1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
52 #include <linux/sched/signal.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
64 #include <net/af_unix.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/tracehook.h>
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
86 #include <uapi/linux/io_uring.h>
91 #define IORING_MAX_ENTRIES 32768
92 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
93 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
96 #define IORING_MAX_FIXED_FILES (1U << 15)
97 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
98 IORING_REGISTER_LAST + IORING_OP_LAST)
100 #define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3)
101 #define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
102 #define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
104 #define IORING_MAX_REG_BUFFERS (1U << 14)
106 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
109 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
112 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
115 u32 head ____cacheline_aligned_in_smp;
116 u32 tail ____cacheline_aligned_in_smp;
120 * This data is shared with the application through the mmap at offsets
121 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
123 * The offsets to the member fields are published through struct
124 * io_sqring_offsets when calling io_uring_setup.
128 * Head and tail offsets into the ring; the offsets need to be
129 * masked to get valid indices.
131 * The kernel controls head of the sq ring and the tail of the cq ring,
132 * and the application controls tail of the sq ring and the head of the
135 struct io_uring sq, cq;
137 * Bitmasks to apply to head and tail offsets (constant, equals
140 u32 sq_ring_mask, cq_ring_mask;
141 /* Ring sizes (constant, power of 2) */
142 u32 sq_ring_entries, cq_ring_entries;
144 * Number of invalid entries dropped by the kernel due to
145 * invalid index stored in array
147 * Written by the kernel, shouldn't be modified by the
148 * application (i.e. get number of "new events" by comparing to
151 * After a new SQ head value was read by the application this
152 * counter includes all submissions that were dropped reaching
153 * the new SQ head (and possibly more).
159 * Written by the kernel, shouldn't be modified by the
162 * The application needs a full memory barrier before checking
163 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
169 * Written by the application, shouldn't be modified by the
174 * Number of completion events lost because the queue was full;
175 * this should be avoided by the application by making sure
176 * there are not more requests pending than there is space in
177 * the completion queue.
179 * Written by the kernel, shouldn't be modified by the
180 * application (i.e. get number of "new events" by comparing to
183 * As completion events come in out of order this counter is not
184 * ordered with any other data.
188 * Ring buffer of completion events.
190 * The kernel writes completion events fresh every time they are
191 * produced, so the application is allowed to modify pending
194 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
197 enum io_uring_cmd_flags {
198 IO_URING_F_NONBLOCK = 1,
199 IO_URING_F_COMPLETE_DEFER = 2,
202 struct io_mapped_ubuf {
205 unsigned int nr_bvecs;
206 unsigned long acct_pages;
207 struct bio_vec bvec[];
212 struct io_overflow_cqe {
213 struct io_uring_cqe cqe;
214 struct list_head list;
217 struct io_fixed_file {
218 /* file * with additional FFS_* flags */
219 unsigned long file_ptr;
223 struct list_head list;
228 struct io_mapped_ubuf *buf;
232 struct io_file_table {
233 struct io_fixed_file *files;
236 struct io_rsrc_node {
237 struct percpu_ref refs;
238 struct list_head node;
239 struct list_head rsrc_list;
240 struct io_rsrc_data *rsrc_data;
241 struct llist_node llist;
245 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
247 struct io_rsrc_data {
248 struct io_ring_ctx *ctx;
254 struct completion done;
259 struct list_head list;
265 struct io_restriction {
266 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 u8 sqe_flags_allowed;
269 u8 sqe_flags_required;
274 IO_SQ_THREAD_SHOULD_STOP = 0,
275 IO_SQ_THREAD_SHOULD_PARK,
280 atomic_t park_pending;
283 /* ctx's that are using this sqd */
284 struct list_head ctx_list;
286 struct task_struct *thread;
287 struct wait_queue_head wait;
289 unsigned sq_thread_idle;
295 struct completion exited;
298 #define IO_COMPL_BATCH 32
299 #define IO_REQ_CACHE_SIZE 32
300 #define IO_REQ_ALLOC_BATCH 8
302 struct io_submit_link {
303 struct io_kiocb *head;
304 struct io_kiocb *last;
307 struct io_submit_state {
308 struct blk_plug plug;
309 struct io_submit_link link;
312 * io_kiocb alloc cache
314 void *reqs[IO_REQ_CACHE_SIZE];
315 unsigned int free_reqs;
320 * Batch completion logic
322 struct io_kiocb *compl_reqs[IO_COMPL_BATCH];
323 unsigned int compl_nr;
324 /* inline/task_work completion list, under ->uring_lock */
325 struct list_head free_list;
327 unsigned int ios_left;
331 /* const or read-mostly hot data */
333 struct percpu_ref refs;
335 struct io_rings *rings;
337 unsigned int compat: 1;
338 unsigned int drain_next: 1;
339 unsigned int eventfd_async: 1;
340 unsigned int restricted: 1;
341 unsigned int off_timeout_used: 1;
342 unsigned int drain_active: 1;
343 } ____cacheline_aligned_in_smp;
345 /* submission data */
347 struct mutex uring_lock;
350 * Ring buffer of indices into array of io_uring_sqe, which is
351 * mmapped by the application using the IORING_OFF_SQES offset.
353 * This indirection could e.g. be used to assign fixed
354 * io_uring_sqe entries to operations and only submit them to
355 * the queue when needed.
357 * The kernel modifies neither the indices array nor the entries
361 struct io_uring_sqe *sq_sqes;
362 unsigned cached_sq_head;
364 struct list_head defer_list;
367 * Fixed resources fast path, should be accessed only under
368 * uring_lock, and updated through io_uring_register(2)
370 struct io_rsrc_node *rsrc_node;
371 struct io_file_table file_table;
372 unsigned nr_user_files;
373 unsigned nr_user_bufs;
374 struct io_mapped_ubuf **user_bufs;
376 struct io_submit_state submit_state;
377 struct list_head timeout_list;
378 struct list_head ltimeout_list;
379 struct list_head cq_overflow_list;
380 struct xarray io_buffers;
381 struct xarray personalities;
383 unsigned sq_thread_idle;
384 } ____cacheline_aligned_in_smp;
386 /* IRQ completion list, under ->completion_lock */
387 struct list_head locked_free_list;
388 unsigned int locked_free_nr;
390 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
391 struct io_sq_data *sq_data; /* if using sq thread polling */
393 struct wait_queue_head sqo_sq_wait;
394 struct list_head sqd_list;
396 unsigned long check_cq_overflow;
399 unsigned cached_cq_tail;
401 struct eventfd_ctx *cq_ev_fd;
402 struct wait_queue_head poll_wait;
403 struct wait_queue_head cq_wait;
405 atomic_t cq_timeouts;
406 unsigned cq_last_tm_flush;
407 } ____cacheline_aligned_in_smp;
410 spinlock_t completion_lock;
412 spinlock_t timeout_lock;
415 * ->iopoll_list is protected by the ctx->uring_lock for
416 * io_uring instances that don't use IORING_SETUP_SQPOLL.
417 * For SQPOLL, only the single threaded io_sq_thread() will
418 * manipulate the list, hence no extra locking is needed there.
420 struct list_head iopoll_list;
421 struct hlist_head *cancel_hash;
422 unsigned cancel_hash_bits;
423 bool poll_multi_queue;
424 } ____cacheline_aligned_in_smp;
426 struct io_restriction restrictions;
428 /* slow path rsrc auxilary data, used by update/register */
430 struct io_rsrc_node *rsrc_backup_node;
431 struct io_mapped_ubuf *dummy_ubuf;
432 struct io_rsrc_data *file_data;
433 struct io_rsrc_data *buf_data;
435 struct delayed_work rsrc_put_work;
436 struct llist_head rsrc_put_llist;
437 struct list_head rsrc_ref_list;
438 spinlock_t rsrc_ref_lock;
441 /* Keep this last, we don't need it for the fast path */
443 #if defined(CONFIG_UNIX)
444 struct socket *ring_sock;
446 /* hashed buffered write serialization */
447 struct io_wq_hash *hash_map;
449 /* Only used for accounting purposes */
450 struct user_struct *user;
451 struct mm_struct *mm_account;
453 /* ctx exit and cancelation */
454 struct llist_head fallback_llist;
455 struct delayed_work fallback_work;
456 struct work_struct exit_work;
457 struct list_head tctx_list;
458 struct completion ref_comp;
460 bool iowq_limits_set;
464 struct io_uring_task {
465 /* submission side */
468 struct wait_queue_head wait;
469 const struct io_ring_ctx *last;
471 struct percpu_counter inflight;
472 atomic_t inflight_tracked;
475 spinlock_t task_lock;
476 struct io_wq_work_list task_list;
477 struct callback_head task_work;
482 * First field must be the file pointer in all the
483 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
485 struct io_poll_iocb {
487 struct wait_queue_head *head;
491 struct wait_queue_entry wait;
494 struct io_poll_update {
500 bool update_user_data;
509 struct io_timeout_data {
510 struct io_kiocb *req;
511 struct hrtimer timer;
512 struct timespec64 ts;
513 enum hrtimer_mode mode;
519 struct sockaddr __user *addr;
520 int __user *addr_len;
523 unsigned long nofile;
543 struct list_head list;
544 /* head of the link, used by linked timeouts only */
545 struct io_kiocb *head;
546 /* for linked completions */
547 struct io_kiocb *prev;
550 struct io_timeout_rem {
555 struct timespec64 ts;
561 /* NOTE: kiocb has the file as the first member, so don't do it here */
569 struct sockaddr __user *addr;
576 struct compat_msghdr __user *umsg_compat;
577 struct user_msghdr __user *umsg;
583 struct io_buffer *kbuf;
590 struct filename *filename;
592 unsigned long nofile;
595 struct io_rsrc_update {
621 struct epoll_event event;
625 struct file *file_out;
626 struct file *file_in;
633 struct io_provide_buf {
647 const char __user *filename;
648 struct statx __user *buffer;
660 struct filename *oldpath;
661 struct filename *newpath;
669 struct filename *filename;
676 struct filename *filename;
682 struct filename *oldpath;
683 struct filename *newpath;
690 struct filename *oldpath;
691 struct filename *newpath;
695 struct io_completion {
700 struct io_async_connect {
701 struct sockaddr_storage address;
704 struct io_async_msghdr {
705 struct iovec fast_iov[UIO_FASTIOV];
706 /* points to an allocated iov, if NULL we use fast_iov instead */
707 struct iovec *free_iov;
708 struct sockaddr __user *uaddr;
710 struct sockaddr_storage addr;
714 struct iovec fast_iov[UIO_FASTIOV];
715 const struct iovec *free_iovec;
716 struct iov_iter iter;
717 struct iov_iter_state iter_state;
719 struct wait_page_queue wpq;
723 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
724 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
725 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
726 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
727 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
728 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
730 /* first byte is taken by user flags, shift it to not overlap */
735 REQ_F_LINK_TIMEOUT_BIT,
736 REQ_F_NEED_CLEANUP_BIT,
738 REQ_F_BUFFER_SELECTED_BIT,
739 REQ_F_COMPLETE_INLINE_BIT,
743 REQ_F_ARM_LTIMEOUT_BIT,
744 /* keep async read/write and isreg together and in order */
745 REQ_F_NOWAIT_READ_BIT,
746 REQ_F_NOWAIT_WRITE_BIT,
749 /* not a real bit, just to check we're not overflowing the space */
755 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
756 /* drain existing IO first */
757 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
759 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
760 /* doesn't sever on completion < 0 */
761 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
763 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
764 /* IOSQE_BUFFER_SELECT */
765 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
767 /* fail rest of links */
768 REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
769 /* on inflight list, should be cancelled and waited on exit reliably */
770 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
771 /* read/write uses file position */
772 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
773 /* must not punt to workers */
774 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
775 /* has or had linked timeout */
776 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
778 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
779 /* already went through poll handler */
780 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
781 /* buffer already selected */
782 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
783 /* completion is deferred through io_comp_state */
784 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
785 /* caller should reissue async */
786 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
787 /* supports async reads */
788 REQ_F_NOWAIT_READ = BIT(REQ_F_NOWAIT_READ_BIT),
789 /* supports async writes */
790 REQ_F_NOWAIT_WRITE = BIT(REQ_F_NOWAIT_WRITE_BIT),
792 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
793 /* has creds assigned */
794 REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
795 /* skip refcounting if not set */
796 REQ_F_REFCOUNT = BIT(REQ_F_REFCOUNT_BIT),
797 /* there is a linked timeout that has to be armed */
798 REQ_F_ARM_LTIMEOUT = BIT(REQ_F_ARM_LTIMEOUT_BIT),
802 struct io_poll_iocb poll;
803 struct io_poll_iocb *double_poll;
806 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
808 struct io_task_work {
810 struct io_wq_work_node node;
811 struct llist_node fallback_node;
813 io_req_tw_func_t func;
817 IORING_RSRC_FILE = 0,
818 IORING_RSRC_BUFFER = 1,
822 * NOTE! Each of the iocb union members has the file pointer
823 * as the first entry in their struct definition. So you can
824 * access the file pointer through any of the sub-structs,
825 * or directly as just 'ki_filp' in this struct.
831 struct io_poll_iocb poll;
832 struct io_poll_update poll_update;
833 struct io_accept accept;
835 struct io_cancel cancel;
836 struct io_timeout timeout;
837 struct io_timeout_rem timeout_rem;
838 struct io_connect connect;
839 struct io_sr_msg sr_msg;
841 struct io_close close;
842 struct io_rsrc_update rsrc_update;
843 struct io_fadvise fadvise;
844 struct io_madvise madvise;
845 struct io_epoll epoll;
846 struct io_splice splice;
847 struct io_provide_buf pbuf;
848 struct io_statx statx;
849 struct io_shutdown shutdown;
850 struct io_rename rename;
851 struct io_unlink unlink;
852 struct io_mkdir mkdir;
853 struct io_symlink symlink;
854 struct io_hardlink hardlink;
855 /* use only after cleaning per-op data, see io_clean_op() */
856 struct io_completion compl;
859 /* opcode allocated if it needs to store data for async defer */
862 /* polled IO has completed */
868 struct io_ring_ctx *ctx;
871 struct task_struct *task;
874 struct io_kiocb *link;
875 struct percpu_ref *fixed_rsrc_refs;
877 /* used with ctx->iopoll_list with reads/writes */
878 struct list_head inflight_entry;
879 struct io_task_work io_task_work;
880 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
881 struct hlist_node hash_node;
882 struct async_poll *apoll;
883 struct io_wq_work work;
884 const struct cred *creds;
886 /* store used ubuf, so we can prevent reloading */
887 struct io_mapped_ubuf *imu;
890 struct io_tctx_node {
891 struct list_head ctx_node;
892 struct task_struct *task;
893 struct io_ring_ctx *ctx;
896 struct io_defer_entry {
897 struct list_head list;
898 struct io_kiocb *req;
903 /* needs req->file assigned */
904 unsigned needs_file : 1;
905 /* hash wq insertion if file is a regular file */
906 unsigned hash_reg_file : 1;
907 /* unbound wq insertion if file is a non-regular file */
908 unsigned unbound_nonreg_file : 1;
909 /* opcode is not supported by this kernel */
910 unsigned not_supported : 1;
911 /* set if opcode supports polled "wait" */
913 unsigned pollout : 1;
914 /* op supports buffer selection */
915 unsigned buffer_select : 1;
916 /* do prep async if is going to be punted */
917 unsigned needs_async_setup : 1;
918 /* should block plug */
920 /* size of async data needed, if any */
921 unsigned short async_size;
924 static const struct io_op_def io_op_defs[] = {
925 [IORING_OP_NOP] = {},
926 [IORING_OP_READV] = {
928 .unbound_nonreg_file = 1,
931 .needs_async_setup = 1,
933 .async_size = sizeof(struct io_async_rw),
935 [IORING_OP_WRITEV] = {
938 .unbound_nonreg_file = 1,
940 .needs_async_setup = 1,
942 .async_size = sizeof(struct io_async_rw),
944 [IORING_OP_FSYNC] = {
947 [IORING_OP_READ_FIXED] = {
949 .unbound_nonreg_file = 1,
952 .async_size = sizeof(struct io_async_rw),
954 [IORING_OP_WRITE_FIXED] = {
957 .unbound_nonreg_file = 1,
960 .async_size = sizeof(struct io_async_rw),
962 [IORING_OP_POLL_ADD] = {
964 .unbound_nonreg_file = 1,
966 [IORING_OP_POLL_REMOVE] = {},
967 [IORING_OP_SYNC_FILE_RANGE] = {
970 [IORING_OP_SENDMSG] = {
972 .unbound_nonreg_file = 1,
974 .needs_async_setup = 1,
975 .async_size = sizeof(struct io_async_msghdr),
977 [IORING_OP_RECVMSG] = {
979 .unbound_nonreg_file = 1,
982 .needs_async_setup = 1,
983 .async_size = sizeof(struct io_async_msghdr),
985 [IORING_OP_TIMEOUT] = {
986 .async_size = sizeof(struct io_timeout_data),
988 [IORING_OP_TIMEOUT_REMOVE] = {
989 /* used by timeout updates' prep() */
991 [IORING_OP_ACCEPT] = {
993 .unbound_nonreg_file = 1,
996 [IORING_OP_ASYNC_CANCEL] = {},
997 [IORING_OP_LINK_TIMEOUT] = {
998 .async_size = sizeof(struct io_timeout_data),
1000 [IORING_OP_CONNECT] = {
1002 .unbound_nonreg_file = 1,
1004 .needs_async_setup = 1,
1005 .async_size = sizeof(struct io_async_connect),
1007 [IORING_OP_FALLOCATE] = {
1010 [IORING_OP_OPENAT] = {},
1011 [IORING_OP_CLOSE] = {},
1012 [IORING_OP_FILES_UPDATE] = {},
1013 [IORING_OP_STATX] = {},
1014 [IORING_OP_READ] = {
1016 .unbound_nonreg_file = 1,
1020 .async_size = sizeof(struct io_async_rw),
1022 [IORING_OP_WRITE] = {
1025 .unbound_nonreg_file = 1,
1028 .async_size = sizeof(struct io_async_rw),
1030 [IORING_OP_FADVISE] = {
1033 [IORING_OP_MADVISE] = {},
1034 [IORING_OP_SEND] = {
1036 .unbound_nonreg_file = 1,
1039 [IORING_OP_RECV] = {
1041 .unbound_nonreg_file = 1,
1045 [IORING_OP_OPENAT2] = {
1047 [IORING_OP_EPOLL_CTL] = {
1048 .unbound_nonreg_file = 1,
1050 [IORING_OP_SPLICE] = {
1053 .unbound_nonreg_file = 1,
1055 [IORING_OP_PROVIDE_BUFFERS] = {},
1056 [IORING_OP_REMOVE_BUFFERS] = {},
1060 .unbound_nonreg_file = 1,
1062 [IORING_OP_SHUTDOWN] = {
1065 [IORING_OP_RENAMEAT] = {},
1066 [IORING_OP_UNLINKAT] = {},
1067 [IORING_OP_MKDIRAT] = {},
1068 [IORING_OP_SYMLINKAT] = {},
1069 [IORING_OP_LINKAT] = {},
1072 /* requests with any of those set should undergo io_disarm_next() */
1073 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1075 static bool io_disarm_next(struct io_kiocb *req);
1076 static void io_uring_del_tctx_node(unsigned long index);
1077 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1078 struct task_struct *task,
1080 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1082 static bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1083 long res, unsigned int cflags);
1084 static void io_put_req(struct io_kiocb *req);
1085 static void io_put_req_deferred(struct io_kiocb *req);
1086 static void io_dismantle_req(struct io_kiocb *req);
1087 static void io_queue_linked_timeout(struct io_kiocb *req);
1088 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1089 struct io_uring_rsrc_update2 *up,
1091 static void io_clean_op(struct io_kiocb *req);
1092 static struct file *io_file_get(struct io_ring_ctx *ctx,
1093 struct io_kiocb *req, int fd, bool fixed);
1094 static void __io_queue_sqe(struct io_kiocb *req);
1095 static void io_rsrc_put_work(struct work_struct *work);
1097 static void io_req_task_queue(struct io_kiocb *req);
1098 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1099 static int io_req_prep_async(struct io_kiocb *req);
1101 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1102 unsigned int issue_flags, u32 slot_index);
1103 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1105 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1107 static struct kmem_cache *req_cachep;
1109 static const struct file_operations io_uring_fops;
1111 struct sock *io_uring_get_socket(struct file *file)
1113 #if defined(CONFIG_UNIX)
1114 if (file->f_op == &io_uring_fops) {
1115 struct io_ring_ctx *ctx = file->private_data;
1117 return ctx->ring_sock->sk;
1122 EXPORT_SYMBOL(io_uring_get_socket);
1124 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1127 mutex_lock(&ctx->uring_lock);
1132 #define io_for_each_link(pos, head) \
1133 for (pos = (head); pos; pos = pos->link)
1136 * Shamelessly stolen from the mm implementation of page reference checking,
1137 * see commit f958d7b528b1 for details.
1139 #define req_ref_zero_or_close_to_overflow(req) \
1140 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1142 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1144 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1145 return atomic_inc_not_zero(&req->refs);
1148 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1150 if (likely(!(req->flags & REQ_F_REFCOUNT)))
1153 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1154 return atomic_dec_and_test(&req->refs);
1157 static inline void req_ref_put(struct io_kiocb *req)
1159 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1160 WARN_ON_ONCE(req_ref_put_and_test(req));
1163 static inline void req_ref_get(struct io_kiocb *req)
1165 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1166 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1167 atomic_inc(&req->refs);
1170 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1172 if (!(req->flags & REQ_F_REFCOUNT)) {
1173 req->flags |= REQ_F_REFCOUNT;
1174 atomic_set(&req->refs, nr);
1178 static inline void io_req_set_refcount(struct io_kiocb *req)
1180 __io_req_set_refcount(req, 1);
1183 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1185 struct io_ring_ctx *ctx = req->ctx;
1187 if (!req->fixed_rsrc_refs) {
1188 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1189 percpu_ref_get(req->fixed_rsrc_refs);
1193 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1195 bool got = percpu_ref_tryget(ref);
1197 /* already at zero, wait for ->release() */
1199 wait_for_completion(compl);
1200 percpu_ref_resurrect(ref);
1202 percpu_ref_put(ref);
1205 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1207 __must_hold(&req->ctx->timeout_lock)
1209 struct io_kiocb *req;
1211 if (task && head->task != task)
1216 io_for_each_link(req, head) {
1217 if (req->flags & REQ_F_INFLIGHT)
1223 static bool io_match_linked(struct io_kiocb *head)
1225 struct io_kiocb *req;
1227 io_for_each_link(req, head) {
1228 if (req->flags & REQ_F_INFLIGHT)
1235 * As io_match_task() but protected against racing with linked timeouts.
1236 * User must not hold timeout_lock.
1238 static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
1243 if (task && head->task != task)
1248 if (head->flags & REQ_F_LINK_TIMEOUT) {
1249 struct io_ring_ctx *ctx = head->ctx;
1251 /* protect against races with linked timeouts */
1252 spin_lock_irq(&ctx->timeout_lock);
1253 matched = io_match_linked(head);
1254 spin_unlock_irq(&ctx->timeout_lock);
1256 matched = io_match_linked(head);
1261 static inline void req_set_fail(struct io_kiocb *req)
1263 req->flags |= REQ_F_FAIL;
1266 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1272 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1274 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1276 complete(&ctx->ref_comp);
1279 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1281 return !req->timeout.off;
1284 static void io_fallback_req_func(struct work_struct *work)
1286 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1287 fallback_work.work);
1288 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1289 struct io_kiocb *req, *tmp;
1290 bool locked = false;
1292 percpu_ref_get(&ctx->refs);
1293 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1294 req->io_task_work.func(req, &locked);
1297 if (ctx->submit_state.compl_nr)
1298 io_submit_flush_completions(ctx);
1299 mutex_unlock(&ctx->uring_lock);
1301 percpu_ref_put(&ctx->refs);
1305 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1307 struct io_ring_ctx *ctx;
1310 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1315 * Use 5 bits less than the max cq entries, that should give us around
1316 * 32 entries per hash list if totally full and uniformly spread.
1318 hash_bits = ilog2(p->cq_entries);
1322 ctx->cancel_hash_bits = hash_bits;
1323 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1325 if (!ctx->cancel_hash)
1327 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1329 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1330 if (!ctx->dummy_ubuf)
1332 /* set invalid range, so io_import_fixed() fails meeting it */
1333 ctx->dummy_ubuf->ubuf = -1UL;
1335 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1336 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1339 ctx->flags = p->flags;
1340 init_waitqueue_head(&ctx->sqo_sq_wait);
1341 INIT_LIST_HEAD(&ctx->sqd_list);
1342 init_waitqueue_head(&ctx->poll_wait);
1343 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1344 init_completion(&ctx->ref_comp);
1345 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1346 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1347 mutex_init(&ctx->uring_lock);
1348 init_waitqueue_head(&ctx->cq_wait);
1349 spin_lock_init(&ctx->completion_lock);
1350 spin_lock_init(&ctx->timeout_lock);
1351 INIT_LIST_HEAD(&ctx->iopoll_list);
1352 INIT_LIST_HEAD(&ctx->defer_list);
1353 INIT_LIST_HEAD(&ctx->timeout_list);
1354 INIT_LIST_HEAD(&ctx->ltimeout_list);
1355 spin_lock_init(&ctx->rsrc_ref_lock);
1356 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1357 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1358 init_llist_head(&ctx->rsrc_put_llist);
1359 INIT_LIST_HEAD(&ctx->tctx_list);
1360 INIT_LIST_HEAD(&ctx->submit_state.free_list);
1361 INIT_LIST_HEAD(&ctx->locked_free_list);
1362 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1365 kfree(ctx->dummy_ubuf);
1366 kfree(ctx->cancel_hash);
1371 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1373 struct io_rings *r = ctx->rings;
1375 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1379 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1381 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1382 struct io_ring_ctx *ctx = req->ctx;
1384 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1390 #define FFS_ASYNC_READ 0x1UL
1391 #define FFS_ASYNC_WRITE 0x2UL
1393 #define FFS_ISREG 0x4UL
1395 #define FFS_ISREG 0x0UL
1397 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1399 static inline bool io_req_ffs_set(struct io_kiocb *req)
1401 return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1404 static void io_req_track_inflight(struct io_kiocb *req)
1406 if (!(req->flags & REQ_F_INFLIGHT)) {
1407 req->flags |= REQ_F_INFLIGHT;
1408 atomic_inc(¤t->io_uring->inflight_tracked);
1412 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1414 if (WARN_ON_ONCE(!req->link))
1417 req->flags &= ~REQ_F_ARM_LTIMEOUT;
1418 req->flags |= REQ_F_LINK_TIMEOUT;
1420 /* linked timeouts should have two refs once prep'ed */
1421 io_req_set_refcount(req);
1422 __io_req_set_refcount(req->link, 2);
1426 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1428 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1430 return __io_prep_linked_timeout(req);
1433 static void io_prep_async_work(struct io_kiocb *req)
1435 const struct io_op_def *def = &io_op_defs[req->opcode];
1436 struct io_ring_ctx *ctx = req->ctx;
1438 if (!(req->flags & REQ_F_CREDS)) {
1439 req->flags |= REQ_F_CREDS;
1440 req->creds = get_current_cred();
1443 req->work.list.next = NULL;
1444 req->work.flags = 0;
1445 if (req->flags & REQ_F_FORCE_ASYNC)
1446 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1448 if (req->flags & REQ_F_ISREG) {
1449 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1450 io_wq_hash_work(&req->work, file_inode(req->file));
1451 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1452 if (def->unbound_nonreg_file)
1453 req->work.flags |= IO_WQ_WORK_UNBOUND;
1456 switch (req->opcode) {
1457 case IORING_OP_SPLICE:
1459 if (!S_ISREG(file_inode(req->splice.file_in)->i_mode))
1460 req->work.flags |= IO_WQ_WORK_UNBOUND;
1465 static void io_prep_async_link(struct io_kiocb *req)
1467 struct io_kiocb *cur;
1469 if (req->flags & REQ_F_LINK_TIMEOUT) {
1470 struct io_ring_ctx *ctx = req->ctx;
1472 spin_lock_irq(&ctx->timeout_lock);
1473 io_for_each_link(cur, req)
1474 io_prep_async_work(cur);
1475 spin_unlock_irq(&ctx->timeout_lock);
1477 io_for_each_link(cur, req)
1478 io_prep_async_work(cur);
1482 static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1484 struct io_ring_ctx *ctx = req->ctx;
1485 struct io_kiocb *link = io_prep_linked_timeout(req);
1486 struct io_uring_task *tctx = req->task->io_uring;
1488 /* must not take the lock, NULL it as a precaution */
1492 BUG_ON(!tctx->io_wq);
1494 /* init ->work of the whole link before punting */
1495 io_prep_async_link(req);
1498 * Not expected to happen, but if we do have a bug where this _can_
1499 * happen, catch it here and ensure the request is marked as
1500 * canceled. That will make io-wq go through the usual work cancel
1501 * procedure rather than attempt to run this request (or create a new
1504 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1505 req->work.flags |= IO_WQ_WORK_CANCEL;
1507 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1508 &req->work, req->flags);
1509 io_wq_enqueue(tctx->io_wq, &req->work);
1511 io_queue_linked_timeout(link);
1514 static void io_kill_timeout(struct io_kiocb *req, int status)
1515 __must_hold(&req->ctx->completion_lock)
1516 __must_hold(&req->ctx->timeout_lock)
1518 struct io_timeout_data *io = req->async_data;
1520 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1523 atomic_set(&req->ctx->cq_timeouts,
1524 atomic_read(&req->ctx->cq_timeouts) + 1);
1525 list_del_init(&req->timeout.list);
1526 io_cqring_fill_event(req->ctx, req->user_data, status, 0);
1527 io_put_req_deferred(req);
1531 static void io_queue_deferred(struct io_ring_ctx *ctx)
1533 while (!list_empty(&ctx->defer_list)) {
1534 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1535 struct io_defer_entry, list);
1537 if (req_need_defer(de->req, de->seq))
1539 list_del_init(&de->list);
1540 io_req_task_queue(de->req);
1545 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1546 __must_hold(&ctx->completion_lock)
1548 u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1550 spin_lock_irq(&ctx->timeout_lock);
1551 while (!list_empty(&ctx->timeout_list)) {
1552 u32 events_needed, events_got;
1553 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1554 struct io_kiocb, timeout.list);
1556 if (io_is_timeout_noseq(req))
1560 * Since seq can easily wrap around over time, subtract
1561 * the last seq at which timeouts were flushed before comparing.
1562 * Assuming not more than 2^31-1 events have happened since,
1563 * these subtractions won't have wrapped, so we can check if
1564 * target is in [last_seq, current_seq] by comparing the two.
1566 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1567 events_got = seq - ctx->cq_last_tm_flush;
1568 if (events_got < events_needed)
1571 list_del_init(&req->timeout.list);
1572 io_kill_timeout(req, 0);
1574 ctx->cq_last_tm_flush = seq;
1575 spin_unlock_irq(&ctx->timeout_lock);
1578 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1580 if (ctx->off_timeout_used)
1581 io_flush_timeouts(ctx);
1582 if (ctx->drain_active)
1583 io_queue_deferred(ctx);
1586 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1588 if (unlikely(ctx->off_timeout_used || ctx->drain_active))
1589 __io_commit_cqring_flush(ctx);
1590 /* order cqe stores with ring update */
1591 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1594 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1596 struct io_rings *r = ctx->rings;
1598 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1601 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1603 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1606 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1608 struct io_rings *rings = ctx->rings;
1609 unsigned tail, mask = ctx->cq_entries - 1;
1612 * writes to the cq entry need to come after reading head; the
1613 * control dependency is enough as we're using WRITE_ONCE to
1616 if (__io_cqring_events(ctx) == ctx->cq_entries)
1619 tail = ctx->cached_cq_tail++;
1620 return &rings->cqes[tail & mask];
1623 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1625 if (likely(!ctx->cq_ev_fd))
1627 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1629 return !ctx->eventfd_async || io_wq_current_is_worker();
1633 * This should only get called when at least one event has been posted.
1634 * Some applications rely on the eventfd notification count only changing
1635 * IFF a new CQE has been added to the CQ ring. There's no depedency on
1636 * 1:1 relationship between how many times this function is called (and
1637 * hence the eventfd count) and number of CQEs posted to the CQ ring.
1639 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1642 * wake_up_all() may seem excessive, but io_wake_function() and
1643 * io_should_wake() handle the termination of the loop and only
1644 * wake as many waiters as we need to.
1646 if (wq_has_sleeper(&ctx->cq_wait))
1647 wake_up_all(&ctx->cq_wait);
1648 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1649 wake_up(&ctx->sq_data->wait);
1650 if (io_should_trigger_evfd(ctx))
1651 eventfd_signal(ctx->cq_ev_fd, 1);
1652 if (waitqueue_active(&ctx->poll_wait))
1653 wake_up_interruptible(&ctx->poll_wait);
1656 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1658 /* see waitqueue_active() comment */
1661 if (ctx->flags & IORING_SETUP_SQPOLL) {
1662 if (waitqueue_active(&ctx->cq_wait))
1663 wake_up_all(&ctx->cq_wait);
1665 if (io_should_trigger_evfd(ctx))
1666 eventfd_signal(ctx->cq_ev_fd, 1);
1667 if (waitqueue_active(&ctx->poll_wait))
1668 wake_up_interruptible(&ctx->poll_wait);
1671 /* Returns true if there are no backlogged entries after the flush */
1672 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1674 bool all_flushed, posted;
1676 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1680 spin_lock(&ctx->completion_lock);
1681 while (!list_empty(&ctx->cq_overflow_list)) {
1682 struct io_uring_cqe *cqe = io_get_cqe(ctx);
1683 struct io_overflow_cqe *ocqe;
1687 ocqe = list_first_entry(&ctx->cq_overflow_list,
1688 struct io_overflow_cqe, list);
1690 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1692 io_account_cq_overflow(ctx);
1695 list_del(&ocqe->list);
1699 all_flushed = list_empty(&ctx->cq_overflow_list);
1701 clear_bit(0, &ctx->check_cq_overflow);
1702 WRITE_ONCE(ctx->rings->sq_flags,
1703 ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1707 io_commit_cqring(ctx);
1708 spin_unlock(&ctx->completion_lock);
1710 io_cqring_ev_posted(ctx);
1714 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1718 if (test_bit(0, &ctx->check_cq_overflow)) {
1719 /* iopoll syncs against uring_lock, not completion_lock */
1720 if (ctx->flags & IORING_SETUP_IOPOLL)
1721 mutex_lock(&ctx->uring_lock);
1722 ret = __io_cqring_overflow_flush(ctx, false);
1723 if (ctx->flags & IORING_SETUP_IOPOLL)
1724 mutex_unlock(&ctx->uring_lock);
1730 /* must to be called somewhat shortly after putting a request */
1731 static inline void io_put_task(struct task_struct *task, int nr)
1733 struct io_uring_task *tctx = task->io_uring;
1735 if (likely(task == current)) {
1736 tctx->cached_refs += nr;
1738 percpu_counter_sub(&tctx->inflight, nr);
1739 if (unlikely(atomic_read(&tctx->in_idle)))
1740 wake_up(&tctx->wait);
1741 put_task_struct_many(task, nr);
1745 static void io_task_refs_refill(struct io_uring_task *tctx)
1747 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1749 percpu_counter_add(&tctx->inflight, refill);
1750 refcount_add(refill, ¤t->usage);
1751 tctx->cached_refs += refill;
1754 static inline void io_get_task_refs(int nr)
1756 struct io_uring_task *tctx = current->io_uring;
1758 tctx->cached_refs -= nr;
1759 if (unlikely(tctx->cached_refs < 0))
1760 io_task_refs_refill(tctx);
1763 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
1765 struct io_uring_task *tctx = task->io_uring;
1766 unsigned int refs = tctx->cached_refs;
1769 tctx->cached_refs = 0;
1770 percpu_counter_sub(&tctx->inflight, refs);
1771 put_task_struct_many(task, refs);
1775 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1776 long res, unsigned int cflags)
1778 struct io_overflow_cqe *ocqe;
1780 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1783 * If we're in ring overflow flush mode, or in task cancel mode,
1784 * or cannot allocate an overflow entry, then we need to drop it
1787 io_account_cq_overflow(ctx);
1790 if (list_empty(&ctx->cq_overflow_list)) {
1791 set_bit(0, &ctx->check_cq_overflow);
1792 WRITE_ONCE(ctx->rings->sq_flags,
1793 ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1796 ocqe->cqe.user_data = user_data;
1797 ocqe->cqe.res = res;
1798 ocqe->cqe.flags = cflags;
1799 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1803 static inline bool __io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1804 long res, unsigned int cflags)
1806 struct io_uring_cqe *cqe;
1808 trace_io_uring_complete(ctx, user_data, res, cflags);
1811 * If we can't get a cq entry, userspace overflowed the
1812 * submission (by quite a lot). Increment the overflow count in
1815 cqe = io_get_cqe(ctx);
1817 WRITE_ONCE(cqe->user_data, user_data);
1818 WRITE_ONCE(cqe->res, res);
1819 WRITE_ONCE(cqe->flags, cflags);
1822 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1825 /* not as hot to bloat with inlining */
1826 static noinline bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1827 long res, unsigned int cflags)
1829 return __io_cqring_fill_event(ctx, user_data, res, cflags);
1832 static void io_req_complete_post(struct io_kiocb *req, long res,
1833 unsigned int cflags)
1835 struct io_ring_ctx *ctx = req->ctx;
1837 spin_lock(&ctx->completion_lock);
1838 __io_cqring_fill_event(ctx, req->user_data, res, cflags);
1840 * If we're the last reference to this request, add to our locked
1843 if (req_ref_put_and_test(req)) {
1844 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1845 if (req->flags & IO_DISARM_MASK)
1846 io_disarm_next(req);
1848 io_req_task_queue(req->link);
1852 io_dismantle_req(req);
1853 io_put_task(req->task, 1);
1854 list_add(&req->inflight_entry, &ctx->locked_free_list);
1855 ctx->locked_free_nr++;
1857 if (!percpu_ref_tryget(&ctx->refs))
1860 io_commit_cqring(ctx);
1861 spin_unlock(&ctx->completion_lock);
1864 io_cqring_ev_posted(ctx);
1865 percpu_ref_put(&ctx->refs);
1869 static inline bool io_req_needs_clean(struct io_kiocb *req)
1871 return req->flags & IO_REQ_CLEAN_FLAGS;
1874 static void io_req_complete_state(struct io_kiocb *req, long res,
1875 unsigned int cflags)
1877 if (io_req_needs_clean(req))
1880 req->compl.cflags = cflags;
1881 req->flags |= REQ_F_COMPLETE_INLINE;
1884 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1885 long res, unsigned cflags)
1887 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1888 io_req_complete_state(req, res, cflags);
1890 io_req_complete_post(req, res, cflags);
1893 static inline void io_req_complete(struct io_kiocb *req, long res)
1895 __io_req_complete(req, 0, res, 0);
1898 static void io_req_complete_failed(struct io_kiocb *req, long res)
1901 io_req_complete_post(req, res, 0);
1904 static void io_req_complete_fail_submit(struct io_kiocb *req)
1907 * We don't submit, fail them all, for that replace hardlinks with
1908 * normal links. Extra REQ_F_LINK is tolerated.
1910 req->flags &= ~REQ_F_HARDLINK;
1911 req->flags |= REQ_F_LINK;
1912 io_req_complete_failed(req, req->result);
1916 * Don't initialise the fields below on every allocation, but do that in
1917 * advance and keep them valid across allocations.
1919 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1923 req->async_data = NULL;
1924 /* not necessary, but safer to zero */
1928 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1929 struct io_submit_state *state)
1931 spin_lock(&ctx->completion_lock);
1932 list_splice_init(&ctx->locked_free_list, &state->free_list);
1933 ctx->locked_free_nr = 0;
1934 spin_unlock(&ctx->completion_lock);
1937 /* Returns true IFF there are requests in the cache */
1938 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1940 struct io_submit_state *state = &ctx->submit_state;
1944 * If we have more than a batch's worth of requests in our IRQ side
1945 * locked cache, grab the lock and move them over to our submission
1948 if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1949 io_flush_cached_locked_reqs(ctx, state);
1951 nr = state->free_reqs;
1952 while (!list_empty(&state->free_list)) {
1953 struct io_kiocb *req = list_first_entry(&state->free_list,
1954 struct io_kiocb, inflight_entry);
1956 list_del(&req->inflight_entry);
1957 state->reqs[nr++] = req;
1958 if (nr == ARRAY_SIZE(state->reqs))
1962 state->free_reqs = nr;
1967 * A request might get retired back into the request caches even before opcode
1968 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1969 * Because of that, io_alloc_req() should be called only under ->uring_lock
1970 * and with extra caution to not get a request that is still worked on.
1972 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1973 __must_hold(&ctx->uring_lock)
1975 struct io_submit_state *state = &ctx->submit_state;
1976 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1979 BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1981 if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
1984 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1988 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1989 * retry single alloc to be on the safe side.
1991 if (unlikely(ret <= 0)) {
1992 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1993 if (!state->reqs[0])
1998 for (i = 0; i < ret; i++)
1999 io_preinit_req(state->reqs[i], ctx);
2000 state->free_reqs = ret;
2003 return state->reqs[state->free_reqs];
2006 static inline void io_put_file(struct file *file)
2012 static void io_dismantle_req(struct io_kiocb *req)
2014 unsigned int flags = req->flags;
2016 if (io_req_needs_clean(req))
2018 if (!(flags & REQ_F_FIXED_FILE))
2019 io_put_file(req->file);
2020 if (req->fixed_rsrc_refs)
2021 percpu_ref_put(req->fixed_rsrc_refs);
2022 if (req->async_data) {
2023 kfree(req->async_data);
2024 req->async_data = NULL;
2028 static void __io_free_req(struct io_kiocb *req)
2030 struct io_ring_ctx *ctx = req->ctx;
2032 io_dismantle_req(req);
2033 io_put_task(req->task, 1);
2035 spin_lock(&ctx->completion_lock);
2036 list_add(&req->inflight_entry, &ctx->locked_free_list);
2037 ctx->locked_free_nr++;
2038 spin_unlock(&ctx->completion_lock);
2040 percpu_ref_put(&ctx->refs);
2043 static inline void io_remove_next_linked(struct io_kiocb *req)
2045 struct io_kiocb *nxt = req->link;
2047 req->link = nxt->link;
2051 static bool io_kill_linked_timeout(struct io_kiocb *req)
2052 __must_hold(&req->ctx->completion_lock)
2053 __must_hold(&req->ctx->timeout_lock)
2055 struct io_kiocb *link = req->link;
2057 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2058 struct io_timeout_data *io = link->async_data;
2060 io_remove_next_linked(req);
2061 link->timeout.head = NULL;
2062 if (hrtimer_try_to_cancel(&io->timer) != -1) {
2063 list_del(&link->timeout.list);
2064 io_cqring_fill_event(link->ctx, link->user_data,
2066 io_put_req_deferred(link);
2073 static void io_fail_links(struct io_kiocb *req)
2074 __must_hold(&req->ctx->completion_lock)
2076 struct io_kiocb *nxt, *link = req->link;
2080 long res = -ECANCELED;
2082 if (link->flags & REQ_F_FAIL)
2088 trace_io_uring_fail_link(req, link);
2089 io_cqring_fill_event(link->ctx, link->user_data, res, 0);
2090 io_put_req_deferred(link);
2095 static bool io_disarm_next(struct io_kiocb *req)
2096 __must_hold(&req->ctx->completion_lock)
2098 bool posted = false;
2100 if (req->flags & REQ_F_ARM_LTIMEOUT) {
2101 struct io_kiocb *link = req->link;
2103 req->flags &= ~REQ_F_ARM_LTIMEOUT;
2104 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2105 io_remove_next_linked(req);
2106 io_cqring_fill_event(link->ctx, link->user_data,
2108 io_put_req_deferred(link);
2111 } else if (req->flags & REQ_F_LINK_TIMEOUT) {
2112 struct io_ring_ctx *ctx = req->ctx;
2114 spin_lock_irq(&ctx->timeout_lock);
2115 posted = io_kill_linked_timeout(req);
2116 spin_unlock_irq(&ctx->timeout_lock);
2118 if (unlikely((req->flags & REQ_F_FAIL) &&
2119 !(req->flags & REQ_F_HARDLINK))) {
2120 posted |= (req->link != NULL);
2126 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2128 struct io_kiocb *nxt;
2131 * If LINK is set, we have dependent requests in this chain. If we
2132 * didn't fail this request, queue the first one up, moving any other
2133 * dependencies to the next request. In case of failure, fail the rest
2136 if (req->flags & IO_DISARM_MASK) {
2137 struct io_ring_ctx *ctx = req->ctx;
2140 spin_lock(&ctx->completion_lock);
2141 posted = io_disarm_next(req);
2143 io_commit_cqring(req->ctx);
2144 spin_unlock(&ctx->completion_lock);
2146 io_cqring_ev_posted(ctx);
2153 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2155 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2157 return __io_req_find_next(req);
2160 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2165 if (ctx->submit_state.compl_nr)
2166 io_submit_flush_completions(ctx);
2167 mutex_unlock(&ctx->uring_lock);
2170 percpu_ref_put(&ctx->refs);
2173 static void tctx_task_work(struct callback_head *cb)
2175 bool locked = false;
2176 struct io_ring_ctx *ctx = NULL;
2177 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2181 struct io_wq_work_node *node;
2183 if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2184 io_submit_flush_completions(ctx);
2186 spin_lock_irq(&tctx->task_lock);
2187 node = tctx->task_list.first;
2188 INIT_WQ_LIST(&tctx->task_list);
2190 tctx->task_running = false;
2191 spin_unlock_irq(&tctx->task_lock);
2196 struct io_wq_work_node *next = node->next;
2197 struct io_kiocb *req = container_of(node, struct io_kiocb,
2200 if (req->ctx != ctx) {
2201 ctx_flush_and_put(ctx, &locked);
2203 /* if not contended, grab and improve batching */
2204 locked = mutex_trylock(&ctx->uring_lock);
2205 percpu_ref_get(&ctx->refs);
2207 req->io_task_work.func(req, &locked);
2214 ctx_flush_and_put(ctx, &locked);
2216 /* relaxed read is enough as only the task itself sets ->in_idle */
2217 if (unlikely(atomic_read(&tctx->in_idle)))
2218 io_uring_drop_tctx_refs(current);
2221 static void io_req_task_work_add(struct io_kiocb *req)
2223 struct task_struct *tsk = req->task;
2224 struct io_uring_task *tctx = tsk->io_uring;
2225 enum task_work_notify_mode notify;
2226 struct io_wq_work_node *node;
2227 unsigned long flags;
2230 WARN_ON_ONCE(!tctx);
2232 spin_lock_irqsave(&tctx->task_lock, flags);
2233 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2234 running = tctx->task_running;
2236 tctx->task_running = true;
2237 spin_unlock_irqrestore(&tctx->task_lock, flags);
2239 /* task_work already pending, we're done */
2244 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2245 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2246 * processing task_work. There's no reliable way to tell if TWA_RESUME
2249 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2250 if (!task_work_add(tsk, &tctx->task_work, notify)) {
2251 wake_up_process(tsk);
2255 spin_lock_irqsave(&tctx->task_lock, flags);
2256 tctx->task_running = false;
2257 node = tctx->task_list.first;
2258 INIT_WQ_LIST(&tctx->task_list);
2259 spin_unlock_irqrestore(&tctx->task_lock, flags);
2262 req = container_of(node, struct io_kiocb, io_task_work.node);
2264 if (llist_add(&req->io_task_work.fallback_node,
2265 &req->ctx->fallback_llist))
2266 schedule_delayed_work(&req->ctx->fallback_work, 1);
2270 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2272 struct io_ring_ctx *ctx = req->ctx;
2274 /* not needed for normal modes, but SQPOLL depends on it */
2275 io_tw_lock(ctx, locked);
2276 io_req_complete_failed(req, req->result);
2279 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2281 struct io_ring_ctx *ctx = req->ctx;
2283 io_tw_lock(ctx, locked);
2284 /* req->task == current here, checking PF_EXITING is safe */
2285 if (likely(!(req->task->flags & PF_EXITING)))
2286 __io_queue_sqe(req);
2288 io_req_complete_failed(req, -EFAULT);
2291 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2294 req->io_task_work.func = io_req_task_cancel;
2295 io_req_task_work_add(req);
2298 static void io_req_task_queue(struct io_kiocb *req)
2300 req->io_task_work.func = io_req_task_submit;
2301 io_req_task_work_add(req);
2304 static void io_req_task_queue_reissue(struct io_kiocb *req)
2306 req->io_task_work.func = io_queue_async_work;
2307 io_req_task_work_add(req);
2310 static inline void io_queue_next(struct io_kiocb *req)
2312 struct io_kiocb *nxt = io_req_find_next(req);
2315 io_req_task_queue(nxt);
2318 static void io_free_req(struct io_kiocb *req)
2324 static void io_free_req_work(struct io_kiocb *req, bool *locked)
2330 struct task_struct *task;
2335 static inline void io_init_req_batch(struct req_batch *rb)
2342 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2343 struct req_batch *rb)
2346 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2348 io_put_task(rb->task, rb->task_refs);
2351 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2352 struct io_submit_state *state)
2355 io_dismantle_req(req);
2357 if (req->task != rb->task) {
2359 io_put_task(rb->task, rb->task_refs);
2360 rb->task = req->task;
2366 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2367 state->reqs[state->free_reqs++] = req;
2369 list_add(&req->inflight_entry, &state->free_list);
2372 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2373 __must_hold(&ctx->uring_lock)
2375 struct io_submit_state *state = &ctx->submit_state;
2376 int i, nr = state->compl_nr;
2377 struct req_batch rb;
2379 spin_lock(&ctx->completion_lock);
2380 for (i = 0; i < nr; i++) {
2381 struct io_kiocb *req = state->compl_reqs[i];
2383 __io_cqring_fill_event(ctx, req->user_data, req->result,
2386 io_commit_cqring(ctx);
2387 spin_unlock(&ctx->completion_lock);
2388 io_cqring_ev_posted(ctx);
2390 io_init_req_batch(&rb);
2391 for (i = 0; i < nr; i++) {
2392 struct io_kiocb *req = state->compl_reqs[i];
2394 if (req_ref_put_and_test(req))
2395 io_req_free_batch(&rb, req, &ctx->submit_state);
2398 io_req_free_batch_finish(ctx, &rb);
2399 state->compl_nr = 0;
2403 * Drop reference to request, return next in chain (if there is one) if this
2404 * was the last reference to this request.
2406 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2408 struct io_kiocb *nxt = NULL;
2410 if (req_ref_put_and_test(req)) {
2411 nxt = io_req_find_next(req);
2417 static inline void io_put_req(struct io_kiocb *req)
2419 if (req_ref_put_and_test(req))
2423 static inline void io_put_req_deferred(struct io_kiocb *req)
2425 if (req_ref_put_and_test(req)) {
2426 req->io_task_work.func = io_free_req_work;
2427 io_req_task_work_add(req);
2431 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2433 /* See comment at the top of this file */
2435 return __io_cqring_events(ctx);
2438 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2440 struct io_rings *rings = ctx->rings;
2442 /* make sure SQ entry isn't read before tail */
2443 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2446 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2448 unsigned int cflags;
2450 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2451 cflags |= IORING_CQE_F_BUFFER;
2452 req->flags &= ~REQ_F_BUFFER_SELECTED;
2457 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2459 struct io_buffer *kbuf;
2461 if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2463 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2464 return io_put_kbuf(req, kbuf);
2467 static inline bool io_run_task_work(void)
2469 if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2470 __set_current_state(TASK_RUNNING);
2471 tracehook_notify_signal();
2479 * Find and free completed poll iocbs
2481 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2482 struct list_head *done)
2484 struct req_batch rb;
2485 struct io_kiocb *req;
2487 /* order with ->result store in io_complete_rw_iopoll() */
2490 io_init_req_batch(&rb);
2491 while (!list_empty(done)) {
2492 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2493 list_del(&req->inflight_entry);
2495 __io_cqring_fill_event(ctx, req->user_data, req->result,
2496 io_put_rw_kbuf(req));
2499 if (req_ref_put_and_test(req))
2500 io_req_free_batch(&rb, req, &ctx->submit_state);
2503 io_commit_cqring(ctx);
2504 io_cqring_ev_posted_iopoll(ctx);
2505 io_req_free_batch_finish(ctx, &rb);
2508 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2511 struct io_kiocb *req, *tmp;
2516 * Only spin for completions if we don't have multiple devices hanging
2517 * off our complete list, and we're under the requested amount.
2519 spin = !ctx->poll_multi_queue && *nr_events < min;
2521 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2522 struct kiocb *kiocb = &req->rw.kiocb;
2526 * Move completed and retryable entries to our local lists.
2527 * If we find a request that requires polling, break out
2528 * and complete those lists first, if we have entries there.
2530 if (READ_ONCE(req->iopoll_completed)) {
2531 list_move_tail(&req->inflight_entry, &done);
2534 if (!list_empty(&done))
2537 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2538 if (unlikely(ret < 0))
2543 /* iopoll may have completed current req */
2544 if (READ_ONCE(req->iopoll_completed))
2545 list_move_tail(&req->inflight_entry, &done);
2548 if (!list_empty(&done))
2549 io_iopoll_complete(ctx, nr_events, &done);
2555 * We can't just wait for polled events to come to us, we have to actively
2556 * find and complete them.
2558 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2560 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2563 mutex_lock(&ctx->uring_lock);
2564 while (!list_empty(&ctx->iopoll_list)) {
2565 unsigned int nr_events = 0;
2567 io_do_iopoll(ctx, &nr_events, 0);
2569 /* let it sleep and repeat later if can't complete a request */
2573 * Ensure we allow local-to-the-cpu processing to take place,
2574 * in this case we need to ensure that we reap all events.
2575 * Also let task_work, etc. to progress by releasing the mutex
2577 if (need_resched()) {
2578 mutex_unlock(&ctx->uring_lock);
2580 mutex_lock(&ctx->uring_lock);
2583 mutex_unlock(&ctx->uring_lock);
2586 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2588 unsigned int nr_events = 0;
2592 * We disallow the app entering submit/complete with polling, but we
2593 * still need to lock the ring to prevent racing with polled issue
2594 * that got punted to a workqueue.
2596 mutex_lock(&ctx->uring_lock);
2598 * Don't enter poll loop if we already have events pending.
2599 * If we do, we can potentially be spinning for commands that
2600 * already triggered a CQE (eg in error).
2602 if (test_bit(0, &ctx->check_cq_overflow))
2603 __io_cqring_overflow_flush(ctx, false);
2604 if (io_cqring_events(ctx))
2608 * If a submit got punted to a workqueue, we can have the
2609 * application entering polling for a command before it gets
2610 * issued. That app will hold the uring_lock for the duration
2611 * of the poll right here, so we need to take a breather every
2612 * now and then to ensure that the issue has a chance to add
2613 * the poll to the issued list. Otherwise we can spin here
2614 * forever, while the workqueue is stuck trying to acquire the
2617 if (list_empty(&ctx->iopoll_list)) {
2618 u32 tail = ctx->cached_cq_tail;
2620 mutex_unlock(&ctx->uring_lock);
2622 mutex_lock(&ctx->uring_lock);
2624 /* some requests don't go through iopoll_list */
2625 if (tail != ctx->cached_cq_tail ||
2626 list_empty(&ctx->iopoll_list))
2629 ret = io_do_iopoll(ctx, &nr_events, min);
2630 } while (!ret && nr_events < min && !need_resched());
2632 mutex_unlock(&ctx->uring_lock);
2636 static void kiocb_end_write(struct io_kiocb *req)
2639 * Tell lockdep we inherited freeze protection from submission
2642 if (req->flags & REQ_F_ISREG) {
2643 struct super_block *sb = file_inode(req->file)->i_sb;
2645 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2651 static bool io_resubmit_prep(struct io_kiocb *req)
2653 struct io_async_rw *rw = req->async_data;
2656 return !io_req_prep_async(req);
2657 iov_iter_restore(&rw->iter, &rw->iter_state);
2661 static bool io_rw_should_reissue(struct io_kiocb *req)
2663 umode_t mode = file_inode(req->file)->i_mode;
2664 struct io_ring_ctx *ctx = req->ctx;
2666 if (!S_ISBLK(mode) && !S_ISREG(mode))
2668 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2669 !(ctx->flags & IORING_SETUP_IOPOLL)))
2672 * If ref is dying, we might be running poll reap from the exit work.
2673 * Don't attempt to reissue from that path, just let it fail with
2676 if (percpu_ref_is_dying(&ctx->refs))
2679 * Play it safe and assume not safe to re-import and reissue if we're
2680 * not in the original thread group (or in task context).
2682 if (!same_thread_group(req->task, current) || !in_task())
2687 static bool io_resubmit_prep(struct io_kiocb *req)
2691 static bool io_rw_should_reissue(struct io_kiocb *req)
2697 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2699 if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2700 kiocb_end_write(req);
2701 if (res != req->result) {
2702 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2703 io_rw_should_reissue(req)) {
2704 req->flags |= REQ_F_REISSUE;
2713 static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2715 unsigned int cflags = io_put_rw_kbuf(req);
2716 long res = req->result;
2719 struct io_ring_ctx *ctx = req->ctx;
2720 struct io_submit_state *state = &ctx->submit_state;
2722 io_req_complete_state(req, res, cflags);
2723 state->compl_reqs[state->compl_nr++] = req;
2724 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2725 io_submit_flush_completions(ctx);
2727 io_req_complete_post(req, res, cflags);
2731 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2732 unsigned int issue_flags)
2734 if (__io_complete_rw_common(req, res))
2736 __io_req_complete(req, issue_flags, req->result, io_put_rw_kbuf(req));
2739 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2741 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2743 if (__io_complete_rw_common(req, res))
2746 req->io_task_work.func = io_req_task_complete;
2747 io_req_task_work_add(req);
2750 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2752 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2754 if (kiocb->ki_flags & IOCB_WRITE)
2755 kiocb_end_write(req);
2756 if (unlikely(res != req->result)) {
2757 if (res == -EAGAIN && io_rw_should_reissue(req)) {
2758 req->flags |= REQ_F_REISSUE;
2763 WRITE_ONCE(req->result, res);
2764 /* order with io_iopoll_complete() checking ->result */
2766 WRITE_ONCE(req->iopoll_completed, 1);
2770 * After the iocb has been issued, it's safe to be found on the poll list.
2771 * Adding the kiocb to the list AFTER submission ensures that we don't
2772 * find it from a io_do_iopoll() thread before the issuer is done
2773 * accessing the kiocb cookie.
2775 static void io_iopoll_req_issued(struct io_kiocb *req)
2777 struct io_ring_ctx *ctx = req->ctx;
2778 const bool in_async = io_wq_current_is_worker();
2780 /* workqueue context doesn't hold uring_lock, grab it now */
2781 if (unlikely(in_async))
2782 mutex_lock(&ctx->uring_lock);
2785 * Track whether we have multiple files in our lists. This will impact
2786 * how we do polling eventually, not spinning if we're on potentially
2787 * different devices.
2789 if (list_empty(&ctx->iopoll_list)) {
2790 ctx->poll_multi_queue = false;
2791 } else if (!ctx->poll_multi_queue) {
2792 struct io_kiocb *list_req;
2793 unsigned int queue_num0, queue_num1;
2795 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2798 if (list_req->file != req->file) {
2799 ctx->poll_multi_queue = true;
2801 queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2802 queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2803 if (queue_num0 != queue_num1)
2804 ctx->poll_multi_queue = true;
2809 * For fast devices, IO may have already completed. If it has, add
2810 * it to the front so we find it first.
2812 if (READ_ONCE(req->iopoll_completed))
2813 list_add(&req->inflight_entry, &ctx->iopoll_list);
2815 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2817 if (unlikely(in_async)) {
2819 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2820 * in sq thread task context or in io worker task context. If
2821 * current task context is sq thread, we don't need to check
2822 * whether should wake up sq thread.
2824 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2825 wq_has_sleeper(&ctx->sq_data->wait))
2826 wake_up(&ctx->sq_data->wait);
2828 mutex_unlock(&ctx->uring_lock);
2832 static bool io_bdev_nowait(struct block_device *bdev)
2834 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2838 * If we tracked the file through the SCM inflight mechanism, we could support
2839 * any file. For now, just ensure that anything potentially problematic is done
2842 static bool __io_file_supports_nowait(struct file *file, int rw)
2844 umode_t mode = file_inode(file)->i_mode;
2846 if (S_ISBLK(mode)) {
2847 if (IS_ENABLED(CONFIG_BLOCK) &&
2848 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2854 if (S_ISREG(mode)) {
2855 if (IS_ENABLED(CONFIG_BLOCK) &&
2856 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2857 file->f_op != &io_uring_fops)
2862 /* any ->read/write should understand O_NONBLOCK */
2863 if (file->f_flags & O_NONBLOCK)
2866 if (!(file->f_mode & FMODE_NOWAIT))
2870 return file->f_op->read_iter != NULL;
2872 return file->f_op->write_iter != NULL;
2875 static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2877 if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2879 else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2882 return __io_file_supports_nowait(req->file, rw);
2885 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2888 struct io_ring_ctx *ctx = req->ctx;
2889 struct kiocb *kiocb = &req->rw.kiocb;
2890 struct file *file = req->file;
2894 if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2895 req->flags |= REQ_F_ISREG;
2897 kiocb->ki_pos = READ_ONCE(sqe->off);
2898 if (kiocb->ki_pos == -1) {
2899 if (!(file->f_mode & FMODE_STREAM)) {
2900 req->flags |= REQ_F_CUR_POS;
2901 kiocb->ki_pos = file->f_pos;
2906 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2907 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2908 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2913 * If the file is marked O_NONBLOCK, still allow retry for it if it
2914 * supports async. Otherwise it's impossible to use O_NONBLOCK files
2915 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
2917 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2918 ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw)))
2919 req->flags |= REQ_F_NOWAIT;
2921 ioprio = READ_ONCE(sqe->ioprio);
2923 ret = ioprio_check_cap(ioprio);
2927 kiocb->ki_ioprio = ioprio;
2929 kiocb->ki_ioprio = get_current_ioprio();
2931 if (ctx->flags & IORING_SETUP_IOPOLL) {
2932 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2933 !kiocb->ki_filp->f_op->iopoll)
2936 kiocb->ki_flags |= IOCB_HIPRI | IOCB_ALLOC_CACHE;
2937 kiocb->ki_complete = io_complete_rw_iopoll;
2938 req->iopoll_completed = 0;
2940 if (kiocb->ki_flags & IOCB_HIPRI)
2942 kiocb->ki_complete = io_complete_rw;
2945 if (req->opcode == IORING_OP_READ_FIXED ||
2946 req->opcode == IORING_OP_WRITE_FIXED) {
2948 io_req_set_rsrc_node(req);
2951 req->rw.addr = READ_ONCE(sqe->addr);
2952 req->rw.len = READ_ONCE(sqe->len);
2953 req->buf_index = READ_ONCE(sqe->buf_index);
2957 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2963 case -ERESTARTNOINTR:
2964 case -ERESTARTNOHAND:
2965 case -ERESTART_RESTARTBLOCK:
2967 * We can't just restart the syscall, since previously
2968 * submitted sqes may already be in progress. Just fail this
2974 kiocb->ki_complete(kiocb, ret, 0);
2978 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2979 unsigned int issue_flags)
2981 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2982 struct io_async_rw *io = req->async_data;
2984 /* add previously done IO, if any */
2985 if (io && io->bytes_done > 0) {
2987 ret = io->bytes_done;
2989 ret += io->bytes_done;
2992 if (req->flags & REQ_F_CUR_POS)
2993 req->file->f_pos = kiocb->ki_pos;
2994 if (ret >= 0 && (kiocb->ki_complete == io_complete_rw))
2995 __io_complete_rw(req, ret, 0, issue_flags);
2997 io_rw_done(kiocb, ret);
2999 if (req->flags & REQ_F_REISSUE) {
3000 req->flags &= ~REQ_F_REISSUE;
3001 if (io_resubmit_prep(req)) {
3002 io_req_task_queue_reissue(req);
3004 unsigned int cflags = io_put_rw_kbuf(req);
3005 struct io_ring_ctx *ctx = req->ctx;
3008 if (!(issue_flags & IO_URING_F_NONBLOCK)) {
3009 mutex_lock(&ctx->uring_lock);
3010 __io_req_complete(req, issue_flags, ret, cflags);
3011 mutex_unlock(&ctx->uring_lock);
3013 __io_req_complete(req, issue_flags, ret, cflags);
3019 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3020 struct io_mapped_ubuf *imu)
3022 size_t len = req->rw.len;
3023 u64 buf_end, buf_addr = req->rw.addr;
3026 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
3028 /* not inside the mapped region */
3029 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
3033 * May not be a start of buffer, set size appropriately
3034 * and advance us to the beginning.
3036 offset = buf_addr - imu->ubuf;
3037 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3041 * Don't use iov_iter_advance() here, as it's really slow for
3042 * using the latter parts of a big fixed buffer - it iterates
3043 * over each segment manually. We can cheat a bit here, because
3046 * 1) it's a BVEC iter, we set it up
3047 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3048 * first and last bvec
3050 * So just find our index, and adjust the iterator afterwards.
3051 * If the offset is within the first bvec (or the whole first
3052 * bvec, just use iov_iter_advance(). This makes it easier
3053 * since we can just skip the first segment, which may not
3054 * be PAGE_SIZE aligned.
3056 const struct bio_vec *bvec = imu->bvec;
3058 if (offset <= bvec->bv_len) {
3059 iov_iter_advance(iter, offset);
3061 unsigned long seg_skip;
3063 /* skip first vec */
3064 offset -= bvec->bv_len;
3065 seg_skip = 1 + (offset >> PAGE_SHIFT);
3067 iter->bvec = bvec + seg_skip;
3068 iter->nr_segs -= seg_skip;
3069 iter->count -= bvec->bv_len + offset;
3070 iter->iov_offset = offset & ~PAGE_MASK;
3077 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3079 struct io_ring_ctx *ctx = req->ctx;
3080 struct io_mapped_ubuf *imu = req->imu;
3081 u16 index, buf_index = req->buf_index;
3084 if (unlikely(buf_index >= ctx->nr_user_bufs))
3086 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3087 imu = READ_ONCE(ctx->user_bufs[index]);
3090 return __io_import_fixed(req, rw, iter, imu);
3093 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3096 mutex_unlock(&ctx->uring_lock);
3099 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3102 * "Normal" inline submissions always hold the uring_lock, since we
3103 * grab it from the system call. Same is true for the SQPOLL offload.
3104 * The only exception is when we've detached the request and issue it
3105 * from an async worker thread, grab the lock for that case.
3108 mutex_lock(&ctx->uring_lock);
3111 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3112 int bgid, struct io_buffer *kbuf,
3115 struct io_buffer *head;
3117 if (req->flags & REQ_F_BUFFER_SELECTED)
3120 io_ring_submit_lock(req->ctx, needs_lock);
3122 lockdep_assert_held(&req->ctx->uring_lock);
3124 head = xa_load(&req->ctx->io_buffers, bgid);
3126 if (!list_empty(&head->list)) {
3127 kbuf = list_last_entry(&head->list, struct io_buffer,
3129 list_del(&kbuf->list);
3132 xa_erase(&req->ctx->io_buffers, bgid);
3134 if (*len > kbuf->len)
3137 kbuf = ERR_PTR(-ENOBUFS);
3140 io_ring_submit_unlock(req->ctx, needs_lock);
3145 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3148 struct io_buffer *kbuf;
3151 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3152 bgid = req->buf_index;
3153 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3156 req->rw.addr = (u64) (unsigned long) kbuf;
3157 req->flags |= REQ_F_BUFFER_SELECTED;
3158 return u64_to_user_ptr(kbuf->addr);
3161 #ifdef CONFIG_COMPAT
3162 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3165 struct compat_iovec __user *uiov;
3166 compat_ssize_t clen;
3170 uiov = u64_to_user_ptr(req->rw.addr);
3171 if (!access_ok(uiov, sizeof(*uiov)))
3173 if (__get_user(clen, &uiov->iov_len))
3179 buf = io_rw_buffer_select(req, &len, needs_lock);
3181 return PTR_ERR(buf);
3182 iov[0].iov_base = buf;
3183 iov[0].iov_len = (compat_size_t) len;
3188 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3191 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3195 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3198 len = iov[0].iov_len;
3201 buf = io_rw_buffer_select(req, &len, needs_lock);
3203 return PTR_ERR(buf);
3204 iov[0].iov_base = buf;
3205 iov[0].iov_len = len;
3209 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3212 if (req->flags & REQ_F_BUFFER_SELECTED) {
3213 struct io_buffer *kbuf;
3215 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3216 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3217 iov[0].iov_len = kbuf->len;
3220 if (req->rw.len != 1)
3223 #ifdef CONFIG_COMPAT
3224 if (req->ctx->compat)
3225 return io_compat_import(req, iov, needs_lock);
3228 return __io_iov_buffer_select(req, iov, needs_lock);
3231 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3232 struct iov_iter *iter, bool needs_lock)
3234 void __user *buf = u64_to_user_ptr(req->rw.addr);
3235 size_t sqe_len = req->rw.len;
3236 u8 opcode = req->opcode;
3239 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3241 return io_import_fixed(req, rw, iter);
3244 /* buffer index only valid with fixed read/write, or buffer select */
3245 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3248 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3249 if (req->flags & REQ_F_BUFFER_SELECT) {
3250 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3252 return PTR_ERR(buf);
3253 req->rw.len = sqe_len;
3256 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3261 if (req->flags & REQ_F_BUFFER_SELECT) {
3262 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3264 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3269 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3273 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3275 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3279 * For files that don't have ->read_iter() and ->write_iter(), handle them
3280 * by looping over ->read() or ->write() manually.
3282 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3284 struct kiocb *kiocb = &req->rw.kiocb;
3285 struct file *file = req->file;
3289 * Don't support polled IO through this interface, and we can't
3290 * support non-blocking either. For the latter, this just causes
3291 * the kiocb to be handled from an async context.
3293 if (kiocb->ki_flags & IOCB_HIPRI)
3295 if (kiocb->ki_flags & IOCB_NOWAIT)
3298 while (iov_iter_count(iter)) {
3302 if (!iov_iter_is_bvec(iter)) {
3303 iovec = iov_iter_iovec(iter);
3305 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3306 iovec.iov_len = req->rw.len;
3310 nr = file->f_op->read(file, iovec.iov_base,
3311 iovec.iov_len, io_kiocb_ppos(kiocb));
3313 nr = file->f_op->write(file, iovec.iov_base,
3314 iovec.iov_len, io_kiocb_ppos(kiocb));
3322 if (!iov_iter_is_bvec(iter)) {
3323 iov_iter_advance(iter, nr);
3329 if (nr != iovec.iov_len)
3336 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3337 const struct iovec *fast_iov, struct iov_iter *iter)
3339 struct io_async_rw *rw = req->async_data;
3341 memcpy(&rw->iter, iter, sizeof(*iter));
3342 rw->free_iovec = iovec;
3344 /* can only be fixed buffers, no need to do anything */
3345 if (iov_iter_is_bvec(iter))
3348 unsigned iov_off = 0;
3350 rw->iter.iov = rw->fast_iov;
3351 if (iter->iov != fast_iov) {
3352 iov_off = iter->iov - fast_iov;
3353 rw->iter.iov += iov_off;
3355 if (rw->fast_iov != fast_iov)
3356 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3357 sizeof(struct iovec) * iter->nr_segs);
3359 req->flags |= REQ_F_NEED_CLEANUP;
3363 static inline int io_alloc_async_data(struct io_kiocb *req)
3365 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3366 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3367 return req->async_data == NULL;
3370 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3371 const struct iovec *fast_iov,
3372 struct iov_iter *iter, bool force)
3374 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3376 if (!req->async_data) {
3377 struct io_async_rw *iorw;
3379 if (io_alloc_async_data(req)) {
3384 io_req_map_rw(req, iovec, fast_iov, iter);
3385 iorw = req->async_data;
3386 /* we've copied and mapped the iter, ensure state is saved */
3387 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3392 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3394 struct io_async_rw *iorw = req->async_data;
3395 struct iovec *iov = iorw->fast_iov;
3398 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3399 if (unlikely(ret < 0))
3402 iorw->bytes_done = 0;
3403 iorw->free_iovec = iov;
3405 req->flags |= REQ_F_NEED_CLEANUP;
3406 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3410 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3412 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3414 return io_prep_rw(req, sqe, READ);
3418 * This is our waitqueue callback handler, registered through lock_page_async()
3419 * when we initially tried to do the IO with the iocb armed our waitqueue.
3420 * This gets called when the page is unlocked, and we generally expect that to
3421 * happen when the page IO is completed and the page is now uptodate. This will
3422 * queue a task_work based retry of the operation, attempting to copy the data
3423 * again. If the latter fails because the page was NOT uptodate, then we will
3424 * do a thread based blocking retry of the operation. That's the unexpected
3427 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3428 int sync, void *arg)
3430 struct wait_page_queue *wpq;
3431 struct io_kiocb *req = wait->private;
3432 struct wait_page_key *key = arg;
3434 wpq = container_of(wait, struct wait_page_queue, wait);
3436 if (!wake_page_match(wpq, key))
3439 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3440 list_del_init(&wait->entry);
3441 io_req_task_queue(req);
3446 * This controls whether a given IO request should be armed for async page
3447 * based retry. If we return false here, the request is handed to the async
3448 * worker threads for retry. If we're doing buffered reads on a regular file,
3449 * we prepare a private wait_page_queue entry and retry the operation. This
3450 * will either succeed because the page is now uptodate and unlocked, or it
3451 * will register a callback when the page is unlocked at IO completion. Through
3452 * that callback, io_uring uses task_work to setup a retry of the operation.
3453 * That retry will attempt the buffered read again. The retry will generally
3454 * succeed, or in rare cases where it fails, we then fall back to using the
3455 * async worker threads for a blocking retry.
3457 static bool io_rw_should_retry(struct io_kiocb *req)
3459 struct io_async_rw *rw = req->async_data;
3460 struct wait_page_queue *wait = &rw->wpq;
3461 struct kiocb *kiocb = &req->rw.kiocb;
3463 /* never retry for NOWAIT, we just complete with -EAGAIN */
3464 if (req->flags & REQ_F_NOWAIT)
3467 /* Only for buffered IO */
3468 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3472 * just use poll if we can, and don't attempt if the fs doesn't
3473 * support callback based unlocks
3475 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3478 wait->wait.func = io_async_buf_func;
3479 wait->wait.private = req;
3480 wait->wait.flags = 0;
3481 INIT_LIST_HEAD(&wait->wait.entry);
3482 kiocb->ki_flags |= IOCB_WAITQ;
3483 kiocb->ki_flags &= ~IOCB_NOWAIT;
3484 kiocb->ki_waitq = wait;
3488 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3490 if (req->file->f_op->read_iter)
3491 return call_read_iter(req->file, &req->rw.kiocb, iter);
3492 else if (req->file->f_op->read)
3493 return loop_rw_iter(READ, req, iter);
3498 static bool need_read_all(struct io_kiocb *req)
3500 return req->flags & REQ_F_ISREG ||
3501 S_ISBLK(file_inode(req->file)->i_mode);
3504 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3506 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3507 struct kiocb *kiocb = &req->rw.kiocb;
3508 struct iov_iter __iter, *iter = &__iter;
3509 struct io_async_rw *rw = req->async_data;
3510 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3511 struct iov_iter_state __state, *state;
3516 state = &rw->iter_state;
3518 * We come here from an earlier attempt, restore our state to
3519 * match in case it doesn't. It's cheap enough that we don't
3520 * need to make this conditional.
3522 iov_iter_restore(iter, state);
3525 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3529 iov_iter_save_state(iter, state);
3531 req->result = iov_iter_count(iter);
3533 /* Ensure we clear previously set non-block flag */
3534 if (!force_nonblock)
3535 kiocb->ki_flags &= ~IOCB_NOWAIT;
3537 kiocb->ki_flags |= IOCB_NOWAIT;
3539 /* If the file doesn't support async, just async punt */
3540 if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3541 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3542 return ret ?: -EAGAIN;
3545 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), req->result);
3546 if (unlikely(ret)) {
3551 ret = io_iter_do_read(req, iter);
3553 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3554 req->flags &= ~REQ_F_REISSUE;
3555 /* IOPOLL retry should happen for io-wq threads */
3556 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3558 /* no retry on NONBLOCK nor RWF_NOWAIT */
3559 if (req->flags & REQ_F_NOWAIT)
3562 } else if (ret == -EIOCBQUEUED) {
3564 } else if (ret <= 0 || ret == req->result || !force_nonblock ||
3565 (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3566 /* read all, failed, already did sync or don't want to retry */
3571 * Don't depend on the iter state matching what was consumed, or being
3572 * untouched in case of error. Restore it and we'll advance it
3573 * manually if we need to.
3575 iov_iter_restore(iter, state);
3577 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3582 rw = req->async_data;
3584 * Now use our persistent iterator and state, if we aren't already.
3585 * We've restored and mapped the iter to match.
3587 if (iter != &rw->iter) {
3589 state = &rw->iter_state;
3594 * We end up here because of a partial read, either from
3595 * above or inside this loop. Advance the iter by the bytes
3596 * that were consumed.
3598 iov_iter_advance(iter, ret);
3599 if (!iov_iter_count(iter))
3601 rw->bytes_done += ret;
3602 iov_iter_save_state(iter, state);
3604 /* if we can retry, do so with the callbacks armed */
3605 if (!io_rw_should_retry(req)) {
3606 kiocb->ki_flags &= ~IOCB_WAITQ;
3611 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3612 * we get -EIOCBQUEUED, then we'll get a notification when the
3613 * desired page gets unlocked. We can also get a partial read
3614 * here, and if we do, then just retry at the new offset.
3616 ret = io_iter_do_read(req, iter);
3617 if (ret == -EIOCBQUEUED)
3619 /* we got some bytes, but not all. retry. */
3620 kiocb->ki_flags &= ~IOCB_WAITQ;
3621 iov_iter_restore(iter, state);
3624 kiocb_done(kiocb, ret, issue_flags);
3626 /* it's faster to check here then delegate to kfree */
3632 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3634 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3636 return io_prep_rw(req, sqe, WRITE);
3639 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3641 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3642 struct kiocb *kiocb = &req->rw.kiocb;
3643 struct iov_iter __iter, *iter = &__iter;
3644 struct io_async_rw *rw = req->async_data;
3645 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3646 struct iov_iter_state __state, *state;
3651 state = &rw->iter_state;
3652 iov_iter_restore(iter, state);
3655 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3659 iov_iter_save_state(iter, state);
3661 req->result = iov_iter_count(iter);
3663 /* Ensure we clear previously set non-block flag */
3664 if (!force_nonblock)
3665 kiocb->ki_flags &= ~IOCB_NOWAIT;
3667 kiocb->ki_flags |= IOCB_NOWAIT;
3669 /* If the file doesn't support async, just async punt */
3670 if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3673 /* file path doesn't support NOWAIT for non-direct_IO */
3674 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3675 (req->flags & REQ_F_ISREG))
3678 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), req->result);
3683 * Open-code file_start_write here to grab freeze protection,
3684 * which will be released by another thread in
3685 * io_complete_rw(). Fool lockdep by telling it the lock got
3686 * released so that it doesn't complain about the held lock when
3687 * we return to userspace.
3689 if (req->flags & REQ_F_ISREG) {
3690 sb_start_write(file_inode(req->file)->i_sb);
3691 __sb_writers_release(file_inode(req->file)->i_sb,
3694 kiocb->ki_flags |= IOCB_WRITE;
3696 if (req->file->f_op->write_iter)
3697 ret2 = call_write_iter(req->file, kiocb, iter);
3698 else if (req->file->f_op->write)
3699 ret2 = loop_rw_iter(WRITE, req, iter);
3703 if (req->flags & REQ_F_REISSUE) {
3704 req->flags &= ~REQ_F_REISSUE;
3709 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3710 * retry them without IOCB_NOWAIT.
3712 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3714 /* no retry on NONBLOCK nor RWF_NOWAIT */
3715 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3717 if (!force_nonblock || ret2 != -EAGAIN) {
3718 /* IOPOLL retry should happen for io-wq threads */
3719 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3722 kiocb_done(kiocb, ret2, issue_flags);
3725 iov_iter_restore(iter, state);
3726 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3727 return ret ?: -EAGAIN;
3730 /* it's reportedly faster than delegating the null check to kfree() */
3736 static int io_renameat_prep(struct io_kiocb *req,
3737 const struct io_uring_sqe *sqe)
3739 struct io_rename *ren = &req->rename;
3740 const char __user *oldf, *newf;
3742 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3744 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3746 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3749 ren->old_dfd = READ_ONCE(sqe->fd);
3750 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3751 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3752 ren->new_dfd = READ_ONCE(sqe->len);
3753 ren->flags = READ_ONCE(sqe->rename_flags);
3755 ren->oldpath = getname(oldf);
3756 if (IS_ERR(ren->oldpath))
3757 return PTR_ERR(ren->oldpath);
3759 ren->newpath = getname(newf);
3760 if (IS_ERR(ren->newpath)) {
3761 putname(ren->oldpath);
3762 return PTR_ERR(ren->newpath);
3765 req->flags |= REQ_F_NEED_CLEANUP;
3769 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3771 struct io_rename *ren = &req->rename;
3774 if (issue_flags & IO_URING_F_NONBLOCK)
3777 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3778 ren->newpath, ren->flags);
3780 req->flags &= ~REQ_F_NEED_CLEANUP;
3783 io_req_complete(req, ret);
3787 static int io_unlinkat_prep(struct io_kiocb *req,
3788 const struct io_uring_sqe *sqe)
3790 struct io_unlink *un = &req->unlink;
3791 const char __user *fname;
3793 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3795 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3798 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3801 un->dfd = READ_ONCE(sqe->fd);
3803 un->flags = READ_ONCE(sqe->unlink_flags);
3804 if (un->flags & ~AT_REMOVEDIR)
3807 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3808 un->filename = getname(fname);
3809 if (IS_ERR(un->filename))
3810 return PTR_ERR(un->filename);
3812 req->flags |= REQ_F_NEED_CLEANUP;
3816 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3818 struct io_unlink *un = &req->unlink;
3821 if (issue_flags & IO_URING_F_NONBLOCK)
3824 if (un->flags & AT_REMOVEDIR)
3825 ret = do_rmdir(un->dfd, un->filename);
3827 ret = do_unlinkat(un->dfd, un->filename);
3829 req->flags &= ~REQ_F_NEED_CLEANUP;
3832 io_req_complete(req, ret);
3836 static int io_mkdirat_prep(struct io_kiocb *req,
3837 const struct io_uring_sqe *sqe)
3839 struct io_mkdir *mkd = &req->mkdir;
3840 const char __user *fname;
3842 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3844 if (sqe->ioprio || sqe->off || sqe->rw_flags || sqe->buf_index ||
3847 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3850 mkd->dfd = READ_ONCE(sqe->fd);
3851 mkd->mode = READ_ONCE(sqe->len);
3853 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3854 mkd->filename = getname(fname);
3855 if (IS_ERR(mkd->filename))
3856 return PTR_ERR(mkd->filename);
3858 req->flags |= REQ_F_NEED_CLEANUP;
3862 static int io_mkdirat(struct io_kiocb *req, int issue_flags)
3864 struct io_mkdir *mkd = &req->mkdir;
3867 if (issue_flags & IO_URING_F_NONBLOCK)
3870 ret = do_mkdirat(mkd->dfd, mkd->filename, mkd->mode);
3872 req->flags &= ~REQ_F_NEED_CLEANUP;
3875 io_req_complete(req, ret);
3879 static int io_symlinkat_prep(struct io_kiocb *req,
3880 const struct io_uring_sqe *sqe)
3882 struct io_symlink *sl = &req->symlink;
3883 const char __user *oldpath, *newpath;
3885 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3887 if (sqe->ioprio || sqe->len || sqe->rw_flags || sqe->buf_index ||
3890 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3893 sl->new_dfd = READ_ONCE(sqe->fd);
3894 oldpath = u64_to_user_ptr(READ_ONCE(sqe->addr));
3895 newpath = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3897 sl->oldpath = getname(oldpath);
3898 if (IS_ERR(sl->oldpath))
3899 return PTR_ERR(sl->oldpath);
3901 sl->newpath = getname(newpath);
3902 if (IS_ERR(sl->newpath)) {
3903 putname(sl->oldpath);
3904 return PTR_ERR(sl->newpath);
3907 req->flags |= REQ_F_NEED_CLEANUP;
3911 static int io_symlinkat(struct io_kiocb *req, int issue_flags)
3913 struct io_symlink *sl = &req->symlink;
3916 if (issue_flags & IO_URING_F_NONBLOCK)
3919 ret = do_symlinkat(sl->oldpath, sl->new_dfd, sl->newpath);
3921 req->flags &= ~REQ_F_NEED_CLEANUP;
3924 io_req_complete(req, ret);
3928 static int io_linkat_prep(struct io_kiocb *req,
3929 const struct io_uring_sqe *sqe)
3931 struct io_hardlink *lnk = &req->hardlink;
3932 const char __user *oldf, *newf;
3934 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3936 if (sqe->ioprio || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
3938 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3941 lnk->old_dfd = READ_ONCE(sqe->fd);
3942 lnk->new_dfd = READ_ONCE(sqe->len);
3943 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3944 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3945 lnk->flags = READ_ONCE(sqe->hardlink_flags);
3947 lnk->oldpath = getname(oldf);
3948 if (IS_ERR(lnk->oldpath))
3949 return PTR_ERR(lnk->oldpath);
3951 lnk->newpath = getname(newf);
3952 if (IS_ERR(lnk->newpath)) {
3953 putname(lnk->oldpath);
3954 return PTR_ERR(lnk->newpath);
3957 req->flags |= REQ_F_NEED_CLEANUP;
3961 static int io_linkat(struct io_kiocb *req, int issue_flags)
3963 struct io_hardlink *lnk = &req->hardlink;
3966 if (issue_flags & IO_URING_F_NONBLOCK)
3969 ret = do_linkat(lnk->old_dfd, lnk->oldpath, lnk->new_dfd,
3970 lnk->newpath, lnk->flags);
3972 req->flags &= ~REQ_F_NEED_CLEANUP;
3975 io_req_complete(req, ret);
3979 static int io_shutdown_prep(struct io_kiocb *req,
3980 const struct io_uring_sqe *sqe)
3982 #if defined(CONFIG_NET)
3983 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3985 if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3986 sqe->buf_index || sqe->splice_fd_in))
3989 req->shutdown.how = READ_ONCE(sqe->len);
3996 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3998 #if defined(CONFIG_NET)
3999 struct socket *sock;
4002 if (issue_flags & IO_URING_F_NONBLOCK)
4005 sock = sock_from_file(req->file);
4006 if (unlikely(!sock))
4009 ret = __sys_shutdown_sock(sock, req->shutdown.how);
4012 io_req_complete(req, ret);
4019 static int __io_splice_prep(struct io_kiocb *req,
4020 const struct io_uring_sqe *sqe)
4022 struct io_splice *sp = &req->splice;
4023 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
4025 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4029 sp->len = READ_ONCE(sqe->len);
4030 sp->flags = READ_ONCE(sqe->splice_flags);
4032 if (unlikely(sp->flags & ~valid_flags))
4035 sp->file_in = io_file_get(req->ctx, req, READ_ONCE(sqe->splice_fd_in),
4036 (sp->flags & SPLICE_F_FD_IN_FIXED));
4039 req->flags |= REQ_F_NEED_CLEANUP;
4043 static int io_tee_prep(struct io_kiocb *req,
4044 const struct io_uring_sqe *sqe)
4046 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
4048 return __io_splice_prep(req, sqe);
4051 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
4053 struct io_splice *sp = &req->splice;
4054 struct file *in = sp->file_in;
4055 struct file *out = sp->file_out;
4056 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4059 if (issue_flags & IO_URING_F_NONBLOCK)
4062 ret = do_tee(in, out, sp->len, flags);
4064 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4066 req->flags &= ~REQ_F_NEED_CLEANUP;
4070 io_req_complete(req, ret);
4074 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4076 struct io_splice *sp = &req->splice;
4078 sp->off_in = READ_ONCE(sqe->splice_off_in);
4079 sp->off_out = READ_ONCE(sqe->off);
4080 return __io_splice_prep(req, sqe);
4083 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4085 struct io_splice *sp = &req->splice;
4086 struct file *in = sp->file_in;
4087 struct file *out = sp->file_out;
4088 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4089 loff_t *poff_in, *poff_out;
4092 if (issue_flags & IO_URING_F_NONBLOCK)
4095 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4096 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4099 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4101 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4103 req->flags &= ~REQ_F_NEED_CLEANUP;
4107 io_req_complete(req, ret);
4112 * IORING_OP_NOP just posts a completion event, nothing else.
4114 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4116 struct io_ring_ctx *ctx = req->ctx;
4118 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4121 __io_req_complete(req, issue_flags, 0, 0);
4125 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4127 struct io_ring_ctx *ctx = req->ctx;
4132 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4134 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4138 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4139 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4142 req->sync.off = READ_ONCE(sqe->off);
4143 req->sync.len = READ_ONCE(sqe->len);
4147 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4149 loff_t end = req->sync.off + req->sync.len;
4152 /* fsync always requires a blocking context */
4153 if (issue_flags & IO_URING_F_NONBLOCK)
4156 ret = vfs_fsync_range(req->file, req->sync.off,
4157 end > 0 ? end : LLONG_MAX,
4158 req->sync.flags & IORING_FSYNC_DATASYNC);
4161 io_req_complete(req, ret);
4165 static int io_fallocate_prep(struct io_kiocb *req,
4166 const struct io_uring_sqe *sqe)
4168 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4171 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4174 req->sync.off = READ_ONCE(sqe->off);
4175 req->sync.len = READ_ONCE(sqe->addr);
4176 req->sync.mode = READ_ONCE(sqe->len);
4180 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4184 /* fallocate always requiring blocking context */
4185 if (issue_flags & IO_URING_F_NONBLOCK)
4187 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4191 io_req_complete(req, ret);
4195 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4197 const char __user *fname;
4200 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4202 if (unlikely(sqe->ioprio || sqe->buf_index))
4204 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4207 /* open.how should be already initialised */
4208 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4209 req->open.how.flags |= O_LARGEFILE;
4211 req->open.dfd = READ_ONCE(sqe->fd);
4212 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4213 req->open.filename = getname(fname);
4214 if (IS_ERR(req->open.filename)) {
4215 ret = PTR_ERR(req->open.filename);
4216 req->open.filename = NULL;
4220 req->open.file_slot = READ_ONCE(sqe->file_index);
4221 if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4224 req->open.nofile = rlimit(RLIMIT_NOFILE);
4225 req->flags |= REQ_F_NEED_CLEANUP;
4229 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4231 u64 mode = READ_ONCE(sqe->len);
4232 u64 flags = READ_ONCE(sqe->open_flags);
4234 req->open.how = build_open_how(flags, mode);
4235 return __io_openat_prep(req, sqe);
4238 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4240 struct open_how __user *how;
4244 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4245 len = READ_ONCE(sqe->len);
4246 if (len < OPEN_HOW_SIZE_VER0)
4249 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4254 return __io_openat_prep(req, sqe);
4257 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4259 struct open_flags op;
4261 bool resolve_nonblock, nonblock_set;
4262 bool fixed = !!req->open.file_slot;
4265 ret = build_open_flags(&req->open.how, &op);
4268 nonblock_set = op.open_flag & O_NONBLOCK;
4269 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4270 if (issue_flags & IO_URING_F_NONBLOCK) {
4272 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4273 * it'll always -EAGAIN
4275 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4277 op.lookup_flags |= LOOKUP_CACHED;
4278 op.open_flag |= O_NONBLOCK;
4282 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4287 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4290 * We could hang on to this 'fd' on retrying, but seems like
4291 * marginal gain for something that is now known to be a slower
4292 * path. So just put it, and we'll get a new one when we retry.
4297 ret = PTR_ERR(file);
4298 /* only retry if RESOLVE_CACHED wasn't already set by application */
4299 if (ret == -EAGAIN &&
4300 (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4305 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4306 file->f_flags &= ~O_NONBLOCK;
4307 fsnotify_open(file);
4310 fd_install(ret, file);
4312 ret = io_install_fixed_file(req, file, issue_flags,
4313 req->open.file_slot - 1);
4315 putname(req->open.filename);
4316 req->flags &= ~REQ_F_NEED_CLEANUP;
4319 __io_req_complete(req, issue_flags, ret, 0);
4323 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4325 return io_openat2(req, issue_flags);
4328 static int io_remove_buffers_prep(struct io_kiocb *req,
4329 const struct io_uring_sqe *sqe)
4331 struct io_provide_buf *p = &req->pbuf;
4334 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4338 tmp = READ_ONCE(sqe->fd);
4339 if (!tmp || tmp > USHRT_MAX)
4342 memset(p, 0, sizeof(*p));
4344 p->bgid = READ_ONCE(sqe->buf_group);
4348 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4349 int bgid, unsigned nbufs)
4353 /* shouldn't happen */
4357 /* the head kbuf is the list itself */
4358 while (!list_empty(&buf->list)) {
4359 struct io_buffer *nxt;
4361 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4362 list_del(&nxt->list);
4370 xa_erase(&ctx->io_buffers, bgid);
4375 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4377 struct io_provide_buf *p = &req->pbuf;
4378 struct io_ring_ctx *ctx = req->ctx;
4379 struct io_buffer *head;
4381 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4383 io_ring_submit_lock(ctx, !force_nonblock);
4385 lockdep_assert_held(&ctx->uring_lock);
4388 head = xa_load(&ctx->io_buffers, p->bgid);
4390 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4394 /* complete before unlock, IOPOLL may need the lock */
4395 __io_req_complete(req, issue_flags, ret, 0);
4396 io_ring_submit_unlock(ctx, !force_nonblock);
4400 static int io_provide_buffers_prep(struct io_kiocb *req,
4401 const struct io_uring_sqe *sqe)
4403 unsigned long size, tmp_check;
4404 struct io_provide_buf *p = &req->pbuf;
4407 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4410 tmp = READ_ONCE(sqe->fd);
4411 if (!tmp || tmp > USHRT_MAX)
4414 p->addr = READ_ONCE(sqe->addr);
4415 p->len = READ_ONCE(sqe->len);
4417 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4420 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4423 size = (unsigned long)p->len * p->nbufs;
4424 if (!access_ok(u64_to_user_ptr(p->addr), size))
4427 p->bgid = READ_ONCE(sqe->buf_group);
4428 tmp = READ_ONCE(sqe->off);
4429 if (tmp > USHRT_MAX)
4435 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4437 struct io_buffer *buf;
4438 u64 addr = pbuf->addr;
4439 int i, bid = pbuf->bid;
4441 for (i = 0; i < pbuf->nbufs; i++) {
4442 buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT);
4447 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4452 INIT_LIST_HEAD(&buf->list);
4455 list_add_tail(&buf->list, &(*head)->list);
4459 return i ? i : -ENOMEM;
4462 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4464 struct io_provide_buf *p = &req->pbuf;
4465 struct io_ring_ctx *ctx = req->ctx;
4466 struct io_buffer *head, *list;
4468 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4470 io_ring_submit_lock(ctx, !force_nonblock);
4472 lockdep_assert_held(&ctx->uring_lock);
4474 list = head = xa_load(&ctx->io_buffers, p->bgid);
4476 ret = io_add_buffers(p, &head);
4477 if (ret >= 0 && !list) {
4478 ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4480 __io_remove_buffers(ctx, head, p->bgid, -1U);
4484 /* complete before unlock, IOPOLL may need the lock */
4485 __io_req_complete(req, issue_flags, ret, 0);
4486 io_ring_submit_unlock(ctx, !force_nonblock);
4490 static int io_epoll_ctl_prep(struct io_kiocb *req,
4491 const struct io_uring_sqe *sqe)
4493 #if defined(CONFIG_EPOLL)
4494 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4496 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4499 req->epoll.epfd = READ_ONCE(sqe->fd);
4500 req->epoll.op = READ_ONCE(sqe->len);
4501 req->epoll.fd = READ_ONCE(sqe->off);
4503 if (ep_op_has_event(req->epoll.op)) {
4504 struct epoll_event __user *ev;
4506 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4507 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4517 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4519 #if defined(CONFIG_EPOLL)
4520 struct io_epoll *ie = &req->epoll;
4522 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4524 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4525 if (force_nonblock && ret == -EAGAIN)
4530 __io_req_complete(req, issue_flags, ret, 0);
4537 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4539 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4540 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4542 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4545 req->madvise.addr = READ_ONCE(sqe->addr);
4546 req->madvise.len = READ_ONCE(sqe->len);
4547 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4554 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4556 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4557 struct io_madvise *ma = &req->madvise;
4560 if (issue_flags & IO_URING_F_NONBLOCK)
4563 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4566 io_req_complete(req, ret);
4573 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4575 if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4577 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4580 req->fadvise.offset = READ_ONCE(sqe->off);
4581 req->fadvise.len = READ_ONCE(sqe->len);
4582 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4586 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4588 struct io_fadvise *fa = &req->fadvise;
4591 if (issue_flags & IO_URING_F_NONBLOCK) {
4592 switch (fa->advice) {
4593 case POSIX_FADV_NORMAL:
4594 case POSIX_FADV_RANDOM:
4595 case POSIX_FADV_SEQUENTIAL:
4602 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4605 __io_req_complete(req, issue_flags, ret, 0);
4609 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4611 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4613 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4615 if (req->flags & REQ_F_FIXED_FILE)
4618 req->statx.dfd = READ_ONCE(sqe->fd);
4619 req->statx.mask = READ_ONCE(sqe->len);
4620 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4621 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4622 req->statx.flags = READ_ONCE(sqe->statx_flags);
4627 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4629 struct io_statx *ctx = &req->statx;
4632 if (issue_flags & IO_URING_F_NONBLOCK)
4635 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4640 io_req_complete(req, ret);
4644 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4646 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4648 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4649 sqe->rw_flags || sqe->buf_index)
4651 if (req->flags & REQ_F_FIXED_FILE)
4654 req->close.fd = READ_ONCE(sqe->fd);
4655 req->close.file_slot = READ_ONCE(sqe->file_index);
4656 if (req->close.file_slot && req->close.fd)
4662 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4664 struct files_struct *files = current->files;
4665 struct io_close *close = &req->close;
4666 struct fdtable *fdt;
4667 struct file *file = NULL;
4670 if (req->close.file_slot) {
4671 ret = io_close_fixed(req, issue_flags);
4675 spin_lock(&files->file_lock);
4676 fdt = files_fdtable(files);
4677 if (close->fd >= fdt->max_fds) {
4678 spin_unlock(&files->file_lock);
4681 file = fdt->fd[close->fd];
4682 if (!file || file->f_op == &io_uring_fops) {
4683 spin_unlock(&files->file_lock);
4688 /* if the file has a flush method, be safe and punt to async */
4689 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4690 spin_unlock(&files->file_lock);
4694 ret = __close_fd_get_file(close->fd, &file);
4695 spin_unlock(&files->file_lock);
4702 /* No ->flush() or already async, safely close from here */
4703 ret = filp_close(file, current->files);
4709 __io_req_complete(req, issue_flags, ret, 0);
4713 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4715 struct io_ring_ctx *ctx = req->ctx;
4717 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4719 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4723 req->sync.off = READ_ONCE(sqe->off);
4724 req->sync.len = READ_ONCE(sqe->len);
4725 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4729 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4733 /* sync_file_range always requires a blocking context */
4734 if (issue_flags & IO_URING_F_NONBLOCK)
4737 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4741 io_req_complete(req, ret);
4745 #if defined(CONFIG_NET)
4746 static int io_setup_async_msg(struct io_kiocb *req,
4747 struct io_async_msghdr *kmsg)
4749 struct io_async_msghdr *async_msg = req->async_data;
4753 if (io_alloc_async_data(req)) {
4754 kfree(kmsg->free_iov);
4757 async_msg = req->async_data;
4758 req->flags |= REQ_F_NEED_CLEANUP;
4759 memcpy(async_msg, kmsg, sizeof(*kmsg));
4760 async_msg->msg.msg_name = &async_msg->addr;
4761 /* if were using fast_iov, set it to the new one */
4762 if (!async_msg->free_iov)
4763 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4768 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4769 struct io_async_msghdr *iomsg)
4771 iomsg->msg.msg_name = &iomsg->addr;
4772 iomsg->free_iov = iomsg->fast_iov;
4773 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4774 req->sr_msg.msg_flags, &iomsg->free_iov);
4777 static int io_sendmsg_prep_async(struct io_kiocb *req)
4781 ret = io_sendmsg_copy_hdr(req, req->async_data);
4783 req->flags |= REQ_F_NEED_CLEANUP;
4787 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4789 struct io_sr_msg *sr = &req->sr_msg;
4791 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4794 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4795 sr->len = READ_ONCE(sqe->len);
4796 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4797 if (sr->msg_flags & MSG_DONTWAIT)
4798 req->flags |= REQ_F_NOWAIT;
4800 #ifdef CONFIG_COMPAT
4801 if (req->ctx->compat)
4802 sr->msg_flags |= MSG_CMSG_COMPAT;
4807 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4809 struct io_async_msghdr iomsg, *kmsg;
4810 struct socket *sock;
4815 sock = sock_from_file(req->file);
4816 if (unlikely(!sock))
4819 kmsg = req->async_data;
4821 ret = io_sendmsg_copy_hdr(req, &iomsg);
4827 flags = req->sr_msg.msg_flags;
4828 if (issue_flags & IO_URING_F_NONBLOCK)
4829 flags |= MSG_DONTWAIT;
4830 if (flags & MSG_WAITALL)
4831 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4833 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4834 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4835 return io_setup_async_msg(req, kmsg);
4836 if (ret == -ERESTARTSYS)
4839 /* fast path, check for non-NULL to avoid function call */
4841 kfree(kmsg->free_iov);
4842 req->flags &= ~REQ_F_NEED_CLEANUP;
4845 __io_req_complete(req, issue_flags, ret, 0);
4849 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4851 struct io_sr_msg *sr = &req->sr_msg;
4854 struct socket *sock;
4859 sock = sock_from_file(req->file);
4860 if (unlikely(!sock))
4863 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4867 msg.msg_name = NULL;
4868 msg.msg_control = NULL;
4869 msg.msg_controllen = 0;
4870 msg.msg_namelen = 0;
4872 flags = req->sr_msg.msg_flags;
4873 if (issue_flags & IO_URING_F_NONBLOCK)
4874 flags |= MSG_DONTWAIT;
4875 if (flags & MSG_WAITALL)
4876 min_ret = iov_iter_count(&msg.msg_iter);
4878 msg.msg_flags = flags;
4879 ret = sock_sendmsg(sock, &msg);
4880 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4882 if (ret == -ERESTARTSYS)
4887 __io_req_complete(req, issue_flags, ret, 0);
4891 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4892 struct io_async_msghdr *iomsg)
4894 struct io_sr_msg *sr = &req->sr_msg;
4895 struct iovec __user *uiov;
4899 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4900 &iomsg->uaddr, &uiov, &iov_len);
4904 if (req->flags & REQ_F_BUFFER_SELECT) {
4907 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4909 sr->len = iomsg->fast_iov[0].iov_len;
4910 iomsg->free_iov = NULL;
4912 iomsg->free_iov = iomsg->fast_iov;
4913 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4914 &iomsg->free_iov, &iomsg->msg.msg_iter,
4923 #ifdef CONFIG_COMPAT
4924 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4925 struct io_async_msghdr *iomsg)
4927 struct io_sr_msg *sr = &req->sr_msg;
4928 struct compat_iovec __user *uiov;
4933 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4938 uiov = compat_ptr(ptr);
4939 if (req->flags & REQ_F_BUFFER_SELECT) {
4940 compat_ssize_t clen;
4944 if (!access_ok(uiov, sizeof(*uiov)))
4946 if (__get_user(clen, &uiov->iov_len))
4951 iomsg->free_iov = NULL;
4953 iomsg->free_iov = iomsg->fast_iov;
4954 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4955 UIO_FASTIOV, &iomsg->free_iov,
4956 &iomsg->msg.msg_iter, true);
4965 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4966 struct io_async_msghdr *iomsg)
4968 iomsg->msg.msg_name = &iomsg->addr;
4970 #ifdef CONFIG_COMPAT
4971 if (req->ctx->compat)
4972 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4975 return __io_recvmsg_copy_hdr(req, iomsg);
4978 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4981 struct io_sr_msg *sr = &req->sr_msg;
4982 struct io_buffer *kbuf;
4984 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4989 req->flags |= REQ_F_BUFFER_SELECTED;
4993 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4995 return io_put_kbuf(req, req->sr_msg.kbuf);
4998 static int io_recvmsg_prep_async(struct io_kiocb *req)
5002 ret = io_recvmsg_copy_hdr(req, req->async_data);
5004 req->flags |= REQ_F_NEED_CLEANUP;
5008 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5010 struct io_sr_msg *sr = &req->sr_msg;
5012 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5015 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
5016 sr->len = READ_ONCE(sqe->len);
5017 sr->bgid = READ_ONCE(sqe->buf_group);
5018 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
5019 if (sr->msg_flags & MSG_DONTWAIT)
5020 req->flags |= REQ_F_NOWAIT;
5022 #ifdef CONFIG_COMPAT
5023 if (req->ctx->compat)
5024 sr->msg_flags |= MSG_CMSG_COMPAT;
5029 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
5031 struct io_async_msghdr iomsg, *kmsg;
5032 struct socket *sock;
5033 struct io_buffer *kbuf;
5036 int ret, cflags = 0;
5037 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5039 sock = sock_from_file(req->file);
5040 if (unlikely(!sock))
5043 kmsg = req->async_data;
5045 ret = io_recvmsg_copy_hdr(req, &iomsg);
5051 if (req->flags & REQ_F_BUFFER_SELECT) {
5052 kbuf = io_recv_buffer_select(req, !force_nonblock);
5054 return PTR_ERR(kbuf);
5055 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
5056 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
5057 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
5058 1, req->sr_msg.len);
5061 flags = req->sr_msg.msg_flags;
5063 flags |= MSG_DONTWAIT;
5064 if (flags & MSG_WAITALL)
5065 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5067 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
5068 kmsg->uaddr, flags);
5069 if (force_nonblock && ret == -EAGAIN)
5070 return io_setup_async_msg(req, kmsg);
5071 if (ret == -ERESTARTSYS)
5074 if (req->flags & REQ_F_BUFFER_SELECTED)
5075 cflags = io_put_recv_kbuf(req);
5076 /* fast path, check for non-NULL to avoid function call */
5078 kfree(kmsg->free_iov);
5079 req->flags &= ~REQ_F_NEED_CLEANUP;
5080 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5082 __io_req_complete(req, issue_flags, ret, cflags);
5086 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5088 struct io_buffer *kbuf;
5089 struct io_sr_msg *sr = &req->sr_msg;
5091 void __user *buf = sr->buf;
5092 struct socket *sock;
5096 int ret, cflags = 0;
5097 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5099 sock = sock_from_file(req->file);
5100 if (unlikely(!sock))
5103 if (req->flags & REQ_F_BUFFER_SELECT) {
5104 kbuf = io_recv_buffer_select(req, !force_nonblock);
5106 return PTR_ERR(kbuf);
5107 buf = u64_to_user_ptr(kbuf->addr);
5110 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5114 msg.msg_name = NULL;
5115 msg.msg_control = NULL;
5116 msg.msg_controllen = 0;
5117 msg.msg_namelen = 0;
5118 msg.msg_iocb = NULL;
5121 flags = req->sr_msg.msg_flags;
5123 flags |= MSG_DONTWAIT;
5124 if (flags & MSG_WAITALL)
5125 min_ret = iov_iter_count(&msg.msg_iter);
5127 ret = sock_recvmsg(sock, &msg, flags);
5128 if (force_nonblock && ret == -EAGAIN)
5130 if (ret == -ERESTARTSYS)
5133 if (req->flags & REQ_F_BUFFER_SELECTED)
5134 cflags = io_put_recv_kbuf(req);
5135 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5137 __io_req_complete(req, issue_flags, ret, cflags);
5141 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5143 struct io_accept *accept = &req->accept;
5145 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5147 if (sqe->ioprio || sqe->len || sqe->buf_index)
5150 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5151 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5152 accept->flags = READ_ONCE(sqe->accept_flags);
5153 accept->nofile = rlimit(RLIMIT_NOFILE);
5155 accept->file_slot = READ_ONCE(sqe->file_index);
5156 if (accept->file_slot && ((req->open.how.flags & O_CLOEXEC) ||
5157 (accept->flags & SOCK_CLOEXEC)))
5159 if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5161 if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5162 accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5166 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5168 struct io_accept *accept = &req->accept;
5169 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5170 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5171 bool fixed = !!accept->file_slot;
5175 if (req->file->f_flags & O_NONBLOCK)
5176 req->flags |= REQ_F_NOWAIT;
5179 fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5180 if (unlikely(fd < 0))
5183 file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5188 ret = PTR_ERR(file);
5189 if (ret == -EAGAIN && force_nonblock)
5191 if (ret == -ERESTARTSYS)
5194 } else if (!fixed) {
5195 fd_install(fd, file);
5198 ret = io_install_fixed_file(req, file, issue_flags,
5199 accept->file_slot - 1);
5201 __io_req_complete(req, issue_flags, ret, 0);
5205 static int io_connect_prep_async(struct io_kiocb *req)
5207 struct io_async_connect *io = req->async_data;
5208 struct io_connect *conn = &req->connect;
5210 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5213 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5215 struct io_connect *conn = &req->connect;
5217 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5219 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5223 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5224 conn->addr_len = READ_ONCE(sqe->addr2);
5228 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5230 struct io_async_connect __io, *io;
5231 unsigned file_flags;
5233 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5235 if (req->async_data) {
5236 io = req->async_data;
5238 ret = move_addr_to_kernel(req->connect.addr,
5239 req->connect.addr_len,
5246 file_flags = force_nonblock ? O_NONBLOCK : 0;
5248 ret = __sys_connect_file(req->file, &io->address,
5249 req->connect.addr_len, file_flags);
5250 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5251 if (req->async_data)
5253 if (io_alloc_async_data(req)) {
5257 memcpy(req->async_data, &__io, sizeof(__io));
5260 if (ret == -ERESTARTSYS)
5265 __io_req_complete(req, issue_flags, ret, 0);
5268 #else /* !CONFIG_NET */
5269 #define IO_NETOP_FN(op) \
5270 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
5272 return -EOPNOTSUPP; \
5275 #define IO_NETOP_PREP(op) \
5277 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5279 return -EOPNOTSUPP; \
5282 #define IO_NETOP_PREP_ASYNC(op) \
5284 static int io_##op##_prep_async(struct io_kiocb *req) \
5286 return -EOPNOTSUPP; \
5289 IO_NETOP_PREP_ASYNC(sendmsg);
5290 IO_NETOP_PREP_ASYNC(recvmsg);
5291 IO_NETOP_PREP_ASYNC(connect);
5292 IO_NETOP_PREP(accept);
5295 #endif /* CONFIG_NET */
5297 struct io_poll_table {
5298 struct poll_table_struct pt;
5299 struct io_kiocb *req;
5304 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5305 __poll_t mask, io_req_tw_func_t func)
5307 /* for instances that support it check for an event match first: */
5308 if (mask && !(mask & poll->events))
5311 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5313 list_del_init(&poll->wait.entry);
5316 req->io_task_work.func = func;
5319 * If this fails, then the task is exiting. When a task exits, the
5320 * work gets canceled, so just cancel this request as well instead
5321 * of executing it. We can't safely execute it anyway, as we may not
5322 * have the needed state needed for it anyway.
5324 io_req_task_work_add(req);
5328 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5329 __acquires(&req->ctx->completion_lock)
5331 struct io_ring_ctx *ctx = req->ctx;
5333 /* req->task == current here, checking PF_EXITING is safe */
5334 if (unlikely(req->task->flags & PF_EXITING))
5335 WRITE_ONCE(poll->canceled, true);
5337 if (!req->result && !READ_ONCE(poll->canceled)) {
5338 struct poll_table_struct pt = { ._key = poll->events };
5340 req->result = vfs_poll(req->file, &pt) & poll->events;
5343 spin_lock(&ctx->completion_lock);
5344 if (!req->result && !READ_ONCE(poll->canceled)) {
5345 add_wait_queue(poll->head, &poll->wait);
5352 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5354 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5355 if (req->opcode == IORING_OP_POLL_ADD)
5356 return req->async_data;
5357 return req->apoll->double_poll;
5360 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5362 if (req->opcode == IORING_OP_POLL_ADD)
5364 return &req->apoll->poll;
5367 static void io_poll_remove_double(struct io_kiocb *req)
5368 __must_hold(&req->ctx->completion_lock)
5370 struct io_poll_iocb *poll = io_poll_get_double(req);
5372 lockdep_assert_held(&req->ctx->completion_lock);
5374 if (poll && poll->head) {
5375 struct wait_queue_head *head = poll->head;
5377 spin_lock_irq(&head->lock);
5378 list_del_init(&poll->wait.entry);
5379 if (poll->wait.private)
5382 spin_unlock_irq(&head->lock);
5386 static bool __io_poll_complete(struct io_kiocb *req, __poll_t mask)
5387 __must_hold(&req->ctx->completion_lock)
5389 struct io_ring_ctx *ctx = req->ctx;
5390 unsigned flags = IORING_CQE_F_MORE;
5393 if (READ_ONCE(req->poll.canceled)) {
5395 req->poll.events |= EPOLLONESHOT;
5397 error = mangle_poll(mask);
5399 if (req->poll.events & EPOLLONESHOT)
5401 if (!io_cqring_fill_event(ctx, req->user_data, error, flags)) {
5402 req->poll.events |= EPOLLONESHOT;
5405 if (flags & IORING_CQE_F_MORE)
5408 return !(flags & IORING_CQE_F_MORE);
5411 static inline bool io_poll_complete(struct io_kiocb *req, __poll_t mask)
5412 __must_hold(&req->ctx->completion_lock)
5416 done = __io_poll_complete(req, mask);
5417 io_commit_cqring(req->ctx);
5421 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5423 struct io_ring_ctx *ctx = req->ctx;
5424 struct io_kiocb *nxt;
5426 if (io_poll_rewait(req, &req->poll)) {
5427 spin_unlock(&ctx->completion_lock);
5431 if (req->poll.done) {
5432 spin_unlock(&ctx->completion_lock);
5435 done = __io_poll_complete(req, req->result);
5437 io_poll_remove_double(req);
5438 hash_del(&req->hash_node);
5439 req->poll.done = true;
5442 add_wait_queue(req->poll.head, &req->poll.wait);
5444 io_commit_cqring(ctx);
5445 spin_unlock(&ctx->completion_lock);
5446 io_cqring_ev_posted(ctx);
5449 nxt = io_put_req_find_next(req);
5451 io_req_task_submit(nxt, locked);
5456 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5457 int sync, void *key)
5459 struct io_kiocb *req = wait->private;
5460 struct io_poll_iocb *poll = io_poll_get_single(req);
5461 __poll_t mask = key_to_poll(key);
5462 unsigned long flags;
5464 /* for instances that support it check for an event match first: */
5465 if (mask && !(mask & poll->events))
5467 if (!(poll->events & EPOLLONESHOT))
5468 return poll->wait.func(&poll->wait, mode, sync, key);
5470 list_del_init(&wait->entry);
5475 spin_lock_irqsave(&poll->head->lock, flags);
5476 done = list_empty(&poll->wait.entry);
5478 list_del_init(&poll->wait.entry);
5479 /* make sure double remove sees this as being gone */
5480 wait->private = NULL;
5481 spin_unlock_irqrestore(&poll->head->lock, flags);
5483 /* use wait func handler, so it matches the rq type */
5484 poll->wait.func(&poll->wait, mode, sync, key);
5491 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5492 wait_queue_func_t wake_func)
5496 poll->canceled = false;
5497 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5498 /* mask in events that we always want/need */
5499 poll->events = events | IO_POLL_UNMASK;
5500 INIT_LIST_HEAD(&poll->wait.entry);
5501 init_waitqueue_func_entry(&poll->wait, wake_func);
5504 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5505 struct wait_queue_head *head,
5506 struct io_poll_iocb **poll_ptr)
5508 struct io_kiocb *req = pt->req;
5511 * The file being polled uses multiple waitqueues for poll handling
5512 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5515 if (unlikely(pt->nr_entries)) {
5516 struct io_poll_iocb *poll_one = poll;
5518 /* double add on the same waitqueue head, ignore */
5519 if (poll_one->head == head)
5521 /* already have a 2nd entry, fail a third attempt */
5523 if ((*poll_ptr)->head == head)
5525 pt->error = -EINVAL;
5529 * Can't handle multishot for double wait for now, turn it
5530 * into one-shot mode.
5532 if (!(poll_one->events & EPOLLONESHOT))
5533 poll_one->events |= EPOLLONESHOT;
5534 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5536 pt->error = -ENOMEM;
5539 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5541 poll->wait.private = req;
5548 if (poll->events & EPOLLEXCLUSIVE)
5549 add_wait_queue_exclusive(head, &poll->wait);
5551 add_wait_queue(head, &poll->wait);
5554 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5555 struct poll_table_struct *p)
5557 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5558 struct async_poll *apoll = pt->req->apoll;
5560 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5563 static void io_async_task_func(struct io_kiocb *req, bool *locked)
5565 struct async_poll *apoll = req->apoll;
5566 struct io_ring_ctx *ctx = req->ctx;
5568 trace_io_uring_task_run(req->ctx, req, req->opcode, req->user_data);
5570 if (io_poll_rewait(req, &apoll->poll)) {
5571 spin_unlock(&ctx->completion_lock);
5575 hash_del(&req->hash_node);
5576 io_poll_remove_double(req);
5577 apoll->poll.done = true;
5578 spin_unlock(&ctx->completion_lock);
5580 if (!READ_ONCE(apoll->poll.canceled))
5581 io_req_task_submit(req, locked);
5583 io_req_complete_failed(req, -ECANCELED);
5586 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5589 struct io_kiocb *req = wait->private;
5590 struct io_poll_iocb *poll = &req->apoll->poll;
5592 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5595 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5598 static void io_poll_req_insert(struct io_kiocb *req)
5600 struct io_ring_ctx *ctx = req->ctx;
5601 struct hlist_head *list;
5603 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5604 hlist_add_head(&req->hash_node, list);
5607 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5608 struct io_poll_iocb *poll,
5609 struct io_poll_table *ipt, __poll_t mask,
5610 wait_queue_func_t wake_func)
5611 __acquires(&ctx->completion_lock)
5613 struct io_ring_ctx *ctx = req->ctx;
5614 bool cancel = false;
5616 INIT_HLIST_NODE(&req->hash_node);
5617 io_init_poll_iocb(poll, mask, wake_func);
5618 poll->file = req->file;
5619 poll->wait.private = req;
5621 ipt->pt._key = mask;
5624 ipt->nr_entries = 0;
5626 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5627 if (unlikely(!ipt->nr_entries) && !ipt->error)
5628 ipt->error = -EINVAL;
5630 spin_lock(&ctx->completion_lock);
5631 if (ipt->error || (mask && (poll->events & EPOLLONESHOT)))
5632 io_poll_remove_double(req);
5633 if (likely(poll->head)) {
5634 spin_lock_irq(&poll->head->lock);
5635 if (unlikely(list_empty(&poll->wait.entry))) {
5641 if ((mask && (poll->events & EPOLLONESHOT)) || ipt->error)
5642 list_del_init(&poll->wait.entry);
5644 WRITE_ONCE(poll->canceled, true);
5645 else if (!poll->done) /* actually waiting for an event */
5646 io_poll_req_insert(req);
5647 spin_unlock_irq(&poll->head->lock);
5659 static int io_arm_poll_handler(struct io_kiocb *req)
5661 const struct io_op_def *def = &io_op_defs[req->opcode];
5662 struct io_ring_ctx *ctx = req->ctx;
5663 struct async_poll *apoll;
5664 struct io_poll_table ipt;
5665 __poll_t ret, mask = EPOLLONESHOT | POLLERR | POLLPRI;
5668 if (!req->file || !file_can_poll(req->file))
5669 return IO_APOLL_ABORTED;
5670 if (req->flags & REQ_F_POLLED)
5671 return IO_APOLL_ABORTED;
5672 if (!def->pollin && !def->pollout)
5673 return IO_APOLL_ABORTED;
5677 mask |= POLLIN | POLLRDNORM;
5679 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5680 if ((req->opcode == IORING_OP_RECVMSG) &&
5681 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5685 mask |= POLLOUT | POLLWRNORM;
5688 /* if we can't nonblock try, then no point in arming a poll handler */
5689 if (!io_file_supports_nowait(req, rw))
5690 return IO_APOLL_ABORTED;
5692 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5693 if (unlikely(!apoll))
5694 return IO_APOLL_ABORTED;
5695 apoll->double_poll = NULL;
5697 req->flags |= REQ_F_POLLED;
5698 ipt.pt._qproc = io_async_queue_proc;
5699 io_req_set_refcount(req);
5701 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5703 spin_unlock(&ctx->completion_lock);
5704 if (ret || ipt.error)
5705 return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5707 trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5708 mask, apoll->poll.events);
5712 static bool __io_poll_remove_one(struct io_kiocb *req,
5713 struct io_poll_iocb *poll, bool do_cancel)
5714 __must_hold(&req->ctx->completion_lock)
5716 bool do_complete = false;
5720 spin_lock_irq(&poll->head->lock);
5722 WRITE_ONCE(poll->canceled, true);
5723 if (!list_empty(&poll->wait.entry)) {
5724 list_del_init(&poll->wait.entry);
5727 spin_unlock_irq(&poll->head->lock);
5728 hash_del(&req->hash_node);
5732 static bool io_poll_remove_one(struct io_kiocb *req)
5733 __must_hold(&req->ctx->completion_lock)
5737 io_poll_remove_double(req);
5738 do_complete = __io_poll_remove_one(req, io_poll_get_single(req), true);
5741 io_cqring_fill_event(req->ctx, req->user_data, -ECANCELED, 0);
5742 io_commit_cqring(req->ctx);
5744 io_put_req_deferred(req);
5750 * Returns true if we found and killed one or more poll requests
5752 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5755 struct hlist_node *tmp;
5756 struct io_kiocb *req;
5759 spin_lock(&ctx->completion_lock);
5760 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5761 struct hlist_head *list;
5763 list = &ctx->cancel_hash[i];
5764 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5765 if (io_match_task_safe(req, tsk, cancel_all))
5766 posted += io_poll_remove_one(req);
5769 spin_unlock(&ctx->completion_lock);
5772 io_cqring_ev_posted(ctx);
5777 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5779 __must_hold(&ctx->completion_lock)
5781 struct hlist_head *list;
5782 struct io_kiocb *req;
5784 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5785 hlist_for_each_entry(req, list, hash_node) {
5786 if (sqe_addr != req->user_data)
5788 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5795 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5797 __must_hold(&ctx->completion_lock)
5799 struct io_kiocb *req;
5801 req = io_poll_find(ctx, sqe_addr, poll_only);
5804 if (io_poll_remove_one(req))
5810 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5815 events = READ_ONCE(sqe->poll32_events);
5817 events = swahw32(events);
5819 if (!(flags & IORING_POLL_ADD_MULTI))
5820 events |= EPOLLONESHOT;
5821 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5824 static int io_poll_update_prep(struct io_kiocb *req,
5825 const struct io_uring_sqe *sqe)
5827 struct io_poll_update *upd = &req->poll_update;
5830 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5832 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5834 flags = READ_ONCE(sqe->len);
5835 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5836 IORING_POLL_ADD_MULTI))
5838 /* meaningless without update */
5839 if (flags == IORING_POLL_ADD_MULTI)
5842 upd->old_user_data = READ_ONCE(sqe->addr);
5843 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5844 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5846 upd->new_user_data = READ_ONCE(sqe->off);
5847 if (!upd->update_user_data && upd->new_user_data)
5849 if (upd->update_events)
5850 upd->events = io_poll_parse_events(sqe, flags);
5851 else if (sqe->poll32_events)
5857 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5860 struct io_kiocb *req = wait->private;
5861 struct io_poll_iocb *poll = &req->poll;
5863 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5866 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5867 struct poll_table_struct *p)
5869 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5871 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5874 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5876 struct io_poll_iocb *poll = &req->poll;
5879 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5881 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5883 flags = READ_ONCE(sqe->len);
5884 if (flags & ~IORING_POLL_ADD_MULTI)
5887 io_req_set_refcount(req);
5888 poll->events = io_poll_parse_events(sqe, flags);
5892 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5894 struct io_poll_iocb *poll = &req->poll;
5895 struct io_ring_ctx *ctx = req->ctx;
5896 struct io_poll_table ipt;
5900 ipt.pt._qproc = io_poll_queue_proc;
5902 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5905 if (mask) { /* no async, we'd stolen it */
5907 done = io_poll_complete(req, mask);
5909 spin_unlock(&ctx->completion_lock);
5912 io_cqring_ev_posted(ctx);
5919 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5921 struct io_ring_ctx *ctx = req->ctx;
5922 struct io_kiocb *preq;
5926 spin_lock(&ctx->completion_lock);
5927 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5933 if (!req->poll_update.update_events && !req->poll_update.update_user_data) {
5935 ret = io_poll_remove_one(preq) ? 0 : -EALREADY;
5940 * Don't allow racy completion with singleshot, as we cannot safely
5941 * update those. For multishot, if we're racing with completion, just
5942 * let completion re-add it.
5944 io_poll_remove_double(preq);
5945 completing = !__io_poll_remove_one(preq, &preq->poll, false);
5946 if (completing && (preq->poll.events & EPOLLONESHOT)) {
5950 /* we now have a detached poll request. reissue. */
5954 spin_unlock(&ctx->completion_lock);
5956 io_req_complete(req, ret);
5959 /* only mask one event flags, keep behavior flags */
5960 if (req->poll_update.update_events) {
5961 preq->poll.events &= ~0xffff;
5962 preq->poll.events |= req->poll_update.events & 0xffff;
5963 preq->poll.events |= IO_POLL_UNMASK;
5965 if (req->poll_update.update_user_data)
5966 preq->user_data = req->poll_update.new_user_data;
5967 spin_unlock(&ctx->completion_lock);
5969 /* complete update request, we're done with it */
5970 io_req_complete(req, ret);
5973 ret = io_poll_add(preq, issue_flags);
5976 io_req_complete(preq, ret);
5982 static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
5985 io_req_complete_post(req, -ETIME, 0);
5988 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5990 struct io_timeout_data *data = container_of(timer,
5991 struct io_timeout_data, timer);
5992 struct io_kiocb *req = data->req;
5993 struct io_ring_ctx *ctx = req->ctx;
5994 unsigned long flags;
5996 spin_lock_irqsave(&ctx->timeout_lock, flags);
5997 list_del_init(&req->timeout.list);
5998 atomic_set(&req->ctx->cq_timeouts,
5999 atomic_read(&req->ctx->cq_timeouts) + 1);
6000 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6002 req->io_task_work.func = io_req_task_timeout;
6003 io_req_task_work_add(req);
6004 return HRTIMER_NORESTART;
6007 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
6009 __must_hold(&ctx->timeout_lock)
6011 struct io_timeout_data *io;
6012 struct io_kiocb *req;
6015 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
6016 found = user_data == req->user_data;
6021 return ERR_PTR(-ENOENT);
6023 io = req->async_data;
6024 if (hrtimer_try_to_cancel(&io->timer) == -1)
6025 return ERR_PTR(-EALREADY);
6026 list_del_init(&req->timeout.list);
6030 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
6031 __must_hold(&ctx->completion_lock)
6032 __must_hold(&ctx->timeout_lock)
6034 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6037 return PTR_ERR(req);
6040 io_cqring_fill_event(ctx, req->user_data, -ECANCELED, 0);
6041 io_put_req_deferred(req);
6045 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
6047 switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
6048 case IORING_TIMEOUT_BOOTTIME:
6049 return CLOCK_BOOTTIME;
6050 case IORING_TIMEOUT_REALTIME:
6051 return CLOCK_REALTIME;
6053 /* can't happen, vetted at prep time */
6057 return CLOCK_MONOTONIC;
6061 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6062 struct timespec64 *ts, enum hrtimer_mode mode)
6063 __must_hold(&ctx->timeout_lock)
6065 struct io_timeout_data *io;
6066 struct io_kiocb *req;
6069 list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
6070 found = user_data == req->user_data;
6077 io = req->async_data;
6078 if (hrtimer_try_to_cancel(&io->timer) == -1)
6080 hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
6081 io->timer.function = io_link_timeout_fn;
6082 hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
6086 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6087 struct timespec64 *ts, enum hrtimer_mode mode)
6088 __must_hold(&ctx->timeout_lock)
6090 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6091 struct io_timeout_data *data;
6094 return PTR_ERR(req);
6096 req->timeout.off = 0; /* noseq */
6097 data = req->async_data;
6098 list_add_tail(&req->timeout.list, &ctx->timeout_list);
6099 hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
6100 data->timer.function = io_timeout_fn;
6101 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
6105 static int io_timeout_remove_prep(struct io_kiocb *req,
6106 const struct io_uring_sqe *sqe)
6108 struct io_timeout_rem *tr = &req->timeout_rem;
6110 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6112 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6114 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6117 tr->ltimeout = false;
6118 tr->addr = READ_ONCE(sqe->addr);
6119 tr->flags = READ_ONCE(sqe->timeout_flags);
6120 if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6121 if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6123 if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6124 tr->ltimeout = true;
6125 if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6127 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6129 } else if (tr->flags) {
6130 /* timeout removal doesn't support flags */
6137 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6139 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6144 * Remove or update an existing timeout command
6146 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6148 struct io_timeout_rem *tr = &req->timeout_rem;
6149 struct io_ring_ctx *ctx = req->ctx;
6152 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6153 spin_lock(&ctx->completion_lock);
6154 spin_lock_irq(&ctx->timeout_lock);
6155 ret = io_timeout_cancel(ctx, tr->addr);
6156 spin_unlock_irq(&ctx->timeout_lock);
6157 spin_unlock(&ctx->completion_lock);
6159 enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6161 spin_lock_irq(&ctx->timeout_lock);
6163 ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6165 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6166 spin_unlock_irq(&ctx->timeout_lock);
6171 io_req_complete_post(req, ret, 0);
6175 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6176 bool is_timeout_link)
6178 struct io_timeout_data *data;
6180 u32 off = READ_ONCE(sqe->off);
6182 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6184 if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6187 if (off && is_timeout_link)
6189 flags = READ_ONCE(sqe->timeout_flags);
6190 if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6192 /* more than one clock specified is invalid, obviously */
6193 if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6196 INIT_LIST_HEAD(&req->timeout.list);
6197 req->timeout.off = off;
6198 if (unlikely(off && !req->ctx->off_timeout_used))
6199 req->ctx->off_timeout_used = true;
6201 if (!req->async_data && io_alloc_async_data(req))
6204 data = req->async_data;
6206 data->flags = flags;
6208 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6211 data->mode = io_translate_timeout_mode(flags);
6212 hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6214 if (is_timeout_link) {
6215 struct io_submit_link *link = &req->ctx->submit_state.link;
6219 if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6221 req->timeout.head = link->last;
6222 link->last->flags |= REQ_F_ARM_LTIMEOUT;
6227 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6229 struct io_ring_ctx *ctx = req->ctx;
6230 struct io_timeout_data *data = req->async_data;
6231 struct list_head *entry;
6232 u32 tail, off = req->timeout.off;
6234 spin_lock_irq(&ctx->timeout_lock);
6237 * sqe->off holds how many events that need to occur for this
6238 * timeout event to be satisfied. If it isn't set, then this is
6239 * a pure timeout request, sequence isn't used.
6241 if (io_is_timeout_noseq(req)) {
6242 entry = ctx->timeout_list.prev;
6246 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6247 req->timeout.target_seq = tail + off;
6249 /* Update the last seq here in case io_flush_timeouts() hasn't.
6250 * This is safe because ->completion_lock is held, and submissions
6251 * and completions are never mixed in the same ->completion_lock section.
6253 ctx->cq_last_tm_flush = tail;
6256 * Insertion sort, ensuring the first entry in the list is always
6257 * the one we need first.
6259 list_for_each_prev(entry, &ctx->timeout_list) {
6260 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6263 if (io_is_timeout_noseq(nxt))
6265 /* nxt.seq is behind @tail, otherwise would've been completed */
6266 if (off >= nxt->timeout.target_seq - tail)
6270 list_add(&req->timeout.list, entry);
6271 data->timer.function = io_timeout_fn;
6272 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6273 spin_unlock_irq(&ctx->timeout_lock);
6277 struct io_cancel_data {
6278 struct io_ring_ctx *ctx;
6282 static bool io_cancel_cb(struct io_wq_work *work, void *data)
6284 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6285 struct io_cancel_data *cd = data;
6287 return req->ctx == cd->ctx && req->user_data == cd->user_data;
6290 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6291 struct io_ring_ctx *ctx)
6293 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6294 enum io_wq_cancel cancel_ret;
6297 if (!tctx || !tctx->io_wq)
6300 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6301 switch (cancel_ret) {
6302 case IO_WQ_CANCEL_OK:
6305 case IO_WQ_CANCEL_RUNNING:
6308 case IO_WQ_CANCEL_NOTFOUND:
6316 static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6318 struct io_ring_ctx *ctx = req->ctx;
6321 WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6323 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6327 spin_lock(&ctx->completion_lock);
6328 spin_lock_irq(&ctx->timeout_lock);
6329 ret = io_timeout_cancel(ctx, sqe_addr);
6330 spin_unlock_irq(&ctx->timeout_lock);
6333 ret = io_poll_cancel(ctx, sqe_addr, false);
6335 spin_unlock(&ctx->completion_lock);
6339 static int io_async_cancel_prep(struct io_kiocb *req,
6340 const struct io_uring_sqe *sqe)
6342 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6344 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6346 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6350 req->cancel.addr = READ_ONCE(sqe->addr);
6354 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6356 struct io_ring_ctx *ctx = req->ctx;
6357 u64 sqe_addr = req->cancel.addr;
6358 struct io_tctx_node *node;
6361 ret = io_try_cancel_userdata(req, sqe_addr);
6365 /* slow path, try all io-wq's */
6366 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6368 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6369 struct io_uring_task *tctx = node->task->io_uring;
6371 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6375 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6379 io_req_complete_post(req, ret, 0);
6383 static int io_rsrc_update_prep(struct io_kiocb *req,
6384 const struct io_uring_sqe *sqe)
6386 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6388 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6391 req->rsrc_update.offset = READ_ONCE(sqe->off);
6392 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6393 if (!req->rsrc_update.nr_args)
6395 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6399 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6401 struct io_ring_ctx *ctx = req->ctx;
6402 struct io_uring_rsrc_update2 up;
6405 up.offset = req->rsrc_update.offset;
6406 up.data = req->rsrc_update.arg;
6411 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6412 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6413 &up, req->rsrc_update.nr_args);
6414 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6418 __io_req_complete(req, issue_flags, ret, 0);
6422 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6424 switch (req->opcode) {
6427 case IORING_OP_READV:
6428 case IORING_OP_READ_FIXED:
6429 case IORING_OP_READ:
6430 return io_read_prep(req, sqe);
6431 case IORING_OP_WRITEV:
6432 case IORING_OP_WRITE_FIXED:
6433 case IORING_OP_WRITE:
6434 return io_write_prep(req, sqe);
6435 case IORING_OP_POLL_ADD:
6436 return io_poll_add_prep(req, sqe);
6437 case IORING_OP_POLL_REMOVE:
6438 return io_poll_update_prep(req, sqe);
6439 case IORING_OP_FSYNC:
6440 return io_fsync_prep(req, sqe);
6441 case IORING_OP_SYNC_FILE_RANGE:
6442 return io_sfr_prep(req, sqe);
6443 case IORING_OP_SENDMSG:
6444 case IORING_OP_SEND:
6445 return io_sendmsg_prep(req, sqe);
6446 case IORING_OP_RECVMSG:
6447 case IORING_OP_RECV:
6448 return io_recvmsg_prep(req, sqe);
6449 case IORING_OP_CONNECT:
6450 return io_connect_prep(req, sqe);
6451 case IORING_OP_TIMEOUT:
6452 return io_timeout_prep(req, sqe, false);
6453 case IORING_OP_TIMEOUT_REMOVE:
6454 return io_timeout_remove_prep(req, sqe);
6455 case IORING_OP_ASYNC_CANCEL:
6456 return io_async_cancel_prep(req, sqe);
6457 case IORING_OP_LINK_TIMEOUT:
6458 return io_timeout_prep(req, sqe, true);
6459 case IORING_OP_ACCEPT:
6460 return io_accept_prep(req, sqe);
6461 case IORING_OP_FALLOCATE:
6462 return io_fallocate_prep(req, sqe);
6463 case IORING_OP_OPENAT:
6464 return io_openat_prep(req, sqe);
6465 case IORING_OP_CLOSE:
6466 return io_close_prep(req, sqe);
6467 case IORING_OP_FILES_UPDATE:
6468 return io_rsrc_update_prep(req, sqe);
6469 case IORING_OP_STATX:
6470 return io_statx_prep(req, sqe);
6471 case IORING_OP_FADVISE:
6472 return io_fadvise_prep(req, sqe);
6473 case IORING_OP_MADVISE:
6474 return io_madvise_prep(req, sqe);
6475 case IORING_OP_OPENAT2:
6476 return io_openat2_prep(req, sqe);
6477 case IORING_OP_EPOLL_CTL:
6478 return io_epoll_ctl_prep(req, sqe);
6479 case IORING_OP_SPLICE:
6480 return io_splice_prep(req, sqe);
6481 case IORING_OP_PROVIDE_BUFFERS:
6482 return io_provide_buffers_prep(req, sqe);
6483 case IORING_OP_REMOVE_BUFFERS:
6484 return io_remove_buffers_prep(req, sqe);
6486 return io_tee_prep(req, sqe);
6487 case IORING_OP_SHUTDOWN:
6488 return io_shutdown_prep(req, sqe);
6489 case IORING_OP_RENAMEAT:
6490 return io_renameat_prep(req, sqe);
6491 case IORING_OP_UNLINKAT:
6492 return io_unlinkat_prep(req, sqe);
6493 case IORING_OP_MKDIRAT:
6494 return io_mkdirat_prep(req, sqe);
6495 case IORING_OP_SYMLINKAT:
6496 return io_symlinkat_prep(req, sqe);
6497 case IORING_OP_LINKAT:
6498 return io_linkat_prep(req, sqe);
6501 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6506 static int io_req_prep_async(struct io_kiocb *req)
6508 if (!io_op_defs[req->opcode].needs_async_setup)
6510 if (WARN_ON_ONCE(req->async_data))
6512 if (io_alloc_async_data(req))
6515 switch (req->opcode) {
6516 case IORING_OP_READV:
6517 return io_rw_prep_async(req, READ);
6518 case IORING_OP_WRITEV:
6519 return io_rw_prep_async(req, WRITE);
6520 case IORING_OP_SENDMSG:
6521 return io_sendmsg_prep_async(req);
6522 case IORING_OP_RECVMSG:
6523 return io_recvmsg_prep_async(req);
6524 case IORING_OP_CONNECT:
6525 return io_connect_prep_async(req);
6527 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6532 static u32 io_get_sequence(struct io_kiocb *req)
6534 u32 seq = req->ctx->cached_sq_head;
6536 /* need original cached_sq_head, but it was increased for each req */
6537 io_for_each_link(req, req)
6542 static bool io_drain_req(struct io_kiocb *req)
6544 struct io_kiocb *pos;
6545 struct io_ring_ctx *ctx = req->ctx;
6546 struct io_defer_entry *de;
6550 if (req->flags & REQ_F_FAIL) {
6551 io_req_complete_fail_submit(req);
6556 * If we need to drain a request in the middle of a link, drain the
6557 * head request and the next request/link after the current link.
6558 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6559 * maintained for every request of our link.
6561 if (ctx->drain_next) {
6562 req->flags |= REQ_F_IO_DRAIN;
6563 ctx->drain_next = false;
6565 /* not interested in head, start from the first linked */
6566 io_for_each_link(pos, req->link) {
6567 if (pos->flags & REQ_F_IO_DRAIN) {
6568 ctx->drain_next = true;
6569 req->flags |= REQ_F_IO_DRAIN;
6574 /* Still need defer if there is pending req in defer list. */
6575 if (likely(list_empty_careful(&ctx->defer_list) &&
6576 !(req->flags & REQ_F_IO_DRAIN))) {
6577 ctx->drain_active = false;
6581 seq = io_get_sequence(req);
6582 /* Still a chance to pass the sequence check */
6583 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6586 ret = io_req_prep_async(req);
6589 io_prep_async_link(req);
6590 de = kmalloc(sizeof(*de), GFP_KERNEL);
6594 io_req_complete_failed(req, ret);
6598 spin_lock(&ctx->completion_lock);
6599 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6600 spin_unlock(&ctx->completion_lock);
6602 io_queue_async_work(req, NULL);
6606 trace_io_uring_defer(ctx, req, req->user_data);
6609 list_add_tail(&de->list, &ctx->defer_list);
6610 spin_unlock(&ctx->completion_lock);
6614 static void io_clean_op(struct io_kiocb *req)
6616 if (req->flags & REQ_F_BUFFER_SELECTED) {
6617 switch (req->opcode) {
6618 case IORING_OP_READV:
6619 case IORING_OP_READ_FIXED:
6620 case IORING_OP_READ:
6621 kfree((void *)(unsigned long)req->rw.addr);
6623 case IORING_OP_RECVMSG:
6624 case IORING_OP_RECV:
6625 kfree(req->sr_msg.kbuf);
6630 if (req->flags & REQ_F_NEED_CLEANUP) {
6631 switch (req->opcode) {
6632 case IORING_OP_READV:
6633 case IORING_OP_READ_FIXED:
6634 case IORING_OP_READ:
6635 case IORING_OP_WRITEV:
6636 case IORING_OP_WRITE_FIXED:
6637 case IORING_OP_WRITE: {
6638 struct io_async_rw *io = req->async_data;
6640 kfree(io->free_iovec);
6643 case IORING_OP_RECVMSG:
6644 case IORING_OP_SENDMSG: {
6645 struct io_async_msghdr *io = req->async_data;
6647 kfree(io->free_iov);
6650 case IORING_OP_SPLICE:
6652 if (!(req->splice.flags & SPLICE_F_FD_IN_FIXED))
6653 io_put_file(req->splice.file_in);
6655 case IORING_OP_OPENAT:
6656 case IORING_OP_OPENAT2:
6657 if (req->open.filename)
6658 putname(req->open.filename);
6660 case IORING_OP_RENAMEAT:
6661 putname(req->rename.oldpath);
6662 putname(req->rename.newpath);
6664 case IORING_OP_UNLINKAT:
6665 putname(req->unlink.filename);
6667 case IORING_OP_MKDIRAT:
6668 putname(req->mkdir.filename);
6670 case IORING_OP_SYMLINKAT:
6671 putname(req->symlink.oldpath);
6672 putname(req->symlink.newpath);
6674 case IORING_OP_LINKAT:
6675 putname(req->hardlink.oldpath);
6676 putname(req->hardlink.newpath);
6680 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6681 kfree(req->apoll->double_poll);
6685 if (req->flags & REQ_F_INFLIGHT) {
6686 struct io_uring_task *tctx = req->task->io_uring;
6688 atomic_dec(&tctx->inflight_tracked);
6690 if (req->flags & REQ_F_CREDS)
6691 put_cred(req->creds);
6693 req->flags &= ~IO_REQ_CLEAN_FLAGS;
6696 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6698 struct io_ring_ctx *ctx = req->ctx;
6699 const struct cred *creds = NULL;
6702 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6703 creds = override_creds(req->creds);
6705 switch (req->opcode) {
6707 ret = io_nop(req, issue_flags);
6709 case IORING_OP_READV:
6710 case IORING_OP_READ_FIXED:
6711 case IORING_OP_READ:
6712 ret = io_read(req, issue_flags);
6714 case IORING_OP_WRITEV:
6715 case IORING_OP_WRITE_FIXED:
6716 case IORING_OP_WRITE:
6717 ret = io_write(req, issue_flags);
6719 case IORING_OP_FSYNC:
6720 ret = io_fsync(req, issue_flags);
6722 case IORING_OP_POLL_ADD:
6723 ret = io_poll_add(req, issue_flags);
6725 case IORING_OP_POLL_REMOVE:
6726 ret = io_poll_update(req, issue_flags);
6728 case IORING_OP_SYNC_FILE_RANGE:
6729 ret = io_sync_file_range(req, issue_flags);
6731 case IORING_OP_SENDMSG:
6732 ret = io_sendmsg(req, issue_flags);
6734 case IORING_OP_SEND:
6735 ret = io_send(req, issue_flags);
6737 case IORING_OP_RECVMSG:
6738 ret = io_recvmsg(req, issue_flags);
6740 case IORING_OP_RECV:
6741 ret = io_recv(req, issue_flags);
6743 case IORING_OP_TIMEOUT:
6744 ret = io_timeout(req, issue_flags);
6746 case IORING_OP_TIMEOUT_REMOVE:
6747 ret = io_timeout_remove(req, issue_flags);
6749 case IORING_OP_ACCEPT:
6750 ret = io_accept(req, issue_flags);
6752 case IORING_OP_CONNECT:
6753 ret = io_connect(req, issue_flags);
6755 case IORING_OP_ASYNC_CANCEL:
6756 ret = io_async_cancel(req, issue_flags);
6758 case IORING_OP_FALLOCATE:
6759 ret = io_fallocate(req, issue_flags);
6761 case IORING_OP_OPENAT:
6762 ret = io_openat(req, issue_flags);
6764 case IORING_OP_CLOSE:
6765 ret = io_close(req, issue_flags);
6767 case IORING_OP_FILES_UPDATE:
6768 ret = io_files_update(req, issue_flags);
6770 case IORING_OP_STATX:
6771 ret = io_statx(req, issue_flags);
6773 case IORING_OP_FADVISE:
6774 ret = io_fadvise(req, issue_flags);
6776 case IORING_OP_MADVISE:
6777 ret = io_madvise(req, issue_flags);
6779 case IORING_OP_OPENAT2:
6780 ret = io_openat2(req, issue_flags);
6782 case IORING_OP_EPOLL_CTL:
6783 ret = io_epoll_ctl(req, issue_flags);
6785 case IORING_OP_SPLICE:
6786 ret = io_splice(req, issue_flags);
6788 case IORING_OP_PROVIDE_BUFFERS:
6789 ret = io_provide_buffers(req, issue_flags);
6791 case IORING_OP_REMOVE_BUFFERS:
6792 ret = io_remove_buffers(req, issue_flags);
6795 ret = io_tee(req, issue_flags);
6797 case IORING_OP_SHUTDOWN:
6798 ret = io_shutdown(req, issue_flags);
6800 case IORING_OP_RENAMEAT:
6801 ret = io_renameat(req, issue_flags);
6803 case IORING_OP_UNLINKAT:
6804 ret = io_unlinkat(req, issue_flags);
6806 case IORING_OP_MKDIRAT:
6807 ret = io_mkdirat(req, issue_flags);
6809 case IORING_OP_SYMLINKAT:
6810 ret = io_symlinkat(req, issue_flags);
6812 case IORING_OP_LINKAT:
6813 ret = io_linkat(req, issue_flags);
6821 revert_creds(creds);
6824 /* If the op doesn't have a file, we're not polling for it */
6825 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6826 io_iopoll_req_issued(req);
6831 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
6833 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6835 req = io_put_req_find_next(req);
6836 return req ? &req->work : NULL;
6839 static void io_wq_submit_work(struct io_wq_work *work)
6841 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6842 struct io_kiocb *timeout;
6845 /* one will be dropped by ->io_free_work() after returning to io-wq */
6846 if (!(req->flags & REQ_F_REFCOUNT))
6847 __io_req_set_refcount(req, 2);
6851 timeout = io_prep_linked_timeout(req);
6853 io_queue_linked_timeout(timeout);
6855 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
6856 if (work->flags & IO_WQ_WORK_CANCEL)
6861 ret = io_issue_sqe(req, 0);
6863 * We can get EAGAIN for polled IO even though we're
6864 * forcing a sync submission from here, since we can't
6865 * wait for request slots on the block side.
6873 /* avoid locking problems by failing it from a clean context */
6875 io_req_task_queue_fail(req, ret);
6878 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6881 return &table->files[i];
6884 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6887 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6889 return (struct file *) (slot->file_ptr & FFS_MASK);
6892 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6894 unsigned long file_ptr = (unsigned long) file;
6896 if (__io_file_supports_nowait(file, READ))
6897 file_ptr |= FFS_ASYNC_READ;
6898 if (__io_file_supports_nowait(file, WRITE))
6899 file_ptr |= FFS_ASYNC_WRITE;
6900 if (S_ISREG(file_inode(file)->i_mode))
6901 file_ptr |= FFS_ISREG;
6902 file_slot->file_ptr = file_ptr;
6905 static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
6906 struct io_kiocb *req, int fd)
6909 unsigned long file_ptr;
6911 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6913 fd = array_index_nospec(fd, ctx->nr_user_files);
6914 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6915 file = (struct file *) (file_ptr & FFS_MASK);
6916 file_ptr &= ~FFS_MASK;
6917 /* mask in overlapping REQ_F and FFS bits */
6918 req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
6919 io_req_set_rsrc_node(req);
6923 static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
6924 struct io_kiocb *req, int fd)
6926 struct file *file = fget(fd);
6928 trace_io_uring_file_get(ctx, fd);
6930 /* we don't allow fixed io_uring files */
6931 if (file && unlikely(file->f_op == &io_uring_fops))
6932 io_req_track_inflight(req);
6936 static inline struct file *io_file_get(struct io_ring_ctx *ctx,
6937 struct io_kiocb *req, int fd, bool fixed)
6940 return io_file_get_fixed(ctx, req, fd);
6942 return io_file_get_normal(ctx, req, fd);
6945 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
6947 struct io_kiocb *prev = req->timeout.prev;
6951 if (!(req->task->flags & PF_EXITING))
6952 ret = io_try_cancel_userdata(req, prev->user_data);
6953 io_req_complete_post(req, ret ?: -ETIME, 0);
6956 io_req_complete_post(req, -ETIME, 0);
6960 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6962 struct io_timeout_data *data = container_of(timer,
6963 struct io_timeout_data, timer);
6964 struct io_kiocb *prev, *req = data->req;
6965 struct io_ring_ctx *ctx = req->ctx;
6966 unsigned long flags;
6968 spin_lock_irqsave(&ctx->timeout_lock, flags);
6969 prev = req->timeout.head;
6970 req->timeout.head = NULL;
6973 * We don't expect the list to be empty, that will only happen if we
6974 * race with the completion of the linked work.
6977 io_remove_next_linked(prev);
6978 if (!req_ref_inc_not_zero(prev))
6981 list_del(&req->timeout.list);
6982 req->timeout.prev = prev;
6983 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6985 req->io_task_work.func = io_req_task_link_timeout;
6986 io_req_task_work_add(req);
6987 return HRTIMER_NORESTART;
6990 static void io_queue_linked_timeout(struct io_kiocb *req)
6992 struct io_ring_ctx *ctx = req->ctx;
6994 spin_lock_irq(&ctx->timeout_lock);
6996 * If the back reference is NULL, then our linked request finished
6997 * before we got a chance to setup the timer
6999 if (req->timeout.head) {
7000 struct io_timeout_data *data = req->async_data;
7002 data->timer.function = io_link_timeout_fn;
7003 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
7005 list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
7007 spin_unlock_irq(&ctx->timeout_lock);
7008 /* drop submission reference */
7012 static void __io_queue_sqe(struct io_kiocb *req)
7013 __must_hold(&req->ctx->uring_lock)
7015 struct io_kiocb *linked_timeout;
7019 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
7022 * We async punt it if the file wasn't marked NOWAIT, or if the file
7023 * doesn't support non-blocking read/write attempts
7026 if (req->flags & REQ_F_COMPLETE_INLINE) {
7027 struct io_ring_ctx *ctx = req->ctx;
7028 struct io_submit_state *state = &ctx->submit_state;
7030 state->compl_reqs[state->compl_nr++] = req;
7031 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
7032 io_submit_flush_completions(ctx);
7036 linked_timeout = io_prep_linked_timeout(req);
7038 io_queue_linked_timeout(linked_timeout);
7039 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
7040 linked_timeout = io_prep_linked_timeout(req);
7042 switch (io_arm_poll_handler(req)) {
7043 case IO_APOLL_READY:
7045 io_queue_linked_timeout(linked_timeout);
7047 case IO_APOLL_ABORTED:
7049 * Queued up for async execution, worker will release
7050 * submit reference when the iocb is actually submitted.
7052 io_queue_async_work(req, NULL);
7057 io_queue_linked_timeout(linked_timeout);
7059 io_req_complete_failed(req, ret);
7063 static inline void io_queue_sqe(struct io_kiocb *req)
7064 __must_hold(&req->ctx->uring_lock)
7066 if (unlikely(req->ctx->drain_active) && io_drain_req(req))
7069 if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
7070 __io_queue_sqe(req);
7071 } else if (req->flags & REQ_F_FAIL) {
7072 io_req_complete_fail_submit(req);
7074 int ret = io_req_prep_async(req);
7077 io_req_complete_failed(req, ret);
7079 io_queue_async_work(req, NULL);
7084 * Check SQE restrictions (opcode and flags).
7086 * Returns 'true' if SQE is allowed, 'false' otherwise.
7088 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
7089 struct io_kiocb *req,
7090 unsigned int sqe_flags)
7092 if (likely(!ctx->restricted))
7095 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
7098 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
7099 ctx->restrictions.sqe_flags_required)
7102 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
7103 ctx->restrictions.sqe_flags_required))
7109 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
7110 const struct io_uring_sqe *sqe)
7111 __must_hold(&ctx->uring_lock)
7113 struct io_submit_state *state;
7114 unsigned int sqe_flags;
7115 int personality, ret = 0;
7117 /* req is partially pre-initialised, see io_preinit_req() */
7118 req->opcode = READ_ONCE(sqe->opcode);
7119 /* same numerical values with corresponding REQ_F_*, safe to copy */
7120 req->flags = sqe_flags = READ_ONCE(sqe->flags);
7121 req->user_data = READ_ONCE(sqe->user_data);
7123 req->fixed_rsrc_refs = NULL;
7124 req->task = current;
7126 /* enforce forwards compatibility on users */
7127 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
7129 if (unlikely(req->opcode >= IORING_OP_LAST))
7131 if (!io_check_restriction(ctx, req, sqe_flags))
7134 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7135 !io_op_defs[req->opcode].buffer_select)
7137 if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
7138 ctx->drain_active = true;
7140 personality = READ_ONCE(sqe->personality);
7142 req->creds = xa_load(&ctx->personalities, personality);
7145 get_cred(req->creds);
7146 req->flags |= REQ_F_CREDS;
7148 state = &ctx->submit_state;
7151 * Plug now if we have more than 1 IO left after this, and the target
7152 * is potentially a read/write to block based storage.
7154 if (!state->plug_started && state->ios_left > 1 &&
7155 io_op_defs[req->opcode].plug) {
7156 blk_start_plug(&state->plug);
7157 state->plug_started = true;
7160 if (io_op_defs[req->opcode].needs_file) {
7161 req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7162 (sqe_flags & IOSQE_FIXED_FILE));
7163 if (unlikely(!req->file))
7171 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7172 const struct io_uring_sqe *sqe)
7173 __must_hold(&ctx->uring_lock)
7175 struct io_submit_link *link = &ctx->submit_state.link;
7178 ret = io_init_req(ctx, req, sqe);
7179 if (unlikely(ret)) {
7181 /* fail even hard links since we don't submit */
7184 * we can judge a link req is failed or cancelled by if
7185 * REQ_F_FAIL is set, but the head is an exception since
7186 * it may be set REQ_F_FAIL because of other req's failure
7187 * so let's leverage req->result to distinguish if a head
7188 * is set REQ_F_FAIL because of its failure or other req's
7189 * failure so that we can set the correct ret code for it.
7190 * init result here to avoid affecting the normal path.
7192 if (!(link->head->flags & REQ_F_FAIL))
7193 req_fail_link_node(link->head, -ECANCELED);
7194 } else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7196 * the current req is a normal req, we should return
7197 * error and thus break the submittion loop.
7199 io_req_complete_failed(req, ret);
7202 req_fail_link_node(req, ret);
7204 ret = io_req_prep(req, sqe);
7209 /* don't need @sqe from now on */
7210 trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7212 ctx->flags & IORING_SETUP_SQPOLL);
7215 * If we already have a head request, queue this one for async
7216 * submittal once the head completes. If we don't have a head but
7217 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7218 * submitted sync once the chain is complete. If none of those
7219 * conditions are true (normal request), then just queue it.
7222 struct io_kiocb *head = link->head;
7224 if (!(req->flags & REQ_F_FAIL)) {
7225 ret = io_req_prep_async(req);
7226 if (unlikely(ret)) {
7227 req_fail_link_node(req, ret);
7228 if (!(head->flags & REQ_F_FAIL))
7229 req_fail_link_node(head, -ECANCELED);
7232 trace_io_uring_link(ctx, req, head);
7233 link->last->link = req;
7236 /* last request of a link, enqueue the link */
7237 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7242 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7254 * Batched submission is done, ensure local IO is flushed out.
7256 static void io_submit_state_end(struct io_submit_state *state,
7257 struct io_ring_ctx *ctx)
7259 if (state->link.head)
7260 io_queue_sqe(state->link.head);
7261 if (state->compl_nr)
7262 io_submit_flush_completions(ctx);
7263 if (state->plug_started)
7264 blk_finish_plug(&state->plug);
7268 * Start submission side cache.
7270 static void io_submit_state_start(struct io_submit_state *state,
7271 unsigned int max_ios)
7273 state->plug_started = false;
7274 state->ios_left = max_ios;
7275 /* set only head, no need to init link_last in advance */
7276 state->link.head = NULL;
7279 static void io_commit_sqring(struct io_ring_ctx *ctx)
7281 struct io_rings *rings = ctx->rings;
7284 * Ensure any loads from the SQEs are done at this point,
7285 * since once we write the new head, the application could
7286 * write new data to them.
7288 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7292 * Fetch an sqe, if one is available. Note this returns a pointer to memory
7293 * that is mapped by userspace. This means that care needs to be taken to
7294 * ensure that reads are stable, as we cannot rely on userspace always
7295 * being a good citizen. If members of the sqe are validated and then later
7296 * used, it's important that those reads are done through READ_ONCE() to
7297 * prevent a re-load down the line.
7299 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7301 unsigned head, mask = ctx->sq_entries - 1;
7302 unsigned sq_idx = ctx->cached_sq_head++ & mask;
7305 * The cached sq head (or cq tail) serves two purposes:
7307 * 1) allows us to batch the cost of updating the user visible
7309 * 2) allows the kernel side to track the head on its own, even
7310 * though the application is the one updating it.
7312 head = READ_ONCE(ctx->sq_array[sq_idx]);
7313 if (likely(head < ctx->sq_entries))
7314 return &ctx->sq_sqes[head];
7316 /* drop invalid entries */
7318 WRITE_ONCE(ctx->rings->sq_dropped,
7319 READ_ONCE(ctx->rings->sq_dropped) + 1);
7323 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7324 __must_hold(&ctx->uring_lock)
7328 /* make sure SQ entry isn't read before tail */
7329 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7330 if (!percpu_ref_tryget_many(&ctx->refs, nr))
7332 io_get_task_refs(nr);
7334 io_submit_state_start(&ctx->submit_state, nr);
7335 while (submitted < nr) {
7336 const struct io_uring_sqe *sqe;
7337 struct io_kiocb *req;
7339 req = io_alloc_req(ctx);
7340 if (unlikely(!req)) {
7342 submitted = -EAGAIN;
7345 sqe = io_get_sqe(ctx);
7346 if (unlikely(!sqe)) {
7347 list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7350 /* will complete beyond this point, count as submitted */
7352 if (io_submit_sqe(ctx, req, sqe))
7356 if (unlikely(submitted != nr)) {
7357 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7358 int unused = nr - ref_used;
7360 current->io_uring->cached_refs += unused;
7361 percpu_ref_put_many(&ctx->refs, unused);
7364 io_submit_state_end(&ctx->submit_state, ctx);
7365 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7366 io_commit_sqring(ctx);
7371 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7373 return READ_ONCE(sqd->state);
7376 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7378 /* Tell userspace we may need a wakeup call */
7379 spin_lock(&ctx->completion_lock);
7380 WRITE_ONCE(ctx->rings->sq_flags,
7381 ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7382 spin_unlock(&ctx->completion_lock);
7385 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7387 spin_lock(&ctx->completion_lock);
7388 WRITE_ONCE(ctx->rings->sq_flags,
7389 ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7390 spin_unlock(&ctx->completion_lock);
7393 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7395 unsigned int to_submit;
7398 to_submit = io_sqring_entries(ctx);
7399 /* if we're handling multiple rings, cap submit size for fairness */
7400 if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7401 to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7403 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7404 unsigned nr_events = 0;
7405 const struct cred *creds = NULL;
7407 if (ctx->sq_creds != current_cred())
7408 creds = override_creds(ctx->sq_creds);
7410 mutex_lock(&ctx->uring_lock);
7411 if (!list_empty(&ctx->iopoll_list))
7412 io_do_iopoll(ctx, &nr_events, 0);
7415 * Don't submit if refs are dying, good for io_uring_register(),
7416 * but also it is relied upon by io_ring_exit_work()
7418 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7419 !(ctx->flags & IORING_SETUP_R_DISABLED))
7420 ret = io_submit_sqes(ctx, to_submit);
7421 mutex_unlock(&ctx->uring_lock);
7423 if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7424 wake_up(&ctx->sqo_sq_wait);
7426 revert_creds(creds);
7432 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7434 struct io_ring_ctx *ctx;
7435 unsigned sq_thread_idle = 0;
7437 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7438 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7439 sqd->sq_thread_idle = sq_thread_idle;
7442 static bool io_sqd_handle_event(struct io_sq_data *sqd)
7444 bool did_sig = false;
7445 struct ksignal ksig;
7447 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7448 signal_pending(current)) {
7449 mutex_unlock(&sqd->lock);
7450 if (signal_pending(current))
7451 did_sig = get_signal(&ksig);
7453 mutex_lock(&sqd->lock);
7455 return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7458 static int io_sq_thread(void *data)
7460 struct io_sq_data *sqd = data;
7461 struct io_ring_ctx *ctx;
7462 unsigned long timeout = 0;
7463 char buf[TASK_COMM_LEN];
7466 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7467 set_task_comm(current, buf);
7469 if (sqd->sq_cpu != -1)
7470 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7472 set_cpus_allowed_ptr(current, cpu_online_mask);
7473 current->flags |= PF_NO_SETAFFINITY;
7475 mutex_lock(&sqd->lock);
7477 bool cap_entries, sqt_spin = false;
7479 if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7480 if (io_sqd_handle_event(sqd))
7482 timeout = jiffies + sqd->sq_thread_idle;
7485 cap_entries = !list_is_singular(&sqd->ctx_list);
7486 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7487 int ret = __io_sq_thread(ctx, cap_entries);
7489 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7492 if (io_run_task_work())
7495 if (sqt_spin || !time_after(jiffies, timeout)) {
7498 timeout = jiffies + sqd->sq_thread_idle;
7502 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7503 if (!io_sqd_events_pending(sqd) && !current->task_works) {
7504 bool needs_sched = true;
7506 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7507 io_ring_set_wakeup_flag(ctx);
7509 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7510 !list_empty_careful(&ctx->iopoll_list)) {
7511 needs_sched = false;
7514 if (io_sqring_entries(ctx)) {
7515 needs_sched = false;
7521 mutex_unlock(&sqd->lock);
7523 mutex_lock(&sqd->lock);
7525 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7526 io_ring_clear_wakeup_flag(ctx);
7529 finish_wait(&sqd->wait, &wait);
7530 timeout = jiffies + sqd->sq_thread_idle;
7533 io_uring_cancel_generic(true, sqd);
7535 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7536 io_ring_set_wakeup_flag(ctx);
7538 mutex_unlock(&sqd->lock);
7540 complete(&sqd->exited);
7544 struct io_wait_queue {
7545 struct wait_queue_entry wq;
7546 struct io_ring_ctx *ctx;
7548 unsigned nr_timeouts;
7551 static inline bool io_should_wake(struct io_wait_queue *iowq)
7553 struct io_ring_ctx *ctx = iowq->ctx;
7554 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7557 * Wake up if we have enough events, or if a timeout occurred since we
7558 * started waiting. For timeouts, we always want to return to userspace,
7559 * regardless of event count.
7561 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7564 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7565 int wake_flags, void *key)
7567 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7571 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7572 * the task, and the next invocation will do it.
7574 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7575 return autoremove_wake_function(curr, mode, wake_flags, key);
7579 static int io_run_task_work_sig(void)
7581 if (io_run_task_work())
7583 if (!signal_pending(current))
7585 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7586 return -ERESTARTSYS;
7590 /* when returns >0, the caller should retry */
7591 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7592 struct io_wait_queue *iowq,
7597 /* make sure we run task_work before checking for signals */
7598 ret = io_run_task_work_sig();
7599 if (ret || io_should_wake(iowq))
7601 /* let the caller flush overflows, retry */
7602 if (test_bit(0, &ctx->check_cq_overflow))
7605 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
7611 * Wait until events become available, if we don't already have some. The
7612 * application must reap them itself, as they reside on the shared cq ring.
7614 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7615 const sigset_t __user *sig, size_t sigsz,
7616 struct __kernel_timespec __user *uts)
7618 struct io_wait_queue iowq;
7619 struct io_rings *rings = ctx->rings;
7620 ktime_t timeout = KTIME_MAX;
7624 io_cqring_overflow_flush(ctx);
7625 if (io_cqring_events(ctx) >= min_events)
7627 if (!io_run_task_work())
7632 struct timespec64 ts;
7634 if (get_timespec64(&ts, uts))
7636 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
7640 #ifdef CONFIG_COMPAT
7641 if (in_compat_syscall())
7642 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7646 ret = set_user_sigmask(sig, sigsz);
7652 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7653 iowq.wq.private = current;
7654 INIT_LIST_HEAD(&iowq.wq.entry);
7656 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7657 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7659 trace_io_uring_cqring_wait(ctx, min_events);
7661 /* if we can't even flush overflow, don't wait for more */
7662 if (!io_cqring_overflow_flush(ctx)) {
7666 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7667 TASK_INTERRUPTIBLE);
7668 ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
7669 finish_wait(&ctx->cq_wait, &iowq.wq);
7673 restore_saved_sigmask_unless(ret == -EINTR);
7675 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7678 static void io_free_page_table(void **table, size_t size)
7680 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7682 for (i = 0; i < nr_tables; i++)
7687 static void **io_alloc_page_table(size_t size)
7689 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7690 size_t init_size = size;
7693 table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7697 for (i = 0; i < nr_tables; i++) {
7698 unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7700 table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7702 io_free_page_table(table, init_size);
7710 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7712 percpu_ref_exit(&ref_node->refs);
7716 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7718 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7719 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7720 unsigned long flags;
7721 bool first_add = false;
7722 unsigned long delay = HZ;
7724 spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7727 /* if we are mid-quiesce then do not delay */
7728 if (node->rsrc_data->quiesce)
7731 while (!list_empty(&ctx->rsrc_ref_list)) {
7732 node = list_first_entry(&ctx->rsrc_ref_list,
7733 struct io_rsrc_node, node);
7734 /* recycle ref nodes in order */
7737 list_del(&node->node);
7738 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7740 spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7743 mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7746 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7748 struct io_rsrc_node *ref_node;
7750 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7754 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7759 INIT_LIST_HEAD(&ref_node->node);
7760 INIT_LIST_HEAD(&ref_node->rsrc_list);
7761 ref_node->done = false;
7765 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7766 struct io_rsrc_data *data_to_kill)
7768 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7769 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7772 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7774 rsrc_node->rsrc_data = data_to_kill;
7775 spin_lock_irq(&ctx->rsrc_ref_lock);
7776 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7777 spin_unlock_irq(&ctx->rsrc_ref_lock);
7779 atomic_inc(&data_to_kill->refs);
7780 percpu_ref_kill(&rsrc_node->refs);
7781 ctx->rsrc_node = NULL;
7784 if (!ctx->rsrc_node) {
7785 ctx->rsrc_node = ctx->rsrc_backup_node;
7786 ctx->rsrc_backup_node = NULL;
7790 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7792 if (ctx->rsrc_backup_node)
7794 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7795 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7798 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7802 /* As we may drop ->uring_lock, other task may have started quiesce */
7806 data->quiesce = true;
7808 ret = io_rsrc_node_switch_start(ctx);
7811 io_rsrc_node_switch(ctx, data);
7813 /* kill initial ref, already quiesced if zero */
7814 if (atomic_dec_and_test(&data->refs))
7816 mutex_unlock(&ctx->uring_lock);
7817 flush_delayed_work(&ctx->rsrc_put_work);
7818 ret = wait_for_completion_interruptible(&data->done);
7820 mutex_lock(&ctx->uring_lock);
7824 atomic_inc(&data->refs);
7825 /* wait for all works potentially completing data->done */
7826 flush_delayed_work(&ctx->rsrc_put_work);
7827 reinit_completion(&data->done);
7829 ret = io_run_task_work_sig();
7830 mutex_lock(&ctx->uring_lock);
7832 data->quiesce = false;
7837 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7839 unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7840 unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7842 return &data->tags[table_idx][off];
7845 static void io_rsrc_data_free(struct io_rsrc_data *data)
7847 size_t size = data->nr * sizeof(data->tags[0][0]);
7850 io_free_page_table((void **)data->tags, size);
7854 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7855 u64 __user *utags, unsigned nr,
7856 struct io_rsrc_data **pdata)
7858 struct io_rsrc_data *data;
7862 data = kzalloc(sizeof(*data), GFP_KERNEL);
7865 data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7873 data->do_put = do_put;
7876 for (i = 0; i < nr; i++) {
7877 u64 *tag_slot = io_get_tag_slot(data, i);
7879 if (copy_from_user(tag_slot, &utags[i],
7885 atomic_set(&data->refs, 1);
7886 init_completion(&data->done);
7890 io_rsrc_data_free(data);
7894 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7896 table->files = kvcalloc(nr_files, sizeof(table->files[0]),
7897 GFP_KERNEL_ACCOUNT);
7898 return !!table->files;
7901 static void io_free_file_tables(struct io_file_table *table)
7903 kvfree(table->files);
7904 table->files = NULL;
7907 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7909 #if defined(CONFIG_UNIX)
7910 if (ctx->ring_sock) {
7911 struct sock *sock = ctx->ring_sock->sk;
7912 struct sk_buff *skb;
7914 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7920 for (i = 0; i < ctx->nr_user_files; i++) {
7923 file = io_file_from_index(ctx, i);
7928 io_free_file_tables(&ctx->file_table);
7929 io_rsrc_data_free(ctx->file_data);
7930 ctx->file_data = NULL;
7931 ctx->nr_user_files = 0;
7934 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7938 if (!ctx->file_data)
7940 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7942 __io_sqe_files_unregister(ctx);
7946 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7947 __releases(&sqd->lock)
7949 WARN_ON_ONCE(sqd->thread == current);
7952 * Do the dance but not conditional clear_bit() because it'd race with
7953 * other threads incrementing park_pending and setting the bit.
7955 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7956 if (atomic_dec_return(&sqd->park_pending))
7957 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7958 mutex_unlock(&sqd->lock);
7961 static void io_sq_thread_park(struct io_sq_data *sqd)
7962 __acquires(&sqd->lock)
7964 WARN_ON_ONCE(sqd->thread == current);
7966 atomic_inc(&sqd->park_pending);
7967 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7968 mutex_lock(&sqd->lock);
7970 wake_up_process(sqd->thread);
7973 static void io_sq_thread_stop(struct io_sq_data *sqd)
7975 WARN_ON_ONCE(sqd->thread == current);
7976 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7978 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7979 mutex_lock(&sqd->lock);
7981 wake_up_process(sqd->thread);
7982 mutex_unlock(&sqd->lock);
7983 wait_for_completion(&sqd->exited);
7986 static void io_put_sq_data(struct io_sq_data *sqd)
7988 if (refcount_dec_and_test(&sqd->refs)) {
7989 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7991 io_sq_thread_stop(sqd);
7996 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
7998 struct io_sq_data *sqd = ctx->sq_data;
8001 io_sq_thread_park(sqd);
8002 list_del_init(&ctx->sqd_list);
8003 io_sqd_update_thread_idle(sqd);
8004 io_sq_thread_unpark(sqd);
8006 io_put_sq_data(sqd);
8007 ctx->sq_data = NULL;
8011 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
8013 struct io_ring_ctx *ctx_attach;
8014 struct io_sq_data *sqd;
8017 f = fdget(p->wq_fd);
8019 return ERR_PTR(-ENXIO);
8020 if (f.file->f_op != &io_uring_fops) {
8022 return ERR_PTR(-EINVAL);
8025 ctx_attach = f.file->private_data;
8026 sqd = ctx_attach->sq_data;
8029 return ERR_PTR(-EINVAL);
8031 if (sqd->task_tgid != current->tgid) {
8033 return ERR_PTR(-EPERM);
8036 refcount_inc(&sqd->refs);
8041 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
8044 struct io_sq_data *sqd;
8047 if (p->flags & IORING_SETUP_ATTACH_WQ) {
8048 sqd = io_attach_sq_data(p);
8053 /* fall through for EPERM case, setup new sqd/task */
8054 if (PTR_ERR(sqd) != -EPERM)
8058 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
8060 return ERR_PTR(-ENOMEM);
8062 atomic_set(&sqd->park_pending, 0);
8063 refcount_set(&sqd->refs, 1);
8064 INIT_LIST_HEAD(&sqd->ctx_list);
8065 mutex_init(&sqd->lock);
8066 init_waitqueue_head(&sqd->wait);
8067 init_completion(&sqd->exited);
8071 #if defined(CONFIG_UNIX)
8073 * Ensure the UNIX gc is aware of our file set, so we are certain that
8074 * the io_uring can be safely unregistered on process exit, even if we have
8075 * loops in the file referencing.
8077 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
8079 struct sock *sk = ctx->ring_sock->sk;
8080 struct scm_fp_list *fpl;
8081 struct sk_buff *skb;
8084 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
8088 skb = alloc_skb(0, GFP_KERNEL);
8097 fpl->user = get_uid(current_user());
8098 for (i = 0; i < nr; i++) {
8099 struct file *file = io_file_from_index(ctx, i + offset);
8103 fpl->fp[nr_files] = get_file(file);
8104 unix_inflight(fpl->user, fpl->fp[nr_files]);
8109 fpl->max = SCM_MAX_FD;
8110 fpl->count = nr_files;
8111 UNIXCB(skb).fp = fpl;
8112 skb->destructor = unix_destruct_scm;
8113 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
8114 skb_queue_head(&sk->sk_receive_queue, skb);
8116 for (i = 0; i < nr_files; i++)
8127 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8128 * causes regular reference counting to break down. We rely on the UNIX
8129 * garbage collection to take care of this problem for us.
8131 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8133 unsigned left, total;
8137 left = ctx->nr_user_files;
8139 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8141 ret = __io_sqe_files_scm(ctx, this_files, total);
8145 total += this_files;
8151 while (total < ctx->nr_user_files) {
8152 struct file *file = io_file_from_index(ctx, total);
8162 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8168 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8170 struct file *file = prsrc->file;
8171 #if defined(CONFIG_UNIX)
8172 struct sock *sock = ctx->ring_sock->sk;
8173 struct sk_buff_head list, *head = &sock->sk_receive_queue;
8174 struct sk_buff *skb;
8177 __skb_queue_head_init(&list);
8180 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8181 * remove this entry and rearrange the file array.
8183 skb = skb_dequeue(head);
8185 struct scm_fp_list *fp;
8187 fp = UNIXCB(skb).fp;
8188 for (i = 0; i < fp->count; i++) {
8191 if (fp->fp[i] != file)
8194 unix_notinflight(fp->user, fp->fp[i]);
8195 left = fp->count - 1 - i;
8197 memmove(&fp->fp[i], &fp->fp[i + 1],
8198 left * sizeof(struct file *));
8205 __skb_queue_tail(&list, skb);
8215 __skb_queue_tail(&list, skb);
8217 skb = skb_dequeue(head);
8220 if (skb_peek(&list)) {
8221 spin_lock_irq(&head->lock);
8222 while ((skb = __skb_dequeue(&list)) != NULL)
8223 __skb_queue_tail(head, skb);
8224 spin_unlock_irq(&head->lock);
8231 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8233 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8234 struct io_ring_ctx *ctx = rsrc_data->ctx;
8235 struct io_rsrc_put *prsrc, *tmp;
8237 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8238 list_del(&prsrc->list);
8241 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8243 io_ring_submit_lock(ctx, lock_ring);
8244 spin_lock(&ctx->completion_lock);
8245 io_cqring_fill_event(ctx, prsrc->tag, 0, 0);
8247 io_commit_cqring(ctx);
8248 spin_unlock(&ctx->completion_lock);
8249 io_cqring_ev_posted(ctx);
8250 io_ring_submit_unlock(ctx, lock_ring);
8253 rsrc_data->do_put(ctx, prsrc);
8257 io_rsrc_node_destroy(ref_node);
8258 if (atomic_dec_and_test(&rsrc_data->refs))
8259 complete(&rsrc_data->done);
8262 static void io_rsrc_put_work(struct work_struct *work)
8264 struct io_ring_ctx *ctx;
8265 struct llist_node *node;
8267 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8268 node = llist_del_all(&ctx->rsrc_put_llist);
8271 struct io_rsrc_node *ref_node;
8272 struct llist_node *next = node->next;
8274 ref_node = llist_entry(node, struct io_rsrc_node, llist);
8275 __io_rsrc_put_work(ref_node);
8280 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8281 unsigned nr_args, u64 __user *tags)
8283 __s32 __user *fds = (__s32 __user *) arg;
8292 if (nr_args > IORING_MAX_FIXED_FILES)
8294 if (nr_args > rlimit(RLIMIT_NOFILE))
8296 ret = io_rsrc_node_switch_start(ctx);
8299 ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8305 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8308 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8309 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8313 /* allow sparse sets */
8316 if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8323 if (unlikely(!file))
8327 * Don't allow io_uring instances to be registered. If UNIX
8328 * isn't enabled, then this causes a reference cycle and this
8329 * instance can never get freed. If UNIX is enabled we'll
8330 * handle it just fine, but there's still no point in allowing
8331 * a ring fd as it doesn't support regular read/write anyway.
8333 if (file->f_op == &io_uring_fops) {
8337 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8340 ret = io_sqe_files_scm(ctx);
8342 __io_sqe_files_unregister(ctx);
8346 io_rsrc_node_switch(ctx, NULL);
8349 for (i = 0; i < ctx->nr_user_files; i++) {
8350 file = io_file_from_index(ctx, i);
8354 io_free_file_tables(&ctx->file_table);
8355 ctx->nr_user_files = 0;
8357 io_rsrc_data_free(ctx->file_data);
8358 ctx->file_data = NULL;
8362 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
8365 #if defined(CONFIG_UNIX)
8366 struct sock *sock = ctx->ring_sock->sk;
8367 struct sk_buff_head *head = &sock->sk_receive_queue;
8368 struct sk_buff *skb;
8371 * See if we can merge this file into an existing skb SCM_RIGHTS
8372 * file set. If there's no room, fall back to allocating a new skb
8373 * and filling it in.
8375 spin_lock_irq(&head->lock);
8376 skb = skb_peek(head);
8378 struct scm_fp_list *fpl = UNIXCB(skb).fp;
8380 if (fpl->count < SCM_MAX_FD) {
8381 __skb_unlink(skb, head);
8382 spin_unlock_irq(&head->lock);
8383 fpl->fp[fpl->count] = get_file(file);
8384 unix_inflight(fpl->user, fpl->fp[fpl->count]);
8386 spin_lock_irq(&head->lock);
8387 __skb_queue_head(head, skb);
8392 spin_unlock_irq(&head->lock);
8399 return __io_sqe_files_scm(ctx, 1, index);
8405 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8406 struct io_rsrc_node *node, void *rsrc)
8408 struct io_rsrc_put *prsrc;
8410 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8414 prsrc->tag = *io_get_tag_slot(data, idx);
8416 list_add(&prsrc->list, &node->rsrc_list);
8420 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8421 unsigned int issue_flags, u32 slot_index)
8423 struct io_ring_ctx *ctx = req->ctx;
8424 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8425 bool needs_switch = false;
8426 struct io_fixed_file *file_slot;
8429 io_ring_submit_lock(ctx, !force_nonblock);
8430 if (file->f_op == &io_uring_fops)
8433 if (!ctx->file_data)
8436 if (slot_index >= ctx->nr_user_files)
8439 slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8440 file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8442 if (file_slot->file_ptr) {
8443 struct file *old_file;
8445 ret = io_rsrc_node_switch_start(ctx);
8449 old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8450 ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
8451 ctx->rsrc_node, old_file);
8454 file_slot->file_ptr = 0;
8455 needs_switch = true;
8458 *io_get_tag_slot(ctx->file_data, slot_index) = 0;
8459 io_fixed_file_set(file_slot, file);
8460 ret = io_sqe_file_register(ctx, file, slot_index);
8462 file_slot->file_ptr = 0;
8469 io_rsrc_node_switch(ctx, ctx->file_data);
8470 io_ring_submit_unlock(ctx, !force_nonblock);
8476 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
8478 unsigned int offset = req->close.file_slot - 1;
8479 struct io_ring_ctx *ctx = req->ctx;
8480 struct io_fixed_file *file_slot;
8484 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8486 if (unlikely(!ctx->file_data))
8489 if (offset >= ctx->nr_user_files)
8491 ret = io_rsrc_node_switch_start(ctx);
8495 i = array_index_nospec(offset, ctx->nr_user_files);
8496 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8498 if (!file_slot->file_ptr)
8501 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8502 ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
8506 file_slot->file_ptr = 0;
8507 io_rsrc_node_switch(ctx, ctx->file_data);
8510 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8514 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8515 struct io_uring_rsrc_update2 *up,
8518 u64 __user *tags = u64_to_user_ptr(up->tags);
8519 __s32 __user *fds = u64_to_user_ptr(up->data);
8520 struct io_rsrc_data *data = ctx->file_data;
8521 struct io_fixed_file *file_slot;
8525 bool needs_switch = false;
8527 if (!ctx->file_data)
8529 if (up->offset + nr_args > ctx->nr_user_files)
8532 for (done = 0; done < nr_args; done++) {
8535 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8536 copy_from_user(&fd, &fds[done], sizeof(fd))) {
8540 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8544 if (fd == IORING_REGISTER_FILES_SKIP)
8547 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8548 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8550 if (file_slot->file_ptr) {
8551 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8552 err = io_queue_rsrc_removal(data, up->offset + done,
8553 ctx->rsrc_node, file);
8556 file_slot->file_ptr = 0;
8557 needs_switch = true;
8566 * Don't allow io_uring instances to be registered. If
8567 * UNIX isn't enabled, then this causes a reference
8568 * cycle and this instance can never get freed. If UNIX
8569 * is enabled we'll handle it just fine, but there's
8570 * still no point in allowing a ring fd as it doesn't
8571 * support regular read/write anyway.
8573 if (file->f_op == &io_uring_fops) {
8578 *io_get_tag_slot(data, up->offset + done) = tag;
8579 io_fixed_file_set(file_slot, file);
8580 err = io_sqe_file_register(ctx, file, i);
8582 file_slot->file_ptr = 0;
8590 io_rsrc_node_switch(ctx, data);
8591 return done ? done : err;
8594 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8595 struct task_struct *task)
8597 struct io_wq_hash *hash;
8598 struct io_wq_data data;
8599 unsigned int concurrency;
8601 mutex_lock(&ctx->uring_lock);
8602 hash = ctx->hash_map;
8604 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8606 mutex_unlock(&ctx->uring_lock);
8607 return ERR_PTR(-ENOMEM);
8609 refcount_set(&hash->refs, 1);
8610 init_waitqueue_head(&hash->wait);
8611 ctx->hash_map = hash;
8613 mutex_unlock(&ctx->uring_lock);
8617 data.free_work = io_wq_free_work;
8618 data.do_work = io_wq_submit_work;
8620 /* Do QD, or 4 * CPUS, whatever is smallest */
8621 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8623 return io_wq_create(concurrency, &data);
8626 static int io_uring_alloc_task_context(struct task_struct *task,
8627 struct io_ring_ctx *ctx)
8629 struct io_uring_task *tctx;
8632 tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8633 if (unlikely(!tctx))
8636 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8637 if (unlikely(ret)) {
8642 tctx->io_wq = io_init_wq_offload(ctx, task);
8643 if (IS_ERR(tctx->io_wq)) {
8644 ret = PTR_ERR(tctx->io_wq);
8645 percpu_counter_destroy(&tctx->inflight);
8651 init_waitqueue_head(&tctx->wait);
8652 atomic_set(&tctx->in_idle, 0);
8653 atomic_set(&tctx->inflight_tracked, 0);
8654 task->io_uring = tctx;
8655 spin_lock_init(&tctx->task_lock);
8656 INIT_WQ_LIST(&tctx->task_list);
8657 init_task_work(&tctx->task_work, tctx_task_work);
8661 void __io_uring_free(struct task_struct *tsk)
8663 struct io_uring_task *tctx = tsk->io_uring;
8665 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8666 WARN_ON_ONCE(tctx->io_wq);
8667 WARN_ON_ONCE(tctx->cached_refs);
8669 percpu_counter_destroy(&tctx->inflight);
8671 tsk->io_uring = NULL;
8674 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8675 struct io_uring_params *p)
8679 /* Retain compatibility with failing for an invalid attach attempt */
8680 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8681 IORING_SETUP_ATTACH_WQ) {
8684 f = fdget(p->wq_fd);
8687 if (f.file->f_op != &io_uring_fops) {
8693 if (ctx->flags & IORING_SETUP_SQPOLL) {
8694 struct task_struct *tsk;
8695 struct io_sq_data *sqd;
8698 sqd = io_get_sq_data(p, &attached);
8704 ctx->sq_creds = get_current_cred();
8706 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8707 if (!ctx->sq_thread_idle)
8708 ctx->sq_thread_idle = HZ;
8710 io_sq_thread_park(sqd);
8711 list_add(&ctx->sqd_list, &sqd->ctx_list);
8712 io_sqd_update_thread_idle(sqd);
8713 /* don't attach to a dying SQPOLL thread, would be racy */
8714 ret = (attached && !sqd->thread) ? -ENXIO : 0;
8715 io_sq_thread_unpark(sqd);
8722 if (p->flags & IORING_SETUP_SQ_AFF) {
8723 int cpu = p->sq_thread_cpu;
8726 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8733 sqd->task_pid = current->pid;
8734 sqd->task_tgid = current->tgid;
8735 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8742 ret = io_uring_alloc_task_context(tsk, ctx);
8743 wake_up_new_task(tsk);
8746 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8747 /* Can't have SQ_AFF without SQPOLL */
8754 complete(&ctx->sq_data->exited);
8756 io_sq_thread_finish(ctx);
8760 static inline void __io_unaccount_mem(struct user_struct *user,
8761 unsigned long nr_pages)
8763 atomic_long_sub(nr_pages, &user->locked_vm);
8766 static inline int __io_account_mem(struct user_struct *user,
8767 unsigned long nr_pages)
8769 unsigned long page_limit, cur_pages, new_pages;
8771 /* Don't allow more pages than we can safely lock */
8772 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8775 cur_pages = atomic_long_read(&user->locked_vm);
8776 new_pages = cur_pages + nr_pages;
8777 if (new_pages > page_limit)
8779 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8780 new_pages) != cur_pages);
8785 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8788 __io_unaccount_mem(ctx->user, nr_pages);
8790 if (ctx->mm_account)
8791 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8794 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8799 ret = __io_account_mem(ctx->user, nr_pages);
8804 if (ctx->mm_account)
8805 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8810 static void io_mem_free(void *ptr)
8817 page = virt_to_head_page(ptr);
8818 if (put_page_testzero(page))
8819 free_compound_page(page);
8822 static void *io_mem_alloc(size_t size)
8824 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
8826 return (void *) __get_free_pages(gfp, get_order(size));
8829 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8832 struct io_rings *rings;
8833 size_t off, sq_array_size;
8835 off = struct_size(rings, cqes, cq_entries);
8836 if (off == SIZE_MAX)
8840 off = ALIGN(off, SMP_CACHE_BYTES);
8848 sq_array_size = array_size(sizeof(u32), sq_entries);
8849 if (sq_array_size == SIZE_MAX)
8852 if (check_add_overflow(off, sq_array_size, &off))
8858 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8860 struct io_mapped_ubuf *imu = *slot;
8863 if (imu != ctx->dummy_ubuf) {
8864 for (i = 0; i < imu->nr_bvecs; i++)
8865 unpin_user_page(imu->bvec[i].bv_page);
8866 if (imu->acct_pages)
8867 io_unaccount_mem(ctx, imu->acct_pages);
8873 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8875 io_buffer_unmap(ctx, &prsrc->buf);
8879 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8883 for (i = 0; i < ctx->nr_user_bufs; i++)
8884 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8885 kfree(ctx->user_bufs);
8886 io_rsrc_data_free(ctx->buf_data);
8887 ctx->user_bufs = NULL;
8888 ctx->buf_data = NULL;
8889 ctx->nr_user_bufs = 0;
8892 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8899 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8901 __io_sqe_buffers_unregister(ctx);
8905 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8906 void __user *arg, unsigned index)
8908 struct iovec __user *src;
8910 #ifdef CONFIG_COMPAT
8912 struct compat_iovec __user *ciovs;
8913 struct compat_iovec ciov;
8915 ciovs = (struct compat_iovec __user *) arg;
8916 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8919 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8920 dst->iov_len = ciov.iov_len;
8924 src = (struct iovec __user *) arg;
8925 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8931 * Not super efficient, but this is just a registration time. And we do cache
8932 * the last compound head, so generally we'll only do a full search if we don't
8935 * We check if the given compound head page has already been accounted, to
8936 * avoid double accounting it. This allows us to account the full size of the
8937 * page, not just the constituent pages of a huge page.
8939 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8940 int nr_pages, struct page *hpage)
8944 /* check current page array */
8945 for (i = 0; i < nr_pages; i++) {
8946 if (!PageCompound(pages[i]))
8948 if (compound_head(pages[i]) == hpage)
8952 /* check previously registered pages */
8953 for (i = 0; i < ctx->nr_user_bufs; i++) {
8954 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8956 for (j = 0; j < imu->nr_bvecs; j++) {
8957 if (!PageCompound(imu->bvec[j].bv_page))
8959 if (compound_head(imu->bvec[j].bv_page) == hpage)
8967 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8968 int nr_pages, struct io_mapped_ubuf *imu,
8969 struct page **last_hpage)
8973 imu->acct_pages = 0;
8974 for (i = 0; i < nr_pages; i++) {
8975 if (!PageCompound(pages[i])) {
8980 hpage = compound_head(pages[i]);
8981 if (hpage == *last_hpage)
8983 *last_hpage = hpage;
8984 if (headpage_already_acct(ctx, pages, i, hpage))
8986 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8990 if (!imu->acct_pages)
8993 ret = io_account_mem(ctx, imu->acct_pages);
8995 imu->acct_pages = 0;
8999 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
9000 struct io_mapped_ubuf **pimu,
9001 struct page **last_hpage)
9003 struct io_mapped_ubuf *imu = NULL;
9004 struct vm_area_struct **vmas = NULL;
9005 struct page **pages = NULL;
9006 unsigned long off, start, end, ubuf;
9008 int ret, pret, nr_pages, i;
9010 if (!iov->iov_base) {
9011 *pimu = ctx->dummy_ubuf;
9015 ubuf = (unsigned long) iov->iov_base;
9016 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
9017 start = ubuf >> PAGE_SHIFT;
9018 nr_pages = end - start;
9023 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
9027 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
9032 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
9037 mmap_read_lock(current->mm);
9038 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
9040 if (pret == nr_pages) {
9041 /* don't support file backed memory */
9042 for (i = 0; i < nr_pages; i++) {
9043 struct vm_area_struct *vma = vmas[i];
9045 if (vma_is_shmem(vma))
9048 !is_file_hugepages(vma->vm_file)) {
9054 ret = pret < 0 ? pret : -EFAULT;
9056 mmap_read_unlock(current->mm);
9059 * if we did partial map, or found file backed vmas,
9060 * release any pages we did get
9063 unpin_user_pages(pages, pret);
9067 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
9069 unpin_user_pages(pages, pret);
9073 off = ubuf & ~PAGE_MASK;
9074 size = iov->iov_len;
9075 for (i = 0; i < nr_pages; i++) {
9078 vec_len = min_t(size_t, size, PAGE_SIZE - off);
9079 imu->bvec[i].bv_page = pages[i];
9080 imu->bvec[i].bv_len = vec_len;
9081 imu->bvec[i].bv_offset = off;
9085 /* store original address for later verification */
9087 imu->ubuf_end = ubuf + iov->iov_len;
9088 imu->nr_bvecs = nr_pages;
9099 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
9101 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
9102 return ctx->user_bufs ? 0 : -ENOMEM;
9105 static int io_buffer_validate(struct iovec *iov)
9107 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
9110 * Don't impose further limits on the size and buffer
9111 * constraints here, we'll -EINVAL later when IO is
9112 * submitted if they are wrong.
9115 return iov->iov_len ? -EFAULT : 0;
9119 /* arbitrary limit, but we need something */
9120 if (iov->iov_len > SZ_1G)
9123 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9129 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9130 unsigned int nr_args, u64 __user *tags)
9132 struct page *last_hpage = NULL;
9133 struct io_rsrc_data *data;
9139 if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9141 ret = io_rsrc_node_switch_start(ctx);
9144 ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9147 ret = io_buffers_map_alloc(ctx, nr_args);
9149 io_rsrc_data_free(data);
9153 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9154 ret = io_copy_iov(ctx, &iov, arg, i);
9157 ret = io_buffer_validate(&iov);
9160 if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9165 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9171 WARN_ON_ONCE(ctx->buf_data);
9173 ctx->buf_data = data;
9175 __io_sqe_buffers_unregister(ctx);
9177 io_rsrc_node_switch(ctx, NULL);
9181 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9182 struct io_uring_rsrc_update2 *up,
9183 unsigned int nr_args)
9185 u64 __user *tags = u64_to_user_ptr(up->tags);
9186 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9187 struct page *last_hpage = NULL;
9188 bool needs_switch = false;
9194 if (up->offset + nr_args > ctx->nr_user_bufs)
9197 for (done = 0; done < nr_args; done++) {
9198 struct io_mapped_ubuf *imu;
9199 int offset = up->offset + done;
9202 err = io_copy_iov(ctx, &iov, iovs, done);
9205 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9209 err = io_buffer_validate(&iov);
9212 if (!iov.iov_base && tag) {
9216 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9220 i = array_index_nospec(offset, ctx->nr_user_bufs);
9221 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9222 err = io_queue_rsrc_removal(ctx->buf_data, offset,
9223 ctx->rsrc_node, ctx->user_bufs[i]);
9224 if (unlikely(err)) {
9225 io_buffer_unmap(ctx, &imu);
9228 ctx->user_bufs[i] = NULL;
9229 needs_switch = true;
9232 ctx->user_bufs[i] = imu;
9233 *io_get_tag_slot(ctx->buf_data, offset) = tag;
9237 io_rsrc_node_switch(ctx, ctx->buf_data);
9238 return done ? done : err;
9241 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9243 __s32 __user *fds = arg;
9249 if (copy_from_user(&fd, fds, sizeof(*fds)))
9252 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9253 if (IS_ERR(ctx->cq_ev_fd)) {
9254 int ret = PTR_ERR(ctx->cq_ev_fd);
9256 ctx->cq_ev_fd = NULL;
9263 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9265 if (ctx->cq_ev_fd) {
9266 eventfd_ctx_put(ctx->cq_ev_fd);
9267 ctx->cq_ev_fd = NULL;
9274 static void io_destroy_buffers(struct io_ring_ctx *ctx)
9276 struct io_buffer *buf;
9277 unsigned long index;
9279 xa_for_each(&ctx->io_buffers, index, buf)
9280 __io_remove_buffers(ctx, buf, index, -1U);
9283 static void io_req_cache_free(struct list_head *list)
9285 struct io_kiocb *req, *nxt;
9287 list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9288 list_del(&req->inflight_entry);
9289 kmem_cache_free(req_cachep, req);
9293 static void io_req_caches_free(struct io_ring_ctx *ctx)
9295 struct io_submit_state *state = &ctx->submit_state;
9297 mutex_lock(&ctx->uring_lock);
9299 if (state->free_reqs) {
9300 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9301 state->free_reqs = 0;
9304 io_flush_cached_locked_reqs(ctx, state);
9305 io_req_cache_free(&state->free_list);
9306 mutex_unlock(&ctx->uring_lock);
9309 static void io_wait_rsrc_data(struct io_rsrc_data *data)
9311 if (data && !atomic_dec_and_test(&data->refs))
9312 wait_for_completion(&data->done);
9315 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9317 io_sq_thread_finish(ctx);
9319 if (ctx->mm_account) {
9320 mmdrop(ctx->mm_account);
9321 ctx->mm_account = NULL;
9324 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9325 io_wait_rsrc_data(ctx->buf_data);
9326 io_wait_rsrc_data(ctx->file_data);
9328 mutex_lock(&ctx->uring_lock);
9330 __io_sqe_buffers_unregister(ctx);
9332 __io_sqe_files_unregister(ctx);
9334 __io_cqring_overflow_flush(ctx, true);
9335 mutex_unlock(&ctx->uring_lock);
9336 io_eventfd_unregister(ctx);
9337 io_destroy_buffers(ctx);
9339 put_cred(ctx->sq_creds);
9341 /* there are no registered resources left, nobody uses it */
9343 io_rsrc_node_destroy(ctx->rsrc_node);
9344 if (ctx->rsrc_backup_node)
9345 io_rsrc_node_destroy(ctx->rsrc_backup_node);
9346 flush_delayed_work(&ctx->rsrc_put_work);
9348 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9349 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9351 #if defined(CONFIG_UNIX)
9352 if (ctx->ring_sock) {
9353 ctx->ring_sock->file = NULL; /* so that iput() is called */
9354 sock_release(ctx->ring_sock);
9357 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9359 io_mem_free(ctx->rings);
9360 io_mem_free(ctx->sq_sqes);
9362 percpu_ref_exit(&ctx->refs);
9363 free_uid(ctx->user);
9364 io_req_caches_free(ctx);
9366 io_wq_put_hash(ctx->hash_map);
9367 kfree(ctx->cancel_hash);
9368 kfree(ctx->dummy_ubuf);
9372 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9374 struct io_ring_ctx *ctx = file->private_data;
9377 poll_wait(file, &ctx->poll_wait, wait);
9379 * synchronizes with barrier from wq_has_sleeper call in
9383 if (!io_sqring_full(ctx))
9384 mask |= EPOLLOUT | EPOLLWRNORM;
9387 * Don't flush cqring overflow list here, just do a simple check.
9388 * Otherwise there could possible be ABBA deadlock:
9391 * lock(&ctx->uring_lock);
9393 * lock(&ctx->uring_lock);
9396 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9397 * pushs them to do the flush.
9399 if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9400 mask |= EPOLLIN | EPOLLRDNORM;
9405 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9407 const struct cred *creds;
9409 creds = xa_erase(&ctx->personalities, id);
9418 struct io_tctx_exit {
9419 struct callback_head task_work;
9420 struct completion completion;
9421 struct io_ring_ctx *ctx;
9424 static void io_tctx_exit_cb(struct callback_head *cb)
9426 struct io_uring_task *tctx = current->io_uring;
9427 struct io_tctx_exit *work;
9429 work = container_of(cb, struct io_tctx_exit, task_work);
9431 * When @in_idle, we're in cancellation and it's racy to remove the
9432 * node. It'll be removed by the end of cancellation, just ignore it.
9434 if (!atomic_read(&tctx->in_idle))
9435 io_uring_del_tctx_node((unsigned long)work->ctx);
9436 complete(&work->completion);
9439 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9441 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9443 return req->ctx == data;
9446 static void io_ring_exit_work(struct work_struct *work)
9448 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9449 unsigned long timeout = jiffies + HZ * 60 * 5;
9450 unsigned long interval = HZ / 20;
9451 struct io_tctx_exit exit;
9452 struct io_tctx_node *node;
9456 * If we're doing polled IO and end up having requests being
9457 * submitted async (out-of-line), then completions can come in while
9458 * we're waiting for refs to drop. We need to reap these manually,
9459 * as nobody else will be looking for them.
9462 io_uring_try_cancel_requests(ctx, NULL, true);
9464 struct io_sq_data *sqd = ctx->sq_data;
9465 struct task_struct *tsk;
9467 io_sq_thread_park(sqd);
9469 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9470 io_wq_cancel_cb(tsk->io_uring->io_wq,
9471 io_cancel_ctx_cb, ctx, true);
9472 io_sq_thread_unpark(sqd);
9475 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9476 /* there is little hope left, don't run it too often */
9479 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
9481 init_completion(&exit.completion);
9482 init_task_work(&exit.task_work, io_tctx_exit_cb);
9485 * Some may use context even when all refs and requests have been put,
9486 * and they are free to do so while still holding uring_lock or
9487 * completion_lock, see io_req_task_submit(). Apart from other work,
9488 * this lock/unlock section also waits them to finish.
9490 mutex_lock(&ctx->uring_lock);
9491 while (!list_empty(&ctx->tctx_list)) {
9492 WARN_ON_ONCE(time_after(jiffies, timeout));
9494 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9496 /* don't spin on a single task if cancellation failed */
9497 list_rotate_left(&ctx->tctx_list);
9498 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9499 if (WARN_ON_ONCE(ret))
9501 wake_up_process(node->task);
9503 mutex_unlock(&ctx->uring_lock);
9504 wait_for_completion(&exit.completion);
9505 mutex_lock(&ctx->uring_lock);
9507 mutex_unlock(&ctx->uring_lock);
9508 spin_lock(&ctx->completion_lock);
9509 spin_unlock(&ctx->completion_lock);
9511 io_ring_ctx_free(ctx);
9514 /* Returns true if we found and killed one or more timeouts */
9515 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9518 struct io_kiocb *req, *tmp;
9521 spin_lock(&ctx->completion_lock);
9522 spin_lock_irq(&ctx->timeout_lock);
9523 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9524 if (io_match_task(req, tsk, cancel_all)) {
9525 io_kill_timeout(req, -ECANCELED);
9529 spin_unlock_irq(&ctx->timeout_lock);
9531 io_commit_cqring(ctx);
9532 spin_unlock(&ctx->completion_lock);
9534 io_cqring_ev_posted(ctx);
9535 return canceled != 0;
9538 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9540 unsigned long index;
9541 struct creds *creds;
9543 mutex_lock(&ctx->uring_lock);
9544 percpu_ref_kill(&ctx->refs);
9546 __io_cqring_overflow_flush(ctx, true);
9547 xa_for_each(&ctx->personalities, index, creds)
9548 io_unregister_personality(ctx, index);
9549 mutex_unlock(&ctx->uring_lock);
9551 io_kill_timeouts(ctx, NULL, true);
9552 io_poll_remove_all(ctx, NULL, true);
9554 /* if we failed setting up the ctx, we might not have any rings */
9555 io_iopoll_try_reap_events(ctx);
9557 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9559 * Use system_unbound_wq to avoid spawning tons of event kworkers
9560 * if we're exiting a ton of rings at the same time. It just adds
9561 * noise and overhead, there's no discernable change in runtime
9562 * over using system_wq.
9564 queue_work(system_unbound_wq, &ctx->exit_work);
9567 static int io_uring_release(struct inode *inode, struct file *file)
9569 struct io_ring_ctx *ctx = file->private_data;
9571 file->private_data = NULL;
9572 io_ring_ctx_wait_and_kill(ctx);
9576 struct io_task_cancel {
9577 struct task_struct *task;
9581 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9583 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9584 struct io_task_cancel *cancel = data;
9586 return io_match_task_safe(req, cancel->task, cancel->all);
9589 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9590 struct task_struct *task, bool cancel_all)
9592 struct io_defer_entry *de;
9595 spin_lock(&ctx->completion_lock);
9596 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9597 if (io_match_task_safe(de->req, task, cancel_all)) {
9598 list_cut_position(&list, &ctx->defer_list, &de->list);
9602 spin_unlock(&ctx->completion_lock);
9603 if (list_empty(&list))
9606 while (!list_empty(&list)) {
9607 de = list_first_entry(&list, struct io_defer_entry, list);
9608 list_del_init(&de->list);
9609 io_req_complete_failed(de->req, -ECANCELED);
9615 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9617 struct io_tctx_node *node;
9618 enum io_wq_cancel cret;
9621 mutex_lock(&ctx->uring_lock);
9622 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9623 struct io_uring_task *tctx = node->task->io_uring;
9626 * io_wq will stay alive while we hold uring_lock, because it's
9627 * killed after ctx nodes, which requires to take the lock.
9629 if (!tctx || !tctx->io_wq)
9631 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9632 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9634 mutex_unlock(&ctx->uring_lock);
9639 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9640 struct task_struct *task,
9643 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9644 struct io_uring_task *tctx = task ? task->io_uring : NULL;
9647 enum io_wq_cancel cret;
9651 ret |= io_uring_try_cancel_iowq(ctx);
9652 } else if (tctx && tctx->io_wq) {
9654 * Cancels requests of all rings, not only @ctx, but
9655 * it's fine as the task is in exit/exec.
9657 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9659 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9662 /* SQPOLL thread does its own polling */
9663 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9664 (ctx->sq_data && ctx->sq_data->thread == current)) {
9665 while (!list_empty_careful(&ctx->iopoll_list)) {
9666 io_iopoll_try_reap_events(ctx);
9671 ret |= io_cancel_defer_files(ctx, task, cancel_all);
9672 ret |= io_poll_remove_all(ctx, task, cancel_all);
9673 ret |= io_kill_timeouts(ctx, task, cancel_all);
9675 ret |= io_run_task_work();
9682 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9684 struct io_uring_task *tctx = current->io_uring;
9685 struct io_tctx_node *node;
9688 if (unlikely(!tctx)) {
9689 ret = io_uring_alloc_task_context(current, ctx);
9693 tctx = current->io_uring;
9694 if (ctx->iowq_limits_set) {
9695 unsigned int limits[2] = { ctx->iowq_limits[0],
9696 ctx->iowq_limits[1], };
9698 ret = io_wq_max_workers(tctx->io_wq, limits);
9703 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9704 node = kmalloc(sizeof(*node), GFP_KERNEL);
9708 node->task = current;
9710 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9717 mutex_lock(&ctx->uring_lock);
9718 list_add(&node->ctx_node, &ctx->tctx_list);
9719 mutex_unlock(&ctx->uring_lock);
9726 * Note that this task has used io_uring. We use it for cancelation purposes.
9728 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9730 struct io_uring_task *tctx = current->io_uring;
9732 if (likely(tctx && tctx->last == ctx))
9734 return __io_uring_add_tctx_node(ctx);
9738 * Remove this io_uring_file -> task mapping.
9740 static void io_uring_del_tctx_node(unsigned long index)
9742 struct io_uring_task *tctx = current->io_uring;
9743 struct io_tctx_node *node;
9747 node = xa_erase(&tctx->xa, index);
9751 WARN_ON_ONCE(current != node->task);
9752 WARN_ON_ONCE(list_empty(&node->ctx_node));
9754 mutex_lock(&node->ctx->uring_lock);
9755 list_del(&node->ctx_node);
9756 mutex_unlock(&node->ctx->uring_lock);
9758 if (tctx->last == node->ctx)
9763 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9765 struct io_wq *wq = tctx->io_wq;
9766 struct io_tctx_node *node;
9767 unsigned long index;
9769 xa_for_each(&tctx->xa, index, node) {
9770 io_uring_del_tctx_node(index);
9775 * Must be after io_uring_del_task_file() (removes nodes under
9776 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9778 io_wq_put_and_exit(wq);
9783 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9786 return atomic_read(&tctx->inflight_tracked);
9787 return percpu_counter_sum(&tctx->inflight);
9791 * Find any io_uring ctx that this task has registered or done IO on, and cancel
9792 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
9794 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9796 struct io_uring_task *tctx = current->io_uring;
9797 struct io_ring_ctx *ctx;
9801 WARN_ON_ONCE(sqd && sqd->thread != current);
9803 if (!current->io_uring)
9806 io_wq_exit_start(tctx->io_wq);
9808 atomic_inc(&tctx->in_idle);
9810 io_uring_drop_tctx_refs(current);
9811 /* read completions before cancelations */
9812 inflight = tctx_inflight(tctx, !cancel_all);
9817 struct io_tctx_node *node;
9818 unsigned long index;
9820 xa_for_each(&tctx->xa, index, node) {
9821 /* sqpoll task will cancel all its requests */
9822 if (node->ctx->sq_data)
9824 io_uring_try_cancel_requests(node->ctx, current,
9828 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9829 io_uring_try_cancel_requests(ctx, current,
9833 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
9835 io_uring_drop_tctx_refs(current);
9838 * If we've seen completions, retry without waiting. This
9839 * avoids a race where a completion comes in before we did
9840 * prepare_to_wait().
9842 if (inflight == tctx_inflight(tctx, !cancel_all))
9844 finish_wait(&tctx->wait, &wait);
9847 io_uring_clean_tctx(tctx);
9850 * We shouldn't run task_works after cancel, so just leave
9851 * ->in_idle set for normal exit.
9853 atomic_dec(&tctx->in_idle);
9854 /* for exec all current's requests should be gone, kill tctx */
9855 __io_uring_free(current);
9859 void __io_uring_cancel(bool cancel_all)
9861 io_uring_cancel_generic(cancel_all, NULL);
9864 static void *io_uring_validate_mmap_request(struct file *file,
9865 loff_t pgoff, size_t sz)
9867 struct io_ring_ctx *ctx = file->private_data;
9868 loff_t offset = pgoff << PAGE_SHIFT;
9873 case IORING_OFF_SQ_RING:
9874 case IORING_OFF_CQ_RING:
9877 case IORING_OFF_SQES:
9881 return ERR_PTR(-EINVAL);
9884 page = virt_to_head_page(ptr);
9885 if (sz > page_size(page))
9886 return ERR_PTR(-EINVAL);
9893 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9895 size_t sz = vma->vm_end - vma->vm_start;
9899 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9901 return PTR_ERR(ptr);
9903 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9904 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9907 #else /* !CONFIG_MMU */
9909 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9911 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9914 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9916 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9919 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9920 unsigned long addr, unsigned long len,
9921 unsigned long pgoff, unsigned long flags)
9925 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9927 return PTR_ERR(ptr);
9929 return (unsigned long) ptr;
9932 #endif /* !CONFIG_MMU */
9934 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9939 if (!io_sqring_full(ctx))
9941 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9943 if (!io_sqring_full(ctx))
9946 } while (!signal_pending(current));
9948 finish_wait(&ctx->sqo_sq_wait, &wait);
9952 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9953 struct __kernel_timespec __user **ts,
9954 const sigset_t __user **sig)
9956 struct io_uring_getevents_arg arg;
9959 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9960 * is just a pointer to the sigset_t.
9962 if (!(flags & IORING_ENTER_EXT_ARG)) {
9963 *sig = (const sigset_t __user *) argp;
9969 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9970 * timespec and sigset_t pointers if good.
9972 if (*argsz != sizeof(arg))
9974 if (copy_from_user(&arg, argp, sizeof(arg)))
9976 *sig = u64_to_user_ptr(arg.sigmask);
9977 *argsz = arg.sigmask_sz;
9978 *ts = u64_to_user_ptr(arg.ts);
9982 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9983 u32, min_complete, u32, flags, const void __user *, argp,
9986 struct io_ring_ctx *ctx;
9993 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9994 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
9998 if (unlikely(!f.file))
10002 if (unlikely(f.file->f_op != &io_uring_fops))
10006 ctx = f.file->private_data;
10007 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
10011 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
10015 * For SQ polling, the thread will do all submissions and completions.
10016 * Just return the requested submit count, and wake the thread if
10017 * we were asked to.
10020 if (ctx->flags & IORING_SETUP_SQPOLL) {
10021 io_cqring_overflow_flush(ctx);
10023 if (unlikely(ctx->sq_data->thread == NULL)) {
10027 if (flags & IORING_ENTER_SQ_WAKEUP)
10028 wake_up(&ctx->sq_data->wait);
10029 if (flags & IORING_ENTER_SQ_WAIT) {
10030 ret = io_sqpoll_wait_sq(ctx);
10034 submitted = to_submit;
10035 } else if (to_submit) {
10036 ret = io_uring_add_tctx_node(ctx);
10039 mutex_lock(&ctx->uring_lock);
10040 submitted = io_submit_sqes(ctx, to_submit);
10041 mutex_unlock(&ctx->uring_lock);
10043 if (submitted != to_submit)
10046 if (flags & IORING_ENTER_GETEVENTS) {
10047 const sigset_t __user *sig;
10048 struct __kernel_timespec __user *ts;
10050 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
10054 min_complete = min(min_complete, ctx->cq_entries);
10057 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
10058 * space applications don't need to do io completion events
10059 * polling again, they can rely on io_sq_thread to do polling
10060 * work, which can reduce cpu usage and uring_lock contention.
10062 if (ctx->flags & IORING_SETUP_IOPOLL &&
10063 !(ctx->flags & IORING_SETUP_SQPOLL)) {
10064 ret = io_iopoll_check(ctx, min_complete);
10066 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
10071 percpu_ref_put(&ctx->refs);
10074 return submitted ? submitted : ret;
10077 #ifdef CONFIG_PROC_FS
10078 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
10079 const struct cred *cred)
10081 struct user_namespace *uns = seq_user_ns(m);
10082 struct group_info *gi;
10087 seq_printf(m, "%5d\n", id);
10088 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
10089 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
10090 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
10091 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
10092 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
10093 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
10094 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
10095 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
10096 seq_puts(m, "\n\tGroups:\t");
10097 gi = cred->group_info;
10098 for (g = 0; g < gi->ngroups; g++) {
10099 seq_put_decimal_ull(m, g ? " " : "",
10100 from_kgid_munged(uns, gi->gid[g]));
10102 seq_puts(m, "\n\tCapEff:\t");
10103 cap = cred->cap_effective;
10104 CAP_FOR_EACH_U32(__capi)
10105 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
10110 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
10112 struct io_sq_data *sq = NULL;
10117 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10118 * since fdinfo case grabs it in the opposite direction of normal use
10119 * cases. If we fail to get the lock, we just don't iterate any
10120 * structures that could be going away outside the io_uring mutex.
10122 has_lock = mutex_trylock(&ctx->uring_lock);
10124 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10130 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
10131 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
10132 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10133 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10134 struct file *f = io_file_from_index(ctx, i);
10137 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10139 seq_printf(m, "%5u: <none>\n", i);
10141 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10142 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10143 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10144 unsigned int len = buf->ubuf_end - buf->ubuf;
10146 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10148 if (has_lock && !xa_empty(&ctx->personalities)) {
10149 unsigned long index;
10150 const struct cred *cred;
10152 seq_printf(m, "Personalities:\n");
10153 xa_for_each(&ctx->personalities, index, cred)
10154 io_uring_show_cred(m, index, cred);
10156 seq_printf(m, "PollList:\n");
10157 spin_lock(&ctx->completion_lock);
10158 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10159 struct hlist_head *list = &ctx->cancel_hash[i];
10160 struct io_kiocb *req;
10162 hlist_for_each_entry(req, list, hash_node)
10163 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
10164 req->task->task_works != NULL);
10166 spin_unlock(&ctx->completion_lock);
10168 mutex_unlock(&ctx->uring_lock);
10171 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10173 struct io_ring_ctx *ctx = f->private_data;
10175 if (percpu_ref_tryget(&ctx->refs)) {
10176 __io_uring_show_fdinfo(ctx, m);
10177 percpu_ref_put(&ctx->refs);
10182 static const struct file_operations io_uring_fops = {
10183 .release = io_uring_release,
10184 .mmap = io_uring_mmap,
10186 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
10187 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
10189 .poll = io_uring_poll,
10190 #ifdef CONFIG_PROC_FS
10191 .show_fdinfo = io_uring_show_fdinfo,
10195 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10196 struct io_uring_params *p)
10198 struct io_rings *rings;
10199 size_t size, sq_array_offset;
10201 /* make sure these are sane, as we already accounted them */
10202 ctx->sq_entries = p->sq_entries;
10203 ctx->cq_entries = p->cq_entries;
10205 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10206 if (size == SIZE_MAX)
10209 rings = io_mem_alloc(size);
10213 ctx->rings = rings;
10214 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10215 rings->sq_ring_mask = p->sq_entries - 1;
10216 rings->cq_ring_mask = p->cq_entries - 1;
10217 rings->sq_ring_entries = p->sq_entries;
10218 rings->cq_ring_entries = p->cq_entries;
10220 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10221 if (size == SIZE_MAX) {
10222 io_mem_free(ctx->rings);
10227 ctx->sq_sqes = io_mem_alloc(size);
10228 if (!ctx->sq_sqes) {
10229 io_mem_free(ctx->rings);
10237 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10241 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10245 ret = io_uring_add_tctx_node(ctx);
10250 fd_install(fd, file);
10255 * Allocate an anonymous fd, this is what constitutes the application
10256 * visible backing of an io_uring instance. The application mmaps this
10257 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10258 * we have to tie this fd to a socket for file garbage collection purposes.
10260 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10263 #if defined(CONFIG_UNIX)
10266 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10269 return ERR_PTR(ret);
10272 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10273 O_RDWR | O_CLOEXEC);
10274 #if defined(CONFIG_UNIX)
10275 if (IS_ERR(file)) {
10276 sock_release(ctx->ring_sock);
10277 ctx->ring_sock = NULL;
10279 ctx->ring_sock->file = file;
10285 static int io_uring_create(unsigned entries, struct io_uring_params *p,
10286 struct io_uring_params __user *params)
10288 struct io_ring_ctx *ctx;
10294 if (entries > IORING_MAX_ENTRIES) {
10295 if (!(p->flags & IORING_SETUP_CLAMP))
10297 entries = IORING_MAX_ENTRIES;
10301 * Use twice as many entries for the CQ ring. It's possible for the
10302 * application to drive a higher depth than the size of the SQ ring,
10303 * since the sqes are only used at submission time. This allows for
10304 * some flexibility in overcommitting a bit. If the application has
10305 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10306 * of CQ ring entries manually.
10308 p->sq_entries = roundup_pow_of_two(entries);
10309 if (p->flags & IORING_SETUP_CQSIZE) {
10311 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10312 * to a power-of-two, if it isn't already. We do NOT impose
10313 * any cq vs sq ring sizing.
10315 if (!p->cq_entries)
10317 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10318 if (!(p->flags & IORING_SETUP_CLAMP))
10320 p->cq_entries = IORING_MAX_CQ_ENTRIES;
10322 p->cq_entries = roundup_pow_of_two(p->cq_entries);
10323 if (p->cq_entries < p->sq_entries)
10326 p->cq_entries = 2 * p->sq_entries;
10329 ctx = io_ring_ctx_alloc(p);
10332 ctx->compat = in_compat_syscall();
10333 if (!capable(CAP_IPC_LOCK))
10334 ctx->user = get_uid(current_user());
10337 * This is just grabbed for accounting purposes. When a process exits,
10338 * the mm is exited and dropped before the files, hence we need to hang
10339 * on to this mm purely for the purposes of being able to unaccount
10340 * memory (locked/pinned vm). It's not used for anything else.
10342 mmgrab(current->mm);
10343 ctx->mm_account = current->mm;
10345 ret = io_allocate_scq_urings(ctx, p);
10349 ret = io_sq_offload_create(ctx, p);
10352 /* always set a rsrc node */
10353 ret = io_rsrc_node_switch_start(ctx);
10356 io_rsrc_node_switch(ctx, NULL);
10358 memset(&p->sq_off, 0, sizeof(p->sq_off));
10359 p->sq_off.head = offsetof(struct io_rings, sq.head);
10360 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10361 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10362 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10363 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10364 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10365 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10367 memset(&p->cq_off, 0, sizeof(p->cq_off));
10368 p->cq_off.head = offsetof(struct io_rings, cq.head);
10369 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10370 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10371 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10372 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10373 p->cq_off.cqes = offsetof(struct io_rings, cqes);
10374 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10376 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10377 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10378 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10379 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10380 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10381 IORING_FEAT_RSRC_TAGS;
10383 if (copy_to_user(params, p, sizeof(*p))) {
10388 file = io_uring_get_file(ctx);
10389 if (IS_ERR(file)) {
10390 ret = PTR_ERR(file);
10395 * Install ring fd as the very last thing, so we don't risk someone
10396 * having closed it before we finish setup
10398 ret = io_uring_install_fd(ctx, file);
10400 /* fput will clean it up */
10405 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10408 io_ring_ctx_wait_and_kill(ctx);
10413 * Sets up an aio uring context, and returns the fd. Applications asks for a
10414 * ring size, we return the actual sq/cq ring sizes (among other things) in the
10415 * params structure passed in.
10417 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10419 struct io_uring_params p;
10422 if (copy_from_user(&p, params, sizeof(p)))
10424 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10429 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10430 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10431 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10432 IORING_SETUP_R_DISABLED))
10435 return io_uring_create(entries, &p, params);
10438 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10439 struct io_uring_params __user *, params)
10441 return io_uring_setup(entries, params);
10444 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10446 struct io_uring_probe *p;
10450 size = struct_size(p, ops, nr_args);
10451 if (size == SIZE_MAX)
10453 p = kzalloc(size, GFP_KERNEL);
10458 if (copy_from_user(p, arg, size))
10461 if (memchr_inv(p, 0, size))
10464 p->last_op = IORING_OP_LAST - 1;
10465 if (nr_args > IORING_OP_LAST)
10466 nr_args = IORING_OP_LAST;
10468 for (i = 0; i < nr_args; i++) {
10470 if (!io_op_defs[i].not_supported)
10471 p->ops[i].flags = IO_URING_OP_SUPPORTED;
10476 if (copy_to_user(arg, p, size))
10483 static int io_register_personality(struct io_ring_ctx *ctx)
10485 const struct cred *creds;
10489 creds = get_current_cred();
10491 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10492 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10500 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10501 unsigned int nr_args)
10503 struct io_uring_restriction *res;
10507 /* Restrictions allowed only if rings started disabled */
10508 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10511 /* We allow only a single restrictions registration */
10512 if (ctx->restrictions.registered)
10515 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10518 size = array_size(nr_args, sizeof(*res));
10519 if (size == SIZE_MAX)
10522 res = memdup_user(arg, size);
10524 return PTR_ERR(res);
10528 for (i = 0; i < nr_args; i++) {
10529 switch (res[i].opcode) {
10530 case IORING_RESTRICTION_REGISTER_OP:
10531 if (res[i].register_op >= IORING_REGISTER_LAST) {
10536 __set_bit(res[i].register_op,
10537 ctx->restrictions.register_op);
10539 case IORING_RESTRICTION_SQE_OP:
10540 if (res[i].sqe_op >= IORING_OP_LAST) {
10545 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10547 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10548 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10550 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10551 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10560 /* Reset all restrictions if an error happened */
10562 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10564 ctx->restrictions.registered = true;
10570 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10572 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10575 if (ctx->restrictions.registered)
10576 ctx->restricted = 1;
10578 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10579 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10580 wake_up(&ctx->sq_data->wait);
10584 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10585 struct io_uring_rsrc_update2 *up,
10593 if (check_add_overflow(up->offset, nr_args, &tmp))
10595 err = io_rsrc_node_switch_start(ctx);
10600 case IORING_RSRC_FILE:
10601 return __io_sqe_files_update(ctx, up, nr_args);
10602 case IORING_RSRC_BUFFER:
10603 return __io_sqe_buffers_update(ctx, up, nr_args);
10608 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10611 struct io_uring_rsrc_update2 up;
10615 memset(&up, 0, sizeof(up));
10616 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10618 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10621 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10622 unsigned size, unsigned type)
10624 struct io_uring_rsrc_update2 up;
10626 if (size != sizeof(up))
10628 if (copy_from_user(&up, arg, sizeof(up)))
10630 if (!up.nr || up.resv)
10632 return __io_register_rsrc_update(ctx, type, &up, up.nr);
10635 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10636 unsigned int size, unsigned int type)
10638 struct io_uring_rsrc_register rr;
10640 /* keep it extendible */
10641 if (size != sizeof(rr))
10644 memset(&rr, 0, sizeof(rr));
10645 if (copy_from_user(&rr, arg, size))
10647 if (!rr.nr || rr.resv || rr.resv2)
10651 case IORING_RSRC_FILE:
10652 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10653 rr.nr, u64_to_user_ptr(rr.tags));
10654 case IORING_RSRC_BUFFER:
10655 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10656 rr.nr, u64_to_user_ptr(rr.tags));
10661 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10664 struct io_uring_task *tctx = current->io_uring;
10665 cpumask_var_t new_mask;
10668 if (!tctx || !tctx->io_wq)
10671 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10674 cpumask_clear(new_mask);
10675 if (len > cpumask_size())
10676 len = cpumask_size();
10678 if (copy_from_user(new_mask, arg, len)) {
10679 free_cpumask_var(new_mask);
10683 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10684 free_cpumask_var(new_mask);
10688 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10690 struct io_uring_task *tctx = current->io_uring;
10692 if (!tctx || !tctx->io_wq)
10695 return io_wq_cpu_affinity(tctx->io_wq, NULL);
10698 static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10700 __must_hold(&ctx->uring_lock)
10702 struct io_tctx_node *node;
10703 struct io_uring_task *tctx = NULL;
10704 struct io_sq_data *sqd = NULL;
10705 __u32 new_count[2];
10708 if (copy_from_user(new_count, arg, sizeof(new_count)))
10710 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10711 if (new_count[i] > INT_MAX)
10714 if (ctx->flags & IORING_SETUP_SQPOLL) {
10715 sqd = ctx->sq_data;
10718 * Observe the correct sqd->lock -> ctx->uring_lock
10719 * ordering. Fine to drop uring_lock here, we hold
10720 * a ref to the ctx.
10722 refcount_inc(&sqd->refs);
10723 mutex_unlock(&ctx->uring_lock);
10724 mutex_lock(&sqd->lock);
10725 mutex_lock(&ctx->uring_lock);
10727 tctx = sqd->thread->io_uring;
10730 tctx = current->io_uring;
10733 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
10735 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10737 ctx->iowq_limits[i] = new_count[i];
10738 ctx->iowq_limits_set = true;
10741 if (tctx && tctx->io_wq) {
10742 ret = io_wq_max_workers(tctx->io_wq, new_count);
10746 memset(new_count, 0, sizeof(new_count));
10750 mutex_unlock(&sqd->lock);
10751 io_put_sq_data(sqd);
10754 if (copy_to_user(arg, new_count, sizeof(new_count)))
10757 /* that's it for SQPOLL, only the SQPOLL task creates requests */
10761 /* now propagate the restriction to all registered users */
10762 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
10763 struct io_uring_task *tctx = node->task->io_uring;
10765 if (WARN_ON_ONCE(!tctx->io_wq))
10768 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10769 new_count[i] = ctx->iowq_limits[i];
10770 /* ignore errors, it always returns zero anyway */
10771 (void)io_wq_max_workers(tctx->io_wq, new_count);
10776 mutex_unlock(&sqd->lock);
10777 io_put_sq_data(sqd);
10782 static bool io_register_op_must_quiesce(int op)
10785 case IORING_REGISTER_BUFFERS:
10786 case IORING_UNREGISTER_BUFFERS:
10787 case IORING_REGISTER_FILES:
10788 case IORING_UNREGISTER_FILES:
10789 case IORING_REGISTER_FILES_UPDATE:
10790 case IORING_REGISTER_PROBE:
10791 case IORING_REGISTER_PERSONALITY:
10792 case IORING_UNREGISTER_PERSONALITY:
10793 case IORING_REGISTER_FILES2:
10794 case IORING_REGISTER_FILES_UPDATE2:
10795 case IORING_REGISTER_BUFFERS2:
10796 case IORING_REGISTER_BUFFERS_UPDATE:
10797 case IORING_REGISTER_IOWQ_AFF:
10798 case IORING_UNREGISTER_IOWQ_AFF:
10799 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10806 static int io_ctx_quiesce(struct io_ring_ctx *ctx)
10810 percpu_ref_kill(&ctx->refs);
10813 * Drop uring mutex before waiting for references to exit. If another
10814 * thread is currently inside io_uring_enter() it might need to grab the
10815 * uring_lock to make progress. If we hold it here across the drain
10816 * wait, then we can deadlock. It's safe to drop the mutex here, since
10817 * no new references will come in after we've killed the percpu ref.
10819 mutex_unlock(&ctx->uring_lock);
10821 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10824 ret = io_run_task_work_sig();
10825 } while (ret >= 0);
10826 mutex_lock(&ctx->uring_lock);
10829 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10833 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10834 void __user *arg, unsigned nr_args)
10835 __releases(ctx->uring_lock)
10836 __acquires(ctx->uring_lock)
10841 * We're inside the ring mutex, if the ref is already dying, then
10842 * someone else killed the ctx or is already going through
10843 * io_uring_register().
10845 if (percpu_ref_is_dying(&ctx->refs))
10848 if (ctx->restricted) {
10849 if (opcode >= IORING_REGISTER_LAST)
10851 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10852 if (!test_bit(opcode, ctx->restrictions.register_op))
10856 if (io_register_op_must_quiesce(opcode)) {
10857 ret = io_ctx_quiesce(ctx);
10863 case IORING_REGISTER_BUFFERS:
10864 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10866 case IORING_UNREGISTER_BUFFERS:
10868 if (arg || nr_args)
10870 ret = io_sqe_buffers_unregister(ctx);
10872 case IORING_REGISTER_FILES:
10873 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10875 case IORING_UNREGISTER_FILES:
10877 if (arg || nr_args)
10879 ret = io_sqe_files_unregister(ctx);
10881 case IORING_REGISTER_FILES_UPDATE:
10882 ret = io_register_files_update(ctx, arg, nr_args);
10884 case IORING_REGISTER_EVENTFD:
10885 case IORING_REGISTER_EVENTFD_ASYNC:
10889 ret = io_eventfd_register(ctx, arg);
10892 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10893 ctx->eventfd_async = 1;
10895 ctx->eventfd_async = 0;
10897 case IORING_UNREGISTER_EVENTFD:
10899 if (arg || nr_args)
10901 ret = io_eventfd_unregister(ctx);
10903 case IORING_REGISTER_PROBE:
10905 if (!arg || nr_args > 256)
10907 ret = io_probe(ctx, arg, nr_args);
10909 case IORING_REGISTER_PERSONALITY:
10911 if (arg || nr_args)
10913 ret = io_register_personality(ctx);
10915 case IORING_UNREGISTER_PERSONALITY:
10919 ret = io_unregister_personality(ctx, nr_args);
10921 case IORING_REGISTER_ENABLE_RINGS:
10923 if (arg || nr_args)
10925 ret = io_register_enable_rings(ctx);
10927 case IORING_REGISTER_RESTRICTIONS:
10928 ret = io_register_restrictions(ctx, arg, nr_args);
10930 case IORING_REGISTER_FILES2:
10931 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
10933 case IORING_REGISTER_FILES_UPDATE2:
10934 ret = io_register_rsrc_update(ctx, arg, nr_args,
10937 case IORING_REGISTER_BUFFERS2:
10938 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
10940 case IORING_REGISTER_BUFFERS_UPDATE:
10941 ret = io_register_rsrc_update(ctx, arg, nr_args,
10942 IORING_RSRC_BUFFER);
10944 case IORING_REGISTER_IOWQ_AFF:
10946 if (!arg || !nr_args)
10948 ret = io_register_iowq_aff(ctx, arg, nr_args);
10950 case IORING_UNREGISTER_IOWQ_AFF:
10952 if (arg || nr_args)
10954 ret = io_unregister_iowq_aff(ctx);
10956 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10958 if (!arg || nr_args != 2)
10960 ret = io_register_iowq_max_workers(ctx, arg);
10967 if (io_register_op_must_quiesce(opcode)) {
10968 /* bring the ctx back to life */
10969 percpu_ref_reinit(&ctx->refs);
10970 reinit_completion(&ctx->ref_comp);
10975 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10976 void __user *, arg, unsigned int, nr_args)
10978 struct io_ring_ctx *ctx;
10987 if (f.file->f_op != &io_uring_fops)
10990 ctx = f.file->private_data;
10992 io_run_task_work();
10994 mutex_lock(&ctx->uring_lock);
10995 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10996 mutex_unlock(&ctx->uring_lock);
10997 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10998 ctx->cq_ev_fd != NULL, ret);
11004 static int __init io_uring_init(void)
11006 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
11007 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
11008 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
11011 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
11012 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
11013 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
11014 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
11015 BUILD_BUG_SQE_ELEM(1, __u8, flags);
11016 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
11017 BUILD_BUG_SQE_ELEM(4, __s32, fd);
11018 BUILD_BUG_SQE_ELEM(8, __u64, off);
11019 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
11020 BUILD_BUG_SQE_ELEM(16, __u64, addr);
11021 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
11022 BUILD_BUG_SQE_ELEM(24, __u32, len);
11023 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
11024 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
11025 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
11026 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
11027 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
11028 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
11029 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
11030 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
11031 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
11032 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
11033 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
11034 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
11035 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
11036 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
11037 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
11038 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
11039 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
11040 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
11041 BUILD_BUG_SQE_ELEM(42, __u16, personality);
11042 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
11043 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
11045 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
11046 sizeof(struct io_uring_rsrc_update));
11047 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
11048 sizeof(struct io_uring_rsrc_update2));
11050 /* ->buf_index is u16 */
11051 BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
11053 /* should fit into one byte */
11054 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
11056 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
11057 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
11059 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
11063 __initcall(io_uring_init);