1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
50 #include <linux/sched/signal.h>
52 #include <linux/file.h>
53 #include <linux/fdtable.h>
55 #include <linux/mman.h>
56 #include <linux/mmu_context.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/workqueue.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
65 #include <net/af_unix.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
74 #include <uapi/linux/io_uring.h>
78 #define IORING_MAX_ENTRIES 32768
79 #define IORING_MAX_FIXED_FILES 1024
82 u32 head ____cacheline_aligned_in_smp;
83 u32 tail ____cacheline_aligned_in_smp;
87 * This data is shared with the application through the mmap at offsets
88 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
90 * The offsets to the member fields are published through struct
91 * io_sqring_offsets when calling io_uring_setup.
95 * Head and tail offsets into the ring; the offsets need to be
96 * masked to get valid indices.
98 * The kernel controls head of the sq ring and the tail of the cq ring,
99 * and the application controls tail of the sq ring and the head of the
102 struct io_uring sq, cq;
104 * Bitmasks to apply to head and tail offsets (constant, equals
107 u32 sq_ring_mask, cq_ring_mask;
108 /* Ring sizes (constant, power of 2) */
109 u32 sq_ring_entries, cq_ring_entries;
111 * Number of invalid entries dropped by the kernel due to
112 * invalid index stored in array
114 * Written by the kernel, shouldn't be modified by the
115 * application (i.e. get number of "new events" by comparing to
118 * After a new SQ head value was read by the application this
119 * counter includes all submissions that were dropped reaching
120 * the new SQ head (and possibly more).
126 * Written by the kernel, shouldn't be modified by the
129 * The application needs a full memory barrier before checking
130 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
134 * Number of completion events lost because the queue was full;
135 * this should be avoided by the application by making sure
136 * there are not more requests pending thatn there is space in
137 * the completion queue.
139 * Written by the kernel, shouldn't be modified by the
140 * application (i.e. get number of "new events" by comparing to
143 * As completion events come in out of order this counter is not
144 * ordered with any other data.
148 * Ring buffer of completion events.
150 * The kernel writes completion events fresh every time they are
151 * produced, so the application is allowed to modify pending
154 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
157 struct io_mapped_ubuf {
160 struct bio_vec *bvec;
161 unsigned int nr_bvecs;
167 struct list_head list;
176 struct percpu_ref refs;
177 } ____cacheline_aligned_in_smp;
185 * Ring buffer of indices into array of io_uring_sqe, which is
186 * mmapped by the application using the IORING_OFF_SQES offset.
188 * This indirection could e.g. be used to assign fixed
189 * io_uring_sqe entries to operations and only submit them to
190 * the queue when needed.
192 * The kernel modifies neither the indices array nor the entries
196 unsigned cached_sq_head;
199 unsigned sq_thread_idle;
200 unsigned cached_sq_dropped;
201 struct io_uring_sqe *sq_sqes;
203 struct list_head defer_list;
204 struct list_head timeout_list;
205 } ____cacheline_aligned_in_smp;
208 struct workqueue_struct *sqo_wq[2];
209 struct task_struct *sqo_thread; /* if using sq thread polling */
210 struct mm_struct *sqo_mm;
211 wait_queue_head_t sqo_wait;
212 struct completion sqo_thread_started;
215 unsigned cached_cq_tail;
216 atomic_t cached_cq_overflow;
219 struct wait_queue_head cq_wait;
220 struct fasync_struct *cq_fasync;
221 struct eventfd_ctx *cq_ev_fd;
222 atomic_t cq_timeouts;
223 } ____cacheline_aligned_in_smp;
225 struct io_rings *rings;
228 * If used, fixed file set. Writers must ensure that ->refs is dead,
229 * readers must ensure that ->refs is alive as long as the file* is
230 * used. Only updated through io_uring_register(2).
232 struct file **user_files;
233 unsigned nr_user_files;
235 /* if used, fixed mapped user buffers */
236 unsigned nr_user_bufs;
237 struct io_mapped_ubuf *user_bufs;
239 struct user_struct *user;
241 struct completion ctx_done;
244 struct mutex uring_lock;
245 wait_queue_head_t wait;
246 } ____cacheline_aligned_in_smp;
249 spinlock_t completion_lock;
250 bool poll_multi_file;
252 * ->poll_list is protected by the ctx->uring_lock for
253 * io_uring instances that don't use IORING_SETUP_SQPOLL.
254 * For SQPOLL, only the single threaded io_sq_thread() will
255 * manipulate the list, hence no extra locking is needed there.
257 struct list_head poll_list;
258 struct list_head cancel_list;
259 } ____cacheline_aligned_in_smp;
261 struct async_list pending_async[2];
263 #if defined(CONFIG_UNIX)
264 struct socket *ring_sock;
269 const struct io_uring_sqe *sqe;
270 unsigned short index;
274 bool needs_fixed_file;
278 * First field must be the file pointer in all the
279 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
281 struct io_poll_iocb {
283 struct wait_queue_head *head;
287 struct wait_queue_entry wait;
292 struct hrtimer timer;
296 * NOTE! Each of the iocb union members has the file pointer
297 * as the first entry in their struct definition. So you can
298 * access the file pointer through any of the sub-structs,
299 * or directly as just 'ki_filp' in this struct.
305 struct io_poll_iocb poll;
306 struct io_timeout timeout;
309 struct sqe_submit submit;
311 struct io_ring_ctx *ctx;
312 struct list_head list;
313 struct list_head link_list;
316 #define REQ_F_NOWAIT 1 /* must not punt to workers */
317 #define REQ_F_IOPOLL_COMPLETED 2 /* polled IO has completed */
318 #define REQ_F_FIXED_FILE 4 /* ctx owns file */
319 #define REQ_F_SEQ_PREV 8 /* sequential with previous */
320 #define REQ_F_IO_DRAIN 16 /* drain existing IO first */
321 #define REQ_F_IO_DRAINED 32 /* drain done */
322 #define REQ_F_LINK 64 /* linked sqes */
323 #define REQ_F_LINK_DONE 128 /* linked sqes done */
324 #define REQ_F_FAIL_LINK 256 /* fail rest of links */
325 #define REQ_F_SHADOW_DRAIN 512 /* link-drain shadow req */
326 #define REQ_F_TIMEOUT 1024 /* timeout request */
327 #define REQ_F_ISREG 2048 /* regular file */
328 #define REQ_F_MUST_PUNT 4096 /* must be punted even for NONBLOCK */
333 struct work_struct work;
336 #define IO_PLUG_THRESHOLD 2
337 #define IO_IOPOLL_BATCH 8
339 struct io_submit_state {
340 struct blk_plug plug;
343 * io_kiocb alloc cache
345 void *reqs[IO_IOPOLL_BATCH];
346 unsigned int free_reqs;
347 unsigned int cur_req;
350 * File reference cache
354 unsigned int has_refs;
355 unsigned int used_refs;
356 unsigned int ios_left;
359 static void io_sq_wq_submit_work(struct work_struct *work);
360 static void io_cqring_fill_event(struct io_ring_ctx *ctx, u64 ki_user_data,
362 static void __io_free_req(struct io_kiocb *req);
364 static struct kmem_cache *req_cachep;
366 static const struct file_operations io_uring_fops;
368 struct sock *io_uring_get_socket(struct file *file)
370 #if defined(CONFIG_UNIX)
371 if (file->f_op == &io_uring_fops) {
372 struct io_ring_ctx *ctx = file->private_data;
374 return ctx->ring_sock->sk;
379 EXPORT_SYMBOL(io_uring_get_socket);
381 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
383 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
385 complete(&ctx->ctx_done);
388 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
390 struct io_ring_ctx *ctx;
393 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
397 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
398 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
403 ctx->flags = p->flags;
404 init_waitqueue_head(&ctx->cq_wait);
405 init_completion(&ctx->ctx_done);
406 init_completion(&ctx->sqo_thread_started);
407 mutex_init(&ctx->uring_lock);
408 init_waitqueue_head(&ctx->wait);
409 for (i = 0; i < ARRAY_SIZE(ctx->pending_async); i++) {
410 spin_lock_init(&ctx->pending_async[i].lock);
411 INIT_LIST_HEAD(&ctx->pending_async[i].list);
412 atomic_set(&ctx->pending_async[i].cnt, 0);
414 spin_lock_init(&ctx->completion_lock);
415 INIT_LIST_HEAD(&ctx->poll_list);
416 INIT_LIST_HEAD(&ctx->cancel_list);
417 INIT_LIST_HEAD(&ctx->defer_list);
418 INIT_LIST_HEAD(&ctx->timeout_list);
422 static inline bool __io_sequence_defer(struct io_ring_ctx *ctx,
423 struct io_kiocb *req)
425 return req->sequence != ctx->cached_cq_tail + ctx->cached_sq_dropped
426 + atomic_read(&ctx->cached_cq_overflow);
429 static inline bool io_sequence_defer(struct io_ring_ctx *ctx,
430 struct io_kiocb *req)
432 if ((req->flags & (REQ_F_IO_DRAIN|REQ_F_IO_DRAINED)) != REQ_F_IO_DRAIN)
435 return __io_sequence_defer(ctx, req);
438 static struct io_kiocb *io_get_deferred_req(struct io_ring_ctx *ctx)
440 struct io_kiocb *req;
442 req = list_first_entry_or_null(&ctx->defer_list, struct io_kiocb, list);
443 if (req && !io_sequence_defer(ctx, req)) {
444 list_del_init(&req->list);
451 static struct io_kiocb *io_get_timeout_req(struct io_ring_ctx *ctx)
453 struct io_kiocb *req;
455 req = list_first_entry_or_null(&ctx->timeout_list, struct io_kiocb, list);
456 if (req && !__io_sequence_defer(ctx, req)) {
457 list_del_init(&req->list);
464 static void __io_commit_cqring(struct io_ring_ctx *ctx)
466 struct io_rings *rings = ctx->rings;
468 if (ctx->cached_cq_tail != READ_ONCE(rings->cq.tail)) {
469 /* order cqe stores with ring update */
470 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
472 if (wq_has_sleeper(&ctx->cq_wait)) {
473 wake_up_interruptible(&ctx->cq_wait);
474 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
479 static inline void io_queue_async_work(struct io_ring_ctx *ctx,
480 struct io_kiocb *req)
484 if (req->submit.sqe) {
485 switch (req->submit.sqe->opcode) {
486 case IORING_OP_WRITEV:
487 case IORING_OP_WRITE_FIXED:
488 rw = !(req->rw.ki_flags & IOCB_DIRECT);
493 queue_work(ctx->sqo_wq[rw], &req->work);
496 static void io_kill_timeout(struct io_kiocb *req)
500 ret = hrtimer_try_to_cancel(&req->timeout.timer);
502 atomic_inc(&req->ctx->cq_timeouts);
503 list_del(&req->list);
504 io_cqring_fill_event(req->ctx, req->user_data, 0);
509 static void io_kill_timeouts(struct io_ring_ctx *ctx)
511 struct io_kiocb *req, *tmp;
513 spin_lock_irq(&ctx->completion_lock);
514 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, list)
515 io_kill_timeout(req);
516 spin_unlock_irq(&ctx->completion_lock);
519 static void io_commit_cqring(struct io_ring_ctx *ctx)
521 struct io_kiocb *req;
523 while ((req = io_get_timeout_req(ctx)) != NULL)
524 io_kill_timeout(req);
526 __io_commit_cqring(ctx);
528 while ((req = io_get_deferred_req(ctx)) != NULL) {
529 if (req->flags & REQ_F_SHADOW_DRAIN) {
530 /* Just for drain, free it. */
534 req->flags |= REQ_F_IO_DRAINED;
535 io_queue_async_work(ctx, req);
539 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
541 struct io_rings *rings = ctx->rings;
544 tail = ctx->cached_cq_tail;
546 * writes to the cq entry need to come after reading head; the
547 * control dependency is enough as we're using WRITE_ONCE to
550 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
553 ctx->cached_cq_tail++;
554 return &rings->cqes[tail & ctx->cq_mask];
557 static void io_cqring_fill_event(struct io_ring_ctx *ctx, u64 ki_user_data,
560 struct io_uring_cqe *cqe;
563 * If we can't get a cq entry, userspace overflowed the
564 * submission (by quite a lot). Increment the overflow count in
567 cqe = io_get_cqring(ctx);
569 WRITE_ONCE(cqe->user_data, ki_user_data);
570 WRITE_ONCE(cqe->res, res);
571 WRITE_ONCE(cqe->flags, 0);
573 WRITE_ONCE(ctx->rings->cq_overflow,
574 atomic_inc_return(&ctx->cached_cq_overflow));
578 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
580 if (waitqueue_active(&ctx->wait))
582 if (waitqueue_active(&ctx->sqo_wait))
583 wake_up(&ctx->sqo_wait);
585 eventfd_signal(ctx->cq_ev_fd, 1);
588 static void io_cqring_add_event(struct io_ring_ctx *ctx, u64 user_data,
593 spin_lock_irqsave(&ctx->completion_lock, flags);
594 io_cqring_fill_event(ctx, user_data, res);
595 io_commit_cqring(ctx);
596 spin_unlock_irqrestore(&ctx->completion_lock, flags);
598 io_cqring_ev_posted(ctx);
601 static struct io_kiocb *io_get_req(struct io_ring_ctx *ctx,
602 struct io_submit_state *state)
604 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
605 struct io_kiocb *req;
607 if (!percpu_ref_tryget(&ctx->refs))
611 req = kmem_cache_alloc(req_cachep, gfp);
614 } else if (!state->free_reqs) {
618 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
619 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
622 * Bulk alloc is all-or-nothing. If we fail to get a batch,
623 * retry single alloc to be on the safe side.
625 if (unlikely(ret <= 0)) {
626 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
631 state->free_reqs = ret - 1;
633 req = state->reqs[0];
635 req = state->reqs[state->cur_req];
643 /* one is dropped after submission, the other at completion */
644 refcount_set(&req->refs, 2);
648 percpu_ref_put(&ctx->refs);
652 static void io_free_req_many(struct io_ring_ctx *ctx, void **reqs, int *nr)
655 kmem_cache_free_bulk(req_cachep, *nr, reqs);
656 percpu_ref_put_many(&ctx->refs, *nr);
661 static void __io_free_req(struct io_kiocb *req)
663 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
665 percpu_ref_put(&req->ctx->refs);
666 kmem_cache_free(req_cachep, req);
669 static void io_req_link_next(struct io_kiocb *req)
671 struct io_kiocb *nxt;
674 * The list should never be empty when we are called here. But could
675 * potentially happen if the chain is messed up, check to be on the
678 nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb, list);
680 list_del(&nxt->list);
681 if (!list_empty(&req->link_list)) {
682 INIT_LIST_HEAD(&nxt->link_list);
683 list_splice(&req->link_list, &nxt->link_list);
684 nxt->flags |= REQ_F_LINK;
687 nxt->flags |= REQ_F_LINK_DONE;
688 INIT_WORK(&nxt->work, io_sq_wq_submit_work);
689 io_queue_async_work(req->ctx, nxt);
694 * Called if REQ_F_LINK is set, and we fail the head request
696 static void io_fail_links(struct io_kiocb *req)
698 struct io_kiocb *link;
700 while (!list_empty(&req->link_list)) {
701 link = list_first_entry(&req->link_list, struct io_kiocb, list);
702 list_del(&link->list);
704 io_cqring_add_event(req->ctx, link->user_data, -ECANCELED);
709 static void io_free_req(struct io_kiocb *req)
712 * If LINK is set, we have dependent requests in this chain. If we
713 * didn't fail this request, queue the first one up, moving any other
714 * dependencies to the next request. In case of failure, fail the rest
717 if (req->flags & REQ_F_LINK) {
718 if (req->flags & REQ_F_FAIL_LINK)
721 io_req_link_next(req);
727 static void io_put_req(struct io_kiocb *req)
729 if (refcount_dec_and_test(&req->refs))
733 static unsigned io_cqring_events(struct io_rings *rings)
735 /* See comment at the top of this file */
737 return READ_ONCE(rings->cq.tail) - READ_ONCE(rings->cq.head);
740 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
742 struct io_rings *rings = ctx->rings;
744 /* make sure SQ entry isn't read before tail */
745 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
749 * Find and free completed poll iocbs
751 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
752 struct list_head *done)
754 void *reqs[IO_IOPOLL_BATCH];
755 struct io_kiocb *req;
759 while (!list_empty(done)) {
760 req = list_first_entry(done, struct io_kiocb, list);
761 list_del(&req->list);
763 io_cqring_fill_event(ctx, req->user_data, req->result);
766 if (refcount_dec_and_test(&req->refs)) {
767 /* If we're not using fixed files, we have to pair the
768 * completion part with the file put. Use regular
769 * completions for those, only batch free for fixed
770 * file and non-linked commands.
772 if ((req->flags & (REQ_F_FIXED_FILE|REQ_F_LINK)) ==
774 reqs[to_free++] = req;
775 if (to_free == ARRAY_SIZE(reqs))
776 io_free_req_many(ctx, reqs, &to_free);
783 io_commit_cqring(ctx);
784 io_free_req_many(ctx, reqs, &to_free);
787 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
790 struct io_kiocb *req, *tmp;
796 * Only spin for completions if we don't have multiple devices hanging
797 * off our complete list, and we're under the requested amount.
799 spin = !ctx->poll_multi_file && *nr_events < min;
802 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
803 struct kiocb *kiocb = &req->rw;
806 * Move completed entries to our local list. If we find a
807 * request that requires polling, break out and complete
808 * the done list first, if we have entries there.
810 if (req->flags & REQ_F_IOPOLL_COMPLETED) {
811 list_move_tail(&req->list, &done);
814 if (!list_empty(&done))
817 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
826 if (!list_empty(&done))
827 io_iopoll_complete(ctx, nr_events, &done);
833 * Poll for a mininum of 'min' events. Note that if min == 0 we consider that a
834 * non-spinning poll check - we'll still enter the driver poll loop, but only
835 * as a non-spinning completion check.
837 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
840 while (!list_empty(&ctx->poll_list) && !need_resched()) {
843 ret = io_do_iopoll(ctx, nr_events, min);
846 if (!min || *nr_events >= min)
854 * We can't just wait for polled events to come to us, we have to actively
855 * find and complete them.
857 static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
859 if (!(ctx->flags & IORING_SETUP_IOPOLL))
862 mutex_lock(&ctx->uring_lock);
863 while (!list_empty(&ctx->poll_list)) {
864 unsigned int nr_events = 0;
866 io_iopoll_getevents(ctx, &nr_events, 1);
869 * Ensure we allow local-to-the-cpu processing to take place,
870 * in this case we need to ensure that we reap all events.
874 mutex_unlock(&ctx->uring_lock);
877 static int __io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
880 int iters = 0, ret = 0;
886 * Don't enter poll loop if we already have events pending.
887 * If we do, we can potentially be spinning for commands that
888 * already triggered a CQE (eg in error).
890 if (io_cqring_events(ctx->rings))
894 * If a submit got punted to a workqueue, we can have the
895 * application entering polling for a command before it gets
896 * issued. That app will hold the uring_lock for the duration
897 * of the poll right here, so we need to take a breather every
898 * now and then to ensure that the issue has a chance to add
899 * the poll to the issued list. Otherwise we can spin here
900 * forever, while the workqueue is stuck trying to acquire the
903 if (!(++iters & 7)) {
904 mutex_unlock(&ctx->uring_lock);
905 mutex_lock(&ctx->uring_lock);
908 if (*nr_events < min)
909 tmin = min - *nr_events;
911 ret = io_iopoll_getevents(ctx, nr_events, tmin);
915 } while (min && !*nr_events && !need_resched());
920 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
926 * We disallow the app entering submit/complete with polling, but we
927 * still need to lock the ring to prevent racing with polled issue
928 * that got punted to a workqueue.
930 mutex_lock(&ctx->uring_lock);
931 ret = __io_iopoll_check(ctx, nr_events, min);
932 mutex_unlock(&ctx->uring_lock);
936 static void kiocb_end_write(struct io_kiocb *req)
939 * Tell lockdep we inherited freeze protection from submission
942 if (req->flags & REQ_F_ISREG) {
943 struct inode *inode = file_inode(req->file);
945 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
947 file_end_write(req->file);
950 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
952 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
954 if (kiocb->ki_flags & IOCB_WRITE)
955 kiocb_end_write(req);
957 if ((req->flags & REQ_F_LINK) && res != req->result)
958 req->flags |= REQ_F_FAIL_LINK;
959 io_cqring_add_event(req->ctx, req->user_data, res);
963 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
965 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
967 if (kiocb->ki_flags & IOCB_WRITE)
968 kiocb_end_write(req);
970 if ((req->flags & REQ_F_LINK) && res != req->result)
971 req->flags |= REQ_F_FAIL_LINK;
974 req->flags |= REQ_F_IOPOLL_COMPLETED;
978 * After the iocb has been issued, it's safe to be found on the poll list.
979 * Adding the kiocb to the list AFTER submission ensures that we don't
980 * find it from a io_iopoll_getevents() thread before the issuer is done
981 * accessing the kiocb cookie.
983 static void io_iopoll_req_issued(struct io_kiocb *req)
985 struct io_ring_ctx *ctx = req->ctx;
988 * Track whether we have multiple files in our lists. This will impact
989 * how we do polling eventually, not spinning if we're on potentially
992 if (list_empty(&ctx->poll_list)) {
993 ctx->poll_multi_file = false;
994 } else if (!ctx->poll_multi_file) {
995 struct io_kiocb *list_req;
997 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
999 if (list_req->rw.ki_filp != req->rw.ki_filp)
1000 ctx->poll_multi_file = true;
1004 * For fast devices, IO may have already completed. If it has, add
1005 * it to the front so we find it first.
1007 if (req->flags & REQ_F_IOPOLL_COMPLETED)
1008 list_add(&req->list, &ctx->poll_list);
1010 list_add_tail(&req->list, &ctx->poll_list);
1013 static void io_file_put(struct io_submit_state *state)
1016 int diff = state->has_refs - state->used_refs;
1019 fput_many(state->file, diff);
1025 * Get as many references to a file as we have IOs left in this submission,
1026 * assuming most submissions are for one file, or at least that each file
1027 * has more than one submission.
1029 static struct file *io_file_get(struct io_submit_state *state, int fd)
1035 if (state->fd == fd) {
1042 state->file = fget_many(fd, state->ios_left);
1047 state->has_refs = state->ios_left;
1048 state->used_refs = 1;
1054 * If we tracked the file through the SCM inflight mechanism, we could support
1055 * any file. For now, just ensure that anything potentially problematic is done
1058 static bool io_file_supports_async(struct file *file)
1060 umode_t mode = file_inode(file)->i_mode;
1062 if (S_ISBLK(mode) || S_ISCHR(mode))
1064 if (S_ISREG(mode) && file->f_op != &io_uring_fops)
1070 static int io_prep_rw(struct io_kiocb *req, const struct sqe_submit *s,
1071 bool force_nonblock)
1073 const struct io_uring_sqe *sqe = s->sqe;
1074 struct io_ring_ctx *ctx = req->ctx;
1075 struct kiocb *kiocb = &req->rw;
1082 if (S_ISREG(file_inode(req->file)->i_mode))
1083 req->flags |= REQ_F_ISREG;
1086 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
1087 * we know to async punt it even if it was opened O_NONBLOCK
1089 if (force_nonblock && !io_file_supports_async(req->file)) {
1090 req->flags |= REQ_F_MUST_PUNT;
1094 kiocb->ki_pos = READ_ONCE(sqe->off);
1095 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
1096 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
1098 ioprio = READ_ONCE(sqe->ioprio);
1100 ret = ioprio_check_cap(ioprio);
1104 kiocb->ki_ioprio = ioprio;
1106 kiocb->ki_ioprio = get_current_ioprio();
1108 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
1112 /* don't allow async punt if RWF_NOWAIT was requested */
1113 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
1114 (req->file->f_flags & O_NONBLOCK))
1115 req->flags |= REQ_F_NOWAIT;
1118 kiocb->ki_flags |= IOCB_NOWAIT;
1120 if (ctx->flags & IORING_SETUP_IOPOLL) {
1121 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
1122 !kiocb->ki_filp->f_op->iopoll)
1125 kiocb->ki_flags |= IOCB_HIPRI;
1126 kiocb->ki_complete = io_complete_rw_iopoll;
1129 if (kiocb->ki_flags & IOCB_HIPRI)
1131 kiocb->ki_complete = io_complete_rw;
1136 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
1142 case -ERESTARTNOINTR:
1143 case -ERESTARTNOHAND:
1144 case -ERESTART_RESTARTBLOCK:
1146 * We can't just restart the syscall, since previously
1147 * submitted sqes may already be in progress. Just fail this
1153 kiocb->ki_complete(kiocb, ret, 0);
1157 static int io_import_fixed(struct io_ring_ctx *ctx, int rw,
1158 const struct io_uring_sqe *sqe,
1159 struct iov_iter *iter)
1161 size_t len = READ_ONCE(sqe->len);
1162 struct io_mapped_ubuf *imu;
1163 unsigned index, buf_index;
1167 /* attempt to use fixed buffers without having provided iovecs */
1168 if (unlikely(!ctx->user_bufs))
1171 buf_index = READ_ONCE(sqe->buf_index);
1172 if (unlikely(buf_index >= ctx->nr_user_bufs))
1175 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
1176 imu = &ctx->user_bufs[index];
1177 buf_addr = READ_ONCE(sqe->addr);
1180 if (buf_addr + len < buf_addr)
1182 /* not inside the mapped region */
1183 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
1187 * May not be a start of buffer, set size appropriately
1188 * and advance us to the beginning.
1190 offset = buf_addr - imu->ubuf;
1191 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
1195 * Don't use iov_iter_advance() here, as it's really slow for
1196 * using the latter parts of a big fixed buffer - it iterates
1197 * over each segment manually. We can cheat a bit here, because
1200 * 1) it's a BVEC iter, we set it up
1201 * 2) all bvecs are PAGE_SIZE in size, except potentially the
1202 * first and last bvec
1204 * So just find our index, and adjust the iterator afterwards.
1205 * If the offset is within the first bvec (or the whole first
1206 * bvec, just use iov_iter_advance(). This makes it easier
1207 * since we can just skip the first segment, which may not
1208 * be PAGE_SIZE aligned.
1210 const struct bio_vec *bvec = imu->bvec;
1212 if (offset <= bvec->bv_len) {
1213 iov_iter_advance(iter, offset);
1215 unsigned long seg_skip;
1217 /* skip first vec */
1218 offset -= bvec->bv_len;
1219 seg_skip = 1 + (offset >> PAGE_SHIFT);
1221 iter->bvec = bvec + seg_skip;
1222 iter->nr_segs -= seg_skip;
1223 iter->count -= bvec->bv_len + offset;
1224 iter->iov_offset = offset & ~PAGE_MASK;
1231 static ssize_t io_import_iovec(struct io_ring_ctx *ctx, int rw,
1232 const struct sqe_submit *s, struct iovec **iovec,
1233 struct iov_iter *iter)
1235 const struct io_uring_sqe *sqe = s->sqe;
1236 void __user *buf = u64_to_user_ptr(READ_ONCE(sqe->addr));
1237 size_t sqe_len = READ_ONCE(sqe->len);
1241 * We're reading ->opcode for the second time, but the first read
1242 * doesn't care whether it's _FIXED or not, so it doesn't matter
1243 * whether ->opcode changes concurrently. The first read does care
1244 * about whether it is a READ or a WRITE, so we don't trust this read
1245 * for that purpose and instead let the caller pass in the read/write
1248 opcode = READ_ONCE(sqe->opcode);
1249 if (opcode == IORING_OP_READ_FIXED ||
1250 opcode == IORING_OP_WRITE_FIXED) {
1251 ssize_t ret = io_import_fixed(ctx, rw, sqe, iter);
1259 #ifdef CONFIG_COMPAT
1261 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
1265 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
1268 static inline bool io_should_merge(struct async_list *al, struct kiocb *kiocb)
1270 if (al->file == kiocb->ki_filp) {
1274 * Allow merging if we're anywhere in the range of the same
1275 * page. Generally this happens for sub-page reads or writes,
1276 * and it's beneficial to allow the first worker to bring the
1277 * page in and the piggy backed work can then work on the
1280 start = al->io_start & PAGE_MASK;
1281 end = (al->io_start + al->io_len + PAGE_SIZE - 1) & PAGE_MASK;
1282 if (kiocb->ki_pos >= start && kiocb->ki_pos <= end)
1291 * Make a note of the last file/offset/direction we punted to async
1292 * context. We'll use this information to see if we can piggy back a
1293 * sequential request onto the previous one, if it's still hasn't been
1294 * completed by the async worker.
1296 static void io_async_list_note(int rw, struct io_kiocb *req, size_t len)
1298 struct async_list *async_list = &req->ctx->pending_async[rw];
1299 struct kiocb *kiocb = &req->rw;
1300 struct file *filp = kiocb->ki_filp;
1302 if (io_should_merge(async_list, kiocb)) {
1303 unsigned long max_bytes;
1305 /* Use 8x RA size as a decent limiter for both reads/writes */
1306 max_bytes = filp->f_ra.ra_pages << (PAGE_SHIFT + 3);
1308 max_bytes = VM_READAHEAD_PAGES << (PAGE_SHIFT + 3);
1310 /* If max len are exceeded, reset the state */
1311 if (async_list->io_len + len <= max_bytes) {
1312 req->flags |= REQ_F_SEQ_PREV;
1313 async_list->io_len += len;
1315 async_list->file = NULL;
1319 /* New file? Reset state. */
1320 if (async_list->file != filp) {
1321 async_list->io_start = kiocb->ki_pos;
1322 async_list->io_len = len;
1323 async_list->file = filp;
1328 * For files that don't have ->read_iter() and ->write_iter(), handle them
1329 * by looping over ->read() or ->write() manually.
1331 static ssize_t loop_rw_iter(int rw, struct file *file, struct kiocb *kiocb,
1332 struct iov_iter *iter)
1337 * Don't support polled IO through this interface, and we can't
1338 * support non-blocking either. For the latter, this just causes
1339 * the kiocb to be handled from an async context.
1341 if (kiocb->ki_flags & IOCB_HIPRI)
1343 if (kiocb->ki_flags & IOCB_NOWAIT)
1346 while (iov_iter_count(iter)) {
1347 struct iovec iovec = iov_iter_iovec(iter);
1351 nr = file->f_op->read(file, iovec.iov_base,
1352 iovec.iov_len, &kiocb->ki_pos);
1354 nr = file->f_op->write(file, iovec.iov_base,
1355 iovec.iov_len, &kiocb->ki_pos);
1364 if (nr != iovec.iov_len)
1366 iov_iter_advance(iter, nr);
1372 static int io_read(struct io_kiocb *req, const struct sqe_submit *s,
1373 bool force_nonblock)
1375 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1376 struct kiocb *kiocb = &req->rw;
1377 struct iov_iter iter;
1380 ssize_t read_size, ret;
1382 ret = io_prep_rw(req, s, force_nonblock);
1385 file = kiocb->ki_filp;
1387 if (unlikely(!(file->f_mode & FMODE_READ)))
1390 ret = io_import_iovec(req->ctx, READ, s, &iovec, &iter);
1395 if (req->flags & REQ_F_LINK)
1396 req->result = read_size;
1398 iov_count = iov_iter_count(&iter);
1399 ret = rw_verify_area(READ, file, &kiocb->ki_pos, iov_count);
1403 if (file->f_op->read_iter)
1404 ret2 = call_read_iter(file, kiocb, &iter);
1406 ret2 = loop_rw_iter(READ, file, kiocb, &iter);
1409 * In case of a short read, punt to async. This can happen
1410 * if we have data partially cached. Alternatively we can
1411 * return the short read, in which case the application will
1412 * need to issue another SQE and wait for it. That SQE will
1413 * need async punt anyway, so it's more efficient to do it
1416 if (force_nonblock && !(req->flags & REQ_F_NOWAIT) &&
1417 (req->flags & REQ_F_ISREG) &&
1418 ret2 > 0 && ret2 < read_size)
1420 /* Catch -EAGAIN return for forced non-blocking submission */
1421 if (!force_nonblock || ret2 != -EAGAIN) {
1422 io_rw_done(kiocb, ret2);
1425 * If ->needs_lock is true, we're already in async
1429 io_async_list_note(READ, req, iov_count);
1437 static int io_write(struct io_kiocb *req, const struct sqe_submit *s,
1438 bool force_nonblock)
1440 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1441 struct kiocb *kiocb = &req->rw;
1442 struct iov_iter iter;
1447 ret = io_prep_rw(req, s, force_nonblock);
1451 file = kiocb->ki_filp;
1452 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1455 ret = io_import_iovec(req->ctx, WRITE, s, &iovec, &iter);
1459 if (req->flags & REQ_F_LINK)
1462 iov_count = iov_iter_count(&iter);
1465 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT)) {
1466 /* If ->needs_lock is true, we're already in async context. */
1468 io_async_list_note(WRITE, req, iov_count);
1472 ret = rw_verify_area(WRITE, file, &kiocb->ki_pos, iov_count);
1477 * Open-code file_start_write here to grab freeze protection,
1478 * which will be released by another thread in
1479 * io_complete_rw(). Fool lockdep by telling it the lock got
1480 * released so that it doesn't complain about the held lock when
1481 * we return to userspace.
1483 if (req->flags & REQ_F_ISREG) {
1484 __sb_start_write(file_inode(file)->i_sb,
1485 SB_FREEZE_WRITE, true);
1486 __sb_writers_release(file_inode(file)->i_sb,
1489 kiocb->ki_flags |= IOCB_WRITE;
1491 if (file->f_op->write_iter)
1492 ret2 = call_write_iter(file, kiocb, &iter);
1494 ret2 = loop_rw_iter(WRITE, file, kiocb, &iter);
1495 if (!force_nonblock || ret2 != -EAGAIN) {
1496 io_rw_done(kiocb, ret2);
1499 * If ->needs_lock is true, we're already in async
1503 io_async_list_note(WRITE, req, iov_count);
1513 * IORING_OP_NOP just posts a completion event, nothing else.
1515 static int io_nop(struct io_kiocb *req, u64 user_data)
1517 struct io_ring_ctx *ctx = req->ctx;
1520 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1523 io_cqring_add_event(ctx, user_data, err);
1528 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1530 struct io_ring_ctx *ctx = req->ctx;
1535 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1537 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1543 static int io_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1544 bool force_nonblock)
1546 loff_t sqe_off = READ_ONCE(sqe->off);
1547 loff_t sqe_len = READ_ONCE(sqe->len);
1548 loff_t end = sqe_off + sqe_len;
1549 unsigned fsync_flags;
1552 fsync_flags = READ_ONCE(sqe->fsync_flags);
1553 if (unlikely(fsync_flags & ~IORING_FSYNC_DATASYNC))
1556 ret = io_prep_fsync(req, sqe);
1560 /* fsync always requires a blocking context */
1564 ret = vfs_fsync_range(req->rw.ki_filp, sqe_off,
1565 end > 0 ? end : LLONG_MAX,
1566 fsync_flags & IORING_FSYNC_DATASYNC);
1568 if (ret < 0 && (req->flags & REQ_F_LINK))
1569 req->flags |= REQ_F_FAIL_LINK;
1570 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1575 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1577 struct io_ring_ctx *ctx = req->ctx;
1583 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1585 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1591 static int io_sync_file_range(struct io_kiocb *req,
1592 const struct io_uring_sqe *sqe,
1593 bool force_nonblock)
1600 ret = io_prep_sfr(req, sqe);
1604 /* sync_file_range always requires a blocking context */
1608 sqe_off = READ_ONCE(sqe->off);
1609 sqe_len = READ_ONCE(sqe->len);
1610 flags = READ_ONCE(sqe->sync_range_flags);
1612 ret = sync_file_range(req->rw.ki_filp, sqe_off, sqe_len, flags);
1614 if (ret < 0 && (req->flags & REQ_F_LINK))
1615 req->flags |= REQ_F_FAIL_LINK;
1616 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1621 #if defined(CONFIG_NET)
1622 static int io_send_recvmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1623 bool force_nonblock,
1624 long (*fn)(struct socket *, struct user_msghdr __user *,
1627 struct socket *sock;
1630 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1633 sock = sock_from_file(req->file, &ret);
1635 struct user_msghdr __user *msg;
1638 flags = READ_ONCE(sqe->msg_flags);
1639 if (flags & MSG_DONTWAIT)
1640 req->flags |= REQ_F_NOWAIT;
1641 else if (force_nonblock)
1642 flags |= MSG_DONTWAIT;
1644 msg = (struct user_msghdr __user *) (unsigned long)
1645 READ_ONCE(sqe->addr);
1647 ret = fn(sock, msg, flags);
1648 if (force_nonblock && ret == -EAGAIN)
1652 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1658 static int io_sendmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1659 bool force_nonblock)
1661 #if defined(CONFIG_NET)
1662 return io_send_recvmsg(req, sqe, force_nonblock, __sys_sendmsg_sock);
1668 static int io_recvmsg(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1669 bool force_nonblock)
1671 #if defined(CONFIG_NET)
1672 return io_send_recvmsg(req, sqe, force_nonblock, __sys_recvmsg_sock);
1678 static void io_poll_remove_one(struct io_kiocb *req)
1680 struct io_poll_iocb *poll = &req->poll;
1682 spin_lock(&poll->head->lock);
1683 WRITE_ONCE(poll->canceled, true);
1684 if (!list_empty(&poll->wait.entry)) {
1685 list_del_init(&poll->wait.entry);
1686 io_queue_async_work(req->ctx, req);
1688 spin_unlock(&poll->head->lock);
1690 list_del_init(&req->list);
1693 static void io_poll_remove_all(struct io_ring_ctx *ctx)
1695 struct io_kiocb *req;
1697 spin_lock_irq(&ctx->completion_lock);
1698 while (!list_empty(&ctx->cancel_list)) {
1699 req = list_first_entry(&ctx->cancel_list, struct io_kiocb,list);
1700 io_poll_remove_one(req);
1702 spin_unlock_irq(&ctx->completion_lock);
1706 * Find a running poll command that matches one specified in sqe->addr,
1707 * and remove it if found.
1709 static int io_poll_remove(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1711 struct io_ring_ctx *ctx = req->ctx;
1712 struct io_kiocb *poll_req, *next;
1715 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1717 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
1721 spin_lock_irq(&ctx->completion_lock);
1722 list_for_each_entry_safe(poll_req, next, &ctx->cancel_list, list) {
1723 if (READ_ONCE(sqe->addr) == poll_req->user_data) {
1724 io_poll_remove_one(poll_req);
1729 spin_unlock_irq(&ctx->completion_lock);
1731 io_cqring_add_event(req->ctx, sqe->user_data, ret);
1736 static void io_poll_complete(struct io_ring_ctx *ctx, struct io_kiocb *req,
1739 req->poll.done = true;
1740 io_cqring_fill_event(ctx, req->user_data, mangle_poll(mask));
1741 io_commit_cqring(ctx);
1744 static void io_poll_complete_work(struct work_struct *work)
1746 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1747 struct io_poll_iocb *poll = &req->poll;
1748 struct poll_table_struct pt = { ._key = poll->events };
1749 struct io_ring_ctx *ctx = req->ctx;
1752 if (!READ_ONCE(poll->canceled))
1753 mask = vfs_poll(poll->file, &pt) & poll->events;
1756 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1757 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1758 * synchronize with them. In the cancellation case the list_del_init
1759 * itself is not actually needed, but harmless so we keep it in to
1760 * avoid further branches in the fast path.
1762 spin_lock_irq(&ctx->completion_lock);
1763 if (!mask && !READ_ONCE(poll->canceled)) {
1764 add_wait_queue(poll->head, &poll->wait);
1765 spin_unlock_irq(&ctx->completion_lock);
1768 list_del_init(&req->list);
1769 io_poll_complete(ctx, req, mask);
1770 spin_unlock_irq(&ctx->completion_lock);
1772 io_cqring_ev_posted(ctx);
1776 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1779 struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
1781 struct io_kiocb *req = container_of(poll, struct io_kiocb, poll);
1782 struct io_ring_ctx *ctx = req->ctx;
1783 __poll_t mask = key_to_poll(key);
1784 unsigned long flags;
1786 /* for instances that support it check for an event match first: */
1787 if (mask && !(mask & poll->events))
1790 list_del_init(&poll->wait.entry);
1792 if (mask && spin_trylock_irqsave(&ctx->completion_lock, flags)) {
1793 list_del(&req->list);
1794 io_poll_complete(ctx, req, mask);
1795 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1797 io_cqring_ev_posted(ctx);
1800 io_queue_async_work(ctx, req);
1806 struct io_poll_table {
1807 struct poll_table_struct pt;
1808 struct io_kiocb *req;
1812 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1813 struct poll_table_struct *p)
1815 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
1817 if (unlikely(pt->req->poll.head)) {
1818 pt->error = -EINVAL;
1823 pt->req->poll.head = head;
1824 add_wait_queue(head, &pt->req->poll.wait);
1827 static int io_poll_add(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1829 struct io_poll_iocb *poll = &req->poll;
1830 struct io_ring_ctx *ctx = req->ctx;
1831 struct io_poll_table ipt;
1832 bool cancel = false;
1836 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1838 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
1843 req->submit.sqe = NULL;
1844 INIT_WORK(&req->work, io_poll_complete_work);
1845 events = READ_ONCE(sqe->poll_events);
1846 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
1850 poll->canceled = false;
1852 ipt.pt._qproc = io_poll_queue_proc;
1853 ipt.pt._key = poll->events;
1855 ipt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1857 /* initialized the list so that we can do list_empty checks */
1858 INIT_LIST_HEAD(&poll->wait.entry);
1859 init_waitqueue_func_entry(&poll->wait, io_poll_wake);
1861 INIT_LIST_HEAD(&req->list);
1863 mask = vfs_poll(poll->file, &ipt.pt) & poll->events;
1865 spin_lock_irq(&ctx->completion_lock);
1866 if (likely(poll->head)) {
1867 spin_lock(&poll->head->lock);
1868 if (unlikely(list_empty(&poll->wait.entry))) {
1874 if (mask || ipt.error)
1875 list_del_init(&poll->wait.entry);
1877 WRITE_ONCE(poll->canceled, true);
1878 else if (!poll->done) /* actually waiting for an event */
1879 list_add_tail(&req->list, &ctx->cancel_list);
1880 spin_unlock(&poll->head->lock);
1882 if (mask) { /* no async, we'd stolen it */
1884 io_poll_complete(ctx, req, mask);
1886 spin_unlock_irq(&ctx->completion_lock);
1889 io_cqring_ev_posted(ctx);
1895 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
1897 struct io_ring_ctx *ctx;
1898 struct io_kiocb *req, *prev;
1899 unsigned long flags;
1901 req = container_of(timer, struct io_kiocb, timeout.timer);
1903 atomic_inc(&ctx->cq_timeouts);
1905 spin_lock_irqsave(&ctx->completion_lock, flags);
1907 * Adjust the reqs sequence before the current one because it
1908 * will consume a slot in the cq_ring and the the cq_tail pointer
1909 * will be increased, otherwise other timeout reqs may return in
1910 * advance without waiting for enough wait_nr.
1913 list_for_each_entry_continue_reverse(prev, &ctx->timeout_list, list)
1915 list_del(&req->list);
1917 io_cqring_fill_event(ctx, req->user_data, -ETIME);
1918 io_commit_cqring(ctx);
1919 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1921 io_cqring_ev_posted(ctx);
1924 return HRTIMER_NORESTART;
1927 static int io_timeout(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1930 struct io_ring_ctx *ctx = req->ctx;
1931 struct list_head *entry;
1932 struct timespec64 ts;
1935 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1937 if (sqe->flags || sqe->ioprio || sqe->buf_index || sqe->timeout_flags ||
1941 if (get_timespec64(&ts, u64_to_user_ptr(sqe->addr)))
1945 * sqe->off holds how many events that need to occur for this
1946 * timeout event to be satisfied.
1948 count = READ_ONCE(sqe->off);
1952 req->sequence = ctx->cached_sq_head + count - 1;
1953 /* reuse it to store the count */
1954 req->submit.sequence = count;
1955 req->flags |= REQ_F_TIMEOUT;
1958 * Insertion sort, ensuring the first entry in the list is always
1959 * the one we need first.
1961 spin_lock_irq(&ctx->completion_lock);
1962 list_for_each_prev(entry, &ctx->timeout_list) {
1963 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb, list);
1964 unsigned nxt_sq_head;
1965 long long tmp, tmp_nxt;
1968 * Since cached_sq_head + count - 1 can overflow, use type long
1971 tmp = (long long)ctx->cached_sq_head + count - 1;
1972 nxt_sq_head = nxt->sequence - nxt->submit.sequence + 1;
1973 tmp_nxt = (long long)nxt_sq_head + nxt->submit.sequence - 1;
1976 * cached_sq_head may overflow, and it will never overflow twice
1977 * once there is some timeout req still be valid.
1979 if (ctx->cached_sq_head < nxt_sq_head)
1986 * Sequence of reqs after the insert one and itself should
1987 * be adjusted because each timeout req consumes a slot.
1992 req->sequence -= span;
1993 list_add(&req->list, entry);
1994 spin_unlock_irq(&ctx->completion_lock);
1996 hrtimer_init(&req->timeout.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1997 req->timeout.timer.function = io_timeout_fn;
1998 hrtimer_start(&req->timeout.timer, timespec64_to_ktime(ts),
2003 static int io_req_defer(struct io_ring_ctx *ctx, struct io_kiocb *req,
2004 const struct io_uring_sqe *sqe)
2006 struct io_uring_sqe *sqe_copy;
2008 if (!io_sequence_defer(ctx, req) && list_empty(&ctx->defer_list))
2011 sqe_copy = kmalloc(sizeof(*sqe_copy), GFP_KERNEL);
2015 spin_lock_irq(&ctx->completion_lock);
2016 if (!io_sequence_defer(ctx, req) && list_empty(&ctx->defer_list)) {
2017 spin_unlock_irq(&ctx->completion_lock);
2022 memcpy(sqe_copy, sqe, sizeof(*sqe_copy));
2023 req->submit.sqe = sqe_copy;
2025 INIT_WORK(&req->work, io_sq_wq_submit_work);
2026 list_add_tail(&req->list, &ctx->defer_list);
2027 spin_unlock_irq(&ctx->completion_lock);
2028 return -EIOCBQUEUED;
2031 static int __io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2032 const struct sqe_submit *s, bool force_nonblock)
2036 req->user_data = READ_ONCE(s->sqe->user_data);
2038 if (unlikely(s->index >= ctx->sq_entries))
2041 opcode = READ_ONCE(s->sqe->opcode);
2044 ret = io_nop(req, req->user_data);
2046 case IORING_OP_READV:
2047 if (unlikely(s->sqe->buf_index))
2049 ret = io_read(req, s, force_nonblock);
2051 case IORING_OP_WRITEV:
2052 if (unlikely(s->sqe->buf_index))
2054 ret = io_write(req, s, force_nonblock);
2056 case IORING_OP_READ_FIXED:
2057 ret = io_read(req, s, force_nonblock);
2059 case IORING_OP_WRITE_FIXED:
2060 ret = io_write(req, s, force_nonblock);
2062 case IORING_OP_FSYNC:
2063 ret = io_fsync(req, s->sqe, force_nonblock);
2065 case IORING_OP_POLL_ADD:
2066 ret = io_poll_add(req, s->sqe);
2068 case IORING_OP_POLL_REMOVE:
2069 ret = io_poll_remove(req, s->sqe);
2071 case IORING_OP_SYNC_FILE_RANGE:
2072 ret = io_sync_file_range(req, s->sqe, force_nonblock);
2074 case IORING_OP_SENDMSG:
2075 ret = io_sendmsg(req, s->sqe, force_nonblock);
2077 case IORING_OP_RECVMSG:
2078 ret = io_recvmsg(req, s->sqe, force_nonblock);
2080 case IORING_OP_TIMEOUT:
2081 ret = io_timeout(req, s->sqe);
2091 if (ctx->flags & IORING_SETUP_IOPOLL) {
2092 if (req->result == -EAGAIN)
2095 /* workqueue context doesn't hold uring_lock, grab it now */
2097 mutex_lock(&ctx->uring_lock);
2098 io_iopoll_req_issued(req);
2100 mutex_unlock(&ctx->uring_lock);
2106 static struct async_list *io_async_list_from_sqe(struct io_ring_ctx *ctx,
2107 const struct io_uring_sqe *sqe)
2109 switch (sqe->opcode) {
2110 case IORING_OP_READV:
2111 case IORING_OP_READ_FIXED:
2112 return &ctx->pending_async[READ];
2113 case IORING_OP_WRITEV:
2114 case IORING_OP_WRITE_FIXED:
2115 return &ctx->pending_async[WRITE];
2121 static inline bool io_sqe_needs_user(const struct io_uring_sqe *sqe)
2123 u8 opcode = READ_ONCE(sqe->opcode);
2125 return !(opcode == IORING_OP_READ_FIXED ||
2126 opcode == IORING_OP_WRITE_FIXED);
2129 static void io_sq_wq_submit_work(struct work_struct *work)
2131 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2132 struct io_ring_ctx *ctx = req->ctx;
2133 struct mm_struct *cur_mm = NULL;
2134 struct async_list *async_list;
2135 LIST_HEAD(req_list);
2136 mm_segment_t old_fs;
2139 async_list = io_async_list_from_sqe(ctx, req->submit.sqe);
2142 struct sqe_submit *s = &req->submit;
2143 const struct io_uring_sqe *sqe = s->sqe;
2144 unsigned int flags = req->flags;
2146 /* Ensure we clear previously set non-block flag */
2147 req->rw.ki_flags &= ~IOCB_NOWAIT;
2150 if (io_sqe_needs_user(sqe) && !cur_mm) {
2151 if (!mmget_not_zero(ctx->sqo_mm)) {
2154 cur_mm = ctx->sqo_mm;
2162 s->has_user = cur_mm != NULL;
2163 s->needs_lock = true;
2165 ret = __io_submit_sqe(ctx, req, s, false);
2167 * We can get EAGAIN for polled IO even though
2168 * we're forcing a sync submission from here,
2169 * since we can't wait for request slots on the
2178 /* drop submission reference */
2182 io_cqring_add_event(ctx, sqe->user_data, ret);
2186 /* async context always use a copy of the sqe */
2189 /* req from defer and link list needn't decrease async cnt */
2190 if (flags & (REQ_F_IO_DRAINED | REQ_F_LINK_DONE))
2195 if (!list_empty(&req_list)) {
2196 req = list_first_entry(&req_list, struct io_kiocb,
2198 list_del(&req->list);
2201 if (list_empty(&async_list->list))
2205 spin_lock(&async_list->lock);
2206 if (list_empty(&async_list->list)) {
2207 spin_unlock(&async_list->lock);
2210 list_splice_init(&async_list->list, &req_list);
2211 spin_unlock(&async_list->lock);
2213 req = list_first_entry(&req_list, struct io_kiocb, list);
2214 list_del(&req->list);
2218 * Rare case of racing with a submitter. If we find the count has
2219 * dropped to zero AND we have pending work items, then restart
2220 * the processing. This is a tiny race window.
2223 ret = atomic_dec_return(&async_list->cnt);
2224 while (!ret && !list_empty(&async_list->list)) {
2225 spin_lock(&async_list->lock);
2226 atomic_inc(&async_list->cnt);
2227 list_splice_init(&async_list->list, &req_list);
2228 spin_unlock(&async_list->lock);
2230 if (!list_empty(&req_list)) {
2231 req = list_first_entry(&req_list,
2232 struct io_kiocb, list);
2233 list_del(&req->list);
2236 ret = atomic_dec_return(&async_list->cnt);
2249 * See if we can piggy back onto previously submitted work, that is still
2250 * running. We currently only allow this if the new request is sequential
2251 * to the previous one we punted.
2253 static bool io_add_to_prev_work(struct async_list *list, struct io_kiocb *req)
2259 if (!(req->flags & REQ_F_SEQ_PREV))
2261 if (!atomic_read(&list->cnt))
2265 spin_lock(&list->lock);
2266 list_add_tail(&req->list, &list->list);
2268 * Ensure we see a simultaneous modification from io_sq_wq_submit_work()
2271 if (!atomic_read(&list->cnt)) {
2272 list_del_init(&req->list);
2275 spin_unlock(&list->lock);
2279 static bool io_op_needs_file(const struct io_uring_sqe *sqe)
2281 int op = READ_ONCE(sqe->opcode);
2285 case IORING_OP_POLL_REMOVE:
2292 static int io_req_set_file(struct io_ring_ctx *ctx, const struct sqe_submit *s,
2293 struct io_submit_state *state, struct io_kiocb *req)
2298 flags = READ_ONCE(s->sqe->flags);
2299 fd = READ_ONCE(s->sqe->fd);
2301 if (flags & IOSQE_IO_DRAIN)
2302 req->flags |= REQ_F_IO_DRAIN;
2304 * All io need record the previous position, if LINK vs DARIN,
2305 * it can be used to mark the position of the first IO in the
2308 req->sequence = s->sequence;
2310 if (!io_op_needs_file(s->sqe))
2313 if (flags & IOSQE_FIXED_FILE) {
2314 if (unlikely(!ctx->user_files ||
2315 (unsigned) fd >= ctx->nr_user_files))
2317 req->file = ctx->user_files[fd];
2318 req->flags |= REQ_F_FIXED_FILE;
2320 if (s->needs_fixed_file)
2322 req->file = io_file_get(state, fd);
2323 if (unlikely(!req->file))
2330 static int __io_queue_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2331 struct sqe_submit *s)
2335 ret = __io_submit_sqe(ctx, req, s, true);
2338 * We async punt it if the file wasn't marked NOWAIT, or if the file
2339 * doesn't support non-blocking read/write attempts
2341 if (ret == -EAGAIN && (!(req->flags & REQ_F_NOWAIT) ||
2342 (req->flags & REQ_F_MUST_PUNT))) {
2343 struct io_uring_sqe *sqe_copy;
2345 sqe_copy = kmemdup(s->sqe, sizeof(*sqe_copy), GFP_KERNEL);
2347 struct async_list *list;
2350 memcpy(&req->submit, s, sizeof(*s));
2351 list = io_async_list_from_sqe(ctx, s->sqe);
2352 if (!io_add_to_prev_work(list, req)) {
2354 atomic_inc(&list->cnt);
2355 INIT_WORK(&req->work, io_sq_wq_submit_work);
2356 io_queue_async_work(ctx, req);
2360 * Queued up for async execution, worker will release
2361 * submit reference when the iocb is actually submitted.
2367 /* drop submission reference */
2370 /* and drop final reference, if we failed */
2372 io_cqring_add_event(ctx, req->user_data, ret);
2373 if (req->flags & REQ_F_LINK)
2374 req->flags |= REQ_F_FAIL_LINK;
2381 static int io_queue_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2382 struct sqe_submit *s)
2386 ret = io_req_defer(ctx, req, s->sqe);
2388 if (ret != -EIOCBQUEUED) {
2390 io_cqring_add_event(ctx, s->sqe->user_data, ret);
2395 return __io_queue_sqe(ctx, req, s);
2398 static int io_queue_link_head(struct io_ring_ctx *ctx, struct io_kiocb *req,
2399 struct sqe_submit *s, struct io_kiocb *shadow)
2402 int need_submit = false;
2405 return io_queue_sqe(ctx, req, s);
2408 * Mark the first IO in link list as DRAIN, let all the following
2409 * IOs enter the defer list. all IO needs to be completed before link
2412 req->flags |= REQ_F_IO_DRAIN;
2413 ret = io_req_defer(ctx, req, s->sqe);
2415 if (ret != -EIOCBQUEUED) {
2417 __io_free_req(shadow);
2418 io_cqring_add_event(ctx, s->sqe->user_data, ret);
2423 * If ret == 0 means that all IOs in front of link io are
2424 * running done. let's queue link head.
2429 /* Insert shadow req to defer_list, blocking next IOs */
2430 spin_lock_irq(&ctx->completion_lock);
2431 list_add_tail(&shadow->list, &ctx->defer_list);
2432 spin_unlock_irq(&ctx->completion_lock);
2435 return __io_queue_sqe(ctx, req, s);
2440 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK)
2442 static void io_submit_sqe(struct io_ring_ctx *ctx, struct sqe_submit *s,
2443 struct io_submit_state *state, struct io_kiocb **link)
2445 struct io_uring_sqe *sqe_copy;
2446 struct io_kiocb *req;
2449 /* enforce forwards compatibility on users */
2450 if (unlikely(s->sqe->flags & ~SQE_VALID_FLAGS)) {
2455 req = io_get_req(ctx, state);
2456 if (unlikely(!req)) {
2461 ret = io_req_set_file(ctx, s, state, req);
2462 if (unlikely(ret)) {
2466 io_cqring_add_event(ctx, s->sqe->user_data, ret);
2470 req->user_data = s->sqe->user_data;
2473 * If we already have a head request, queue this one for async
2474 * submittal once the head completes. If we don't have a head but
2475 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2476 * submitted sync once the chain is complete. If none of those
2477 * conditions are true (normal request), then just queue it.
2480 struct io_kiocb *prev = *link;
2482 sqe_copy = kmemdup(s->sqe, sizeof(*sqe_copy), GFP_KERNEL);
2489 memcpy(&req->submit, s, sizeof(*s));
2490 list_add_tail(&req->list, &prev->link_list);
2491 } else if (s->sqe->flags & IOSQE_IO_LINK) {
2492 req->flags |= REQ_F_LINK;
2494 memcpy(&req->submit, s, sizeof(*s));
2495 INIT_LIST_HEAD(&req->link_list);
2498 io_queue_sqe(ctx, req, s);
2503 * Batched submission is done, ensure local IO is flushed out.
2505 static void io_submit_state_end(struct io_submit_state *state)
2507 blk_finish_plug(&state->plug);
2509 if (state->free_reqs)
2510 kmem_cache_free_bulk(req_cachep, state->free_reqs,
2511 &state->reqs[state->cur_req]);
2515 * Start submission side cache.
2517 static void io_submit_state_start(struct io_submit_state *state,
2518 struct io_ring_ctx *ctx, unsigned max_ios)
2520 blk_start_plug(&state->plug);
2521 state->free_reqs = 0;
2523 state->ios_left = max_ios;
2526 static void io_commit_sqring(struct io_ring_ctx *ctx)
2528 struct io_rings *rings = ctx->rings;
2530 if (ctx->cached_sq_head != READ_ONCE(rings->sq.head)) {
2532 * Ensure any loads from the SQEs are done at this point,
2533 * since once we write the new head, the application could
2534 * write new data to them.
2536 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2541 * Fetch an sqe, if one is available. Note that s->sqe will point to memory
2542 * that is mapped by userspace. This means that care needs to be taken to
2543 * ensure that reads are stable, as we cannot rely on userspace always
2544 * being a good citizen. If members of the sqe are validated and then later
2545 * used, it's important that those reads are done through READ_ONCE() to
2546 * prevent a re-load down the line.
2548 static bool io_get_sqring(struct io_ring_ctx *ctx, struct sqe_submit *s)
2550 struct io_rings *rings = ctx->rings;
2551 u32 *sq_array = ctx->sq_array;
2555 * The cached sq head (or cq tail) serves two purposes:
2557 * 1) allows us to batch the cost of updating the user visible
2559 * 2) allows the kernel side to track the head on its own, even
2560 * though the application is the one updating it.
2562 head = ctx->cached_sq_head;
2563 /* make sure SQ entry isn't read before tail */
2564 if (head == smp_load_acquire(&rings->sq.tail))
2567 head = READ_ONCE(sq_array[head & ctx->sq_mask]);
2568 if (head < ctx->sq_entries) {
2570 s->sqe = &ctx->sq_sqes[head];
2571 s->sequence = ctx->cached_sq_head;
2572 ctx->cached_sq_head++;
2576 /* drop invalid entries */
2577 ctx->cached_sq_head++;
2578 ctx->cached_sq_dropped++;
2579 WRITE_ONCE(rings->sq_dropped, ctx->cached_sq_dropped);
2583 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr,
2584 bool has_user, bool mm_fault)
2586 struct io_submit_state state, *statep = NULL;
2587 struct io_kiocb *link = NULL;
2588 struct io_kiocb *shadow_req = NULL;
2589 bool prev_was_link = false;
2590 int i, submitted = 0;
2592 if (nr > IO_PLUG_THRESHOLD) {
2593 io_submit_state_start(&state, ctx, nr);
2597 for (i = 0; i < nr; i++) {
2598 struct sqe_submit s;
2600 if (!io_get_sqring(ctx, &s))
2604 * If previous wasn't linked and we have a linked command,
2605 * that's the end of the chain. Submit the previous link.
2607 if (!prev_was_link && link) {
2608 io_queue_link_head(ctx, link, &link->submit, shadow_req);
2612 prev_was_link = (s.sqe->flags & IOSQE_IO_LINK) != 0;
2614 if (link && (s.sqe->flags & IOSQE_IO_DRAIN)) {
2616 shadow_req = io_get_req(ctx, NULL);
2617 if (unlikely(!shadow_req))
2619 shadow_req->flags |= (REQ_F_IO_DRAIN | REQ_F_SHADOW_DRAIN);
2620 refcount_dec(&shadow_req->refs);
2622 shadow_req->sequence = s.sequence;
2626 if (unlikely(mm_fault)) {
2627 io_cqring_add_event(ctx, s.sqe->user_data,
2630 s.has_user = has_user;
2631 s.needs_lock = true;
2632 s.needs_fixed_file = true;
2633 io_submit_sqe(ctx, &s, statep, &link);
2639 io_queue_link_head(ctx, link, &link->submit, shadow_req);
2641 io_submit_state_end(&state);
2646 static int io_sq_thread(void *data)
2648 struct io_ring_ctx *ctx = data;
2649 struct mm_struct *cur_mm = NULL;
2650 mm_segment_t old_fs;
2653 unsigned long timeout;
2655 complete(&ctx->sqo_thread_started);
2660 timeout = inflight = 0;
2661 while (!kthread_should_park()) {
2662 bool mm_fault = false;
2663 unsigned int to_submit;
2666 unsigned nr_events = 0;
2668 if (ctx->flags & IORING_SETUP_IOPOLL) {
2670 * inflight is the count of the maximum possible
2671 * entries we submitted, but it can be smaller
2672 * if we dropped some of them. If we don't have
2673 * poll entries available, then we know that we
2674 * have nothing left to poll for. Reset the
2675 * inflight count to zero in that case.
2677 mutex_lock(&ctx->uring_lock);
2678 if (!list_empty(&ctx->poll_list))
2679 __io_iopoll_check(ctx, &nr_events, 0);
2682 mutex_unlock(&ctx->uring_lock);
2685 * Normal IO, just pretend everything completed.
2686 * We don't have to poll completions for that.
2688 nr_events = inflight;
2691 inflight -= nr_events;
2693 timeout = jiffies + ctx->sq_thread_idle;
2696 to_submit = io_sqring_entries(ctx);
2699 * We're polling. If we're within the defined idle
2700 * period, then let us spin without work before going
2703 if (inflight || !time_after(jiffies, timeout)) {
2709 * Drop cur_mm before scheduling, we can't hold it for
2710 * long periods (or over schedule()). Do this before
2711 * adding ourselves to the waitqueue, as the unuse/drop
2720 prepare_to_wait(&ctx->sqo_wait, &wait,
2721 TASK_INTERRUPTIBLE);
2723 /* Tell userspace we may need a wakeup call */
2724 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
2725 /* make sure to read SQ tail after writing flags */
2728 to_submit = io_sqring_entries(ctx);
2730 if (kthread_should_park()) {
2731 finish_wait(&ctx->sqo_wait, &wait);
2734 if (signal_pending(current))
2735 flush_signals(current);
2737 finish_wait(&ctx->sqo_wait, &wait);
2739 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
2742 finish_wait(&ctx->sqo_wait, &wait);
2744 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
2747 /* Unless all new commands are FIXED regions, grab mm */
2749 mm_fault = !mmget_not_zero(ctx->sqo_mm);
2751 use_mm(ctx->sqo_mm);
2752 cur_mm = ctx->sqo_mm;
2756 to_submit = min(to_submit, ctx->sq_entries);
2757 inflight += io_submit_sqes(ctx, to_submit, cur_mm != NULL,
2760 /* Commit SQ ring head once we've consumed all SQEs */
2761 io_commit_sqring(ctx);
2775 static int io_ring_submit(struct io_ring_ctx *ctx, unsigned int to_submit)
2777 struct io_submit_state state, *statep = NULL;
2778 struct io_kiocb *link = NULL;
2779 struct io_kiocb *shadow_req = NULL;
2780 bool prev_was_link = false;
2783 if (to_submit > IO_PLUG_THRESHOLD) {
2784 io_submit_state_start(&state, ctx, to_submit);
2788 for (i = 0; i < to_submit; i++) {
2789 struct sqe_submit s;
2791 if (!io_get_sqring(ctx, &s))
2795 * If previous wasn't linked and we have a linked command,
2796 * that's the end of the chain. Submit the previous link.
2798 if (!prev_was_link && link) {
2799 io_queue_link_head(ctx, link, &link->submit, shadow_req);
2803 prev_was_link = (s.sqe->flags & IOSQE_IO_LINK) != 0;
2805 if (link && (s.sqe->flags & IOSQE_IO_DRAIN)) {
2807 shadow_req = io_get_req(ctx, NULL);
2808 if (unlikely(!shadow_req))
2810 shadow_req->flags |= (REQ_F_IO_DRAIN | REQ_F_SHADOW_DRAIN);
2811 refcount_dec(&shadow_req->refs);
2813 shadow_req->sequence = s.sequence;
2818 s.needs_lock = false;
2819 s.needs_fixed_file = false;
2821 io_submit_sqe(ctx, &s, statep, &link);
2825 io_queue_link_head(ctx, link, &link->submit, shadow_req);
2827 io_submit_state_end(statep);
2829 io_commit_sqring(ctx);
2834 struct io_wait_queue {
2835 struct wait_queue_entry wq;
2836 struct io_ring_ctx *ctx;
2838 unsigned nr_timeouts;
2841 static inline bool io_should_wake(struct io_wait_queue *iowq)
2843 struct io_ring_ctx *ctx = iowq->ctx;
2846 * Wake up if we have enough events, or if a timeout occured since we
2847 * started waiting. For timeouts, we always want to return to userspace,
2848 * regardless of event count.
2850 return io_cqring_events(ctx->rings) >= iowq->to_wait ||
2851 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
2854 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2855 int wake_flags, void *key)
2857 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
2860 if (!io_should_wake(iowq))
2863 return autoremove_wake_function(curr, mode, wake_flags, key);
2867 * Wait until events become available, if we don't already have some. The
2868 * application must reap them itself, as they reside on the shared cq ring.
2870 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2871 const sigset_t __user *sig, size_t sigsz)
2873 struct io_wait_queue iowq = {
2876 .func = io_wake_function,
2877 .entry = LIST_HEAD_INIT(iowq.wq.entry),
2880 .to_wait = min_events,
2882 struct io_rings *rings = ctx->rings;
2885 if (io_cqring_events(rings) >= min_events)
2889 #ifdef CONFIG_COMPAT
2890 if (in_compat_syscall())
2891 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2895 ret = set_user_sigmask(sig, sigsz);
2902 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2904 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
2905 TASK_INTERRUPTIBLE);
2906 if (io_should_wake(&iowq))
2909 if (signal_pending(current)) {
2914 finish_wait(&ctx->wait, &iowq.wq);
2916 restore_saved_sigmask_unless(ret == -ERESTARTSYS);
2917 if (ret == -ERESTARTSYS)
2920 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2923 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
2925 #if defined(CONFIG_UNIX)
2926 if (ctx->ring_sock) {
2927 struct sock *sock = ctx->ring_sock->sk;
2928 struct sk_buff *skb;
2930 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
2936 for (i = 0; i < ctx->nr_user_files; i++)
2937 fput(ctx->user_files[i]);
2941 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
2943 if (!ctx->user_files)
2946 __io_sqe_files_unregister(ctx);
2947 kfree(ctx->user_files);
2948 ctx->user_files = NULL;
2949 ctx->nr_user_files = 0;
2953 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
2955 if (ctx->sqo_thread) {
2956 wait_for_completion(&ctx->sqo_thread_started);
2958 * The park is a bit of a work-around, without it we get
2959 * warning spews on shutdown with SQPOLL set and affinity
2960 * set to a single CPU.
2962 kthread_park(ctx->sqo_thread);
2963 kthread_stop(ctx->sqo_thread);
2964 ctx->sqo_thread = NULL;
2968 static void io_finish_async(struct io_ring_ctx *ctx)
2972 io_sq_thread_stop(ctx);
2974 for (i = 0; i < ARRAY_SIZE(ctx->sqo_wq); i++) {
2975 if (ctx->sqo_wq[i]) {
2976 destroy_workqueue(ctx->sqo_wq[i]);
2977 ctx->sqo_wq[i] = NULL;
2982 #if defined(CONFIG_UNIX)
2983 static void io_destruct_skb(struct sk_buff *skb)
2985 struct io_ring_ctx *ctx = skb->sk->sk_user_data;
2988 for (i = 0; i < ARRAY_SIZE(ctx->sqo_wq); i++)
2990 flush_workqueue(ctx->sqo_wq[i]);
2992 unix_destruct_scm(skb);
2996 * Ensure the UNIX gc is aware of our file set, so we are certain that
2997 * the io_uring can be safely unregistered on process exit, even if we have
2998 * loops in the file referencing.
3000 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
3002 struct sock *sk = ctx->ring_sock->sk;
3003 struct scm_fp_list *fpl;
3004 struct sk_buff *skb;
3007 if (!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) {
3008 unsigned long inflight = ctx->user->unix_inflight + nr;
3010 if (inflight > task_rlimit(current, RLIMIT_NOFILE))
3014 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
3018 skb = alloc_skb(0, GFP_KERNEL);
3025 skb->destructor = io_destruct_skb;
3027 fpl->user = get_uid(ctx->user);
3028 for (i = 0; i < nr; i++) {
3029 fpl->fp[i] = get_file(ctx->user_files[i + offset]);
3030 unix_inflight(fpl->user, fpl->fp[i]);
3033 fpl->max = fpl->count = nr;
3034 UNIXCB(skb).fp = fpl;
3035 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
3036 skb_queue_head(&sk->sk_receive_queue, skb);
3038 for (i = 0; i < nr; i++)
3045 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
3046 * causes regular reference counting to break down. We rely on the UNIX
3047 * garbage collection to take care of this problem for us.
3049 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
3051 unsigned left, total;
3055 left = ctx->nr_user_files;
3057 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
3059 ret = __io_sqe_files_scm(ctx, this_files, total);
3063 total += this_files;
3069 while (total < ctx->nr_user_files) {
3070 fput(ctx->user_files[total]);
3077 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
3083 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
3086 __s32 __user *fds = (__s32 __user *) arg;
3090 if (ctx->user_files)
3094 if (nr_args > IORING_MAX_FIXED_FILES)
3097 ctx->user_files = kcalloc(nr_args, sizeof(struct file *), GFP_KERNEL);
3098 if (!ctx->user_files)
3101 for (i = 0; i < nr_args; i++) {
3103 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
3106 ctx->user_files[i] = fget(fd);
3109 if (!ctx->user_files[i])
3112 * Don't allow io_uring instances to be registered. If UNIX
3113 * isn't enabled, then this causes a reference cycle and this
3114 * instance can never get freed. If UNIX is enabled we'll
3115 * handle it just fine, but there's still no point in allowing
3116 * a ring fd as it doesn't support regular read/write anyway.
3118 if (ctx->user_files[i]->f_op == &io_uring_fops) {
3119 fput(ctx->user_files[i]);
3122 ctx->nr_user_files++;
3127 for (i = 0; i < ctx->nr_user_files; i++)
3128 fput(ctx->user_files[i]);
3130 kfree(ctx->user_files);
3131 ctx->user_files = NULL;
3132 ctx->nr_user_files = 0;
3136 ret = io_sqe_files_scm(ctx);
3138 io_sqe_files_unregister(ctx);
3143 static int io_sq_offload_start(struct io_ring_ctx *ctx,
3144 struct io_uring_params *p)
3148 init_waitqueue_head(&ctx->sqo_wait);
3149 mmgrab(current->mm);
3150 ctx->sqo_mm = current->mm;
3152 if (ctx->flags & IORING_SETUP_SQPOLL) {
3154 if (!capable(CAP_SYS_ADMIN))
3157 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
3158 if (!ctx->sq_thread_idle)
3159 ctx->sq_thread_idle = HZ;
3161 if (p->flags & IORING_SETUP_SQ_AFF) {
3162 int cpu = p->sq_thread_cpu;
3165 if (cpu >= nr_cpu_ids)
3167 if (!cpu_online(cpu))
3170 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
3174 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
3177 if (IS_ERR(ctx->sqo_thread)) {
3178 ret = PTR_ERR(ctx->sqo_thread);
3179 ctx->sqo_thread = NULL;
3182 wake_up_process(ctx->sqo_thread);
3183 } else if (p->flags & IORING_SETUP_SQ_AFF) {
3184 /* Can't have SQ_AFF without SQPOLL */
3189 /* Do QD, or 2 * CPUS, whatever is smallest */
3190 ctx->sqo_wq[0] = alloc_workqueue("io_ring-wq",
3191 WQ_UNBOUND | WQ_FREEZABLE,
3192 min(ctx->sq_entries - 1, 2 * num_online_cpus()));
3193 if (!ctx->sqo_wq[0]) {
3199 * This is for buffered writes, where we want to limit the parallelism
3200 * due to file locking in file systems. As "normal" buffered writes
3201 * should parellelize on writeout quite nicely, limit us to having 2
3202 * pending. This avoids massive contention on the inode when doing
3203 * buffered async writes.
3205 ctx->sqo_wq[1] = alloc_workqueue("io_ring-write-wq",
3206 WQ_UNBOUND | WQ_FREEZABLE, 2);
3207 if (!ctx->sqo_wq[1]) {
3214 io_finish_async(ctx);
3215 mmdrop(ctx->sqo_mm);
3220 static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
3222 atomic_long_sub(nr_pages, &user->locked_vm);
3225 static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
3227 unsigned long page_limit, cur_pages, new_pages;
3229 /* Don't allow more pages than we can safely lock */
3230 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
3233 cur_pages = atomic_long_read(&user->locked_vm);
3234 new_pages = cur_pages + nr_pages;
3235 if (new_pages > page_limit)
3237 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
3238 new_pages) != cur_pages);
3243 static void io_mem_free(void *ptr)
3250 page = virt_to_head_page(ptr);
3251 if (put_page_testzero(page))
3252 free_compound_page(page);
3255 static void *io_mem_alloc(size_t size)
3257 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
3260 return (void *) __get_free_pages(gfp_flags, get_order(size));
3263 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
3266 struct io_rings *rings;
3267 size_t off, sq_array_size;
3269 off = struct_size(rings, cqes, cq_entries);
3270 if (off == SIZE_MAX)
3274 off = ALIGN(off, SMP_CACHE_BYTES);
3279 sq_array_size = array_size(sizeof(u32), sq_entries);
3280 if (sq_array_size == SIZE_MAX)
3283 if (check_add_overflow(off, sq_array_size, &off))
3292 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
3296 pages = (size_t)1 << get_order(
3297 rings_size(sq_entries, cq_entries, NULL));
3298 pages += (size_t)1 << get_order(
3299 array_size(sizeof(struct io_uring_sqe), sq_entries));
3304 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
3308 if (!ctx->user_bufs)
3311 for (i = 0; i < ctx->nr_user_bufs; i++) {
3312 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
3314 for (j = 0; j < imu->nr_bvecs; j++)
3315 put_user_page(imu->bvec[j].bv_page);
3317 if (ctx->account_mem)
3318 io_unaccount_mem(ctx->user, imu->nr_bvecs);
3323 kfree(ctx->user_bufs);
3324 ctx->user_bufs = NULL;
3325 ctx->nr_user_bufs = 0;
3329 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
3330 void __user *arg, unsigned index)
3332 struct iovec __user *src;
3334 #ifdef CONFIG_COMPAT
3336 struct compat_iovec __user *ciovs;
3337 struct compat_iovec ciov;
3339 ciovs = (struct compat_iovec __user *) arg;
3340 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
3343 dst->iov_base = (void __user *) (unsigned long) ciov.iov_base;
3344 dst->iov_len = ciov.iov_len;
3348 src = (struct iovec __user *) arg;
3349 if (copy_from_user(dst, &src[index], sizeof(*dst)))
3354 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
3357 struct vm_area_struct **vmas = NULL;
3358 struct page **pages = NULL;
3359 int i, j, got_pages = 0;
3364 if (!nr_args || nr_args > UIO_MAXIOV)
3367 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
3369 if (!ctx->user_bufs)
3372 for (i = 0; i < nr_args; i++) {
3373 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
3374 unsigned long off, start, end, ubuf;
3379 ret = io_copy_iov(ctx, &iov, arg, i);
3384 * Don't impose further limits on the size and buffer
3385 * constraints here, we'll -EINVAL later when IO is
3386 * submitted if they are wrong.
3389 if (!iov.iov_base || !iov.iov_len)
3392 /* arbitrary limit, but we need something */
3393 if (iov.iov_len > SZ_1G)
3396 ubuf = (unsigned long) iov.iov_base;
3397 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
3398 start = ubuf >> PAGE_SHIFT;
3399 nr_pages = end - start;
3401 if (ctx->account_mem) {
3402 ret = io_account_mem(ctx->user, nr_pages);
3408 if (!pages || nr_pages > got_pages) {
3411 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
3413 vmas = kvmalloc_array(nr_pages,
3414 sizeof(struct vm_area_struct *),
3416 if (!pages || !vmas) {
3418 if (ctx->account_mem)
3419 io_unaccount_mem(ctx->user, nr_pages);
3422 got_pages = nr_pages;
3425 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
3429 if (ctx->account_mem)
3430 io_unaccount_mem(ctx->user, nr_pages);
3435 down_read(¤t->mm->mmap_sem);
3436 pret = get_user_pages(ubuf, nr_pages,
3437 FOLL_WRITE | FOLL_LONGTERM,
3439 if (pret == nr_pages) {
3440 /* don't support file backed memory */
3441 for (j = 0; j < nr_pages; j++) {
3442 struct vm_area_struct *vma = vmas[j];
3445 !is_file_hugepages(vma->vm_file)) {
3451 ret = pret < 0 ? pret : -EFAULT;
3453 up_read(¤t->mm->mmap_sem);
3456 * if we did partial map, or found file backed vmas,
3457 * release any pages we did get
3460 put_user_pages(pages, pret);
3461 if (ctx->account_mem)
3462 io_unaccount_mem(ctx->user, nr_pages);
3467 off = ubuf & ~PAGE_MASK;
3469 for (j = 0; j < nr_pages; j++) {
3472 vec_len = min_t(size_t, size, PAGE_SIZE - off);
3473 imu->bvec[j].bv_page = pages[j];
3474 imu->bvec[j].bv_len = vec_len;
3475 imu->bvec[j].bv_offset = off;
3479 /* store original address for later verification */
3481 imu->len = iov.iov_len;
3482 imu->nr_bvecs = nr_pages;
3484 ctx->nr_user_bufs++;
3492 io_sqe_buffer_unregister(ctx);
3496 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
3498 __s32 __user *fds = arg;
3504 if (copy_from_user(&fd, fds, sizeof(*fds)))
3507 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
3508 if (IS_ERR(ctx->cq_ev_fd)) {
3509 int ret = PTR_ERR(ctx->cq_ev_fd);
3510 ctx->cq_ev_fd = NULL;
3517 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
3519 if (ctx->cq_ev_fd) {
3520 eventfd_ctx_put(ctx->cq_ev_fd);
3521 ctx->cq_ev_fd = NULL;
3528 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
3530 io_finish_async(ctx);
3532 mmdrop(ctx->sqo_mm);
3534 io_iopoll_reap_events(ctx);
3535 io_sqe_buffer_unregister(ctx);
3536 io_sqe_files_unregister(ctx);
3537 io_eventfd_unregister(ctx);
3539 #if defined(CONFIG_UNIX)
3540 if (ctx->ring_sock) {
3541 ctx->ring_sock->file = NULL; /* so that iput() is called */
3542 sock_release(ctx->ring_sock);
3546 io_mem_free(ctx->rings);
3547 io_mem_free(ctx->sq_sqes);
3549 percpu_ref_exit(&ctx->refs);
3550 if (ctx->account_mem)
3551 io_unaccount_mem(ctx->user,
3552 ring_pages(ctx->sq_entries, ctx->cq_entries));
3553 free_uid(ctx->user);
3557 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
3559 struct io_ring_ctx *ctx = file->private_data;
3562 poll_wait(file, &ctx->cq_wait, wait);
3564 * synchronizes with barrier from wq_has_sleeper call in
3568 if (READ_ONCE(ctx->rings->sq.tail) - ctx->cached_sq_head !=
3569 ctx->rings->sq_ring_entries)
3570 mask |= EPOLLOUT | EPOLLWRNORM;
3571 if (READ_ONCE(ctx->rings->cq.head) != ctx->cached_cq_tail)
3572 mask |= EPOLLIN | EPOLLRDNORM;
3577 static int io_uring_fasync(int fd, struct file *file, int on)
3579 struct io_ring_ctx *ctx = file->private_data;
3581 return fasync_helper(fd, file, on, &ctx->cq_fasync);
3584 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
3586 mutex_lock(&ctx->uring_lock);
3587 percpu_ref_kill(&ctx->refs);
3588 mutex_unlock(&ctx->uring_lock);
3590 io_kill_timeouts(ctx);
3591 io_poll_remove_all(ctx);
3592 io_iopoll_reap_events(ctx);
3593 wait_for_completion(&ctx->ctx_done);
3594 io_ring_ctx_free(ctx);
3597 static int io_uring_release(struct inode *inode, struct file *file)
3599 struct io_ring_ctx *ctx = file->private_data;
3601 file->private_data = NULL;
3602 io_ring_ctx_wait_and_kill(ctx);
3606 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
3608 loff_t offset = (loff_t) vma->vm_pgoff << PAGE_SHIFT;
3609 unsigned long sz = vma->vm_end - vma->vm_start;
3610 struct io_ring_ctx *ctx = file->private_data;
3616 case IORING_OFF_SQ_RING:
3617 case IORING_OFF_CQ_RING:
3620 case IORING_OFF_SQES:
3627 page = virt_to_head_page(ptr);
3628 if (sz > page_size(page))
3631 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
3632 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
3635 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3636 u32, min_complete, u32, flags, const sigset_t __user *, sig,
3639 struct io_ring_ctx *ctx;
3644 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
3652 if (f.file->f_op != &io_uring_fops)
3656 ctx = f.file->private_data;
3657 if (!percpu_ref_tryget(&ctx->refs))
3661 * For SQ polling, the thread will do all submissions and completions.
3662 * Just return the requested submit count, and wake the thread if
3666 if (ctx->flags & IORING_SETUP_SQPOLL) {
3667 if (flags & IORING_ENTER_SQ_WAKEUP)
3668 wake_up(&ctx->sqo_wait);
3669 submitted = to_submit;
3670 } else if (to_submit) {
3671 to_submit = min(to_submit, ctx->sq_entries);
3673 mutex_lock(&ctx->uring_lock);
3674 submitted = io_ring_submit(ctx, to_submit);
3675 mutex_unlock(&ctx->uring_lock);
3677 if (flags & IORING_ENTER_GETEVENTS) {
3678 unsigned nr_events = 0;
3680 min_complete = min(min_complete, ctx->cq_entries);
3682 if (ctx->flags & IORING_SETUP_IOPOLL) {
3683 ret = io_iopoll_check(ctx, &nr_events, min_complete);
3685 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
3689 percpu_ref_put(&ctx->refs);
3692 return submitted ? submitted : ret;
3695 static const struct file_operations io_uring_fops = {
3696 .release = io_uring_release,
3697 .mmap = io_uring_mmap,
3698 .poll = io_uring_poll,
3699 .fasync = io_uring_fasync,
3702 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3703 struct io_uring_params *p)
3705 struct io_rings *rings;
3706 size_t size, sq_array_offset;
3708 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
3709 if (size == SIZE_MAX)
3712 rings = io_mem_alloc(size);
3717 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3718 rings->sq_ring_mask = p->sq_entries - 1;
3719 rings->cq_ring_mask = p->cq_entries - 1;
3720 rings->sq_ring_entries = p->sq_entries;
3721 rings->cq_ring_entries = p->cq_entries;
3722 ctx->sq_mask = rings->sq_ring_mask;
3723 ctx->cq_mask = rings->cq_ring_mask;
3724 ctx->sq_entries = rings->sq_ring_entries;
3725 ctx->cq_entries = rings->cq_ring_entries;
3727 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3728 if (size == SIZE_MAX)
3731 ctx->sq_sqes = io_mem_alloc(size);
3739 * Allocate an anonymous fd, this is what constitutes the application
3740 * visible backing of an io_uring instance. The application mmaps this
3741 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
3742 * we have to tie this fd to a socket for file garbage collection purposes.
3744 static int io_uring_get_fd(struct io_ring_ctx *ctx)
3749 #if defined(CONFIG_UNIX)
3750 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
3756 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3760 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
3761 O_RDWR | O_CLOEXEC);
3764 ret = PTR_ERR(file);
3768 #if defined(CONFIG_UNIX)
3769 ctx->ring_sock->file = file;
3770 ctx->ring_sock->sk->sk_user_data = ctx;
3772 fd_install(ret, file);
3775 #if defined(CONFIG_UNIX)
3776 sock_release(ctx->ring_sock);
3777 ctx->ring_sock = NULL;
3782 static int io_uring_create(unsigned entries, struct io_uring_params *p)
3784 struct user_struct *user = NULL;
3785 struct io_ring_ctx *ctx;
3789 if (!entries || entries > IORING_MAX_ENTRIES)
3793 * Use twice as many entries for the CQ ring. It's possible for the
3794 * application to drive a higher depth than the size of the SQ ring,
3795 * since the sqes are only used at submission time. This allows for
3796 * some flexibility in overcommitting a bit.
3798 p->sq_entries = roundup_pow_of_two(entries);
3799 p->cq_entries = 2 * p->sq_entries;
3801 user = get_uid(current_user());
3802 account_mem = !capable(CAP_IPC_LOCK);
3805 ret = io_account_mem(user,
3806 ring_pages(p->sq_entries, p->cq_entries));
3813 ctx = io_ring_ctx_alloc(p);
3816 io_unaccount_mem(user, ring_pages(p->sq_entries,
3821 ctx->compat = in_compat_syscall();
3822 ctx->account_mem = account_mem;
3825 ret = io_allocate_scq_urings(ctx, p);
3829 ret = io_sq_offload_start(ctx, p);
3833 memset(&p->sq_off, 0, sizeof(p->sq_off));
3834 p->sq_off.head = offsetof(struct io_rings, sq.head);
3835 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3836 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3837 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3838 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3839 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3840 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3842 memset(&p->cq_off, 0, sizeof(p->cq_off));
3843 p->cq_off.head = offsetof(struct io_rings, cq.head);
3844 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3845 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3846 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3847 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3848 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3851 * Install ring fd as the very last thing, so we don't risk someone
3852 * having closed it before we finish setup
3854 ret = io_uring_get_fd(ctx);
3858 p->features = IORING_FEAT_SINGLE_MMAP;
3861 io_ring_ctx_wait_and_kill(ctx);
3866 * Sets up an aio uring context, and returns the fd. Applications asks for a
3867 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3868 * params structure passed in.
3870 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3872 struct io_uring_params p;
3876 if (copy_from_user(&p, params, sizeof(p)))
3878 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3883 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3884 IORING_SETUP_SQ_AFF))
3887 ret = io_uring_create(entries, &p);
3891 if (copy_to_user(params, &p, sizeof(p)))
3897 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3898 struct io_uring_params __user *, params)
3900 return io_uring_setup(entries, params);
3903 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
3904 void __user *arg, unsigned nr_args)
3905 __releases(ctx->uring_lock)
3906 __acquires(ctx->uring_lock)
3911 * We're inside the ring mutex, if the ref is already dying, then
3912 * someone else killed the ctx or is already going through
3913 * io_uring_register().
3915 if (percpu_ref_is_dying(&ctx->refs))
3918 percpu_ref_kill(&ctx->refs);
3921 * Drop uring mutex before waiting for references to exit. If another
3922 * thread is currently inside io_uring_enter() it might need to grab
3923 * the uring_lock to make progress. If we hold it here across the drain
3924 * wait, then we can deadlock. It's safe to drop the mutex here, since
3925 * no new references will come in after we've killed the percpu ref.
3927 mutex_unlock(&ctx->uring_lock);
3928 wait_for_completion(&ctx->ctx_done);
3929 mutex_lock(&ctx->uring_lock);
3932 case IORING_REGISTER_BUFFERS:
3933 ret = io_sqe_buffer_register(ctx, arg, nr_args);
3935 case IORING_UNREGISTER_BUFFERS:
3939 ret = io_sqe_buffer_unregister(ctx);
3941 case IORING_REGISTER_FILES:
3942 ret = io_sqe_files_register(ctx, arg, nr_args);
3944 case IORING_UNREGISTER_FILES:
3948 ret = io_sqe_files_unregister(ctx);
3950 case IORING_REGISTER_EVENTFD:
3954 ret = io_eventfd_register(ctx, arg);
3956 case IORING_UNREGISTER_EVENTFD:
3960 ret = io_eventfd_unregister(ctx);
3967 /* bring the ctx back to life */
3968 reinit_completion(&ctx->ctx_done);
3969 percpu_ref_reinit(&ctx->refs);
3973 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
3974 void __user *, arg, unsigned int, nr_args)
3976 struct io_ring_ctx *ctx;
3985 if (f.file->f_op != &io_uring_fops)
3988 ctx = f.file->private_data;
3990 mutex_lock(&ctx->uring_lock);
3991 ret = __io_uring_register(ctx, opcode, arg, nr_args);
3992 mutex_unlock(&ctx->uring_lock);
3998 static int __init io_uring_init(void)
4000 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
4003 __initcall(io_uring_init);