1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
51 #include <linux/sched/signal.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
56 #include <linux/mman.h>
57 #include <linux/mmu_context.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
65 #include <net/af_unix.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/io_uring.h>
83 #include <uapi/linux/io_uring.h>
88 #define IORING_MAX_ENTRIES 32768
89 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
92 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
94 #define IORING_FILE_TABLE_SHIFT 9
95 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
96 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
97 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
100 u32 head ____cacheline_aligned_in_smp;
101 u32 tail ____cacheline_aligned_in_smp;
105 * This data is shared with the application through the mmap at offsets
106 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
108 * The offsets to the member fields are published through struct
109 * io_sqring_offsets when calling io_uring_setup.
113 * Head and tail offsets into the ring; the offsets need to be
114 * masked to get valid indices.
116 * The kernel controls head of the sq ring and the tail of the cq ring,
117 * and the application controls tail of the sq ring and the head of the
120 struct io_uring sq, cq;
122 * Bitmasks to apply to head and tail offsets (constant, equals
125 u32 sq_ring_mask, cq_ring_mask;
126 /* Ring sizes (constant, power of 2) */
127 u32 sq_ring_entries, cq_ring_entries;
129 * Number of invalid entries dropped by the kernel due to
130 * invalid index stored in array
132 * Written by the kernel, shouldn't be modified by the
133 * application (i.e. get number of "new events" by comparing to
136 * After a new SQ head value was read by the application this
137 * counter includes all submissions that were dropped reaching
138 * the new SQ head (and possibly more).
144 * Written by the kernel, shouldn't be modified by the
147 * The application needs a full memory barrier before checking
148 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
152 * Number of completion events lost because the queue was full;
153 * this should be avoided by the application by making sure
154 * there are not more requests pending than there is space in
155 * the completion queue.
157 * Written by the kernel, shouldn't be modified by the
158 * application (i.e. get number of "new events" by comparing to
161 * As completion events come in out of order this counter is not
162 * ordered with any other data.
166 * Ring buffer of completion events.
168 * The kernel writes completion events fresh every time they are
169 * produced, so the application is allowed to modify pending
172 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
175 struct io_mapped_ubuf {
178 struct bio_vec *bvec;
179 unsigned int nr_bvecs;
182 struct fixed_file_table {
190 struct fixed_file_data {
191 struct fixed_file_table *table;
192 struct io_ring_ctx *ctx;
194 struct percpu_ref refs;
195 struct llist_head put_llist;
197 struct work_struct ref_work;
198 struct completion done;
203 struct percpu_ref refs;
204 } ____cacheline_aligned_in_smp;
208 unsigned int compat: 1;
209 unsigned int account_mem: 1;
210 unsigned int cq_overflow_flushed: 1;
211 unsigned int drain_next: 1;
212 unsigned int eventfd_async: 1;
215 * Ring buffer of indices into array of io_uring_sqe, which is
216 * mmapped by the application using the IORING_OFF_SQES offset.
218 * This indirection could e.g. be used to assign fixed
219 * io_uring_sqe entries to operations and only submit them to
220 * the queue when needed.
222 * The kernel modifies neither the indices array nor the entries
226 unsigned cached_sq_head;
229 unsigned sq_thread_idle;
230 unsigned cached_sq_dropped;
231 atomic_t cached_cq_overflow;
232 unsigned long sq_check_overflow;
234 struct list_head defer_list;
235 struct list_head timeout_list;
236 struct list_head cq_overflow_list;
238 wait_queue_head_t inflight_wait;
239 struct io_uring_sqe *sq_sqes;
240 } ____cacheline_aligned_in_smp;
242 struct io_rings *rings;
246 struct task_struct *sqo_thread; /* if using sq thread polling */
247 struct mm_struct *sqo_mm;
248 wait_queue_head_t sqo_wait;
251 * If used, fixed file set. Writers must ensure that ->refs is dead,
252 * readers must ensure that ->refs is alive as long as the file* is
253 * used. Only updated through io_uring_register(2).
255 struct fixed_file_data *file_data;
256 unsigned nr_user_files;
258 struct file *ring_file;
260 /* if used, fixed mapped user buffers */
261 unsigned nr_user_bufs;
262 struct io_mapped_ubuf *user_bufs;
264 struct user_struct *user;
266 const struct cred *creds;
268 /* 0 is for ctx quiesce/reinit/free, 1 is for sqo_thread started */
269 struct completion *completions;
271 /* if all else fails... */
272 struct io_kiocb *fallback_req;
274 #if defined(CONFIG_UNIX)
275 struct socket *ring_sock;
278 struct idr personality_idr;
281 unsigned cached_cq_tail;
284 atomic_t cq_timeouts;
285 unsigned long cq_check_overflow;
286 struct wait_queue_head cq_wait;
287 struct fasync_struct *cq_fasync;
288 struct eventfd_ctx *cq_ev_fd;
289 } ____cacheline_aligned_in_smp;
292 struct mutex uring_lock;
293 wait_queue_head_t wait;
294 } ____cacheline_aligned_in_smp;
297 spinlock_t completion_lock;
298 struct llist_head poll_llist;
301 * ->poll_list is protected by the ctx->uring_lock for
302 * io_uring instances that don't use IORING_SETUP_SQPOLL.
303 * For SQPOLL, only the single threaded io_sq_thread() will
304 * manipulate the list, hence no extra locking is needed there.
306 struct list_head poll_list;
307 struct hlist_head *cancel_hash;
308 unsigned cancel_hash_bits;
309 bool poll_multi_file;
311 spinlock_t inflight_lock;
312 struct list_head inflight_list;
313 } ____cacheline_aligned_in_smp;
317 * First field must be the file pointer in all the
318 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
320 struct io_poll_iocb {
323 struct wait_queue_head *head;
329 struct wait_queue_entry wait;
334 struct file *put_file;
338 struct io_timeout_data {
339 struct io_kiocb *req;
340 struct hrtimer timer;
341 struct timespec64 ts;
342 enum hrtimer_mode mode;
348 struct sockaddr __user *addr;
349 int __user *addr_len;
374 /* NOTE: kiocb has the file as the first member, so don't do it here */
382 struct sockaddr __user *addr;
389 struct user_msghdr __user *msg;
402 struct filename *filename;
403 struct statx __user *buffer;
407 struct io_files_update {
433 struct epoll_event event;
436 struct io_async_connect {
437 struct sockaddr_storage address;
440 struct io_async_msghdr {
441 struct iovec fast_iov[UIO_FASTIOV];
443 struct sockaddr __user *uaddr;
445 struct sockaddr_storage addr;
449 struct iovec fast_iov[UIO_FASTIOV];
455 struct io_async_ctx {
457 struct io_async_rw rw;
458 struct io_async_msghdr msg;
459 struct io_async_connect connect;
460 struct io_timeout_data timeout;
465 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
466 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
467 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
468 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
469 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
476 REQ_F_IOPOLL_COMPLETED_BIT,
477 REQ_F_LINK_TIMEOUT_BIT,
481 REQ_F_TIMEOUT_NOSEQ_BIT,
482 REQ_F_COMP_LOCKED_BIT,
483 REQ_F_NEED_CLEANUP_BIT,
489 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
490 /* drain existing IO first */
491 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
493 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
494 /* doesn't sever on completion < 0 */
495 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
497 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
499 /* already grabbed next link */
500 REQ_F_LINK_NEXT = BIT(REQ_F_LINK_NEXT_BIT),
501 /* fail rest of links */
502 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
503 /* on inflight list */
504 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
505 /* read/write uses file position */
506 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
507 /* must not punt to workers */
508 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
509 /* polled IO has completed */
510 REQ_F_IOPOLL_COMPLETED = BIT(REQ_F_IOPOLL_COMPLETED_BIT),
511 /* has linked timeout */
512 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
513 /* timeout request */
514 REQ_F_TIMEOUT = BIT(REQ_F_TIMEOUT_BIT),
516 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
517 /* must be punted even for NONBLOCK */
518 REQ_F_MUST_PUNT = BIT(REQ_F_MUST_PUNT_BIT),
519 /* no timeout sequence */
520 REQ_F_TIMEOUT_NOSEQ = BIT(REQ_F_TIMEOUT_NOSEQ_BIT),
521 /* completion under lock */
522 REQ_F_COMP_LOCKED = BIT(REQ_F_COMP_LOCKED_BIT),
524 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
525 /* in overflow list */
526 REQ_F_OVERFLOW = BIT(REQ_F_OVERFLOW_BIT),
530 * NOTE! Each of the iocb union members has the file pointer
531 * as the first entry in their struct definition. So you can
532 * access the file pointer through any of the sub-structs,
533 * or directly as just 'ki_filp' in this struct.
539 struct io_poll_iocb poll;
540 struct io_accept accept;
542 struct io_cancel cancel;
543 struct io_timeout timeout;
544 struct io_connect connect;
545 struct io_sr_msg sr_msg;
547 struct io_close close;
548 struct io_files_update files_update;
549 struct io_fadvise fadvise;
550 struct io_madvise madvise;
551 struct io_epoll epoll;
554 struct io_async_ctx *io;
556 * llist_node is only used for poll deferred completions
558 struct llist_node llist_node;
560 bool needs_fixed_file;
563 struct io_ring_ctx *ctx;
565 struct list_head list;
566 struct hlist_node hash_node;
568 struct list_head link_list;
575 struct list_head inflight_entry;
577 struct io_wq_work work;
580 #define IO_PLUG_THRESHOLD 2
581 #define IO_IOPOLL_BATCH 8
583 struct io_submit_state {
584 struct blk_plug plug;
587 * io_kiocb alloc cache
589 void *reqs[IO_IOPOLL_BATCH];
590 unsigned int free_reqs;
593 * File reference cache
597 unsigned int has_refs;
598 unsigned int used_refs;
599 unsigned int ios_left;
603 /* needs req->io allocated for deferral/async */
604 unsigned async_ctx : 1;
605 /* needs current->mm setup, does mm access */
606 unsigned needs_mm : 1;
607 /* needs req->file assigned */
608 unsigned needs_file : 1;
609 /* needs req->file assigned IFF fd is >= 0 */
610 unsigned fd_non_neg : 1;
611 /* hash wq insertion if file is a regular file */
612 unsigned hash_reg_file : 1;
613 /* unbound wq insertion if file is a non-regular file */
614 unsigned unbound_nonreg_file : 1;
615 /* opcode is not supported by this kernel */
616 unsigned not_supported : 1;
617 /* needs file table */
618 unsigned file_table : 1;
620 unsigned needs_fs : 1;
623 static const struct io_op_def io_op_defs[] = {
624 [IORING_OP_NOP] = {},
625 [IORING_OP_READV] = {
629 .unbound_nonreg_file = 1,
631 [IORING_OP_WRITEV] = {
636 .unbound_nonreg_file = 1,
638 [IORING_OP_FSYNC] = {
641 [IORING_OP_READ_FIXED] = {
643 .unbound_nonreg_file = 1,
645 [IORING_OP_WRITE_FIXED] = {
648 .unbound_nonreg_file = 1,
650 [IORING_OP_POLL_ADD] = {
652 .unbound_nonreg_file = 1,
654 [IORING_OP_POLL_REMOVE] = {},
655 [IORING_OP_SYNC_FILE_RANGE] = {
658 [IORING_OP_SENDMSG] = {
662 .unbound_nonreg_file = 1,
665 [IORING_OP_RECVMSG] = {
669 .unbound_nonreg_file = 1,
672 [IORING_OP_TIMEOUT] = {
676 [IORING_OP_TIMEOUT_REMOVE] = {},
677 [IORING_OP_ACCEPT] = {
680 .unbound_nonreg_file = 1,
683 [IORING_OP_ASYNC_CANCEL] = {},
684 [IORING_OP_LINK_TIMEOUT] = {
688 [IORING_OP_CONNECT] = {
692 .unbound_nonreg_file = 1,
694 [IORING_OP_FALLOCATE] = {
697 [IORING_OP_OPENAT] = {
703 [IORING_OP_CLOSE] = {
707 [IORING_OP_FILES_UPDATE] = {
711 [IORING_OP_STATX] = {
720 .unbound_nonreg_file = 1,
722 [IORING_OP_WRITE] = {
725 .unbound_nonreg_file = 1,
727 [IORING_OP_FADVISE] = {
730 [IORING_OP_MADVISE] = {
736 .unbound_nonreg_file = 1,
741 .unbound_nonreg_file = 1,
743 [IORING_OP_OPENAT2] = {
749 [IORING_OP_EPOLL_CTL] = {
750 .unbound_nonreg_file = 1,
755 static void io_wq_submit_work(struct io_wq_work **workptr);
756 static void io_cqring_fill_event(struct io_kiocb *req, long res);
757 static void io_put_req(struct io_kiocb *req);
758 static void __io_double_put_req(struct io_kiocb *req);
759 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
760 static void io_queue_linked_timeout(struct io_kiocb *req);
761 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
762 struct io_uring_files_update *ip,
764 static int io_grab_files(struct io_kiocb *req);
765 static void io_ring_file_ref_flush(struct fixed_file_data *data);
766 static void io_cleanup_req(struct io_kiocb *req);
768 static struct kmem_cache *req_cachep;
770 static const struct file_operations io_uring_fops;
772 struct sock *io_uring_get_socket(struct file *file)
774 #if defined(CONFIG_UNIX)
775 if (file->f_op == &io_uring_fops) {
776 struct io_ring_ctx *ctx = file->private_data;
778 return ctx->ring_sock->sk;
783 EXPORT_SYMBOL(io_uring_get_socket);
785 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
787 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
789 complete(&ctx->completions[0]);
792 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
794 struct io_ring_ctx *ctx;
797 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
801 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
802 if (!ctx->fallback_req)
805 ctx->completions = kmalloc(2 * sizeof(struct completion), GFP_KERNEL);
806 if (!ctx->completions)
810 * Use 5 bits less than the max cq entries, that should give us around
811 * 32 entries per hash list if totally full and uniformly spread.
813 hash_bits = ilog2(p->cq_entries);
817 ctx->cancel_hash_bits = hash_bits;
818 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
820 if (!ctx->cancel_hash)
822 __hash_init(ctx->cancel_hash, 1U << hash_bits);
824 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
825 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
828 ctx->flags = p->flags;
829 init_waitqueue_head(&ctx->cq_wait);
830 INIT_LIST_HEAD(&ctx->cq_overflow_list);
831 init_completion(&ctx->completions[0]);
832 init_completion(&ctx->completions[1]);
833 idr_init(&ctx->personality_idr);
834 mutex_init(&ctx->uring_lock);
835 init_waitqueue_head(&ctx->wait);
836 spin_lock_init(&ctx->completion_lock);
837 init_llist_head(&ctx->poll_llist);
838 INIT_LIST_HEAD(&ctx->poll_list);
839 INIT_LIST_HEAD(&ctx->defer_list);
840 INIT_LIST_HEAD(&ctx->timeout_list);
841 init_waitqueue_head(&ctx->inflight_wait);
842 spin_lock_init(&ctx->inflight_lock);
843 INIT_LIST_HEAD(&ctx->inflight_list);
846 if (ctx->fallback_req)
847 kmem_cache_free(req_cachep, ctx->fallback_req);
848 kfree(ctx->completions);
849 kfree(ctx->cancel_hash);
854 static inline bool __req_need_defer(struct io_kiocb *req)
856 struct io_ring_ctx *ctx = req->ctx;
858 return req->sequence != ctx->cached_cq_tail + ctx->cached_sq_dropped
859 + atomic_read(&ctx->cached_cq_overflow);
862 static inline bool req_need_defer(struct io_kiocb *req)
864 if (unlikely(req->flags & REQ_F_IO_DRAIN))
865 return __req_need_defer(req);
870 static struct io_kiocb *io_get_deferred_req(struct io_ring_ctx *ctx)
872 struct io_kiocb *req;
874 req = list_first_entry_or_null(&ctx->defer_list, struct io_kiocb, list);
875 if (req && !req_need_defer(req)) {
876 list_del_init(&req->list);
883 static struct io_kiocb *io_get_timeout_req(struct io_ring_ctx *ctx)
885 struct io_kiocb *req;
887 req = list_first_entry_or_null(&ctx->timeout_list, struct io_kiocb, list);
889 if (req->flags & REQ_F_TIMEOUT_NOSEQ)
891 if (!__req_need_defer(req)) {
892 list_del_init(&req->list);
900 static void __io_commit_cqring(struct io_ring_ctx *ctx)
902 struct io_rings *rings = ctx->rings;
904 /* order cqe stores with ring update */
905 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
907 if (wq_has_sleeper(&ctx->cq_wait)) {
908 wake_up_interruptible(&ctx->cq_wait);
909 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
913 static inline void io_req_work_grab_env(struct io_kiocb *req,
914 const struct io_op_def *def)
916 if (!req->work.mm && def->needs_mm) {
918 req->work.mm = current->mm;
920 if (!req->work.creds)
921 req->work.creds = get_current_cred();
922 if (!req->work.fs && def->needs_fs) {
923 spin_lock(¤t->fs->lock);
924 if (!current->fs->in_exec) {
925 req->work.fs = current->fs;
926 req->work.fs->users++;
928 req->work.flags |= IO_WQ_WORK_CANCEL;
930 spin_unlock(¤t->fs->lock);
932 if (!req->work.task_pid)
933 req->work.task_pid = task_pid_vnr(current);
936 static inline void io_req_work_drop_env(struct io_kiocb *req)
939 mmdrop(req->work.mm);
942 if (req->work.creds) {
943 put_cred(req->work.creds);
944 req->work.creds = NULL;
947 struct fs_struct *fs = req->work.fs;
949 spin_lock(&req->work.fs->lock);
952 spin_unlock(&req->work.fs->lock);
958 static inline bool io_prep_async_work(struct io_kiocb *req,
959 struct io_kiocb **link)
961 const struct io_op_def *def = &io_op_defs[req->opcode];
962 bool do_hashed = false;
964 if (req->flags & REQ_F_ISREG) {
965 if (def->hash_reg_file)
968 if (def->unbound_nonreg_file)
969 req->work.flags |= IO_WQ_WORK_UNBOUND;
972 io_req_work_grab_env(req, def);
974 *link = io_prep_linked_timeout(req);
978 static inline void io_queue_async_work(struct io_kiocb *req)
980 struct io_ring_ctx *ctx = req->ctx;
981 struct io_kiocb *link;
984 do_hashed = io_prep_async_work(req, &link);
986 trace_io_uring_queue_async_work(ctx, do_hashed, req, &req->work,
989 io_wq_enqueue(ctx->io_wq, &req->work);
991 io_wq_enqueue_hashed(ctx->io_wq, &req->work,
992 file_inode(req->file));
996 io_queue_linked_timeout(link);
999 static void io_kill_timeout(struct io_kiocb *req)
1003 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
1005 atomic_inc(&req->ctx->cq_timeouts);
1006 list_del_init(&req->list);
1007 io_cqring_fill_event(req, 0);
1012 static void io_kill_timeouts(struct io_ring_ctx *ctx)
1014 struct io_kiocb *req, *tmp;
1016 spin_lock_irq(&ctx->completion_lock);
1017 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, list)
1018 io_kill_timeout(req);
1019 spin_unlock_irq(&ctx->completion_lock);
1022 static void io_commit_cqring(struct io_ring_ctx *ctx)
1024 struct io_kiocb *req;
1026 while ((req = io_get_timeout_req(ctx)) != NULL)
1027 io_kill_timeout(req);
1029 __io_commit_cqring(ctx);
1031 while ((req = io_get_deferred_req(ctx)) != NULL)
1032 io_queue_async_work(req);
1035 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1037 struct io_rings *rings = ctx->rings;
1040 tail = ctx->cached_cq_tail;
1042 * writes to the cq entry need to come after reading head; the
1043 * control dependency is enough as we're using WRITE_ONCE to
1046 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1049 ctx->cached_cq_tail++;
1050 return &rings->cqes[tail & ctx->cq_mask];
1053 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1057 if (!ctx->eventfd_async)
1059 return io_wq_current_is_worker() || in_interrupt();
1062 static void __io_cqring_ev_posted(struct io_ring_ctx *ctx, bool trigger_ev)
1064 if (waitqueue_active(&ctx->wait))
1065 wake_up(&ctx->wait);
1066 if (waitqueue_active(&ctx->sqo_wait))
1067 wake_up(&ctx->sqo_wait);
1069 eventfd_signal(ctx->cq_ev_fd, 1);
1072 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1074 __io_cqring_ev_posted(ctx, io_should_trigger_evfd(ctx));
1077 /* Returns true if there are no backlogged entries after the flush */
1078 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1080 struct io_rings *rings = ctx->rings;
1081 struct io_uring_cqe *cqe;
1082 struct io_kiocb *req;
1083 unsigned long flags;
1087 if (list_empty_careful(&ctx->cq_overflow_list))
1089 if ((ctx->cached_cq_tail - READ_ONCE(rings->cq.head) ==
1090 rings->cq_ring_entries))
1094 spin_lock_irqsave(&ctx->completion_lock, flags);
1096 /* if force is set, the ring is going away. always drop after that */
1098 ctx->cq_overflow_flushed = 1;
1101 while (!list_empty(&ctx->cq_overflow_list)) {
1102 cqe = io_get_cqring(ctx);
1106 req = list_first_entry(&ctx->cq_overflow_list, struct io_kiocb,
1108 list_move(&req->list, &list);
1109 req->flags &= ~REQ_F_OVERFLOW;
1111 WRITE_ONCE(cqe->user_data, req->user_data);
1112 WRITE_ONCE(cqe->res, req->result);
1113 WRITE_ONCE(cqe->flags, 0);
1115 WRITE_ONCE(ctx->rings->cq_overflow,
1116 atomic_inc_return(&ctx->cached_cq_overflow));
1120 io_commit_cqring(ctx);
1122 clear_bit(0, &ctx->sq_check_overflow);
1123 clear_bit(0, &ctx->cq_check_overflow);
1125 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1126 io_cqring_ev_posted(ctx);
1128 while (!list_empty(&list)) {
1129 req = list_first_entry(&list, struct io_kiocb, list);
1130 list_del(&req->list);
1137 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1139 struct io_ring_ctx *ctx = req->ctx;
1140 struct io_uring_cqe *cqe;
1142 trace_io_uring_complete(ctx, req->user_data, res);
1145 * If we can't get a cq entry, userspace overflowed the
1146 * submission (by quite a lot). Increment the overflow count in
1149 cqe = io_get_cqring(ctx);
1151 WRITE_ONCE(cqe->user_data, req->user_data);
1152 WRITE_ONCE(cqe->res, res);
1153 WRITE_ONCE(cqe->flags, 0);
1154 } else if (ctx->cq_overflow_flushed) {
1155 WRITE_ONCE(ctx->rings->cq_overflow,
1156 atomic_inc_return(&ctx->cached_cq_overflow));
1158 if (list_empty(&ctx->cq_overflow_list)) {
1159 set_bit(0, &ctx->sq_check_overflow);
1160 set_bit(0, &ctx->cq_check_overflow);
1162 req->flags |= REQ_F_OVERFLOW;
1163 refcount_inc(&req->refs);
1165 list_add_tail(&req->list, &ctx->cq_overflow_list);
1169 static void io_cqring_add_event(struct io_kiocb *req, long res)
1171 struct io_ring_ctx *ctx = req->ctx;
1172 unsigned long flags;
1174 spin_lock_irqsave(&ctx->completion_lock, flags);
1175 io_cqring_fill_event(req, res);
1176 io_commit_cqring(ctx);
1177 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1179 io_cqring_ev_posted(ctx);
1182 static inline bool io_is_fallback_req(struct io_kiocb *req)
1184 return req == (struct io_kiocb *)
1185 ((unsigned long) req->ctx->fallback_req & ~1UL);
1188 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1190 struct io_kiocb *req;
1192 req = ctx->fallback_req;
1193 if (!test_and_set_bit_lock(0, (unsigned long *) ctx->fallback_req))
1199 static struct io_kiocb *io_get_req(struct io_ring_ctx *ctx,
1200 struct io_submit_state *state)
1202 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1203 struct io_kiocb *req;
1206 req = kmem_cache_alloc(req_cachep, gfp);
1209 } else if (!state->free_reqs) {
1213 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1214 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1217 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1218 * retry single alloc to be on the safe side.
1220 if (unlikely(ret <= 0)) {
1221 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1222 if (!state->reqs[0])
1226 state->free_reqs = ret - 1;
1227 req = state->reqs[ret - 1];
1230 req = state->reqs[state->free_reqs];
1238 /* one is dropped after submission, the other at completion */
1239 refcount_set(&req->refs, 2);
1241 INIT_IO_WORK(&req->work, io_wq_submit_work);
1244 req = io_get_fallback_req(ctx);
1247 percpu_ref_put(&ctx->refs);
1251 static void __io_req_do_free(struct io_kiocb *req)
1253 if (likely(!io_is_fallback_req(req)))
1254 kmem_cache_free(req_cachep, req);
1256 clear_bit_unlock(0, (unsigned long *) req->ctx->fallback_req);
1259 static void __io_req_aux_free(struct io_kiocb *req)
1261 struct io_ring_ctx *ctx = req->ctx;
1265 if (req->flags & REQ_F_FIXED_FILE)
1266 percpu_ref_put(&ctx->file_data->refs);
1271 io_req_work_drop_env(req);
1274 static void __io_free_req(struct io_kiocb *req)
1276 __io_req_aux_free(req);
1278 if (req->flags & REQ_F_NEED_CLEANUP)
1279 io_cleanup_req(req);
1281 if (req->flags & REQ_F_INFLIGHT) {
1282 struct io_ring_ctx *ctx = req->ctx;
1283 unsigned long flags;
1285 spin_lock_irqsave(&ctx->inflight_lock, flags);
1286 list_del(&req->inflight_entry);
1287 if (waitqueue_active(&ctx->inflight_wait))
1288 wake_up(&ctx->inflight_wait);
1289 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1292 percpu_ref_put(&req->ctx->refs);
1293 __io_req_do_free(req);
1297 void *reqs[IO_IOPOLL_BATCH];
1302 static void io_free_req_many(struct io_ring_ctx *ctx, struct req_batch *rb)
1304 int fixed_refs = rb->to_free;
1308 if (rb->need_iter) {
1309 int i, inflight = 0;
1310 unsigned long flags;
1313 for (i = 0; i < rb->to_free; i++) {
1314 struct io_kiocb *req = rb->reqs[i];
1316 if (req->flags & REQ_F_FIXED_FILE) {
1320 if (req->flags & REQ_F_INFLIGHT)
1322 __io_req_aux_free(req);
1327 spin_lock_irqsave(&ctx->inflight_lock, flags);
1328 for (i = 0; i < rb->to_free; i++) {
1329 struct io_kiocb *req = rb->reqs[i];
1331 if (req->flags & REQ_F_INFLIGHT) {
1332 list_del(&req->inflight_entry);
1337 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1339 if (waitqueue_active(&ctx->inflight_wait))
1340 wake_up(&ctx->inflight_wait);
1343 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
1345 percpu_ref_put_many(&ctx->file_data->refs, fixed_refs);
1346 percpu_ref_put_many(&ctx->refs, rb->to_free);
1347 rb->to_free = rb->need_iter = 0;
1350 static bool io_link_cancel_timeout(struct io_kiocb *req)
1352 struct io_ring_ctx *ctx = req->ctx;
1355 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
1357 io_cqring_fill_event(req, -ECANCELED);
1358 io_commit_cqring(ctx);
1359 req->flags &= ~REQ_F_LINK;
1367 static void io_req_link_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
1369 struct io_ring_ctx *ctx = req->ctx;
1370 bool wake_ev = false;
1372 /* Already got next link */
1373 if (req->flags & REQ_F_LINK_NEXT)
1377 * The list should never be empty when we are called here. But could
1378 * potentially happen if the chain is messed up, check to be on the
1381 while (!list_empty(&req->link_list)) {
1382 struct io_kiocb *nxt = list_first_entry(&req->link_list,
1383 struct io_kiocb, link_list);
1385 if (unlikely((req->flags & REQ_F_LINK_TIMEOUT) &&
1386 (nxt->flags & REQ_F_TIMEOUT))) {
1387 list_del_init(&nxt->link_list);
1388 wake_ev |= io_link_cancel_timeout(nxt);
1389 req->flags &= ~REQ_F_LINK_TIMEOUT;
1393 list_del_init(&req->link_list);
1394 if (!list_empty(&nxt->link_list))
1395 nxt->flags |= REQ_F_LINK;
1400 req->flags |= REQ_F_LINK_NEXT;
1402 io_cqring_ev_posted(ctx);
1406 * Called if REQ_F_LINK is set, and we fail the head request
1408 static void io_fail_links(struct io_kiocb *req)
1410 struct io_ring_ctx *ctx = req->ctx;
1411 unsigned long flags;
1413 spin_lock_irqsave(&ctx->completion_lock, flags);
1415 while (!list_empty(&req->link_list)) {
1416 struct io_kiocb *link = list_first_entry(&req->link_list,
1417 struct io_kiocb, link_list);
1419 list_del_init(&link->link_list);
1420 trace_io_uring_fail_link(req, link);
1422 if ((req->flags & REQ_F_LINK_TIMEOUT) &&
1423 link->opcode == IORING_OP_LINK_TIMEOUT) {
1424 io_link_cancel_timeout(link);
1426 io_cqring_fill_event(link, -ECANCELED);
1427 __io_double_put_req(link);
1429 req->flags &= ~REQ_F_LINK_TIMEOUT;
1432 io_commit_cqring(ctx);
1433 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1434 io_cqring_ev_posted(ctx);
1437 static void io_req_find_next(struct io_kiocb *req, struct io_kiocb **nxt)
1439 if (likely(!(req->flags & REQ_F_LINK)))
1443 * If LINK is set, we have dependent requests in this chain. If we
1444 * didn't fail this request, queue the first one up, moving any other
1445 * dependencies to the next request. In case of failure, fail the rest
1448 if (req->flags & REQ_F_FAIL_LINK) {
1450 } else if ((req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_COMP_LOCKED)) ==
1451 REQ_F_LINK_TIMEOUT) {
1452 struct io_ring_ctx *ctx = req->ctx;
1453 unsigned long flags;
1456 * If this is a timeout link, we could be racing with the
1457 * timeout timer. Grab the completion lock for this case to
1458 * protect against that.
1460 spin_lock_irqsave(&ctx->completion_lock, flags);
1461 io_req_link_next(req, nxt);
1462 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1464 io_req_link_next(req, nxt);
1468 static void io_free_req(struct io_kiocb *req)
1470 struct io_kiocb *nxt = NULL;
1472 io_req_find_next(req, &nxt);
1476 io_queue_async_work(nxt);
1480 * Drop reference to request, return next in chain (if there is one) if this
1481 * was the last reference to this request.
1483 __attribute__((nonnull))
1484 static void io_put_req_find_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
1486 io_req_find_next(req, nxtptr);
1488 if (refcount_dec_and_test(&req->refs))
1492 static void io_put_req(struct io_kiocb *req)
1494 if (refcount_dec_and_test(&req->refs))
1499 * Must only be used if we don't need to care about links, usually from
1500 * within the completion handling itself.
1502 static void __io_double_put_req(struct io_kiocb *req)
1504 /* drop both submit and complete references */
1505 if (refcount_sub_and_test(2, &req->refs))
1509 static void io_double_put_req(struct io_kiocb *req)
1511 /* drop both submit and complete references */
1512 if (refcount_sub_and_test(2, &req->refs))
1516 static unsigned io_cqring_events(struct io_ring_ctx *ctx, bool noflush)
1518 struct io_rings *rings = ctx->rings;
1520 if (test_bit(0, &ctx->cq_check_overflow)) {
1522 * noflush == true is from the waitqueue handler, just ensure
1523 * we wake up the task, and the next invocation will flush the
1524 * entries. We cannot safely to it from here.
1526 if (noflush && !list_empty(&ctx->cq_overflow_list))
1529 io_cqring_overflow_flush(ctx, false);
1532 /* See comment at the top of this file */
1534 return ctx->cached_cq_tail - READ_ONCE(rings->cq.head);
1537 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
1539 struct io_rings *rings = ctx->rings;
1541 /* make sure SQ entry isn't read before tail */
1542 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
1545 static inline bool io_req_multi_free(struct req_batch *rb, struct io_kiocb *req)
1547 if ((req->flags & REQ_F_LINK) || io_is_fallback_req(req))
1550 if (!(req->flags & REQ_F_FIXED_FILE) || req->io)
1553 rb->reqs[rb->to_free++] = req;
1554 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
1555 io_free_req_many(req->ctx, rb);
1560 * Find and free completed poll iocbs
1562 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
1563 struct list_head *done)
1565 struct req_batch rb;
1566 struct io_kiocb *req;
1568 rb.to_free = rb.need_iter = 0;
1569 while (!list_empty(done)) {
1570 req = list_first_entry(done, struct io_kiocb, list);
1571 list_del(&req->list);
1573 io_cqring_fill_event(req, req->result);
1576 if (refcount_dec_and_test(&req->refs) &&
1577 !io_req_multi_free(&rb, req))
1581 io_commit_cqring(ctx);
1582 io_free_req_many(ctx, &rb);
1585 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
1588 struct io_kiocb *req, *tmp;
1594 * Only spin for completions if we don't have multiple devices hanging
1595 * off our complete list, and we're under the requested amount.
1597 spin = !ctx->poll_multi_file && *nr_events < min;
1600 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
1601 struct kiocb *kiocb = &req->rw.kiocb;
1604 * Move completed entries to our local list. If we find a
1605 * request that requires polling, break out and complete
1606 * the done list first, if we have entries there.
1608 if (req->flags & REQ_F_IOPOLL_COMPLETED) {
1609 list_move_tail(&req->list, &done);
1612 if (!list_empty(&done))
1615 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
1624 if (!list_empty(&done))
1625 io_iopoll_complete(ctx, nr_events, &done);
1631 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
1632 * non-spinning poll check - we'll still enter the driver poll loop, but only
1633 * as a non-spinning completion check.
1635 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
1638 while (!list_empty(&ctx->poll_list) && !need_resched()) {
1641 ret = io_do_iopoll(ctx, nr_events, min);
1644 if (!min || *nr_events >= min)
1652 * We can't just wait for polled events to come to us, we have to actively
1653 * find and complete them.
1655 static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
1657 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1660 mutex_lock(&ctx->uring_lock);
1661 while (!list_empty(&ctx->poll_list)) {
1662 unsigned int nr_events = 0;
1664 io_iopoll_getevents(ctx, &nr_events, 1);
1667 * Ensure we allow local-to-the-cpu processing to take place,
1668 * in this case we need to ensure that we reap all events.
1672 mutex_unlock(&ctx->uring_lock);
1675 static int __io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
1678 int iters = 0, ret = 0;
1684 * Don't enter poll loop if we already have events pending.
1685 * If we do, we can potentially be spinning for commands that
1686 * already triggered a CQE (eg in error).
1688 if (io_cqring_events(ctx, false))
1692 * If a submit got punted to a workqueue, we can have the
1693 * application entering polling for a command before it gets
1694 * issued. That app will hold the uring_lock for the duration
1695 * of the poll right here, so we need to take a breather every
1696 * now and then to ensure that the issue has a chance to add
1697 * the poll to the issued list. Otherwise we can spin here
1698 * forever, while the workqueue is stuck trying to acquire the
1701 if (!(++iters & 7)) {
1702 mutex_unlock(&ctx->uring_lock);
1703 mutex_lock(&ctx->uring_lock);
1706 if (*nr_events < min)
1707 tmin = min - *nr_events;
1709 ret = io_iopoll_getevents(ctx, nr_events, tmin);
1713 } while (min && !*nr_events && !need_resched());
1718 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
1724 * We disallow the app entering submit/complete with polling, but we
1725 * still need to lock the ring to prevent racing with polled issue
1726 * that got punted to a workqueue.
1728 mutex_lock(&ctx->uring_lock);
1729 ret = __io_iopoll_check(ctx, nr_events, min);
1730 mutex_unlock(&ctx->uring_lock);
1734 static void kiocb_end_write(struct io_kiocb *req)
1737 * Tell lockdep we inherited freeze protection from submission
1740 if (req->flags & REQ_F_ISREG) {
1741 struct inode *inode = file_inode(req->file);
1743 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1745 file_end_write(req->file);
1748 static inline void req_set_fail_links(struct io_kiocb *req)
1750 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1751 req->flags |= REQ_F_FAIL_LINK;
1754 static void io_complete_rw_common(struct kiocb *kiocb, long res)
1756 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1758 if (kiocb->ki_flags & IOCB_WRITE)
1759 kiocb_end_write(req);
1761 if (res != req->result)
1762 req_set_fail_links(req);
1763 io_cqring_add_event(req, res);
1766 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
1768 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1770 io_complete_rw_common(kiocb, res);
1774 static struct io_kiocb *__io_complete_rw(struct kiocb *kiocb, long res)
1776 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1777 struct io_kiocb *nxt = NULL;
1779 io_complete_rw_common(kiocb, res);
1780 io_put_req_find_next(req, &nxt);
1785 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
1787 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1789 if (kiocb->ki_flags & IOCB_WRITE)
1790 kiocb_end_write(req);
1792 if (res != req->result)
1793 req_set_fail_links(req);
1796 req->flags |= REQ_F_IOPOLL_COMPLETED;
1800 * After the iocb has been issued, it's safe to be found on the poll list.
1801 * Adding the kiocb to the list AFTER submission ensures that we don't
1802 * find it from a io_iopoll_getevents() thread before the issuer is done
1803 * accessing the kiocb cookie.
1805 static void io_iopoll_req_issued(struct io_kiocb *req)
1807 struct io_ring_ctx *ctx = req->ctx;
1810 * Track whether we have multiple files in our lists. This will impact
1811 * how we do polling eventually, not spinning if we're on potentially
1812 * different devices.
1814 if (list_empty(&ctx->poll_list)) {
1815 ctx->poll_multi_file = false;
1816 } else if (!ctx->poll_multi_file) {
1817 struct io_kiocb *list_req;
1819 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
1821 if (list_req->file != req->file)
1822 ctx->poll_multi_file = true;
1826 * For fast devices, IO may have already completed. If it has, add
1827 * it to the front so we find it first.
1829 if (req->flags & REQ_F_IOPOLL_COMPLETED)
1830 list_add(&req->list, &ctx->poll_list);
1832 list_add_tail(&req->list, &ctx->poll_list);
1835 static void io_file_put(struct io_submit_state *state)
1838 int diff = state->has_refs - state->used_refs;
1841 fput_many(state->file, diff);
1847 * Get as many references to a file as we have IOs left in this submission,
1848 * assuming most submissions are for one file, or at least that each file
1849 * has more than one submission.
1851 static struct file *io_file_get(struct io_submit_state *state, int fd)
1857 if (state->fd == fd) {
1864 state->file = fget_many(fd, state->ios_left);
1869 state->has_refs = state->ios_left;
1870 state->used_refs = 1;
1876 * If we tracked the file through the SCM inflight mechanism, we could support
1877 * any file. For now, just ensure that anything potentially problematic is done
1880 static bool io_file_supports_async(struct file *file)
1882 umode_t mode = file_inode(file)->i_mode;
1884 if (S_ISBLK(mode) || S_ISCHR(mode) || S_ISSOCK(mode))
1886 if (S_ISREG(mode) && file->f_op != &io_uring_fops)
1892 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1893 bool force_nonblock)
1895 struct io_ring_ctx *ctx = req->ctx;
1896 struct kiocb *kiocb = &req->rw.kiocb;
1900 if (S_ISREG(file_inode(req->file)->i_mode))
1901 req->flags |= REQ_F_ISREG;
1903 kiocb->ki_pos = READ_ONCE(sqe->off);
1904 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
1905 req->flags |= REQ_F_CUR_POS;
1906 kiocb->ki_pos = req->file->f_pos;
1908 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
1909 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
1910 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
1914 ioprio = READ_ONCE(sqe->ioprio);
1916 ret = ioprio_check_cap(ioprio);
1920 kiocb->ki_ioprio = ioprio;
1922 kiocb->ki_ioprio = get_current_ioprio();
1924 /* don't allow async punt if RWF_NOWAIT was requested */
1925 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
1926 (req->file->f_flags & O_NONBLOCK))
1927 req->flags |= REQ_F_NOWAIT;
1930 kiocb->ki_flags |= IOCB_NOWAIT;
1932 if (ctx->flags & IORING_SETUP_IOPOLL) {
1933 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
1934 !kiocb->ki_filp->f_op->iopoll)
1937 kiocb->ki_flags |= IOCB_HIPRI;
1938 kiocb->ki_complete = io_complete_rw_iopoll;
1941 if (kiocb->ki_flags & IOCB_HIPRI)
1943 kiocb->ki_complete = io_complete_rw;
1946 req->rw.addr = READ_ONCE(sqe->addr);
1947 req->rw.len = READ_ONCE(sqe->len);
1948 /* we own ->private, reuse it for the buffer index */
1949 req->rw.kiocb.private = (void *) (unsigned long)
1950 READ_ONCE(sqe->buf_index);
1954 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
1960 case -ERESTARTNOINTR:
1961 case -ERESTARTNOHAND:
1962 case -ERESTART_RESTARTBLOCK:
1964 * We can't just restart the syscall, since previously
1965 * submitted sqes may already be in progress. Just fail this
1971 kiocb->ki_complete(kiocb, ret, 0);
1975 static void kiocb_done(struct kiocb *kiocb, ssize_t ret, struct io_kiocb **nxt,
1978 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1980 if (req->flags & REQ_F_CUR_POS)
1981 req->file->f_pos = kiocb->ki_pos;
1982 if (in_async && ret >= 0 && kiocb->ki_complete == io_complete_rw)
1983 *nxt = __io_complete_rw(kiocb, ret);
1985 io_rw_done(kiocb, ret);
1988 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
1989 struct iov_iter *iter)
1991 struct io_ring_ctx *ctx = req->ctx;
1992 size_t len = req->rw.len;
1993 struct io_mapped_ubuf *imu;
1994 unsigned index, buf_index;
1998 /* attempt to use fixed buffers without having provided iovecs */
1999 if (unlikely(!ctx->user_bufs))
2002 buf_index = (unsigned long) req->rw.kiocb.private;
2003 if (unlikely(buf_index >= ctx->nr_user_bufs))
2006 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2007 imu = &ctx->user_bufs[index];
2008 buf_addr = req->rw.addr;
2011 if (buf_addr + len < buf_addr)
2013 /* not inside the mapped region */
2014 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2018 * May not be a start of buffer, set size appropriately
2019 * and advance us to the beginning.
2021 offset = buf_addr - imu->ubuf;
2022 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2026 * Don't use iov_iter_advance() here, as it's really slow for
2027 * using the latter parts of a big fixed buffer - it iterates
2028 * over each segment manually. We can cheat a bit here, because
2031 * 1) it's a BVEC iter, we set it up
2032 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2033 * first and last bvec
2035 * So just find our index, and adjust the iterator afterwards.
2036 * If the offset is within the first bvec (or the whole first
2037 * bvec, just use iov_iter_advance(). This makes it easier
2038 * since we can just skip the first segment, which may not
2039 * be PAGE_SIZE aligned.
2041 const struct bio_vec *bvec = imu->bvec;
2043 if (offset <= bvec->bv_len) {
2044 iov_iter_advance(iter, offset);
2046 unsigned long seg_skip;
2048 /* skip first vec */
2049 offset -= bvec->bv_len;
2050 seg_skip = 1 + (offset >> PAGE_SHIFT);
2052 iter->bvec = bvec + seg_skip;
2053 iter->nr_segs -= seg_skip;
2054 iter->count -= bvec->bv_len + offset;
2055 iter->iov_offset = offset & ~PAGE_MASK;
2062 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
2063 struct iovec **iovec, struct iov_iter *iter)
2065 void __user *buf = u64_to_user_ptr(req->rw.addr);
2066 size_t sqe_len = req->rw.len;
2069 opcode = req->opcode;
2070 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
2072 return io_import_fixed(req, rw, iter);
2075 /* buffer index only valid with fixed read/write */
2076 if (req->rw.kiocb.private)
2079 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
2081 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
2087 struct io_async_rw *iorw = &req->io->rw;
2090 iov_iter_init(iter, rw, *iovec, iorw->nr_segs, iorw->size);
2091 if (iorw->iov == iorw->fast_iov)
2096 #ifdef CONFIG_COMPAT
2097 if (req->ctx->compat)
2098 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
2102 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
2106 * For files that don't have ->read_iter() and ->write_iter(), handle them
2107 * by looping over ->read() or ->write() manually.
2109 static ssize_t loop_rw_iter(int rw, struct file *file, struct kiocb *kiocb,
2110 struct iov_iter *iter)
2115 * Don't support polled IO through this interface, and we can't
2116 * support non-blocking either. For the latter, this just causes
2117 * the kiocb to be handled from an async context.
2119 if (kiocb->ki_flags & IOCB_HIPRI)
2121 if (kiocb->ki_flags & IOCB_NOWAIT)
2124 while (iov_iter_count(iter)) {
2128 if (!iov_iter_is_bvec(iter)) {
2129 iovec = iov_iter_iovec(iter);
2131 /* fixed buffers import bvec */
2132 iovec.iov_base = kmap(iter->bvec->bv_page)
2134 iovec.iov_len = min(iter->count,
2135 iter->bvec->bv_len - iter->iov_offset);
2139 nr = file->f_op->read(file, iovec.iov_base,
2140 iovec.iov_len, &kiocb->ki_pos);
2142 nr = file->f_op->write(file, iovec.iov_base,
2143 iovec.iov_len, &kiocb->ki_pos);
2146 if (iov_iter_is_bvec(iter))
2147 kunmap(iter->bvec->bv_page);
2155 if (nr != iovec.iov_len)
2157 iov_iter_advance(iter, nr);
2163 static void io_req_map_rw(struct io_kiocb *req, ssize_t io_size,
2164 struct iovec *iovec, struct iovec *fast_iov,
2165 struct iov_iter *iter)
2167 req->io->rw.nr_segs = iter->nr_segs;
2168 req->io->rw.size = io_size;
2169 req->io->rw.iov = iovec;
2170 if (!req->io->rw.iov) {
2171 req->io->rw.iov = req->io->rw.fast_iov;
2172 memcpy(req->io->rw.iov, fast_iov,
2173 sizeof(struct iovec) * iter->nr_segs);
2175 req->flags |= REQ_F_NEED_CLEANUP;
2179 static int io_alloc_async_ctx(struct io_kiocb *req)
2181 if (!io_op_defs[req->opcode].async_ctx)
2183 req->io = kmalloc(sizeof(*req->io), GFP_KERNEL);
2184 return req->io == NULL;
2187 static int io_setup_async_rw(struct io_kiocb *req, ssize_t io_size,
2188 struct iovec *iovec, struct iovec *fast_iov,
2189 struct iov_iter *iter)
2191 if (!io_op_defs[req->opcode].async_ctx)
2194 if (io_alloc_async_ctx(req))
2197 io_req_map_rw(req, io_size, iovec, fast_iov, iter);
2202 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2203 bool force_nonblock)
2205 struct io_async_ctx *io;
2206 struct iov_iter iter;
2209 ret = io_prep_rw(req, sqe, force_nonblock);
2213 if (unlikely(!(req->file->f_mode & FMODE_READ)))
2216 /* either don't need iovec imported or already have it */
2217 if (!req->io || req->flags & REQ_F_NEED_CLEANUP)
2221 io->rw.iov = io->rw.fast_iov;
2223 ret = io_import_iovec(READ, req, &io->rw.iov, &iter);
2228 io_req_map_rw(req, ret, io->rw.iov, io->rw.fast_iov, &iter);
2232 static int io_read(struct io_kiocb *req, struct io_kiocb **nxt,
2233 bool force_nonblock)
2235 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2236 struct kiocb *kiocb = &req->rw.kiocb;
2237 struct iov_iter iter;
2239 ssize_t io_size, ret;
2241 ret = io_import_iovec(READ, req, &iovec, &iter);
2245 /* Ensure we clear previously set non-block flag */
2246 if (!force_nonblock)
2247 req->rw.kiocb.ki_flags &= ~IOCB_NOWAIT;
2251 if (req->flags & REQ_F_LINK)
2252 req->result = io_size;
2255 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
2256 * we know to async punt it even if it was opened O_NONBLOCK
2258 if (force_nonblock && !io_file_supports_async(req->file)) {
2259 req->flags |= REQ_F_MUST_PUNT;
2263 iov_count = iov_iter_count(&iter);
2264 ret = rw_verify_area(READ, req->file, &kiocb->ki_pos, iov_count);
2268 if (req->file->f_op->read_iter)
2269 ret2 = call_read_iter(req->file, kiocb, &iter);
2271 ret2 = loop_rw_iter(READ, req->file, kiocb, &iter);
2273 /* Catch -EAGAIN return for forced non-blocking submission */
2274 if (!force_nonblock || ret2 != -EAGAIN) {
2275 kiocb_done(kiocb, ret2, nxt, req->in_async);
2278 ret = io_setup_async_rw(req, io_size, iovec,
2279 inline_vecs, &iter);
2287 req->flags &= ~REQ_F_NEED_CLEANUP;
2291 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2292 bool force_nonblock)
2294 struct io_async_ctx *io;
2295 struct iov_iter iter;
2298 ret = io_prep_rw(req, sqe, force_nonblock);
2302 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
2305 /* either don't need iovec imported or already have it */
2306 if (!req->io || req->flags & REQ_F_NEED_CLEANUP)
2310 io->rw.iov = io->rw.fast_iov;
2312 ret = io_import_iovec(WRITE, req, &io->rw.iov, &iter);
2317 io_req_map_rw(req, ret, io->rw.iov, io->rw.fast_iov, &iter);
2321 static int io_write(struct io_kiocb *req, struct io_kiocb **nxt,
2322 bool force_nonblock)
2324 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2325 struct kiocb *kiocb = &req->rw.kiocb;
2326 struct iov_iter iter;
2328 ssize_t ret, io_size;
2330 ret = io_import_iovec(WRITE, req, &iovec, &iter);
2334 /* Ensure we clear previously set non-block flag */
2335 if (!force_nonblock)
2336 req->rw.kiocb.ki_flags &= ~IOCB_NOWAIT;
2340 if (req->flags & REQ_F_LINK)
2341 req->result = io_size;
2344 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
2345 * we know to async punt it even if it was opened O_NONBLOCK
2347 if (force_nonblock && !io_file_supports_async(req->file)) {
2348 req->flags |= REQ_F_MUST_PUNT;
2352 /* file path doesn't support NOWAIT for non-direct_IO */
2353 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
2354 (req->flags & REQ_F_ISREG))
2357 iov_count = iov_iter_count(&iter);
2358 ret = rw_verify_area(WRITE, req->file, &kiocb->ki_pos, iov_count);
2363 * Open-code file_start_write here to grab freeze protection,
2364 * which will be released by another thread in
2365 * io_complete_rw(). Fool lockdep by telling it the lock got
2366 * released so that it doesn't complain about the held lock when
2367 * we return to userspace.
2369 if (req->flags & REQ_F_ISREG) {
2370 __sb_start_write(file_inode(req->file)->i_sb,
2371 SB_FREEZE_WRITE, true);
2372 __sb_writers_release(file_inode(req->file)->i_sb,
2375 kiocb->ki_flags |= IOCB_WRITE;
2377 if (req->file->f_op->write_iter)
2378 ret2 = call_write_iter(req->file, kiocb, &iter);
2380 ret2 = loop_rw_iter(WRITE, req->file, kiocb, &iter);
2382 * Raw bdev writes will -EOPNOTSUPP for IOCB_NOWAIT. Just
2383 * retry them without IOCB_NOWAIT.
2385 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
2387 if (!force_nonblock || ret2 != -EAGAIN) {
2388 kiocb_done(kiocb, ret2, nxt, req->in_async);
2391 ret = io_setup_async_rw(req, io_size, iovec,
2392 inline_vecs, &iter);
2399 req->flags &= ~REQ_F_NEED_CLEANUP;
2405 * IORING_OP_NOP just posts a completion event, nothing else.
2407 static int io_nop(struct io_kiocb *req)
2409 struct io_ring_ctx *ctx = req->ctx;
2411 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2414 io_cqring_add_event(req, 0);
2419 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2421 struct io_ring_ctx *ctx = req->ctx;
2426 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2428 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
2431 req->sync.flags = READ_ONCE(sqe->fsync_flags);
2432 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
2435 req->sync.off = READ_ONCE(sqe->off);
2436 req->sync.len = READ_ONCE(sqe->len);
2440 static bool io_req_cancelled(struct io_kiocb *req)
2442 if (req->work.flags & IO_WQ_WORK_CANCEL) {
2443 req_set_fail_links(req);
2444 io_cqring_add_event(req, -ECANCELED);
2452 static void io_link_work_cb(struct io_wq_work **workptr)
2454 struct io_wq_work *work = *workptr;
2455 struct io_kiocb *link = work->data;
2457 io_queue_linked_timeout(link);
2458 work->func = io_wq_submit_work;
2461 static void io_wq_assign_next(struct io_wq_work **workptr, struct io_kiocb *nxt)
2463 struct io_kiocb *link;
2465 io_prep_async_work(nxt, &link);
2466 *workptr = &nxt->work;
2468 nxt->work.flags |= IO_WQ_WORK_CB;
2469 nxt->work.func = io_link_work_cb;
2470 nxt->work.data = link;
2474 static void io_fsync_finish(struct io_wq_work **workptr)
2476 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
2477 loff_t end = req->sync.off + req->sync.len;
2478 struct io_kiocb *nxt = NULL;
2481 if (io_req_cancelled(req))
2484 ret = vfs_fsync_range(req->file, req->sync.off,
2485 end > 0 ? end : LLONG_MAX,
2486 req->sync.flags & IORING_FSYNC_DATASYNC);
2488 req_set_fail_links(req);
2489 io_cqring_add_event(req, ret);
2490 io_put_req_find_next(req, &nxt);
2492 io_wq_assign_next(workptr, nxt);
2495 static int io_fsync(struct io_kiocb *req, struct io_kiocb **nxt,
2496 bool force_nonblock)
2498 struct io_wq_work *work, *old_work;
2500 /* fsync always requires a blocking context */
2501 if (force_nonblock) {
2503 req->work.func = io_fsync_finish;
2507 work = old_work = &req->work;
2508 io_fsync_finish(&work);
2509 if (work && work != old_work)
2510 *nxt = container_of(work, struct io_kiocb, work);
2514 static void io_fallocate_finish(struct io_wq_work **workptr)
2516 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
2517 struct io_kiocb *nxt = NULL;
2520 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
2523 req_set_fail_links(req);
2524 io_cqring_add_event(req, ret);
2525 io_put_req_find_next(req, &nxt);
2527 io_wq_assign_next(workptr, nxt);
2530 static int io_fallocate_prep(struct io_kiocb *req,
2531 const struct io_uring_sqe *sqe)
2533 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
2536 req->sync.off = READ_ONCE(sqe->off);
2537 req->sync.len = READ_ONCE(sqe->addr);
2538 req->sync.mode = READ_ONCE(sqe->len);
2542 static int io_fallocate(struct io_kiocb *req, struct io_kiocb **nxt,
2543 bool force_nonblock)
2545 struct io_wq_work *work, *old_work;
2547 /* fallocate always requiring blocking context */
2548 if (force_nonblock) {
2550 req->work.func = io_fallocate_finish;
2554 work = old_work = &req->work;
2555 io_fallocate_finish(&work);
2556 if (work && work != old_work)
2557 *nxt = container_of(work, struct io_kiocb, work);
2562 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2564 const char __user *fname;
2567 if (sqe->ioprio || sqe->buf_index)
2569 if (sqe->flags & IOSQE_FIXED_FILE)
2571 if (req->flags & REQ_F_NEED_CLEANUP)
2574 req->open.dfd = READ_ONCE(sqe->fd);
2575 req->open.how.mode = READ_ONCE(sqe->len);
2576 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
2577 req->open.how.flags = READ_ONCE(sqe->open_flags);
2579 req->open.filename = getname(fname);
2580 if (IS_ERR(req->open.filename)) {
2581 ret = PTR_ERR(req->open.filename);
2582 req->open.filename = NULL;
2586 req->flags |= REQ_F_NEED_CLEANUP;
2590 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2592 struct open_how __user *how;
2593 const char __user *fname;
2597 if (sqe->ioprio || sqe->buf_index)
2599 if (sqe->flags & IOSQE_FIXED_FILE)
2601 if (req->flags & REQ_F_NEED_CLEANUP)
2604 req->open.dfd = READ_ONCE(sqe->fd);
2605 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
2606 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
2607 len = READ_ONCE(sqe->len);
2609 if (len < OPEN_HOW_SIZE_VER0)
2612 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
2617 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
2618 req->open.how.flags |= O_LARGEFILE;
2620 req->open.filename = getname(fname);
2621 if (IS_ERR(req->open.filename)) {
2622 ret = PTR_ERR(req->open.filename);
2623 req->open.filename = NULL;
2627 req->flags |= REQ_F_NEED_CLEANUP;
2631 static int io_openat2(struct io_kiocb *req, struct io_kiocb **nxt,
2632 bool force_nonblock)
2634 struct open_flags op;
2641 ret = build_open_flags(&req->open.how, &op);
2645 ret = get_unused_fd_flags(req->open.how.flags);
2649 file = do_filp_open(req->open.dfd, req->open.filename, &op);
2652 ret = PTR_ERR(file);
2654 fsnotify_open(file);
2655 fd_install(ret, file);
2658 putname(req->open.filename);
2659 req->flags &= ~REQ_F_NEED_CLEANUP;
2661 req_set_fail_links(req);
2662 io_cqring_add_event(req, ret);
2663 io_put_req_find_next(req, nxt);
2667 static int io_openat(struct io_kiocb *req, struct io_kiocb **nxt,
2668 bool force_nonblock)
2670 req->open.how = build_open_how(req->open.how.flags, req->open.how.mode);
2671 return io_openat2(req, nxt, force_nonblock);
2674 static int io_epoll_ctl_prep(struct io_kiocb *req,
2675 const struct io_uring_sqe *sqe)
2677 #if defined(CONFIG_EPOLL)
2678 if (sqe->ioprio || sqe->buf_index)
2681 req->epoll.epfd = READ_ONCE(sqe->fd);
2682 req->epoll.op = READ_ONCE(sqe->len);
2683 req->epoll.fd = READ_ONCE(sqe->off);
2685 if (ep_op_has_event(req->epoll.op)) {
2686 struct epoll_event __user *ev;
2688 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
2689 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
2699 static int io_epoll_ctl(struct io_kiocb *req, struct io_kiocb **nxt,
2700 bool force_nonblock)
2702 #if defined(CONFIG_EPOLL)
2703 struct io_epoll *ie = &req->epoll;
2706 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
2707 if (force_nonblock && ret == -EAGAIN)
2711 req_set_fail_links(req);
2712 io_cqring_add_event(req, ret);
2713 io_put_req_find_next(req, nxt);
2720 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2722 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
2723 if (sqe->ioprio || sqe->buf_index || sqe->off)
2726 req->madvise.addr = READ_ONCE(sqe->addr);
2727 req->madvise.len = READ_ONCE(sqe->len);
2728 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
2735 static int io_madvise(struct io_kiocb *req, struct io_kiocb **nxt,
2736 bool force_nonblock)
2738 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
2739 struct io_madvise *ma = &req->madvise;
2745 ret = do_madvise(ma->addr, ma->len, ma->advice);
2747 req_set_fail_links(req);
2748 io_cqring_add_event(req, ret);
2749 io_put_req_find_next(req, nxt);
2756 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2758 if (sqe->ioprio || sqe->buf_index || sqe->addr)
2761 req->fadvise.offset = READ_ONCE(sqe->off);
2762 req->fadvise.len = READ_ONCE(sqe->len);
2763 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
2767 static int io_fadvise(struct io_kiocb *req, struct io_kiocb **nxt,
2768 bool force_nonblock)
2770 struct io_fadvise *fa = &req->fadvise;
2773 if (force_nonblock) {
2774 switch (fa->advice) {
2775 case POSIX_FADV_NORMAL:
2776 case POSIX_FADV_RANDOM:
2777 case POSIX_FADV_SEQUENTIAL:
2784 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
2786 req_set_fail_links(req);
2787 io_cqring_add_event(req, ret);
2788 io_put_req_find_next(req, nxt);
2792 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2794 const char __user *fname;
2795 unsigned lookup_flags;
2798 if (sqe->ioprio || sqe->buf_index)
2800 if (sqe->flags & IOSQE_FIXED_FILE)
2802 if (req->flags & REQ_F_NEED_CLEANUP)
2805 req->open.dfd = READ_ONCE(sqe->fd);
2806 req->open.mask = READ_ONCE(sqe->len);
2807 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
2808 req->open.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
2809 req->open.how.flags = READ_ONCE(sqe->statx_flags);
2811 if (vfs_stat_set_lookup_flags(&lookup_flags, req->open.how.flags))
2814 req->open.filename = getname_flags(fname, lookup_flags, NULL);
2815 if (IS_ERR(req->open.filename)) {
2816 ret = PTR_ERR(req->open.filename);
2817 req->open.filename = NULL;
2821 req->flags |= REQ_F_NEED_CLEANUP;
2825 static int io_statx(struct io_kiocb *req, struct io_kiocb **nxt,
2826 bool force_nonblock)
2828 struct io_open *ctx = &req->open;
2829 unsigned lookup_flags;
2837 if (vfs_stat_set_lookup_flags(&lookup_flags, ctx->how.flags))
2841 /* filename_lookup() drops it, keep a reference */
2842 ctx->filename->refcnt++;
2844 ret = filename_lookup(ctx->dfd, ctx->filename, lookup_flags, &path,
2849 ret = vfs_getattr(&path, &stat, ctx->mask, ctx->how.flags);
2851 if (retry_estale(ret, lookup_flags)) {
2852 lookup_flags |= LOOKUP_REVAL;
2856 ret = cp_statx(&stat, ctx->buffer);
2858 putname(ctx->filename);
2859 req->flags &= ~REQ_F_NEED_CLEANUP;
2861 req_set_fail_links(req);
2862 io_cqring_add_event(req, ret);
2863 io_put_req_find_next(req, nxt);
2867 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2870 * If we queue this for async, it must not be cancellable. That would
2871 * leave the 'file' in an undeterminate state.
2873 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
2875 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
2876 sqe->rw_flags || sqe->buf_index)
2878 if (sqe->flags & IOSQE_FIXED_FILE)
2881 req->close.fd = READ_ONCE(sqe->fd);
2882 if (req->file->f_op == &io_uring_fops ||
2883 req->close.fd == req->ctx->ring_fd)
2889 /* only called when __close_fd_get_file() is done */
2890 static void __io_close_finish(struct io_kiocb *req, struct io_kiocb **nxt)
2894 ret = filp_close(req->close.put_file, req->work.files);
2896 req_set_fail_links(req);
2897 io_cqring_add_event(req, ret);
2898 fput(req->close.put_file);
2899 io_put_req_find_next(req, nxt);
2902 static void io_close_finish(struct io_wq_work **workptr)
2904 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
2905 struct io_kiocb *nxt = NULL;
2907 __io_close_finish(req, &nxt);
2909 io_wq_assign_next(workptr, nxt);
2912 static int io_close(struct io_kiocb *req, struct io_kiocb **nxt,
2913 bool force_nonblock)
2917 req->close.put_file = NULL;
2918 ret = __close_fd_get_file(req->close.fd, &req->close.put_file);
2922 /* if the file has a flush method, be safe and punt to async */
2923 if (req->close.put_file->f_op->flush && !io_wq_current_is_worker())
2927 * No ->flush(), safely close from here and just punt the
2928 * fput() to async context.
2930 __io_close_finish(req, nxt);
2933 req->work.func = io_close_finish;
2935 * Do manual async queue here to avoid grabbing files - we don't
2936 * need the files, and it'll cause io_close_finish() to close
2937 * the file again and cause a double CQE entry for this request
2939 io_queue_async_work(req);
2943 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2945 struct io_ring_ctx *ctx = req->ctx;
2950 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2952 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
2955 req->sync.off = READ_ONCE(sqe->off);
2956 req->sync.len = READ_ONCE(sqe->len);
2957 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
2961 static void io_sync_file_range_finish(struct io_wq_work **workptr)
2963 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
2964 struct io_kiocb *nxt = NULL;
2967 if (io_req_cancelled(req))
2970 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
2973 req_set_fail_links(req);
2974 io_cqring_add_event(req, ret);
2975 io_put_req_find_next(req, &nxt);
2977 io_wq_assign_next(workptr, nxt);
2980 static int io_sync_file_range(struct io_kiocb *req, struct io_kiocb **nxt,
2981 bool force_nonblock)
2983 struct io_wq_work *work, *old_work;
2985 /* sync_file_range always requires a blocking context */
2986 if (force_nonblock) {
2988 req->work.func = io_sync_file_range_finish;
2992 work = old_work = &req->work;
2993 io_sync_file_range_finish(&work);
2994 if (work && work != old_work)
2995 *nxt = container_of(work, struct io_kiocb, work);
2999 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3001 #if defined(CONFIG_NET)
3002 struct io_sr_msg *sr = &req->sr_msg;
3003 struct io_async_ctx *io = req->io;
3006 sr->msg_flags = READ_ONCE(sqe->msg_flags);
3007 sr->msg = u64_to_user_ptr(READ_ONCE(sqe->addr));
3008 sr->len = READ_ONCE(sqe->len);
3010 if (!io || req->opcode == IORING_OP_SEND)
3012 /* iovec is already imported */
3013 if (req->flags & REQ_F_NEED_CLEANUP)
3016 io->msg.iov = io->msg.fast_iov;
3017 ret = sendmsg_copy_msghdr(&io->msg.msg, sr->msg, sr->msg_flags,
3020 req->flags |= REQ_F_NEED_CLEANUP;
3027 static int io_sendmsg(struct io_kiocb *req, struct io_kiocb **nxt,
3028 bool force_nonblock)
3030 #if defined(CONFIG_NET)
3031 struct io_async_msghdr *kmsg = NULL;
3032 struct socket *sock;
3035 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3038 sock = sock_from_file(req->file, &ret);
3040 struct io_async_ctx io;
3044 kmsg = &req->io->msg;
3045 kmsg->msg.msg_name = &req->io->msg.addr;
3046 /* if iov is set, it's allocated already */
3048 kmsg->iov = kmsg->fast_iov;
3049 kmsg->msg.msg_iter.iov = kmsg->iov;
3051 struct io_sr_msg *sr = &req->sr_msg;
3054 kmsg->msg.msg_name = &io.msg.addr;
3056 io.msg.iov = io.msg.fast_iov;
3057 ret = sendmsg_copy_msghdr(&io.msg.msg, sr->msg,
3058 sr->msg_flags, &io.msg.iov);
3063 flags = req->sr_msg.msg_flags;
3064 if (flags & MSG_DONTWAIT)
3065 req->flags |= REQ_F_NOWAIT;
3066 else if (force_nonblock)
3067 flags |= MSG_DONTWAIT;
3069 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
3070 if (force_nonblock && ret == -EAGAIN) {
3073 if (io_alloc_async_ctx(req)) {
3074 if (kmsg && kmsg->iov != kmsg->fast_iov)
3078 req->flags |= REQ_F_NEED_CLEANUP;
3079 memcpy(&req->io->msg, &io.msg, sizeof(io.msg));
3082 if (ret == -ERESTARTSYS)
3086 if (kmsg && kmsg->iov != kmsg->fast_iov)
3088 req->flags &= ~REQ_F_NEED_CLEANUP;
3089 io_cqring_add_event(req, ret);
3091 req_set_fail_links(req);
3092 io_put_req_find_next(req, nxt);
3099 static int io_send(struct io_kiocb *req, struct io_kiocb **nxt,
3100 bool force_nonblock)
3102 #if defined(CONFIG_NET)
3103 struct socket *sock;
3106 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3109 sock = sock_from_file(req->file, &ret);
3111 struct io_sr_msg *sr = &req->sr_msg;
3116 ret = import_single_range(WRITE, sr->buf, sr->len, &iov,
3121 msg.msg_name = NULL;
3122 msg.msg_control = NULL;
3123 msg.msg_controllen = 0;
3124 msg.msg_namelen = 0;
3126 flags = req->sr_msg.msg_flags;
3127 if (flags & MSG_DONTWAIT)
3128 req->flags |= REQ_F_NOWAIT;
3129 else if (force_nonblock)
3130 flags |= MSG_DONTWAIT;
3132 msg.msg_flags = flags;
3133 ret = sock_sendmsg(sock, &msg);
3134 if (force_nonblock && ret == -EAGAIN)
3136 if (ret == -ERESTARTSYS)
3140 io_cqring_add_event(req, ret);
3142 req_set_fail_links(req);
3143 io_put_req_find_next(req, nxt);
3150 static int io_recvmsg_prep(struct io_kiocb *req,
3151 const struct io_uring_sqe *sqe)
3153 #if defined(CONFIG_NET)
3154 struct io_sr_msg *sr = &req->sr_msg;
3155 struct io_async_ctx *io = req->io;
3158 sr->msg_flags = READ_ONCE(sqe->msg_flags);
3159 sr->msg = u64_to_user_ptr(READ_ONCE(sqe->addr));
3160 sr->len = READ_ONCE(sqe->len);
3162 if (!io || req->opcode == IORING_OP_RECV)
3164 /* iovec is already imported */
3165 if (req->flags & REQ_F_NEED_CLEANUP)
3168 io->msg.iov = io->msg.fast_iov;
3169 ret = recvmsg_copy_msghdr(&io->msg.msg, sr->msg, sr->msg_flags,
3170 &io->msg.uaddr, &io->msg.iov);
3172 req->flags |= REQ_F_NEED_CLEANUP;
3179 static int io_recvmsg(struct io_kiocb *req, struct io_kiocb **nxt,
3180 bool force_nonblock)
3182 #if defined(CONFIG_NET)
3183 struct io_async_msghdr *kmsg = NULL;
3184 struct socket *sock;
3187 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3190 sock = sock_from_file(req->file, &ret);
3192 struct io_async_ctx io;
3196 kmsg = &req->io->msg;
3197 kmsg->msg.msg_name = &req->io->msg.addr;
3198 /* if iov is set, it's allocated already */
3200 kmsg->iov = kmsg->fast_iov;
3201 kmsg->msg.msg_iter.iov = kmsg->iov;
3203 struct io_sr_msg *sr = &req->sr_msg;
3206 kmsg->msg.msg_name = &io.msg.addr;
3208 io.msg.iov = io.msg.fast_iov;
3209 ret = recvmsg_copy_msghdr(&io.msg.msg, sr->msg,
3210 sr->msg_flags, &io.msg.uaddr,
3216 flags = req->sr_msg.msg_flags;
3217 if (flags & MSG_DONTWAIT)
3218 req->flags |= REQ_F_NOWAIT;
3219 else if (force_nonblock)
3220 flags |= MSG_DONTWAIT;
3222 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.msg,
3223 kmsg->uaddr, flags);
3224 if (force_nonblock && ret == -EAGAIN) {
3227 if (io_alloc_async_ctx(req)) {
3228 if (kmsg && kmsg->iov != kmsg->fast_iov)
3232 memcpy(&req->io->msg, &io.msg, sizeof(io.msg));
3233 req->flags |= REQ_F_NEED_CLEANUP;
3236 if (ret == -ERESTARTSYS)
3240 if (kmsg && kmsg->iov != kmsg->fast_iov)
3242 req->flags &= ~REQ_F_NEED_CLEANUP;
3243 io_cqring_add_event(req, ret);
3245 req_set_fail_links(req);
3246 io_put_req_find_next(req, nxt);
3253 static int io_recv(struct io_kiocb *req, struct io_kiocb **nxt,
3254 bool force_nonblock)
3256 #if defined(CONFIG_NET)
3257 struct socket *sock;
3260 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3263 sock = sock_from_file(req->file, &ret);
3265 struct io_sr_msg *sr = &req->sr_msg;
3270 ret = import_single_range(READ, sr->buf, sr->len, &iov,
3275 msg.msg_name = NULL;
3276 msg.msg_control = NULL;
3277 msg.msg_controllen = 0;
3278 msg.msg_namelen = 0;
3279 msg.msg_iocb = NULL;
3282 flags = req->sr_msg.msg_flags;
3283 if (flags & MSG_DONTWAIT)
3284 req->flags |= REQ_F_NOWAIT;
3285 else if (force_nonblock)
3286 flags |= MSG_DONTWAIT;
3288 ret = sock_recvmsg(sock, &msg, flags);
3289 if (force_nonblock && ret == -EAGAIN)
3291 if (ret == -ERESTARTSYS)
3295 io_cqring_add_event(req, ret);
3297 req_set_fail_links(req);
3298 io_put_req_find_next(req, nxt);
3306 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3308 #if defined(CONFIG_NET)
3309 struct io_accept *accept = &req->accept;
3311 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3313 if (sqe->ioprio || sqe->len || sqe->buf_index)
3316 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
3317 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3318 accept->flags = READ_ONCE(sqe->accept_flags);
3325 #if defined(CONFIG_NET)
3326 static int __io_accept(struct io_kiocb *req, struct io_kiocb **nxt,
3327 bool force_nonblock)
3329 struct io_accept *accept = &req->accept;
3330 unsigned file_flags;
3333 file_flags = force_nonblock ? O_NONBLOCK : 0;
3334 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
3335 accept->addr_len, accept->flags);
3336 if (ret == -EAGAIN && force_nonblock)
3338 if (ret == -ERESTARTSYS)
3341 req_set_fail_links(req);
3342 io_cqring_add_event(req, ret);
3343 io_put_req_find_next(req, nxt);
3347 static void io_accept_finish(struct io_wq_work **workptr)
3349 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
3350 struct io_kiocb *nxt = NULL;
3352 if (io_req_cancelled(req))
3354 __io_accept(req, &nxt, false);
3356 io_wq_assign_next(workptr, nxt);
3360 static int io_accept(struct io_kiocb *req, struct io_kiocb **nxt,
3361 bool force_nonblock)
3363 #if defined(CONFIG_NET)
3366 ret = __io_accept(req, nxt, force_nonblock);
3367 if (ret == -EAGAIN && force_nonblock) {
3368 req->work.func = io_accept_finish;
3378 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3380 #if defined(CONFIG_NET)
3381 struct io_connect *conn = &req->connect;
3382 struct io_async_ctx *io = req->io;
3384 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3386 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
3389 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
3390 conn->addr_len = READ_ONCE(sqe->addr2);
3395 return move_addr_to_kernel(conn->addr, conn->addr_len,
3396 &io->connect.address);
3402 static int io_connect(struct io_kiocb *req, struct io_kiocb **nxt,
3403 bool force_nonblock)
3405 #if defined(CONFIG_NET)
3406 struct io_async_ctx __io, *io;
3407 unsigned file_flags;
3413 ret = move_addr_to_kernel(req->connect.addr,
3414 req->connect.addr_len,
3415 &__io.connect.address);
3421 file_flags = force_nonblock ? O_NONBLOCK : 0;
3423 ret = __sys_connect_file(req->file, &io->connect.address,
3424 req->connect.addr_len, file_flags);
3425 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
3428 if (io_alloc_async_ctx(req)) {
3432 memcpy(&req->io->connect, &__io.connect, sizeof(__io.connect));
3435 if (ret == -ERESTARTSYS)
3439 req_set_fail_links(req);
3440 io_cqring_add_event(req, ret);
3441 io_put_req_find_next(req, nxt);
3448 static void io_poll_remove_one(struct io_kiocb *req)
3450 struct io_poll_iocb *poll = &req->poll;
3452 spin_lock(&poll->head->lock);
3453 WRITE_ONCE(poll->canceled, true);
3454 if (!list_empty(&poll->wait.entry)) {
3455 list_del_init(&poll->wait.entry);
3456 io_queue_async_work(req);
3458 spin_unlock(&poll->head->lock);
3459 hash_del(&req->hash_node);
3462 static void io_poll_remove_all(struct io_ring_ctx *ctx)
3464 struct hlist_node *tmp;
3465 struct io_kiocb *req;
3468 spin_lock_irq(&ctx->completion_lock);
3469 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
3470 struct hlist_head *list;
3472 list = &ctx->cancel_hash[i];
3473 hlist_for_each_entry_safe(req, tmp, list, hash_node)
3474 io_poll_remove_one(req);
3476 spin_unlock_irq(&ctx->completion_lock);
3479 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
3481 struct hlist_head *list;
3482 struct io_kiocb *req;
3484 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
3485 hlist_for_each_entry(req, list, hash_node) {
3486 if (sqe_addr == req->user_data) {
3487 io_poll_remove_one(req);
3495 static int io_poll_remove_prep(struct io_kiocb *req,
3496 const struct io_uring_sqe *sqe)
3498 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3500 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3504 req->poll.addr = READ_ONCE(sqe->addr);
3509 * Find a running poll command that matches one specified in sqe->addr,
3510 * and remove it if found.
3512 static int io_poll_remove(struct io_kiocb *req)
3514 struct io_ring_ctx *ctx = req->ctx;
3518 addr = req->poll.addr;
3519 spin_lock_irq(&ctx->completion_lock);
3520 ret = io_poll_cancel(ctx, addr);
3521 spin_unlock_irq(&ctx->completion_lock);
3523 io_cqring_add_event(req, ret);
3525 req_set_fail_links(req);
3530 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
3532 struct io_ring_ctx *ctx = req->ctx;
3534 req->poll.done = true;
3536 io_cqring_fill_event(req, error);
3538 io_cqring_fill_event(req, mangle_poll(mask));
3539 io_commit_cqring(ctx);
3542 static void io_poll_complete_work(struct io_wq_work **workptr)
3544 struct io_wq_work *work = *workptr;
3545 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3546 struct io_poll_iocb *poll = &req->poll;
3547 struct poll_table_struct pt = { ._key = poll->events };
3548 struct io_ring_ctx *ctx = req->ctx;
3549 struct io_kiocb *nxt = NULL;
3553 if (work->flags & IO_WQ_WORK_CANCEL) {
3554 WRITE_ONCE(poll->canceled, true);
3556 } else if (READ_ONCE(poll->canceled)) {
3560 if (ret != -ECANCELED)
3561 mask = vfs_poll(poll->file, &pt) & poll->events;
3564 * Note that ->ki_cancel callers also delete iocb from active_reqs after
3565 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
3566 * synchronize with them. In the cancellation case the list_del_init
3567 * itself is not actually needed, but harmless so we keep it in to
3568 * avoid further branches in the fast path.
3570 spin_lock_irq(&ctx->completion_lock);
3571 if (!mask && ret != -ECANCELED) {
3572 add_wait_queue(poll->head, &poll->wait);
3573 spin_unlock_irq(&ctx->completion_lock);
3576 hash_del(&req->hash_node);
3577 io_poll_complete(req, mask, ret);
3578 spin_unlock_irq(&ctx->completion_lock);
3580 io_cqring_ev_posted(ctx);
3583 req_set_fail_links(req);
3584 io_put_req_find_next(req, &nxt);
3586 io_wq_assign_next(workptr, nxt);
3589 static void __io_poll_flush(struct io_ring_ctx *ctx, struct llist_node *nodes)
3591 struct io_kiocb *req, *tmp;
3592 struct req_batch rb;
3594 rb.to_free = rb.need_iter = 0;
3595 spin_lock_irq(&ctx->completion_lock);
3596 llist_for_each_entry_safe(req, tmp, nodes, llist_node) {
3597 hash_del(&req->hash_node);
3598 io_poll_complete(req, req->result, 0);
3600 if (refcount_dec_and_test(&req->refs) &&
3601 !io_req_multi_free(&rb, req)) {
3602 req->flags |= REQ_F_COMP_LOCKED;
3606 spin_unlock_irq(&ctx->completion_lock);
3608 io_cqring_ev_posted(ctx);
3609 io_free_req_many(ctx, &rb);
3612 static void io_poll_flush(struct io_wq_work **workptr)
3614 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
3615 struct llist_node *nodes;
3617 nodes = llist_del_all(&req->ctx->poll_llist);
3619 __io_poll_flush(req->ctx, nodes);
3622 static void io_poll_trigger_evfd(struct io_wq_work **workptr)
3624 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
3626 eventfd_signal(req->ctx->cq_ev_fd, 1);
3630 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
3633 struct io_poll_iocb *poll = wait->private;
3634 struct io_kiocb *req = container_of(poll, struct io_kiocb, poll);
3635 struct io_ring_ctx *ctx = req->ctx;
3636 __poll_t mask = key_to_poll(key);
3638 /* for instances that support it check for an event match first: */
3639 if (mask && !(mask & poll->events))
3642 list_del_init(&poll->wait.entry);
3645 * Run completion inline if we can. We're using trylock here because
3646 * we are violating the completion_lock -> poll wq lock ordering.
3647 * If we have a link timeout we're going to need the completion_lock
3648 * for finalizing the request, mark us as having grabbed that already.
3651 unsigned long flags;
3653 if (llist_empty(&ctx->poll_llist) &&
3654 spin_trylock_irqsave(&ctx->completion_lock, flags)) {
3657 hash_del(&req->hash_node);
3658 io_poll_complete(req, mask, 0);
3660 trigger_ev = io_should_trigger_evfd(ctx);
3661 if (trigger_ev && eventfd_signal_count()) {
3663 req->work.func = io_poll_trigger_evfd;
3665 req->flags |= REQ_F_COMP_LOCKED;
3669 spin_unlock_irqrestore(&ctx->completion_lock, flags);
3670 __io_cqring_ev_posted(ctx, trigger_ev);
3673 req->llist_node.next = NULL;
3674 /* if the list wasn't empty, we're done */
3675 if (!llist_add(&req->llist_node, &ctx->poll_llist))
3678 req->work.func = io_poll_flush;
3682 io_queue_async_work(req);
3687 struct io_poll_table {
3688 struct poll_table_struct pt;
3689 struct io_kiocb *req;
3693 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
3694 struct poll_table_struct *p)
3696 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
3698 if (unlikely(pt->req->poll.head)) {
3699 pt->error = -EINVAL;
3704 pt->req->poll.head = head;
3705 add_wait_queue(head, &pt->req->poll.wait);
3708 static void io_poll_req_insert(struct io_kiocb *req)
3710 struct io_ring_ctx *ctx = req->ctx;
3711 struct hlist_head *list;
3713 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
3714 hlist_add_head(&req->hash_node, list);
3717 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3719 struct io_poll_iocb *poll = &req->poll;
3722 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3724 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
3729 events = READ_ONCE(sqe->poll_events);
3730 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
3734 static int io_poll_add(struct io_kiocb *req, struct io_kiocb **nxt)
3736 struct io_poll_iocb *poll = &req->poll;
3737 struct io_ring_ctx *ctx = req->ctx;
3738 struct io_poll_table ipt;
3739 bool cancel = false;
3742 INIT_IO_WORK(&req->work, io_poll_complete_work);
3743 INIT_HLIST_NODE(&req->hash_node);
3747 poll->canceled = false;
3749 ipt.pt._qproc = io_poll_queue_proc;
3750 ipt.pt._key = poll->events;
3752 ipt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
3754 /* initialized the list so that we can do list_empty checks */
3755 INIT_LIST_HEAD(&poll->wait.entry);
3756 init_waitqueue_func_entry(&poll->wait, io_poll_wake);
3757 poll->wait.private = poll;
3759 INIT_LIST_HEAD(&req->list);
3761 mask = vfs_poll(poll->file, &ipt.pt) & poll->events;
3763 spin_lock_irq(&ctx->completion_lock);
3764 if (likely(poll->head)) {
3765 spin_lock(&poll->head->lock);
3766 if (unlikely(list_empty(&poll->wait.entry))) {
3772 if (mask || ipt.error)
3773 list_del_init(&poll->wait.entry);
3775 WRITE_ONCE(poll->canceled, true);
3776 else if (!poll->done) /* actually waiting for an event */
3777 io_poll_req_insert(req);
3778 spin_unlock(&poll->head->lock);
3780 if (mask) { /* no async, we'd stolen it */
3782 io_poll_complete(req, mask, 0);
3784 spin_unlock_irq(&ctx->completion_lock);
3787 io_cqring_ev_posted(ctx);
3788 io_put_req_find_next(req, nxt);
3793 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
3795 struct io_timeout_data *data = container_of(timer,
3796 struct io_timeout_data, timer);
3797 struct io_kiocb *req = data->req;
3798 struct io_ring_ctx *ctx = req->ctx;
3799 unsigned long flags;
3801 atomic_inc(&ctx->cq_timeouts);
3803 spin_lock_irqsave(&ctx->completion_lock, flags);
3805 * We could be racing with timeout deletion. If the list is empty,
3806 * then timeout lookup already found it and will be handling it.
3808 if (!list_empty(&req->list)) {
3809 struct io_kiocb *prev;
3812 * Adjust the reqs sequence before the current one because it
3813 * will consume a slot in the cq_ring and the cq_tail
3814 * pointer will be increased, otherwise other timeout reqs may
3815 * return in advance without waiting for enough wait_nr.
3818 list_for_each_entry_continue_reverse(prev, &ctx->timeout_list, list)
3820 list_del_init(&req->list);
3823 io_cqring_fill_event(req, -ETIME);
3824 io_commit_cqring(ctx);
3825 spin_unlock_irqrestore(&ctx->completion_lock, flags);
3827 io_cqring_ev_posted(ctx);
3828 req_set_fail_links(req);
3830 return HRTIMER_NORESTART;
3833 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
3835 struct io_kiocb *req;
3838 list_for_each_entry(req, &ctx->timeout_list, list) {
3839 if (user_data == req->user_data) {
3840 list_del_init(&req->list);
3849 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
3853 req_set_fail_links(req);
3854 io_cqring_fill_event(req, -ECANCELED);
3859 static int io_timeout_remove_prep(struct io_kiocb *req,
3860 const struct io_uring_sqe *sqe)
3862 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3864 if (sqe->flags || sqe->ioprio || sqe->buf_index || sqe->len)
3867 req->timeout.addr = READ_ONCE(sqe->addr);
3868 req->timeout.flags = READ_ONCE(sqe->timeout_flags);
3869 if (req->timeout.flags)
3876 * Remove or update an existing timeout command
3878 static int io_timeout_remove(struct io_kiocb *req)
3880 struct io_ring_ctx *ctx = req->ctx;
3883 spin_lock_irq(&ctx->completion_lock);
3884 ret = io_timeout_cancel(ctx, req->timeout.addr);
3886 io_cqring_fill_event(req, ret);
3887 io_commit_cqring(ctx);
3888 spin_unlock_irq(&ctx->completion_lock);
3889 io_cqring_ev_posted(ctx);
3891 req_set_fail_links(req);
3896 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
3897 bool is_timeout_link)
3899 struct io_timeout_data *data;
3902 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3904 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
3906 if (sqe->off && is_timeout_link)
3908 flags = READ_ONCE(sqe->timeout_flags);
3909 if (flags & ~IORING_TIMEOUT_ABS)
3912 req->timeout.count = READ_ONCE(sqe->off);
3914 if (!req->io && io_alloc_async_ctx(req))
3917 data = &req->io->timeout;
3919 req->flags |= REQ_F_TIMEOUT;
3921 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
3924 if (flags & IORING_TIMEOUT_ABS)
3925 data->mode = HRTIMER_MODE_ABS;
3927 data->mode = HRTIMER_MODE_REL;
3929 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
3933 static int io_timeout(struct io_kiocb *req)
3936 struct io_ring_ctx *ctx = req->ctx;
3937 struct io_timeout_data *data;
3938 struct list_head *entry;
3941 data = &req->io->timeout;
3944 * sqe->off holds how many events that need to occur for this
3945 * timeout event to be satisfied. If it isn't set, then this is
3946 * a pure timeout request, sequence isn't used.
3948 count = req->timeout.count;
3950 req->flags |= REQ_F_TIMEOUT_NOSEQ;
3951 spin_lock_irq(&ctx->completion_lock);
3952 entry = ctx->timeout_list.prev;
3956 req->sequence = ctx->cached_sq_head + count - 1;
3957 data->seq_offset = count;
3960 * Insertion sort, ensuring the first entry in the list is always
3961 * the one we need first.
3963 spin_lock_irq(&ctx->completion_lock);
3964 list_for_each_prev(entry, &ctx->timeout_list) {
3965 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb, list);
3966 unsigned nxt_sq_head;
3967 long long tmp, tmp_nxt;
3968 u32 nxt_offset = nxt->io->timeout.seq_offset;
3970 if (nxt->flags & REQ_F_TIMEOUT_NOSEQ)
3974 * Since cached_sq_head + count - 1 can overflow, use type long
3977 tmp = (long long)ctx->cached_sq_head + count - 1;
3978 nxt_sq_head = nxt->sequence - nxt_offset + 1;
3979 tmp_nxt = (long long)nxt_sq_head + nxt_offset - 1;
3982 * cached_sq_head may overflow, and it will never overflow twice
3983 * once there is some timeout req still be valid.
3985 if (ctx->cached_sq_head < nxt_sq_head)
3992 * Sequence of reqs after the insert one and itself should
3993 * be adjusted because each timeout req consumes a slot.
3998 req->sequence -= span;
4000 list_add(&req->list, entry);
4001 data->timer.function = io_timeout_fn;
4002 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
4003 spin_unlock_irq(&ctx->completion_lock);
4007 static bool io_cancel_cb(struct io_wq_work *work, void *data)
4009 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
4011 return req->user_data == (unsigned long) data;
4014 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
4016 enum io_wq_cancel cancel_ret;
4019 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr);
4020 switch (cancel_ret) {
4021 case IO_WQ_CANCEL_OK:
4024 case IO_WQ_CANCEL_RUNNING:
4027 case IO_WQ_CANCEL_NOTFOUND:
4035 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
4036 struct io_kiocb *req, __u64 sqe_addr,
4037 struct io_kiocb **nxt, int success_ret)
4039 unsigned long flags;
4042 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
4043 if (ret != -ENOENT) {
4044 spin_lock_irqsave(&ctx->completion_lock, flags);
4048 spin_lock_irqsave(&ctx->completion_lock, flags);
4049 ret = io_timeout_cancel(ctx, sqe_addr);
4052 ret = io_poll_cancel(ctx, sqe_addr);
4056 io_cqring_fill_event(req, ret);
4057 io_commit_cqring(ctx);
4058 spin_unlock_irqrestore(&ctx->completion_lock, flags);
4059 io_cqring_ev_posted(ctx);
4062 req_set_fail_links(req);
4063 io_put_req_find_next(req, nxt);
4066 static int io_async_cancel_prep(struct io_kiocb *req,
4067 const struct io_uring_sqe *sqe)
4069 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4071 if (sqe->flags || sqe->ioprio || sqe->off || sqe->len ||
4075 req->cancel.addr = READ_ONCE(sqe->addr);
4079 static int io_async_cancel(struct io_kiocb *req, struct io_kiocb **nxt)
4081 struct io_ring_ctx *ctx = req->ctx;
4083 io_async_find_and_cancel(ctx, req, req->cancel.addr, nxt, 0);
4087 static int io_files_update_prep(struct io_kiocb *req,
4088 const struct io_uring_sqe *sqe)
4090 if (sqe->flags || sqe->ioprio || sqe->rw_flags)
4093 req->files_update.offset = READ_ONCE(sqe->off);
4094 req->files_update.nr_args = READ_ONCE(sqe->len);
4095 if (!req->files_update.nr_args)
4097 req->files_update.arg = READ_ONCE(sqe->addr);
4101 static int io_files_update(struct io_kiocb *req, bool force_nonblock)
4103 struct io_ring_ctx *ctx = req->ctx;
4104 struct io_uring_files_update up;
4110 up.offset = req->files_update.offset;
4111 up.fds = req->files_update.arg;
4113 mutex_lock(&ctx->uring_lock);
4114 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
4115 mutex_unlock(&ctx->uring_lock);
4118 req_set_fail_links(req);
4119 io_cqring_add_event(req, ret);
4124 static int io_req_defer_prep(struct io_kiocb *req,
4125 const struct io_uring_sqe *sqe)
4129 if (io_op_defs[req->opcode].file_table) {
4130 ret = io_grab_files(req);
4135 io_req_work_grab_env(req, &io_op_defs[req->opcode]);
4137 switch (req->opcode) {
4140 case IORING_OP_READV:
4141 case IORING_OP_READ_FIXED:
4142 case IORING_OP_READ:
4143 ret = io_read_prep(req, sqe, true);
4145 case IORING_OP_WRITEV:
4146 case IORING_OP_WRITE_FIXED:
4147 case IORING_OP_WRITE:
4148 ret = io_write_prep(req, sqe, true);
4150 case IORING_OP_POLL_ADD:
4151 ret = io_poll_add_prep(req, sqe);
4153 case IORING_OP_POLL_REMOVE:
4154 ret = io_poll_remove_prep(req, sqe);
4156 case IORING_OP_FSYNC:
4157 ret = io_prep_fsync(req, sqe);
4159 case IORING_OP_SYNC_FILE_RANGE:
4160 ret = io_prep_sfr(req, sqe);
4162 case IORING_OP_SENDMSG:
4163 case IORING_OP_SEND:
4164 ret = io_sendmsg_prep(req, sqe);
4166 case IORING_OP_RECVMSG:
4167 case IORING_OP_RECV:
4168 ret = io_recvmsg_prep(req, sqe);
4170 case IORING_OP_CONNECT:
4171 ret = io_connect_prep(req, sqe);
4173 case IORING_OP_TIMEOUT:
4174 ret = io_timeout_prep(req, sqe, false);
4176 case IORING_OP_TIMEOUT_REMOVE:
4177 ret = io_timeout_remove_prep(req, sqe);
4179 case IORING_OP_ASYNC_CANCEL:
4180 ret = io_async_cancel_prep(req, sqe);
4182 case IORING_OP_LINK_TIMEOUT:
4183 ret = io_timeout_prep(req, sqe, true);
4185 case IORING_OP_ACCEPT:
4186 ret = io_accept_prep(req, sqe);
4188 case IORING_OP_FALLOCATE:
4189 ret = io_fallocate_prep(req, sqe);
4191 case IORING_OP_OPENAT:
4192 ret = io_openat_prep(req, sqe);
4194 case IORING_OP_CLOSE:
4195 ret = io_close_prep(req, sqe);
4197 case IORING_OP_FILES_UPDATE:
4198 ret = io_files_update_prep(req, sqe);
4200 case IORING_OP_STATX:
4201 ret = io_statx_prep(req, sqe);
4203 case IORING_OP_FADVISE:
4204 ret = io_fadvise_prep(req, sqe);
4206 case IORING_OP_MADVISE:
4207 ret = io_madvise_prep(req, sqe);
4209 case IORING_OP_OPENAT2:
4210 ret = io_openat2_prep(req, sqe);
4212 case IORING_OP_EPOLL_CTL:
4213 ret = io_epoll_ctl_prep(req, sqe);
4216 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
4225 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4227 struct io_ring_ctx *ctx = req->ctx;
4230 /* Still need defer if there is pending req in defer list. */
4231 if (!req_need_defer(req) && list_empty(&ctx->defer_list))
4234 if (!req->io && io_alloc_async_ctx(req))
4237 ret = io_req_defer_prep(req, sqe);
4241 spin_lock_irq(&ctx->completion_lock);
4242 if (!req_need_defer(req) && list_empty(&ctx->defer_list)) {
4243 spin_unlock_irq(&ctx->completion_lock);
4247 trace_io_uring_defer(ctx, req, req->user_data);
4248 list_add_tail(&req->list, &ctx->defer_list);
4249 spin_unlock_irq(&ctx->completion_lock);
4250 return -EIOCBQUEUED;
4253 static void io_cleanup_req(struct io_kiocb *req)
4255 struct io_async_ctx *io = req->io;
4257 switch (req->opcode) {
4258 case IORING_OP_READV:
4259 case IORING_OP_READ_FIXED:
4260 case IORING_OP_READ:
4261 case IORING_OP_WRITEV:
4262 case IORING_OP_WRITE_FIXED:
4263 case IORING_OP_WRITE:
4264 if (io->rw.iov != io->rw.fast_iov)
4267 case IORING_OP_SENDMSG:
4268 case IORING_OP_RECVMSG:
4269 if (io->msg.iov != io->msg.fast_iov)
4272 case IORING_OP_OPENAT:
4273 case IORING_OP_OPENAT2:
4274 case IORING_OP_STATX:
4275 putname(req->open.filename);
4279 req->flags &= ~REQ_F_NEED_CLEANUP;
4282 static int io_issue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
4283 struct io_kiocb **nxt, bool force_nonblock)
4285 struct io_ring_ctx *ctx = req->ctx;
4288 switch (req->opcode) {
4292 case IORING_OP_READV:
4293 case IORING_OP_READ_FIXED:
4294 case IORING_OP_READ:
4296 ret = io_read_prep(req, sqe, force_nonblock);
4300 ret = io_read(req, nxt, force_nonblock);
4302 case IORING_OP_WRITEV:
4303 case IORING_OP_WRITE_FIXED:
4304 case IORING_OP_WRITE:
4306 ret = io_write_prep(req, sqe, force_nonblock);
4310 ret = io_write(req, nxt, force_nonblock);
4312 case IORING_OP_FSYNC:
4314 ret = io_prep_fsync(req, sqe);
4318 ret = io_fsync(req, nxt, force_nonblock);
4320 case IORING_OP_POLL_ADD:
4322 ret = io_poll_add_prep(req, sqe);
4326 ret = io_poll_add(req, nxt);
4328 case IORING_OP_POLL_REMOVE:
4330 ret = io_poll_remove_prep(req, sqe);
4334 ret = io_poll_remove(req);
4336 case IORING_OP_SYNC_FILE_RANGE:
4338 ret = io_prep_sfr(req, sqe);
4342 ret = io_sync_file_range(req, nxt, force_nonblock);
4344 case IORING_OP_SENDMSG:
4345 case IORING_OP_SEND:
4347 ret = io_sendmsg_prep(req, sqe);
4351 if (req->opcode == IORING_OP_SENDMSG)
4352 ret = io_sendmsg(req, nxt, force_nonblock);
4354 ret = io_send(req, nxt, force_nonblock);
4356 case IORING_OP_RECVMSG:
4357 case IORING_OP_RECV:
4359 ret = io_recvmsg_prep(req, sqe);
4363 if (req->opcode == IORING_OP_RECVMSG)
4364 ret = io_recvmsg(req, nxt, force_nonblock);
4366 ret = io_recv(req, nxt, force_nonblock);
4368 case IORING_OP_TIMEOUT:
4370 ret = io_timeout_prep(req, sqe, false);
4374 ret = io_timeout(req);
4376 case IORING_OP_TIMEOUT_REMOVE:
4378 ret = io_timeout_remove_prep(req, sqe);
4382 ret = io_timeout_remove(req);
4384 case IORING_OP_ACCEPT:
4386 ret = io_accept_prep(req, sqe);
4390 ret = io_accept(req, nxt, force_nonblock);
4392 case IORING_OP_CONNECT:
4394 ret = io_connect_prep(req, sqe);
4398 ret = io_connect(req, nxt, force_nonblock);
4400 case IORING_OP_ASYNC_CANCEL:
4402 ret = io_async_cancel_prep(req, sqe);
4406 ret = io_async_cancel(req, nxt);
4408 case IORING_OP_FALLOCATE:
4410 ret = io_fallocate_prep(req, sqe);
4414 ret = io_fallocate(req, nxt, force_nonblock);
4416 case IORING_OP_OPENAT:
4418 ret = io_openat_prep(req, sqe);
4422 ret = io_openat(req, nxt, force_nonblock);
4424 case IORING_OP_CLOSE:
4426 ret = io_close_prep(req, sqe);
4430 ret = io_close(req, nxt, force_nonblock);
4432 case IORING_OP_FILES_UPDATE:
4434 ret = io_files_update_prep(req, sqe);
4438 ret = io_files_update(req, force_nonblock);
4440 case IORING_OP_STATX:
4442 ret = io_statx_prep(req, sqe);
4446 ret = io_statx(req, nxt, force_nonblock);
4448 case IORING_OP_FADVISE:
4450 ret = io_fadvise_prep(req, sqe);
4454 ret = io_fadvise(req, nxt, force_nonblock);
4456 case IORING_OP_MADVISE:
4458 ret = io_madvise_prep(req, sqe);
4462 ret = io_madvise(req, nxt, force_nonblock);
4464 case IORING_OP_OPENAT2:
4466 ret = io_openat2_prep(req, sqe);
4470 ret = io_openat2(req, nxt, force_nonblock);
4472 case IORING_OP_EPOLL_CTL:
4474 ret = io_epoll_ctl_prep(req, sqe);
4478 ret = io_epoll_ctl(req, nxt, force_nonblock);
4488 if (ctx->flags & IORING_SETUP_IOPOLL) {
4489 const bool in_async = io_wq_current_is_worker();
4491 if (req->result == -EAGAIN)
4494 /* workqueue context doesn't hold uring_lock, grab it now */
4496 mutex_lock(&ctx->uring_lock);
4498 io_iopoll_req_issued(req);
4501 mutex_unlock(&ctx->uring_lock);
4507 static void io_wq_submit_work(struct io_wq_work **workptr)
4509 struct io_wq_work *work = *workptr;
4510 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
4511 struct io_kiocb *nxt = NULL;
4514 /* if NO_CANCEL is set, we must still run the work */
4515 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
4516 IO_WQ_WORK_CANCEL) {
4521 req->in_async = true;
4523 ret = io_issue_sqe(req, NULL, &nxt, false);
4525 * We can get EAGAIN for polled IO even though we're
4526 * forcing a sync submission from here, since we can't
4527 * wait for request slots on the block side.
4535 /* drop submission reference */
4539 req_set_fail_links(req);
4540 io_cqring_add_event(req, ret);
4544 /* if a dependent link is ready, pass it back */
4546 io_wq_assign_next(workptr, nxt);
4549 static int io_req_needs_file(struct io_kiocb *req, int fd)
4551 if (!io_op_defs[req->opcode].needs_file)
4553 if ((fd == -1 || fd == AT_FDCWD) && io_op_defs[req->opcode].fd_non_neg)
4558 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
4561 struct fixed_file_table *table;
4563 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
4564 return table->files[index & IORING_FILE_TABLE_MASK];;
4567 static int io_req_set_file(struct io_submit_state *state, struct io_kiocb *req,
4568 const struct io_uring_sqe *sqe)
4570 struct io_ring_ctx *ctx = req->ctx;
4574 flags = READ_ONCE(sqe->flags);
4575 fd = READ_ONCE(sqe->fd);
4577 if (!io_req_needs_file(req, fd))
4580 if (flags & IOSQE_FIXED_FILE) {
4581 if (unlikely(!ctx->file_data ||
4582 (unsigned) fd >= ctx->nr_user_files))
4584 fd = array_index_nospec(fd, ctx->nr_user_files);
4585 req->file = io_file_from_index(ctx, fd);
4588 req->flags |= REQ_F_FIXED_FILE;
4589 percpu_ref_get(&ctx->file_data->refs);
4591 if (req->needs_fixed_file)
4593 trace_io_uring_file_get(ctx, fd);
4594 req->file = io_file_get(state, fd);
4595 if (unlikely(!req->file))
4602 static int io_grab_files(struct io_kiocb *req)
4605 struct io_ring_ctx *ctx = req->ctx;
4607 if (req->work.files)
4609 if (!ctx->ring_file)
4613 spin_lock_irq(&ctx->inflight_lock);
4615 * We use the f_ops->flush() handler to ensure that we can flush
4616 * out work accessing these files if the fd is closed. Check if
4617 * the fd has changed since we started down this path, and disallow
4618 * this operation if it has.
4620 if (fcheck(ctx->ring_fd) == ctx->ring_file) {
4621 list_add(&req->inflight_entry, &ctx->inflight_list);
4622 req->flags |= REQ_F_INFLIGHT;
4623 req->work.files = current->files;
4626 spin_unlock_irq(&ctx->inflight_lock);
4632 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
4634 struct io_timeout_data *data = container_of(timer,
4635 struct io_timeout_data, timer);
4636 struct io_kiocb *req = data->req;
4637 struct io_ring_ctx *ctx = req->ctx;
4638 struct io_kiocb *prev = NULL;
4639 unsigned long flags;
4641 spin_lock_irqsave(&ctx->completion_lock, flags);
4644 * We don't expect the list to be empty, that will only happen if we
4645 * race with the completion of the linked work.
4647 if (!list_empty(&req->link_list)) {
4648 prev = list_entry(req->link_list.prev, struct io_kiocb,
4650 if (refcount_inc_not_zero(&prev->refs)) {
4651 list_del_init(&req->link_list);
4652 prev->flags &= ~REQ_F_LINK_TIMEOUT;
4657 spin_unlock_irqrestore(&ctx->completion_lock, flags);
4660 req_set_fail_links(prev);
4661 io_async_find_and_cancel(ctx, req, prev->user_data, NULL,
4665 io_cqring_add_event(req, -ETIME);
4668 return HRTIMER_NORESTART;
4671 static void io_queue_linked_timeout(struct io_kiocb *req)
4673 struct io_ring_ctx *ctx = req->ctx;
4676 * If the list is now empty, then our linked request finished before
4677 * we got a chance to setup the timer
4679 spin_lock_irq(&ctx->completion_lock);
4680 if (!list_empty(&req->link_list)) {
4681 struct io_timeout_data *data = &req->io->timeout;
4683 data->timer.function = io_link_timeout_fn;
4684 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
4687 spin_unlock_irq(&ctx->completion_lock);
4689 /* drop submission reference */
4693 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
4695 struct io_kiocb *nxt;
4697 if (!(req->flags & REQ_F_LINK))
4700 nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb,
4702 if (!nxt || nxt->opcode != IORING_OP_LINK_TIMEOUT)
4705 req->flags |= REQ_F_LINK_TIMEOUT;
4709 static void __io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4711 struct io_kiocb *linked_timeout;
4712 struct io_kiocb *nxt = NULL;
4716 linked_timeout = io_prep_linked_timeout(req);
4718 ret = io_issue_sqe(req, sqe, &nxt, true);
4721 * We async punt it if the file wasn't marked NOWAIT, or if the file
4722 * doesn't support non-blocking read/write attempts
4724 if (ret == -EAGAIN && (!(req->flags & REQ_F_NOWAIT) ||
4725 (req->flags & REQ_F_MUST_PUNT))) {
4727 if (io_op_defs[req->opcode].file_table) {
4728 ret = io_grab_files(req);
4734 * Queued up for async execution, worker will release
4735 * submit reference when the iocb is actually submitted.
4737 io_queue_async_work(req);
4742 /* drop submission reference */
4745 if (linked_timeout) {
4747 io_queue_linked_timeout(linked_timeout);
4749 io_put_req(linked_timeout);
4752 /* and drop final reference, if we failed */
4754 io_cqring_add_event(req, ret);
4755 req_set_fail_links(req);
4763 if (req->flags & REQ_F_FORCE_ASYNC)
4769 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4773 ret = io_req_defer(req, sqe);
4775 if (ret != -EIOCBQUEUED) {
4777 io_cqring_add_event(req, ret);
4778 req_set_fail_links(req);
4779 io_double_put_req(req);
4781 } else if (req->flags & REQ_F_FORCE_ASYNC) {
4782 ret = io_req_defer_prep(req, sqe);
4783 if (unlikely(ret < 0))
4786 * Never try inline submit of IOSQE_ASYNC is set, go straight
4787 * to async execution.
4789 req->work.flags |= IO_WQ_WORK_CONCURRENT;
4790 io_queue_async_work(req);
4792 __io_queue_sqe(req, sqe);
4796 static inline void io_queue_link_head(struct io_kiocb *req)
4798 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
4799 io_cqring_add_event(req, -ECANCELED);
4800 io_double_put_req(req);
4802 io_queue_sqe(req, NULL);
4805 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
4806 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
4808 static bool io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
4809 struct io_submit_state *state, struct io_kiocb **link)
4811 const struct cred *old_creds = NULL;
4812 struct io_ring_ctx *ctx = req->ctx;
4813 unsigned int sqe_flags;
4816 sqe_flags = READ_ONCE(sqe->flags);
4818 /* enforce forwards compatibility on users */
4819 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS)) {
4824 id = READ_ONCE(sqe->personality);
4826 const struct cred *personality_creds;
4828 personality_creds = idr_find(&ctx->personality_idr, id);
4829 if (unlikely(!personality_creds)) {
4833 old_creds = override_creds(personality_creds);
4836 /* same numerical values with corresponding REQ_F_*, safe to copy */
4837 req->flags |= sqe_flags & (IOSQE_IO_DRAIN|IOSQE_IO_HARDLINK|
4840 ret = io_req_set_file(state, req, sqe);
4841 if (unlikely(ret)) {
4843 io_cqring_add_event(req, ret);
4844 io_double_put_req(req);
4846 revert_creds(old_creds);
4851 * If we already have a head request, queue this one for async
4852 * submittal once the head completes. If we don't have a head but
4853 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
4854 * submitted sync once the chain is complete. If none of those
4855 * conditions are true (normal request), then just queue it.
4858 struct io_kiocb *head = *link;
4861 * Taking sequential execution of a link, draining both sides
4862 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
4863 * requests in the link. So, it drains the head and the
4864 * next after the link request. The last one is done via
4865 * drain_next flag to persist the effect across calls.
4867 if (sqe_flags & IOSQE_IO_DRAIN) {
4868 head->flags |= REQ_F_IO_DRAIN;
4869 ctx->drain_next = 1;
4871 if (io_alloc_async_ctx(req)) {
4876 ret = io_req_defer_prep(req, sqe);
4878 /* fail even hard links since we don't submit */
4879 head->flags |= REQ_F_FAIL_LINK;
4882 trace_io_uring_link(ctx, req, head);
4883 list_add_tail(&req->link_list, &head->link_list);
4885 /* last request of a link, enqueue the link */
4886 if (!(sqe_flags & (IOSQE_IO_LINK|IOSQE_IO_HARDLINK))) {
4887 io_queue_link_head(head);
4891 if (unlikely(ctx->drain_next)) {
4892 req->flags |= REQ_F_IO_DRAIN;
4893 req->ctx->drain_next = 0;
4895 if (sqe_flags & (IOSQE_IO_LINK|IOSQE_IO_HARDLINK)) {
4896 req->flags |= REQ_F_LINK;
4897 INIT_LIST_HEAD(&req->link_list);
4898 ret = io_req_defer_prep(req, sqe);
4900 req->flags |= REQ_F_FAIL_LINK;
4903 io_queue_sqe(req, sqe);
4908 revert_creds(old_creds);
4913 * Batched submission is done, ensure local IO is flushed out.
4915 static void io_submit_state_end(struct io_submit_state *state)
4917 blk_finish_plug(&state->plug);
4919 if (state->free_reqs)
4920 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
4924 * Start submission side cache.
4926 static void io_submit_state_start(struct io_submit_state *state,
4927 unsigned int max_ios)
4929 blk_start_plug(&state->plug);
4930 state->free_reqs = 0;
4932 state->ios_left = max_ios;
4935 static void io_commit_sqring(struct io_ring_ctx *ctx)
4937 struct io_rings *rings = ctx->rings;
4940 * Ensure any loads from the SQEs are done at this point,
4941 * since once we write the new head, the application could
4942 * write new data to them.
4944 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
4948 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
4949 * that is mapped by userspace. This means that care needs to be taken to
4950 * ensure that reads are stable, as we cannot rely on userspace always
4951 * being a good citizen. If members of the sqe are validated and then later
4952 * used, it's important that those reads are done through READ_ONCE() to
4953 * prevent a re-load down the line.
4955 static bool io_get_sqring(struct io_ring_ctx *ctx, struct io_kiocb *req,
4956 const struct io_uring_sqe **sqe_ptr)
4958 u32 *sq_array = ctx->sq_array;
4962 * The cached sq head (or cq tail) serves two purposes:
4964 * 1) allows us to batch the cost of updating the user visible
4966 * 2) allows the kernel side to track the head on its own, even
4967 * though the application is the one updating it.
4969 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
4970 if (likely(head < ctx->sq_entries)) {
4972 * All io need record the previous position, if LINK vs DARIN,
4973 * it can be used to mark the position of the first IO in the
4976 req->sequence = ctx->cached_sq_head;
4977 *sqe_ptr = &ctx->sq_sqes[head];
4978 req->opcode = READ_ONCE((*sqe_ptr)->opcode);
4979 req->user_data = READ_ONCE((*sqe_ptr)->user_data);
4980 ctx->cached_sq_head++;
4984 /* drop invalid entries */
4985 ctx->cached_sq_head++;
4986 ctx->cached_sq_dropped++;
4987 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
4991 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr,
4992 struct file *ring_file, int ring_fd,
4993 struct mm_struct **mm, bool async)
4995 struct io_submit_state state, *statep = NULL;
4996 struct io_kiocb *link = NULL;
4997 int i, submitted = 0;
4998 bool mm_fault = false;
5000 /* if we have a backlog and couldn't flush it all, return BUSY */
5001 if (test_bit(0, &ctx->sq_check_overflow)) {
5002 if (!list_empty(&ctx->cq_overflow_list) &&
5003 !io_cqring_overflow_flush(ctx, false))
5007 /* make sure SQ entry isn't read before tail */
5008 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
5010 if (!percpu_ref_tryget_many(&ctx->refs, nr))
5013 if (nr > IO_PLUG_THRESHOLD) {
5014 io_submit_state_start(&state, nr);
5018 ctx->ring_fd = ring_fd;
5019 ctx->ring_file = ring_file;
5021 for (i = 0; i < nr; i++) {
5022 const struct io_uring_sqe *sqe;
5023 struct io_kiocb *req;
5026 req = io_get_req(ctx, statep);
5027 if (unlikely(!req)) {
5029 submitted = -EAGAIN;
5032 if (!io_get_sqring(ctx, req, &sqe)) {
5033 __io_req_do_free(req);
5037 /* will complete beyond this point, count as submitted */
5040 if (unlikely(req->opcode >= IORING_OP_LAST)) {
5043 io_cqring_add_event(req, err);
5044 io_double_put_req(req);
5048 if (io_op_defs[req->opcode].needs_mm && !*mm) {
5049 mm_fault = mm_fault || !mmget_not_zero(ctx->sqo_mm);
5050 if (unlikely(mm_fault)) {
5054 use_mm(ctx->sqo_mm);
5058 req->in_async = async;
5059 req->needs_fixed_file = async;
5060 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
5062 if (!io_submit_sqe(req, sqe, statep, &link))
5066 if (unlikely(submitted != nr)) {
5067 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
5069 percpu_ref_put_many(&ctx->refs, nr - ref_used);
5072 io_queue_link_head(link);
5074 io_submit_state_end(&state);
5076 /* Commit SQ ring head once we've consumed and submitted all SQEs */
5077 io_commit_sqring(ctx);
5082 static int io_sq_thread(void *data)
5084 struct io_ring_ctx *ctx = data;
5085 struct mm_struct *cur_mm = NULL;
5086 const struct cred *old_cred;
5087 mm_segment_t old_fs;
5090 unsigned long timeout;
5093 complete(&ctx->completions[1]);
5097 old_cred = override_creds(ctx->creds);
5099 ret = timeout = inflight = 0;
5100 while (!kthread_should_park()) {
5101 unsigned int to_submit;
5104 unsigned nr_events = 0;
5106 if (ctx->flags & IORING_SETUP_IOPOLL) {
5108 * inflight is the count of the maximum possible
5109 * entries we submitted, but it can be smaller
5110 * if we dropped some of them. If we don't have
5111 * poll entries available, then we know that we
5112 * have nothing left to poll for. Reset the
5113 * inflight count to zero in that case.
5115 mutex_lock(&ctx->uring_lock);
5116 if (!list_empty(&ctx->poll_list))
5117 __io_iopoll_check(ctx, &nr_events, 0);
5120 mutex_unlock(&ctx->uring_lock);
5123 * Normal IO, just pretend everything completed.
5124 * We don't have to poll completions for that.
5126 nr_events = inflight;
5129 inflight -= nr_events;
5131 timeout = jiffies + ctx->sq_thread_idle;
5134 to_submit = io_sqring_entries(ctx);
5137 * If submit got -EBUSY, flag us as needing the application
5138 * to enter the kernel to reap and flush events.
5140 if (!to_submit || ret == -EBUSY) {
5142 * We're polling. If we're within the defined idle
5143 * period, then let us spin without work before going
5144 * to sleep. The exception is if we got EBUSY doing
5145 * more IO, we should wait for the application to
5146 * reap events and wake us up.
5149 (!time_after(jiffies, timeout) && ret != -EBUSY &&
5150 !percpu_ref_is_dying(&ctx->refs))) {
5156 * Drop cur_mm before scheduling, we can't hold it for
5157 * long periods (or over schedule()). Do this before
5158 * adding ourselves to the waitqueue, as the unuse/drop
5167 prepare_to_wait(&ctx->sqo_wait, &wait,
5168 TASK_INTERRUPTIBLE);
5170 /* Tell userspace we may need a wakeup call */
5171 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
5172 /* make sure to read SQ tail after writing flags */
5175 to_submit = io_sqring_entries(ctx);
5176 if (!to_submit || ret == -EBUSY) {
5177 if (kthread_should_park()) {
5178 finish_wait(&ctx->sqo_wait, &wait);
5181 if (signal_pending(current))
5182 flush_signals(current);
5184 finish_wait(&ctx->sqo_wait, &wait);
5186 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
5189 finish_wait(&ctx->sqo_wait, &wait);
5191 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
5194 mutex_lock(&ctx->uring_lock);
5195 ret = io_submit_sqes(ctx, to_submit, NULL, -1, &cur_mm, true);
5196 mutex_unlock(&ctx->uring_lock);
5206 revert_creds(old_cred);
5213 struct io_wait_queue {
5214 struct wait_queue_entry wq;
5215 struct io_ring_ctx *ctx;
5217 unsigned nr_timeouts;
5220 static inline bool io_should_wake(struct io_wait_queue *iowq, bool noflush)
5222 struct io_ring_ctx *ctx = iowq->ctx;
5225 * Wake up if we have enough events, or if a timeout occurred since we
5226 * started waiting. For timeouts, we always want to return to userspace,
5227 * regardless of event count.
5229 return io_cqring_events(ctx, noflush) >= iowq->to_wait ||
5230 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
5233 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
5234 int wake_flags, void *key)
5236 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
5239 /* use noflush == true, as we can't safely rely on locking context */
5240 if (!io_should_wake(iowq, true))
5243 return autoremove_wake_function(curr, mode, wake_flags, key);
5247 * Wait until events become available, if we don't already have some. The
5248 * application must reap them itself, as they reside on the shared cq ring.
5250 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
5251 const sigset_t __user *sig, size_t sigsz)
5253 struct io_wait_queue iowq = {
5256 .func = io_wake_function,
5257 .entry = LIST_HEAD_INIT(iowq.wq.entry),
5260 .to_wait = min_events,
5262 struct io_rings *rings = ctx->rings;
5265 if (io_cqring_events(ctx, false) >= min_events)
5269 #ifdef CONFIG_COMPAT
5270 if (in_compat_syscall())
5271 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
5275 ret = set_user_sigmask(sig, sigsz);
5281 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
5282 trace_io_uring_cqring_wait(ctx, min_events);
5284 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
5285 TASK_INTERRUPTIBLE);
5286 if (io_should_wake(&iowq, false))
5289 if (signal_pending(current)) {
5294 finish_wait(&ctx->wait, &iowq.wq);
5296 restore_saved_sigmask_unless(ret == -EINTR);
5298 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
5301 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
5303 #if defined(CONFIG_UNIX)
5304 if (ctx->ring_sock) {
5305 struct sock *sock = ctx->ring_sock->sk;
5306 struct sk_buff *skb;
5308 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
5314 for (i = 0; i < ctx->nr_user_files; i++) {
5317 file = io_file_from_index(ctx, i);
5324 static void io_file_ref_kill(struct percpu_ref *ref)
5326 struct fixed_file_data *data;
5328 data = container_of(ref, struct fixed_file_data, refs);
5329 complete(&data->done);
5332 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
5334 struct fixed_file_data *data = ctx->file_data;
5335 unsigned nr_tables, i;
5340 percpu_ref_kill_and_confirm(&data->refs, io_file_ref_kill);
5341 flush_work(&data->ref_work);
5342 wait_for_completion(&data->done);
5343 io_ring_file_ref_flush(data);
5344 percpu_ref_exit(&data->refs);
5346 __io_sqe_files_unregister(ctx);
5347 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
5348 for (i = 0; i < nr_tables; i++)
5349 kfree(data->table[i].files);
5352 ctx->file_data = NULL;
5353 ctx->nr_user_files = 0;
5357 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
5359 if (ctx->sqo_thread) {
5360 wait_for_completion(&ctx->completions[1]);
5362 * The park is a bit of a work-around, without it we get
5363 * warning spews on shutdown with SQPOLL set and affinity
5364 * set to a single CPU.
5366 kthread_park(ctx->sqo_thread);
5367 kthread_stop(ctx->sqo_thread);
5368 ctx->sqo_thread = NULL;
5372 static void io_finish_async(struct io_ring_ctx *ctx)
5374 io_sq_thread_stop(ctx);
5377 io_wq_destroy(ctx->io_wq);
5382 #if defined(CONFIG_UNIX)
5384 * Ensure the UNIX gc is aware of our file set, so we are certain that
5385 * the io_uring can be safely unregistered on process exit, even if we have
5386 * loops in the file referencing.
5388 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
5390 struct sock *sk = ctx->ring_sock->sk;
5391 struct scm_fp_list *fpl;
5392 struct sk_buff *skb;
5395 if (!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) {
5396 unsigned long inflight = ctx->user->unix_inflight + nr;
5398 if (inflight > task_rlimit(current, RLIMIT_NOFILE))
5402 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
5406 skb = alloc_skb(0, GFP_KERNEL);
5415 fpl->user = get_uid(ctx->user);
5416 for (i = 0; i < nr; i++) {
5417 struct file *file = io_file_from_index(ctx, i + offset);
5421 fpl->fp[nr_files] = get_file(file);
5422 unix_inflight(fpl->user, fpl->fp[nr_files]);
5427 fpl->max = SCM_MAX_FD;
5428 fpl->count = nr_files;
5429 UNIXCB(skb).fp = fpl;
5430 skb->destructor = unix_destruct_scm;
5431 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
5432 skb_queue_head(&sk->sk_receive_queue, skb);
5434 for (i = 0; i < nr_files; i++)
5445 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
5446 * causes regular reference counting to break down. We rely on the UNIX
5447 * garbage collection to take care of this problem for us.
5449 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
5451 unsigned left, total;
5455 left = ctx->nr_user_files;
5457 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
5459 ret = __io_sqe_files_scm(ctx, this_files, total);
5463 total += this_files;
5469 while (total < ctx->nr_user_files) {
5470 struct file *file = io_file_from_index(ctx, total);
5480 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
5486 static int io_sqe_alloc_file_tables(struct io_ring_ctx *ctx, unsigned nr_tables,
5491 for (i = 0; i < nr_tables; i++) {
5492 struct fixed_file_table *table = &ctx->file_data->table[i];
5493 unsigned this_files;
5495 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
5496 table->files = kcalloc(this_files, sizeof(struct file *),
5500 nr_files -= this_files;
5506 for (i = 0; i < nr_tables; i++) {
5507 struct fixed_file_table *table = &ctx->file_data->table[i];
5508 kfree(table->files);
5513 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
5515 #if defined(CONFIG_UNIX)
5516 struct sock *sock = ctx->ring_sock->sk;
5517 struct sk_buff_head list, *head = &sock->sk_receive_queue;
5518 struct sk_buff *skb;
5521 __skb_queue_head_init(&list);
5524 * Find the skb that holds this file in its SCM_RIGHTS. When found,
5525 * remove this entry and rearrange the file array.
5527 skb = skb_dequeue(head);
5529 struct scm_fp_list *fp;
5531 fp = UNIXCB(skb).fp;
5532 for (i = 0; i < fp->count; i++) {
5535 if (fp->fp[i] != file)
5538 unix_notinflight(fp->user, fp->fp[i]);
5539 left = fp->count - 1 - i;
5541 memmove(&fp->fp[i], &fp->fp[i + 1],
5542 left * sizeof(struct file *));
5549 __skb_queue_tail(&list, skb);
5559 __skb_queue_tail(&list, skb);
5561 skb = skb_dequeue(head);
5564 if (skb_peek(&list)) {
5565 spin_lock_irq(&head->lock);
5566 while ((skb = __skb_dequeue(&list)) != NULL)
5567 __skb_queue_tail(head, skb);
5568 spin_unlock_irq(&head->lock);
5575 struct io_file_put {
5576 struct llist_node llist;
5578 struct completion *done;
5581 static void io_ring_file_ref_flush(struct fixed_file_data *data)
5583 struct io_file_put *pfile, *tmp;
5584 struct llist_node *node;
5586 while ((node = llist_del_all(&data->put_llist)) != NULL) {
5587 llist_for_each_entry_safe(pfile, tmp, node, llist) {
5588 io_ring_file_put(data->ctx, pfile->file);
5590 complete(pfile->done);
5597 static void io_ring_file_ref_switch(struct work_struct *work)
5599 struct fixed_file_data *data;
5601 data = container_of(work, struct fixed_file_data, ref_work);
5602 io_ring_file_ref_flush(data);
5603 percpu_ref_get(&data->refs);
5604 percpu_ref_switch_to_percpu(&data->refs);
5607 static void io_file_data_ref_zero(struct percpu_ref *ref)
5609 struct fixed_file_data *data;
5611 data = container_of(ref, struct fixed_file_data, refs);
5614 * We can't safely switch from inside this context, punt to wq. If
5615 * the table ref is going away, the table is being unregistered.
5616 * Don't queue up the async work for that case, the caller will
5619 if (!percpu_ref_is_dying(&data->refs))
5620 queue_work(system_wq, &data->ref_work);
5623 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
5626 __s32 __user *fds = (__s32 __user *) arg;
5636 if (nr_args > IORING_MAX_FIXED_FILES)
5639 ctx->file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
5640 if (!ctx->file_data)
5642 ctx->file_data->ctx = ctx;
5643 init_completion(&ctx->file_data->done);
5645 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
5646 ctx->file_data->table = kcalloc(nr_tables,
5647 sizeof(struct fixed_file_table),
5649 if (!ctx->file_data->table) {
5650 kfree(ctx->file_data);
5651 ctx->file_data = NULL;
5655 if (percpu_ref_init(&ctx->file_data->refs, io_file_data_ref_zero,
5656 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
5657 kfree(ctx->file_data->table);
5658 kfree(ctx->file_data);
5659 ctx->file_data = NULL;
5662 ctx->file_data->put_llist.first = NULL;
5663 INIT_WORK(&ctx->file_data->ref_work, io_ring_file_ref_switch);
5665 if (io_sqe_alloc_file_tables(ctx, nr_tables, nr_args)) {
5666 percpu_ref_exit(&ctx->file_data->refs);
5667 kfree(ctx->file_data->table);
5668 kfree(ctx->file_data);
5669 ctx->file_data = NULL;
5673 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
5674 struct fixed_file_table *table;
5678 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
5680 /* allow sparse sets */
5686 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
5687 index = i & IORING_FILE_TABLE_MASK;
5695 * Don't allow io_uring instances to be registered. If UNIX
5696 * isn't enabled, then this causes a reference cycle and this
5697 * instance can never get freed. If UNIX is enabled we'll
5698 * handle it just fine, but there's still no point in allowing
5699 * a ring fd as it doesn't support regular read/write anyway.
5701 if (file->f_op == &io_uring_fops) {
5706 table->files[index] = file;
5710 for (i = 0; i < ctx->nr_user_files; i++) {
5711 file = io_file_from_index(ctx, i);
5715 for (i = 0; i < nr_tables; i++)
5716 kfree(ctx->file_data->table[i].files);
5718 kfree(ctx->file_data->table);
5719 kfree(ctx->file_data);
5720 ctx->file_data = NULL;
5721 ctx->nr_user_files = 0;
5725 ret = io_sqe_files_scm(ctx);
5727 io_sqe_files_unregister(ctx);
5732 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
5735 #if defined(CONFIG_UNIX)
5736 struct sock *sock = ctx->ring_sock->sk;
5737 struct sk_buff_head *head = &sock->sk_receive_queue;
5738 struct sk_buff *skb;
5741 * See if we can merge this file into an existing skb SCM_RIGHTS
5742 * file set. If there's no room, fall back to allocating a new skb
5743 * and filling it in.
5745 spin_lock_irq(&head->lock);
5746 skb = skb_peek(head);
5748 struct scm_fp_list *fpl = UNIXCB(skb).fp;
5750 if (fpl->count < SCM_MAX_FD) {
5751 __skb_unlink(skb, head);
5752 spin_unlock_irq(&head->lock);
5753 fpl->fp[fpl->count] = get_file(file);
5754 unix_inflight(fpl->user, fpl->fp[fpl->count]);
5756 spin_lock_irq(&head->lock);
5757 __skb_queue_head(head, skb);
5762 spin_unlock_irq(&head->lock);
5769 return __io_sqe_files_scm(ctx, 1, index);
5775 static void io_atomic_switch(struct percpu_ref *ref)
5777 struct fixed_file_data *data;
5779 data = container_of(ref, struct fixed_file_data, refs);
5780 clear_bit(FFD_F_ATOMIC, &data->state);
5783 static bool io_queue_file_removal(struct fixed_file_data *data,
5786 struct io_file_put *pfile, pfile_stack;
5787 DECLARE_COMPLETION_ONSTACK(done);
5790 * If we fail allocating the struct we need for doing async reomval
5791 * of this file, just punt to sync and wait for it.
5793 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
5795 pfile = &pfile_stack;
5796 pfile->done = &done;
5800 llist_add(&pfile->llist, &data->put_llist);
5802 if (pfile == &pfile_stack) {
5803 if (!test_and_set_bit(FFD_F_ATOMIC, &data->state)) {
5804 percpu_ref_put(&data->refs);
5805 percpu_ref_switch_to_atomic(&data->refs,
5808 wait_for_completion(&done);
5809 flush_work(&data->ref_work);
5816 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
5817 struct io_uring_files_update *up,
5820 struct fixed_file_data *data = ctx->file_data;
5821 bool ref_switch = false;
5827 if (check_add_overflow(up->offset, nr_args, &done))
5829 if (done > ctx->nr_user_files)
5833 fds = u64_to_user_ptr(up->fds);
5835 struct fixed_file_table *table;
5839 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
5843 i = array_index_nospec(up->offset, ctx->nr_user_files);
5844 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
5845 index = i & IORING_FILE_TABLE_MASK;
5846 if (table->files[index]) {
5847 file = io_file_from_index(ctx, index);
5848 table->files[index] = NULL;
5849 if (io_queue_file_removal(data, file))
5859 * Don't allow io_uring instances to be registered. If
5860 * UNIX isn't enabled, then this causes a reference
5861 * cycle and this instance can never get freed. If UNIX
5862 * is enabled we'll handle it just fine, but there's
5863 * still no point in allowing a ring fd as it doesn't
5864 * support regular read/write anyway.
5866 if (file->f_op == &io_uring_fops) {
5871 table->files[index] = file;
5872 err = io_sqe_file_register(ctx, file, i);
5881 if (ref_switch && !test_and_set_bit(FFD_F_ATOMIC, &data->state)) {
5882 percpu_ref_put(&data->refs);
5883 percpu_ref_switch_to_atomic(&data->refs, io_atomic_switch);
5886 return done ? done : err;
5888 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
5891 struct io_uring_files_update up;
5893 if (!ctx->file_data)
5897 if (copy_from_user(&up, arg, sizeof(up)))
5902 return __io_sqe_files_update(ctx, &up, nr_args);
5905 static void io_put_work(struct io_wq_work *work)
5907 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5912 static void io_get_work(struct io_wq_work *work)
5914 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5916 refcount_inc(&req->refs);
5919 static int io_init_wq_offload(struct io_ring_ctx *ctx,
5920 struct io_uring_params *p)
5922 struct io_wq_data data;
5924 struct io_ring_ctx *ctx_attach;
5925 unsigned int concurrency;
5928 data.user = ctx->user;
5929 data.get_work = io_get_work;
5930 data.put_work = io_put_work;
5932 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
5933 /* Do QD, or 4 * CPUS, whatever is smallest */
5934 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
5936 ctx->io_wq = io_wq_create(concurrency, &data);
5937 if (IS_ERR(ctx->io_wq)) {
5938 ret = PTR_ERR(ctx->io_wq);
5944 f = fdget(p->wq_fd);
5948 if (f.file->f_op != &io_uring_fops) {
5953 ctx_attach = f.file->private_data;
5954 /* @io_wq is protected by holding the fd */
5955 if (!io_wq_get(ctx_attach->io_wq, &data)) {
5960 ctx->io_wq = ctx_attach->io_wq;
5966 static int io_sq_offload_start(struct io_ring_ctx *ctx,
5967 struct io_uring_params *p)
5971 init_waitqueue_head(&ctx->sqo_wait);
5972 mmgrab(current->mm);
5973 ctx->sqo_mm = current->mm;
5975 if (ctx->flags & IORING_SETUP_SQPOLL) {
5977 if (!capable(CAP_SYS_ADMIN))
5980 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
5981 if (!ctx->sq_thread_idle)
5982 ctx->sq_thread_idle = HZ;
5984 if (p->flags & IORING_SETUP_SQ_AFF) {
5985 int cpu = p->sq_thread_cpu;
5988 if (cpu >= nr_cpu_ids)
5990 if (!cpu_online(cpu))
5993 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
5997 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
6000 if (IS_ERR(ctx->sqo_thread)) {
6001 ret = PTR_ERR(ctx->sqo_thread);
6002 ctx->sqo_thread = NULL;
6005 wake_up_process(ctx->sqo_thread);
6006 } else if (p->flags & IORING_SETUP_SQ_AFF) {
6007 /* Can't have SQ_AFF without SQPOLL */
6012 ret = io_init_wq_offload(ctx, p);
6018 io_finish_async(ctx);
6019 mmdrop(ctx->sqo_mm);
6024 static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
6026 atomic_long_sub(nr_pages, &user->locked_vm);
6029 static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
6031 unsigned long page_limit, cur_pages, new_pages;
6033 /* Don't allow more pages than we can safely lock */
6034 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
6037 cur_pages = atomic_long_read(&user->locked_vm);
6038 new_pages = cur_pages + nr_pages;
6039 if (new_pages > page_limit)
6041 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
6042 new_pages) != cur_pages);
6047 static void io_mem_free(void *ptr)
6054 page = virt_to_head_page(ptr);
6055 if (put_page_testzero(page))
6056 free_compound_page(page);
6059 static void *io_mem_alloc(size_t size)
6061 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
6064 return (void *) __get_free_pages(gfp_flags, get_order(size));
6067 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
6070 struct io_rings *rings;
6071 size_t off, sq_array_size;
6073 off = struct_size(rings, cqes, cq_entries);
6074 if (off == SIZE_MAX)
6078 off = ALIGN(off, SMP_CACHE_BYTES);
6083 sq_array_size = array_size(sizeof(u32), sq_entries);
6084 if (sq_array_size == SIZE_MAX)
6087 if (check_add_overflow(off, sq_array_size, &off))
6096 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
6100 pages = (size_t)1 << get_order(
6101 rings_size(sq_entries, cq_entries, NULL));
6102 pages += (size_t)1 << get_order(
6103 array_size(sizeof(struct io_uring_sqe), sq_entries));
6108 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
6112 if (!ctx->user_bufs)
6115 for (i = 0; i < ctx->nr_user_bufs; i++) {
6116 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
6118 for (j = 0; j < imu->nr_bvecs; j++)
6119 unpin_user_page(imu->bvec[j].bv_page);
6121 if (ctx->account_mem)
6122 io_unaccount_mem(ctx->user, imu->nr_bvecs);
6127 kfree(ctx->user_bufs);
6128 ctx->user_bufs = NULL;
6129 ctx->nr_user_bufs = 0;
6133 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
6134 void __user *arg, unsigned index)
6136 struct iovec __user *src;
6138 #ifdef CONFIG_COMPAT
6140 struct compat_iovec __user *ciovs;
6141 struct compat_iovec ciov;
6143 ciovs = (struct compat_iovec __user *) arg;
6144 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
6147 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
6148 dst->iov_len = ciov.iov_len;
6152 src = (struct iovec __user *) arg;
6153 if (copy_from_user(dst, &src[index], sizeof(*dst)))
6158 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
6161 struct vm_area_struct **vmas = NULL;
6162 struct page **pages = NULL;
6163 int i, j, got_pages = 0;
6168 if (!nr_args || nr_args > UIO_MAXIOV)
6171 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
6173 if (!ctx->user_bufs)
6176 for (i = 0; i < nr_args; i++) {
6177 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
6178 unsigned long off, start, end, ubuf;
6183 ret = io_copy_iov(ctx, &iov, arg, i);
6188 * Don't impose further limits on the size and buffer
6189 * constraints here, we'll -EINVAL later when IO is
6190 * submitted if they are wrong.
6193 if (!iov.iov_base || !iov.iov_len)
6196 /* arbitrary limit, but we need something */
6197 if (iov.iov_len > SZ_1G)
6200 ubuf = (unsigned long) iov.iov_base;
6201 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
6202 start = ubuf >> PAGE_SHIFT;
6203 nr_pages = end - start;
6205 if (ctx->account_mem) {
6206 ret = io_account_mem(ctx->user, nr_pages);
6212 if (!pages || nr_pages > got_pages) {
6215 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
6217 vmas = kvmalloc_array(nr_pages,
6218 sizeof(struct vm_area_struct *),
6220 if (!pages || !vmas) {
6222 if (ctx->account_mem)
6223 io_unaccount_mem(ctx->user, nr_pages);
6226 got_pages = nr_pages;
6229 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
6233 if (ctx->account_mem)
6234 io_unaccount_mem(ctx->user, nr_pages);
6239 down_read(¤t->mm->mmap_sem);
6240 pret = pin_user_pages(ubuf, nr_pages,
6241 FOLL_WRITE | FOLL_LONGTERM,
6243 if (pret == nr_pages) {
6244 /* don't support file backed memory */
6245 for (j = 0; j < nr_pages; j++) {
6246 struct vm_area_struct *vma = vmas[j];
6249 !is_file_hugepages(vma->vm_file)) {
6255 ret = pret < 0 ? pret : -EFAULT;
6257 up_read(¤t->mm->mmap_sem);
6260 * if we did partial map, or found file backed vmas,
6261 * release any pages we did get
6264 unpin_user_pages(pages, pret);
6265 if (ctx->account_mem)
6266 io_unaccount_mem(ctx->user, nr_pages);
6271 off = ubuf & ~PAGE_MASK;
6273 for (j = 0; j < nr_pages; j++) {
6276 vec_len = min_t(size_t, size, PAGE_SIZE - off);
6277 imu->bvec[j].bv_page = pages[j];
6278 imu->bvec[j].bv_len = vec_len;
6279 imu->bvec[j].bv_offset = off;
6283 /* store original address for later verification */
6285 imu->len = iov.iov_len;
6286 imu->nr_bvecs = nr_pages;
6288 ctx->nr_user_bufs++;
6296 io_sqe_buffer_unregister(ctx);
6300 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
6302 __s32 __user *fds = arg;
6308 if (copy_from_user(&fd, fds, sizeof(*fds)))
6311 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
6312 if (IS_ERR(ctx->cq_ev_fd)) {
6313 int ret = PTR_ERR(ctx->cq_ev_fd);
6314 ctx->cq_ev_fd = NULL;
6321 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
6323 if (ctx->cq_ev_fd) {
6324 eventfd_ctx_put(ctx->cq_ev_fd);
6325 ctx->cq_ev_fd = NULL;
6332 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
6334 io_finish_async(ctx);
6336 mmdrop(ctx->sqo_mm);
6338 io_iopoll_reap_events(ctx);
6339 io_sqe_buffer_unregister(ctx);
6340 io_sqe_files_unregister(ctx);
6341 io_eventfd_unregister(ctx);
6343 #if defined(CONFIG_UNIX)
6344 if (ctx->ring_sock) {
6345 ctx->ring_sock->file = NULL; /* so that iput() is called */
6346 sock_release(ctx->ring_sock);
6350 io_mem_free(ctx->rings);
6351 io_mem_free(ctx->sq_sqes);
6353 percpu_ref_exit(&ctx->refs);
6354 if (ctx->account_mem)
6355 io_unaccount_mem(ctx->user,
6356 ring_pages(ctx->sq_entries, ctx->cq_entries));
6357 free_uid(ctx->user);
6358 put_cred(ctx->creds);
6359 kfree(ctx->completions);
6360 kfree(ctx->cancel_hash);
6361 kmem_cache_free(req_cachep, ctx->fallback_req);
6365 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
6367 struct io_ring_ctx *ctx = file->private_data;
6370 poll_wait(file, &ctx->cq_wait, wait);
6372 * synchronizes with barrier from wq_has_sleeper call in
6376 if (READ_ONCE(ctx->rings->sq.tail) - ctx->cached_sq_head !=
6377 ctx->rings->sq_ring_entries)
6378 mask |= EPOLLOUT | EPOLLWRNORM;
6379 if (io_cqring_events(ctx, false))
6380 mask |= EPOLLIN | EPOLLRDNORM;
6385 static int io_uring_fasync(int fd, struct file *file, int on)
6387 struct io_ring_ctx *ctx = file->private_data;
6389 return fasync_helper(fd, file, on, &ctx->cq_fasync);
6392 static int io_remove_personalities(int id, void *p, void *data)
6394 struct io_ring_ctx *ctx = data;
6395 const struct cred *cred;
6397 cred = idr_remove(&ctx->personality_idr, id);
6403 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
6405 mutex_lock(&ctx->uring_lock);
6406 percpu_ref_kill(&ctx->refs);
6407 mutex_unlock(&ctx->uring_lock);
6410 * Wait for sq thread to idle, if we have one. It won't spin on new
6411 * work after we've killed the ctx ref above. This is important to do
6412 * before we cancel existing commands, as the thread could otherwise
6413 * be queueing new work post that. If that's work we need to cancel,
6414 * it could cause shutdown to hang.
6416 while (ctx->sqo_thread && !wq_has_sleeper(&ctx->sqo_wait))
6419 io_kill_timeouts(ctx);
6420 io_poll_remove_all(ctx);
6423 io_wq_cancel_all(ctx->io_wq);
6425 io_iopoll_reap_events(ctx);
6426 /* if we failed setting up the ctx, we might not have any rings */
6428 io_cqring_overflow_flush(ctx, true);
6429 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
6430 wait_for_completion(&ctx->completions[0]);
6431 io_ring_ctx_free(ctx);
6434 static int io_uring_release(struct inode *inode, struct file *file)
6436 struct io_ring_ctx *ctx = file->private_data;
6438 file->private_data = NULL;
6439 io_ring_ctx_wait_and_kill(ctx);
6443 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
6444 struct files_struct *files)
6446 struct io_kiocb *req;
6449 while (!list_empty_careful(&ctx->inflight_list)) {
6450 struct io_kiocb *cancel_req = NULL;
6452 spin_lock_irq(&ctx->inflight_lock);
6453 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
6454 if (req->work.files != files)
6456 /* req is being completed, ignore */
6457 if (!refcount_inc_not_zero(&req->refs))
6463 prepare_to_wait(&ctx->inflight_wait, &wait,
6464 TASK_UNINTERRUPTIBLE);
6465 spin_unlock_irq(&ctx->inflight_lock);
6467 /* We need to keep going until we don't find a matching req */
6471 if (cancel_req->flags & REQ_F_OVERFLOW) {
6472 spin_lock_irq(&ctx->completion_lock);
6473 list_del(&cancel_req->list);
6474 cancel_req->flags &= ~REQ_F_OVERFLOW;
6475 if (list_empty(&ctx->cq_overflow_list)) {
6476 clear_bit(0, &ctx->sq_check_overflow);
6477 clear_bit(0, &ctx->cq_check_overflow);
6479 spin_unlock_irq(&ctx->completion_lock);
6481 WRITE_ONCE(ctx->rings->cq_overflow,
6482 atomic_inc_return(&ctx->cached_cq_overflow));
6485 * Put inflight ref and overflow ref. If that's
6486 * all we had, then we're done with this request.
6488 if (refcount_sub_and_test(2, &cancel_req->refs)) {
6489 io_put_req(cancel_req);
6494 io_wq_cancel_work(ctx->io_wq, &cancel_req->work);
6495 io_put_req(cancel_req);
6498 finish_wait(&ctx->inflight_wait, &wait);
6501 static int io_uring_flush(struct file *file, void *data)
6503 struct io_ring_ctx *ctx = file->private_data;
6505 io_uring_cancel_files(ctx, data);
6508 * If the task is going away, cancel work it may have pending
6510 if (fatal_signal_pending(current) || (current->flags & PF_EXITING))
6511 io_wq_cancel_pid(ctx->io_wq, task_pid_vnr(current));
6516 static void *io_uring_validate_mmap_request(struct file *file,
6517 loff_t pgoff, size_t sz)
6519 struct io_ring_ctx *ctx = file->private_data;
6520 loff_t offset = pgoff << PAGE_SHIFT;
6525 case IORING_OFF_SQ_RING:
6526 case IORING_OFF_CQ_RING:
6529 case IORING_OFF_SQES:
6533 return ERR_PTR(-EINVAL);
6536 page = virt_to_head_page(ptr);
6537 if (sz > page_size(page))
6538 return ERR_PTR(-EINVAL);
6545 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
6547 size_t sz = vma->vm_end - vma->vm_start;
6551 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
6553 return PTR_ERR(ptr);
6555 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
6556 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
6559 #else /* !CONFIG_MMU */
6561 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
6563 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
6566 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
6568 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
6571 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
6572 unsigned long addr, unsigned long len,
6573 unsigned long pgoff, unsigned long flags)
6577 ptr = io_uring_validate_mmap_request(file, pgoff, len);
6579 return PTR_ERR(ptr);
6581 return (unsigned long) ptr;
6584 #endif /* !CONFIG_MMU */
6586 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
6587 u32, min_complete, u32, flags, const sigset_t __user *, sig,
6590 struct io_ring_ctx *ctx;
6595 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
6603 if (f.file->f_op != &io_uring_fops)
6607 ctx = f.file->private_data;
6608 if (!percpu_ref_tryget(&ctx->refs))
6612 * For SQ polling, the thread will do all submissions and completions.
6613 * Just return the requested submit count, and wake the thread if
6617 if (ctx->flags & IORING_SETUP_SQPOLL) {
6618 if (!list_empty_careful(&ctx->cq_overflow_list))
6619 io_cqring_overflow_flush(ctx, false);
6620 if (flags & IORING_ENTER_SQ_WAKEUP)
6621 wake_up(&ctx->sqo_wait);
6622 submitted = to_submit;
6623 } else if (to_submit) {
6624 struct mm_struct *cur_mm;
6626 mutex_lock(&ctx->uring_lock);
6627 /* already have mm, so io_submit_sqes() won't try to grab it */
6628 cur_mm = ctx->sqo_mm;
6629 submitted = io_submit_sqes(ctx, to_submit, f.file, fd,
6631 mutex_unlock(&ctx->uring_lock);
6633 if (submitted != to_submit)
6636 if (flags & IORING_ENTER_GETEVENTS) {
6637 unsigned nr_events = 0;
6639 min_complete = min(min_complete, ctx->cq_entries);
6641 if (ctx->flags & IORING_SETUP_IOPOLL) {
6642 ret = io_iopoll_check(ctx, &nr_events, min_complete);
6644 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
6649 percpu_ref_put(&ctx->refs);
6652 return submitted ? submitted : ret;
6655 static int io_uring_show_cred(int id, void *p, void *data)
6657 const struct cred *cred = p;
6658 struct seq_file *m = data;
6659 struct user_namespace *uns = seq_user_ns(m);
6660 struct group_info *gi;
6665 seq_printf(m, "%5d\n", id);
6666 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
6667 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
6668 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
6669 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
6670 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
6671 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
6672 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
6673 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
6674 seq_puts(m, "\n\tGroups:\t");
6675 gi = cred->group_info;
6676 for (g = 0; g < gi->ngroups; g++) {
6677 seq_put_decimal_ull(m, g ? " " : "",
6678 from_kgid_munged(uns, gi->gid[g]));
6680 seq_puts(m, "\n\tCapEff:\t");
6681 cap = cred->cap_effective;
6682 CAP_FOR_EACH_U32(__capi)
6683 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
6688 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
6692 mutex_lock(&ctx->uring_lock);
6693 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
6694 for (i = 0; i < ctx->nr_user_files; i++) {
6695 struct fixed_file_table *table;
6698 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
6699 f = table->files[i & IORING_FILE_TABLE_MASK];
6701 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
6703 seq_printf(m, "%5u: <none>\n", i);
6705 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
6706 for (i = 0; i < ctx->nr_user_bufs; i++) {
6707 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
6709 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
6710 (unsigned int) buf->len);
6712 if (!idr_is_empty(&ctx->personality_idr)) {
6713 seq_printf(m, "Personalities:\n");
6714 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
6716 mutex_unlock(&ctx->uring_lock);
6719 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
6721 struct io_ring_ctx *ctx = f->private_data;
6723 if (percpu_ref_tryget(&ctx->refs)) {
6724 __io_uring_show_fdinfo(ctx, m);
6725 percpu_ref_put(&ctx->refs);
6729 static const struct file_operations io_uring_fops = {
6730 .release = io_uring_release,
6731 .flush = io_uring_flush,
6732 .mmap = io_uring_mmap,
6734 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
6735 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
6737 .poll = io_uring_poll,
6738 .fasync = io_uring_fasync,
6739 .show_fdinfo = io_uring_show_fdinfo,
6742 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
6743 struct io_uring_params *p)
6745 struct io_rings *rings;
6746 size_t size, sq_array_offset;
6748 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
6749 if (size == SIZE_MAX)
6752 rings = io_mem_alloc(size);
6757 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
6758 rings->sq_ring_mask = p->sq_entries - 1;
6759 rings->cq_ring_mask = p->cq_entries - 1;
6760 rings->sq_ring_entries = p->sq_entries;
6761 rings->cq_ring_entries = p->cq_entries;
6762 ctx->sq_mask = rings->sq_ring_mask;
6763 ctx->cq_mask = rings->cq_ring_mask;
6764 ctx->sq_entries = rings->sq_ring_entries;
6765 ctx->cq_entries = rings->cq_ring_entries;
6767 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
6768 if (size == SIZE_MAX) {
6769 io_mem_free(ctx->rings);
6774 ctx->sq_sqes = io_mem_alloc(size);
6775 if (!ctx->sq_sqes) {
6776 io_mem_free(ctx->rings);
6785 * Allocate an anonymous fd, this is what constitutes the application
6786 * visible backing of an io_uring instance. The application mmaps this
6787 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
6788 * we have to tie this fd to a socket for file garbage collection purposes.
6790 static int io_uring_get_fd(struct io_ring_ctx *ctx)
6795 #if defined(CONFIG_UNIX)
6796 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
6802 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
6806 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
6807 O_RDWR | O_CLOEXEC);
6810 ret = PTR_ERR(file);
6814 #if defined(CONFIG_UNIX)
6815 ctx->ring_sock->file = file;
6817 fd_install(ret, file);
6820 #if defined(CONFIG_UNIX)
6821 sock_release(ctx->ring_sock);
6822 ctx->ring_sock = NULL;
6827 static int io_uring_create(unsigned entries, struct io_uring_params *p)
6829 struct user_struct *user = NULL;
6830 struct io_ring_ctx *ctx;
6836 if (entries > IORING_MAX_ENTRIES) {
6837 if (!(p->flags & IORING_SETUP_CLAMP))
6839 entries = IORING_MAX_ENTRIES;
6843 * Use twice as many entries for the CQ ring. It's possible for the
6844 * application to drive a higher depth than the size of the SQ ring,
6845 * since the sqes are only used at submission time. This allows for
6846 * some flexibility in overcommitting a bit. If the application has
6847 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
6848 * of CQ ring entries manually.
6850 p->sq_entries = roundup_pow_of_two(entries);
6851 if (p->flags & IORING_SETUP_CQSIZE) {
6853 * If IORING_SETUP_CQSIZE is set, we do the same roundup
6854 * to a power-of-two, if it isn't already. We do NOT impose
6855 * any cq vs sq ring sizing.
6857 if (p->cq_entries < p->sq_entries)
6859 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
6860 if (!(p->flags & IORING_SETUP_CLAMP))
6862 p->cq_entries = IORING_MAX_CQ_ENTRIES;
6864 p->cq_entries = roundup_pow_of_two(p->cq_entries);
6866 p->cq_entries = 2 * p->sq_entries;
6869 user = get_uid(current_user());
6870 account_mem = !capable(CAP_IPC_LOCK);
6873 ret = io_account_mem(user,
6874 ring_pages(p->sq_entries, p->cq_entries));
6881 ctx = io_ring_ctx_alloc(p);
6884 io_unaccount_mem(user, ring_pages(p->sq_entries,
6889 ctx->compat = in_compat_syscall();
6890 ctx->account_mem = account_mem;
6892 ctx->creds = get_current_cred();
6894 ret = io_allocate_scq_urings(ctx, p);
6898 ret = io_sq_offload_start(ctx, p);
6902 memset(&p->sq_off, 0, sizeof(p->sq_off));
6903 p->sq_off.head = offsetof(struct io_rings, sq.head);
6904 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
6905 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
6906 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
6907 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
6908 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
6909 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
6911 memset(&p->cq_off, 0, sizeof(p->cq_off));
6912 p->cq_off.head = offsetof(struct io_rings, cq.head);
6913 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
6914 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
6915 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
6916 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
6917 p->cq_off.cqes = offsetof(struct io_rings, cqes);
6920 * Install ring fd as the very last thing, so we don't risk someone
6921 * having closed it before we finish setup
6923 ret = io_uring_get_fd(ctx);
6927 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
6928 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
6929 IORING_FEAT_CUR_PERSONALITY;
6930 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
6933 io_ring_ctx_wait_and_kill(ctx);
6938 * Sets up an aio uring context, and returns the fd. Applications asks for a
6939 * ring size, we return the actual sq/cq ring sizes (among other things) in the
6940 * params structure passed in.
6942 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
6944 struct io_uring_params p;
6948 if (copy_from_user(&p, params, sizeof(p)))
6950 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
6955 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
6956 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
6957 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ))
6960 ret = io_uring_create(entries, &p);
6964 if (copy_to_user(params, &p, sizeof(p)))
6970 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
6971 struct io_uring_params __user *, params)
6973 return io_uring_setup(entries, params);
6976 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
6978 struct io_uring_probe *p;
6982 size = struct_size(p, ops, nr_args);
6983 if (size == SIZE_MAX)
6985 p = kzalloc(size, GFP_KERNEL);
6990 if (copy_from_user(p, arg, size))
6993 if (memchr_inv(p, 0, size))
6996 p->last_op = IORING_OP_LAST - 1;
6997 if (nr_args > IORING_OP_LAST)
6998 nr_args = IORING_OP_LAST;
7000 for (i = 0; i < nr_args; i++) {
7002 if (!io_op_defs[i].not_supported)
7003 p->ops[i].flags = IO_URING_OP_SUPPORTED;
7008 if (copy_to_user(arg, p, size))
7015 static int io_register_personality(struct io_ring_ctx *ctx)
7017 const struct cred *creds = get_current_cred();
7020 id = idr_alloc_cyclic(&ctx->personality_idr, (void *) creds, 1,
7021 USHRT_MAX, GFP_KERNEL);
7027 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
7029 const struct cred *old_creds;
7031 old_creds = idr_remove(&ctx->personality_idr, id);
7033 put_cred(old_creds);
7040 static bool io_register_op_must_quiesce(int op)
7043 case IORING_UNREGISTER_FILES:
7044 case IORING_REGISTER_FILES_UPDATE:
7045 case IORING_REGISTER_PROBE:
7046 case IORING_REGISTER_PERSONALITY:
7047 case IORING_UNREGISTER_PERSONALITY:
7054 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
7055 void __user *arg, unsigned nr_args)
7056 __releases(ctx->uring_lock)
7057 __acquires(ctx->uring_lock)
7062 * We're inside the ring mutex, if the ref is already dying, then
7063 * someone else killed the ctx or is already going through
7064 * io_uring_register().
7066 if (percpu_ref_is_dying(&ctx->refs))
7069 if (io_register_op_must_quiesce(opcode)) {
7070 percpu_ref_kill(&ctx->refs);
7073 * Drop uring mutex before waiting for references to exit. If
7074 * another thread is currently inside io_uring_enter() it might
7075 * need to grab the uring_lock to make progress. If we hold it
7076 * here across the drain wait, then we can deadlock. It's safe
7077 * to drop the mutex here, since no new references will come in
7078 * after we've killed the percpu ref.
7080 mutex_unlock(&ctx->uring_lock);
7081 ret = wait_for_completion_interruptible(&ctx->completions[0]);
7082 mutex_lock(&ctx->uring_lock);
7084 percpu_ref_resurrect(&ctx->refs);
7091 case IORING_REGISTER_BUFFERS:
7092 ret = io_sqe_buffer_register(ctx, arg, nr_args);
7094 case IORING_UNREGISTER_BUFFERS:
7098 ret = io_sqe_buffer_unregister(ctx);
7100 case IORING_REGISTER_FILES:
7101 ret = io_sqe_files_register(ctx, arg, nr_args);
7103 case IORING_UNREGISTER_FILES:
7107 ret = io_sqe_files_unregister(ctx);
7109 case IORING_REGISTER_FILES_UPDATE:
7110 ret = io_sqe_files_update(ctx, arg, nr_args);
7112 case IORING_REGISTER_EVENTFD:
7113 case IORING_REGISTER_EVENTFD_ASYNC:
7117 ret = io_eventfd_register(ctx, arg);
7120 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
7121 ctx->eventfd_async = 1;
7123 ctx->eventfd_async = 0;
7125 case IORING_UNREGISTER_EVENTFD:
7129 ret = io_eventfd_unregister(ctx);
7131 case IORING_REGISTER_PROBE:
7133 if (!arg || nr_args > 256)
7135 ret = io_probe(ctx, arg, nr_args);
7137 case IORING_REGISTER_PERSONALITY:
7141 ret = io_register_personality(ctx);
7143 case IORING_UNREGISTER_PERSONALITY:
7147 ret = io_unregister_personality(ctx, nr_args);
7154 if (io_register_op_must_quiesce(opcode)) {
7155 /* bring the ctx back to life */
7156 percpu_ref_reinit(&ctx->refs);
7158 reinit_completion(&ctx->completions[0]);
7163 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
7164 void __user *, arg, unsigned int, nr_args)
7166 struct io_ring_ctx *ctx;
7175 if (f.file->f_op != &io_uring_fops)
7178 ctx = f.file->private_data;
7180 mutex_lock(&ctx->uring_lock);
7181 ret = __io_uring_register(ctx, opcode, arg, nr_args);
7182 mutex_unlock(&ctx->uring_lock);
7183 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
7184 ctx->cq_ev_fd != NULL, ret);
7190 static int __init io_uring_init(void)
7192 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
7193 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
7194 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
7197 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
7198 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
7199 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
7200 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
7201 BUILD_BUG_SQE_ELEM(1, __u8, flags);
7202 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
7203 BUILD_BUG_SQE_ELEM(4, __s32, fd);
7204 BUILD_BUG_SQE_ELEM(8, __u64, off);
7205 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
7206 BUILD_BUG_SQE_ELEM(16, __u64, addr);
7207 BUILD_BUG_SQE_ELEM(24, __u32, len);
7208 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
7209 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
7210 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
7211 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
7212 BUILD_BUG_SQE_ELEM(28, __u16, poll_events);
7213 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
7214 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
7215 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
7216 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
7217 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
7218 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
7219 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
7220 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
7221 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
7222 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
7223 BUILD_BUG_SQE_ELEM(42, __u16, personality);
7225 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
7226 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
7229 __initcall(io_uring_init);