must unlock it
1358 if (wpc->ops->discard_page)
1359 wpc->ops->discard_page(page, file_offset);
1361 ClearPageUptodate(page);
1367 set_page_writeback(page);
1371 * Preserve the original error if there was one, otherwise catch
1372 * submission errors here and propagate into subsequent ioend
1375 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1378 list_del_init(&ioend->io_list);
1379 error2 = iomap_submit_ioend(wpc, ioend, error);
1380 if (error2 && !error)
1385 * We can end up here with no error and nothing to write only if we race
1386 * with a partial page truncate on a sub-page block sized filesystem.
1389 end_page_writeback(page);
1391 mapping_set_error(page->mapping, error);
1396 * Write out a dirty page.
1398 * For delalloc space on the page we need to allocate space and flush it.
1399 * For unwritten space on the page we need to start the conversion to
1400 * regular allocated space.
1403 iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1405 struct iomap_writepage_ctx *wpc = data;
1406 struct inode *inode = page->mapping->host;
1411 trace_iomap_writepage(inode, page_offset(page), PAGE_SIZE);
1414 * Refuse to write the page out if we are called from reclaim context.
1416 * This avoids stack overflows when called from deeply used stacks in
1417 * random callers for direct reclaim or memcg reclaim. We explicitly
1418 * allow reclaim from kswapd as the stack usage there is relatively low.
1420 * This should never happen except in the case of a VM regression so
1423 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1428 * Is this page beyond the end of the file?
1430 * The page index is less than the end_index, adjust the end_offset
1431 * to the highest offset that this page should represent.
1432 * -----------------------------------------------------
1433 * | file mapping | <EOF> |
1434 * -----------------------------------------------------
1435 * | Page ... | Page N-2 | Page N-1 | Page N | |
1436 * ^--------------------------------^----------|--------
1437 * | desired writeback range | see else |
1438 * ---------------------------------^------------------|
1440 offset = i_size_read(inode);
1441 end_index = offset >> PAGE_SHIFT;
1442 if (page->index < end_index)
1443 end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
1446 * Check whether the page to write out is beyond or straddles
1448 * -------------------------------------------------------
1449 * | file mapping | <EOF> |
1450 * -------------------------------------------------------
1451 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1452 * ^--------------------------------^-----------|---------
1454 * ---------------------------------^-----------|--------|
1456 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1459 * Skip the page if it is fully outside i_size, e.g. due to a
1460 * truncate operation that is in progress. We must redirty the
1461 * page so that reclaim stops reclaiming it. Otherwise
1462 * iomap_vm_releasepage() is called on it and gets confused.
1464 * Note that the end_index is unsigned long, it would overflow
1465 * if the given offset is greater than 16TB on 32-bit system
1466 * and if we do check the page is fully outside i_size or not
1467 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1468 * will be evaluated to 0. Hence this page will be redirtied
1469 * and be written out repeatedly which would result in an
1470 * infinite loop, the user program that perform this operation
1471 * will hang. Instead, we can verify this situation by checking
1472 * if the page to write is totally beyond the i_size or if it's
1473 * offset is just equal to the EOF.
1475 if (page->index > end_index ||
1476 (page->index == end_index && offset_into_page == 0))
1480 * The page straddles i_size. It must be zeroed out on each
1481 * and every writepage invocation because it may be mmapped.
1482 * "A file is mapped in multiples of the page size. For a file
1483 * that is not a multiple of the page size, the remaining
1484 * memory is zeroed when mapped, and writes to that region are
1485 * not written out to the file."
1487 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1489 /* Adjust the end_offset to the end of file */
1490 end_offset = offset;
1493 return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
1496 redirty_page_for_writepage(wbc, page);
1502 iomap_writepage(struct page *page, struct writeback_control *wbc,
1503 struct iomap_writepage_ctx *wpc,
1504 const struct iomap_writeback_ops *ops)
1509 ret = iomap_do_writepage(page, wbc, wpc);
1512 return iomap_submit_ioend(wpc, wpc->ioend, ret);
1514 EXPORT_SYMBOL_GPL(iomap_writepage);
1517 iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1518 struct iomap_writepage_ctx *wpc,
1519 const struct iomap_writeback_ops *ops)
1524 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1527 return iomap_submit_ioend(wpc, wpc->ioend, ret);
1529 EXPORT_SYMBOL_GPL(iomap_writepages);
1531 static int __init iomap_init(void)
1533 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1534 offsetof(struct iomap_ioend, io_inline_bio),
1537 fs_initcall(iomap_init);