1 // SPDX-License-Identifier: GPL-2.0-only
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
6 #include <linux/export.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
27 * Inode locking rules:
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget()
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
42 * inode->i_sb->s_inode_list_lock
44 * Inode LRU list locks
50 * inode->i_sb->s_inode_list_lock
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
66 const struct address_space_operations empty_aops = {
68 EXPORT_SYMBOL(empty_aops);
71 * Statistics gathering..
73 struct inodes_stat_t inodes_stat;
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
78 static struct kmem_cache *inode_cachep __read_mostly;
80 static long get_nr_inodes(void)
84 for_each_possible_cpu(i)
85 sum += per_cpu(nr_inodes, i);
86 return sum < 0 ? 0 : sum;
89 static inline long get_nr_inodes_unused(void)
93 for_each_possible_cpu(i)
94 sum += per_cpu(nr_unused, i);
95 return sum < 0 ? 0 : sum;
98 long get_nr_dirty_inodes(void)
100 /* not actually dirty inodes, but a wild approximation */
101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 return nr_dirty > 0 ? nr_dirty : 0;
106 * Handle nr_inode sysctl
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 void *buffer, size_t *lenp, loff_t *ppos)
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
118 static int no_open(struct inode *inode, struct file *file)
124 * inode_init_always - perform inode structure initialisation
125 * @sb: superblock inode belongs to
126 * @inode: inode to initialise
128 * These are initializations that need to be done on every inode
129 * allocation as the fields are not initialised by slab allocation.
131 int inode_init_always(struct super_block *sb, struct inode *inode)
133 static const struct inode_operations empty_iops;
134 static const struct file_operations no_open_fops = {.open = no_open};
135 struct address_space *const mapping = &inode->i_data;
138 inode->i_blkbits = sb->s_blocksize_bits;
140 atomic64_set(&inode->i_sequence, 0);
141 atomic_set(&inode->i_count, 1);
142 inode->i_op = &empty_iops;
143 inode->i_fop = &no_open_fops;
145 inode->__i_nlink = 1;
146 inode->i_opflags = 0;
148 inode->i_opflags |= IOP_XATTR;
149 i_uid_write(inode, 0);
150 i_gid_write(inode, 0);
151 atomic_set(&inode->i_writecount, 0);
153 inode->i_write_hint = WRITE_LIFE_NOT_SET;
156 inode->i_generation = 0;
157 inode->i_pipe = NULL;
158 inode->i_cdev = NULL;
159 inode->i_link = NULL;
160 inode->i_dir_seq = 0;
162 inode->dirtied_when = 0;
164 #ifdef CONFIG_CGROUP_WRITEBACK
165 inode->i_wb_frn_winner = 0;
166 inode->i_wb_frn_avg_time = 0;
167 inode->i_wb_frn_history = 0;
170 if (security_inode_alloc(inode))
172 spin_lock_init(&inode->i_lock);
173 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
175 init_rwsem(&inode->i_rwsem);
176 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
178 atomic_set(&inode->i_dio_count, 0);
180 mapping->a_ops = &empty_aops;
181 mapping->host = inode;
184 atomic_set(&mapping->i_mmap_writable, 0);
185 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
186 atomic_set(&mapping->nr_thps, 0);
188 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
189 mapping->private_data = NULL;
190 mapping->writeback_index = 0;
191 init_rwsem(&mapping->invalidate_lock);
192 lockdep_set_class_and_name(&mapping->invalidate_lock,
193 &sb->s_type->invalidate_lock_key,
194 "mapping.invalidate_lock");
195 inode->i_private = NULL;
196 inode->i_mapping = mapping;
197 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
198 #ifdef CONFIG_FS_POSIX_ACL
199 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
202 #ifdef CONFIG_FSNOTIFY
203 inode->i_fsnotify_mask = 0;
205 inode->i_flctx = NULL;
206 this_cpu_inc(nr_inodes);
212 EXPORT_SYMBOL(inode_init_always);
214 void free_inode_nonrcu(struct inode *inode)
216 kmem_cache_free(inode_cachep, inode);
218 EXPORT_SYMBOL(free_inode_nonrcu);
220 static void i_callback(struct rcu_head *head)
222 struct inode *inode = container_of(head, struct inode, i_rcu);
223 if (inode->free_inode)
224 inode->free_inode(inode);
226 free_inode_nonrcu(inode);
229 static struct inode *alloc_inode(struct super_block *sb)
231 const struct super_operations *ops = sb->s_op;
234 if (ops->alloc_inode)
235 inode = ops->alloc_inode(sb);
237 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
242 if (unlikely(inode_init_always(sb, inode))) {
243 if (ops->destroy_inode) {
244 ops->destroy_inode(inode);
245 if (!ops->free_inode)
248 inode->free_inode = ops->free_inode;
249 i_callback(&inode->i_rcu);
256 void __destroy_inode(struct inode *inode)
258 BUG_ON(inode_has_buffers(inode));
259 inode_detach_wb(inode);
260 security_inode_free(inode);
261 fsnotify_inode_delete(inode);
262 locks_free_lock_context(inode);
263 if (!inode->i_nlink) {
264 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
265 atomic_long_dec(&inode->i_sb->s_remove_count);
268 #ifdef CONFIG_FS_POSIX_ACL
269 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
270 posix_acl_release(inode->i_acl);
271 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
272 posix_acl_release(inode->i_default_acl);
274 this_cpu_dec(nr_inodes);
276 EXPORT_SYMBOL(__destroy_inode);
278 static void destroy_inode(struct inode *inode)
280 const struct super_operations *ops = inode->i_sb->s_op;
282 BUG_ON(!list_empty(&inode->i_lru));
283 __destroy_inode(inode);
284 if (ops->destroy_inode) {
285 ops->destroy_inode(inode);
286 if (!ops->free_inode)
289 inode->free_inode = ops->free_inode;
290 call_rcu(&inode->i_rcu, i_callback);
294 * drop_nlink - directly drop an inode's link count
297 * This is a low-level filesystem helper to replace any
298 * direct filesystem manipulation of i_nlink. In cases
299 * where we are attempting to track writes to the
300 * filesystem, a decrement to zero means an imminent
301 * write when the file is truncated and actually unlinked
304 void drop_nlink(struct inode *inode)
306 WARN_ON(inode->i_nlink == 0);
309 atomic_long_inc(&inode->i_sb->s_remove_count);
311 EXPORT_SYMBOL(drop_nlink);
314 * clear_nlink - directly zero an inode's link count
317 * This is a low-level filesystem helper to replace any
318 * direct filesystem manipulation of i_nlink. See
319 * drop_nlink() for why we care about i_nlink hitting zero.
321 void clear_nlink(struct inode *inode)
323 if (inode->i_nlink) {
324 inode->__i_nlink = 0;
325 atomic_long_inc(&inode->i_sb->s_remove_count);
328 EXPORT_SYMBOL(clear_nlink);
331 * set_nlink - directly set an inode's link count
333 * @nlink: new nlink (should be non-zero)
335 * This is a low-level filesystem helper to replace any
336 * direct filesystem manipulation of i_nlink.
338 void set_nlink(struct inode *inode, unsigned int nlink)
343 /* Yes, some filesystems do change nlink from zero to one */
344 if (inode->i_nlink == 0)
345 atomic_long_dec(&inode->i_sb->s_remove_count);
347 inode->__i_nlink = nlink;
350 EXPORT_SYMBOL(set_nlink);
353 * inc_nlink - directly increment an inode's link count
356 * This is a low-level filesystem helper to replace any
357 * direct filesystem manipulation of i_nlink. Currently,
358 * it is only here for parity with dec_nlink().
360 void inc_nlink(struct inode *inode)
362 if (unlikely(inode->i_nlink == 0)) {
363 WARN_ON(!(inode->i_state & I_LINKABLE));
364 atomic_long_dec(&inode->i_sb->s_remove_count);
369 EXPORT_SYMBOL(inc_nlink);
371 static void __address_space_init_once(struct address_space *mapping)
373 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
374 init_rwsem(&mapping->i_mmap_rwsem);
375 INIT_LIST_HEAD(&mapping->private_list);
376 spin_lock_init(&mapping->private_lock);
377 mapping->i_mmap = RB_ROOT_CACHED;
380 void address_space_init_once(struct address_space *mapping)
382 memset(mapping, 0, sizeof(*mapping));
383 __address_space_init_once(mapping);
385 EXPORT_SYMBOL(address_space_init_once);
388 * These are initializations that only need to be done
389 * once, because the fields are idempotent across use
390 * of the inode, so let the slab aware of that.
392 void inode_init_once(struct inode *inode)
394 memset(inode, 0, sizeof(*inode));
395 INIT_HLIST_NODE(&inode->i_hash);
396 INIT_LIST_HEAD(&inode->i_devices);
397 INIT_LIST_HEAD(&inode->i_io_list);
398 INIT_LIST_HEAD(&inode->i_wb_list);
399 INIT_LIST_HEAD(&inode->i_lru);
400 __address_space_init_once(&inode->i_data);
401 i_size_ordered_init(inode);
403 EXPORT_SYMBOL(inode_init_once);
405 static void init_once(void *foo)
407 struct inode *inode = (struct inode *) foo;
409 inode_init_once(inode);
413 * inode->i_lock must be held
415 void __iget(struct inode *inode)
417 atomic_inc(&inode->i_count);
421 * get additional reference to inode; caller must already hold one.
423 void ihold(struct inode *inode)
425 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
427 EXPORT_SYMBOL(ihold);
429 static void __inode_add_lru(struct inode *inode, bool rotate)
431 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
433 if (atomic_read(&inode->i_count))
435 if (!(inode->i_sb->s_flags & SB_ACTIVE))
437 if (!mapping_shrinkable(&inode->i_data))
440 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
441 this_cpu_inc(nr_unused);
443 inode->i_state |= I_REFERENCED;
447 * Add inode to LRU if needed (inode is unused and clean).
449 * Needs inode->i_lock held.
451 void inode_add_lru(struct inode *inode)
453 __inode_add_lru(inode, false);
456 static void inode_lru_list_del(struct inode *inode)
458 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
459 this_cpu_dec(nr_unused);
463 * inode_sb_list_add - add inode to the superblock list of inodes
464 * @inode: inode to add
466 void inode_sb_list_add(struct inode *inode)
468 spin_lock(&inode->i_sb->s_inode_list_lock);
469 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
470 spin_unlock(&inode->i_sb->s_inode_list_lock);
472 EXPORT_SYMBOL_GPL(inode_sb_list_add);
474 static inline void inode_sb_list_del(struct inode *inode)
476 if (!list_empty(&inode->i_sb_list)) {
477 spin_lock(&inode->i_sb->s_inode_list_lock);
478 list_del_init(&inode->i_sb_list);
479 spin_unlock(&inode->i_sb->s_inode_list_lock);
483 static unsigned long hash(struct super_block *sb, unsigned long hashval)
487 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
489 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
490 return tmp & i_hash_mask;
494 * __insert_inode_hash - hash an inode
495 * @inode: unhashed inode
496 * @hashval: unsigned long value used to locate this object in the
499 * Add an inode to the inode hash for this superblock.
501 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
503 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
505 spin_lock(&inode_hash_lock);
506 spin_lock(&inode->i_lock);
507 hlist_add_head_rcu(&inode->i_hash, b);
508 spin_unlock(&inode->i_lock);
509 spin_unlock(&inode_hash_lock);
511 EXPORT_SYMBOL(__insert_inode_hash);
514 * __remove_inode_hash - remove an inode from the hash
515 * @inode: inode to unhash
517 * Remove an inode from the superblock.
519 void __remove_inode_hash(struct inode *inode)
521 spin_lock(&inode_hash_lock);
522 spin_lock(&inode->i_lock);
523 hlist_del_init_rcu(&inode->i_hash);
524 spin_unlock(&inode->i_lock);
525 spin_unlock(&inode_hash_lock);
527 EXPORT_SYMBOL(__remove_inode_hash);
529 void dump_mapping(const struct address_space *mapping)
532 const struct address_space_operations *a_ops;
533 struct hlist_node *dentry_first;
534 struct dentry *dentry_ptr;
535 struct dentry dentry;
539 * If mapping is an invalid pointer, we don't want to crash
540 * accessing it, so probe everything depending on it carefully.
542 if (get_kernel_nofault(host, &mapping->host) ||
543 get_kernel_nofault(a_ops, &mapping->a_ops)) {
544 pr_warn("invalid mapping:%px\n", mapping);
549 pr_warn("aops:%ps\n", a_ops);
553 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
554 get_kernel_nofault(ino, &host->i_ino)) {
555 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
560 pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
564 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
565 if (get_kernel_nofault(dentry, dentry_ptr)) {
566 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
567 a_ops, ino, dentry_ptr);
572 * if dentry is corrupted, the %pd handler may still crash,
573 * but it's unlikely that we reach here with a corrupt mapping
575 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
578 void clear_inode(struct inode *inode)
581 * We have to cycle the i_pages lock here because reclaim can be in the
582 * process of removing the last page (in __delete_from_page_cache())
583 * and we must not free the mapping under it.
585 xa_lock_irq(&inode->i_data.i_pages);
586 BUG_ON(inode->i_data.nrpages);
588 * Almost always, mapping_empty(&inode->i_data) here; but there are
589 * two known and long-standing ways in which nodes may get left behind
590 * (when deep radix-tree node allocation failed partway; or when THP
591 * collapse_file() failed). Until those two known cases are cleaned up,
592 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
593 * nor even WARN_ON(!mapping_empty).
595 xa_unlock_irq(&inode->i_data.i_pages);
596 BUG_ON(!list_empty(&inode->i_data.private_list));
597 BUG_ON(!(inode->i_state & I_FREEING));
598 BUG_ON(inode->i_state & I_CLEAR);
599 BUG_ON(!list_empty(&inode->i_wb_list));
600 /* don't need i_lock here, no concurrent mods to i_state */
601 inode->i_state = I_FREEING | I_CLEAR;
603 EXPORT_SYMBOL(clear_inode);
606 * Free the inode passed in, removing it from the lists it is still connected
607 * to. We remove any pages still attached to the inode and wait for any IO that
608 * is still in progress before finally destroying the inode.
610 * An inode must already be marked I_FREEING so that we avoid the inode being
611 * moved back onto lists if we race with other code that manipulates the lists
612 * (e.g. writeback_single_inode). The caller is responsible for setting this.
614 * An inode must already be removed from the LRU list before being evicted from
615 * the cache. This should occur atomically with setting the I_FREEING state
616 * flag, so no inodes here should ever be on the LRU when being evicted.
618 static void evict(struct inode *inode)
620 const struct super_operations *op = inode->i_sb->s_op;
622 BUG_ON(!(inode->i_state & I_FREEING));
623 BUG_ON(!list_empty(&inode->i_lru));
625 if (!list_empty(&inode->i_io_list))
626 inode_io_list_del(inode);
628 inode_sb_list_del(inode);
631 * Wait for flusher thread to be done with the inode so that filesystem
632 * does not start destroying it while writeback is still running. Since
633 * the inode has I_FREEING set, flusher thread won't start new work on
634 * the inode. We just have to wait for running writeback to finish.
636 inode_wait_for_writeback(inode);
638 if (op->evict_inode) {
639 op->evict_inode(inode);
641 truncate_inode_pages_final(&inode->i_data);
644 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
647 remove_inode_hash(inode);
649 spin_lock(&inode->i_lock);
650 wake_up_bit(&inode->i_state, __I_NEW);
651 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
652 spin_unlock(&inode->i_lock);
654 destroy_inode(inode);
658 * dispose_list - dispose of the contents of a local list
659 * @head: the head of the list to free
661 * Dispose-list gets a local list with local inodes in it, so it doesn't
662 * need to worry about list corruption and SMP locks.
664 static void dispose_list(struct list_head *head)
666 while (!list_empty(head)) {
669 inode = list_first_entry(head, struct inode, i_lru);
670 list_del_init(&inode->i_lru);
678 * evict_inodes - evict all evictable inodes for a superblock
679 * @sb: superblock to operate on
681 * Make sure that no inodes with zero refcount are retained. This is
682 * called by superblock shutdown after having SB_ACTIVE flag removed,
683 * so any inode reaching zero refcount during or after that call will
684 * be immediately evicted.
686 void evict_inodes(struct super_block *sb)
688 struct inode *inode, *next;
692 spin_lock(&sb->s_inode_list_lock);
693 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
694 if (atomic_read(&inode->i_count))
697 spin_lock(&inode->i_lock);
698 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
699 spin_unlock(&inode->i_lock);
703 inode->i_state |= I_FREEING;
704 inode_lru_list_del(inode);
705 spin_unlock(&inode->i_lock);
706 list_add(&inode->i_lru, &dispose);
709 * We can have a ton of inodes to evict at unmount time given
710 * enough memory, check to see if we need to go to sleep for a
711 * bit so we don't livelock.
713 if (need_resched()) {
714 spin_unlock(&sb->s_inode_list_lock);
716 dispose_list(&dispose);
720 spin_unlock(&sb->s_inode_list_lock);
722 dispose_list(&dispose);
724 EXPORT_SYMBOL_GPL(evict_inodes);
727 * invalidate_inodes - attempt to free all inodes on a superblock
728 * @sb: superblock to operate on
729 * @kill_dirty: flag to guide handling of dirty inodes
731 * Attempts to free all inodes for a given superblock. If there were any
732 * busy inodes return a non-zero value, else zero.
733 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
736 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
739 struct inode *inode, *next;
743 spin_lock(&sb->s_inode_list_lock);
744 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
745 spin_lock(&inode->i_lock);
746 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
747 spin_unlock(&inode->i_lock);
750 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
751 spin_unlock(&inode->i_lock);
755 if (atomic_read(&inode->i_count)) {
756 spin_unlock(&inode->i_lock);
761 inode->i_state |= I_FREEING;
762 inode_lru_list_del(inode);
763 spin_unlock(&inode->i_lock);
764 list_add(&inode->i_lru, &dispose);
765 if (need_resched()) {
766 spin_unlock(&sb->s_inode_list_lock);
768 dispose_list(&dispose);
772 spin_unlock(&sb->s_inode_list_lock);
774 dispose_list(&dispose);
780 * Isolate the inode from the LRU in preparation for freeing it.
782 * If the inode has the I_REFERENCED flag set, then it means that it has been
783 * used recently - the flag is set in iput_final(). When we encounter such an
784 * inode, clear the flag and move it to the back of the LRU so it gets another
785 * pass through the LRU before it gets reclaimed. This is necessary because of
786 * the fact we are doing lazy LRU updates to minimise lock contention so the
787 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
788 * with this flag set because they are the inodes that are out of order.
790 static enum lru_status inode_lru_isolate(struct list_head *item,
791 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
793 struct list_head *freeable = arg;
794 struct inode *inode = container_of(item, struct inode, i_lru);
797 * We are inverting the lru lock/inode->i_lock here, so use a
798 * trylock. If we fail to get the lock, just skip it.
800 if (!spin_trylock(&inode->i_lock))
804 * Inodes can get referenced, redirtied, or repopulated while
805 * they're already on the LRU, and this can make them
806 * unreclaimable for a while. Remove them lazily here; iput,
807 * sync, or the last page cache deletion will requeue them.
809 if (atomic_read(&inode->i_count) ||
810 (inode->i_state & ~I_REFERENCED) ||
811 !mapping_shrinkable(&inode->i_data)) {
812 list_lru_isolate(lru, &inode->i_lru);
813 spin_unlock(&inode->i_lock);
814 this_cpu_dec(nr_unused);
818 /* Recently referenced inodes get one more pass */
819 if (inode->i_state & I_REFERENCED) {
820 inode->i_state &= ~I_REFERENCED;
821 spin_unlock(&inode->i_lock);
826 * On highmem systems, mapping_shrinkable() permits dropping
827 * page cache in order to free up struct inodes: lowmem might
828 * be under pressure before the cache inside the highmem zone.
830 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
832 spin_unlock(&inode->i_lock);
833 spin_unlock(lru_lock);
834 if (remove_inode_buffers(inode)) {
836 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
837 if (current_is_kswapd())
838 __count_vm_events(KSWAPD_INODESTEAL, reap);
840 __count_vm_events(PGINODESTEAL, reap);
841 if (current->reclaim_state)
842 current->reclaim_state->reclaimed_slab += reap;
849 WARN_ON(inode->i_state & I_NEW);
850 inode->i_state |= I_FREEING;
851 list_lru_isolate_move(lru, &inode->i_lru, freeable);
852 spin_unlock(&inode->i_lock);
854 this_cpu_dec(nr_unused);
859 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
860 * This is called from the superblock shrinker function with a number of inodes
861 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
862 * then are freed outside inode_lock by dispose_list().
864 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
869 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
870 inode_lru_isolate, &freeable);
871 dispose_list(&freeable);
875 static void __wait_on_freeing_inode(struct inode *inode);
877 * Called with the inode lock held.
879 static struct inode *find_inode(struct super_block *sb,
880 struct hlist_head *head,
881 int (*test)(struct inode *, void *),
884 struct inode *inode = NULL;
887 hlist_for_each_entry(inode, head, i_hash) {
888 if (inode->i_sb != sb)
890 if (!test(inode, data))
892 spin_lock(&inode->i_lock);
893 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
894 __wait_on_freeing_inode(inode);
897 if (unlikely(inode->i_state & I_CREATING)) {
898 spin_unlock(&inode->i_lock);
899 return ERR_PTR(-ESTALE);
902 spin_unlock(&inode->i_lock);
909 * find_inode_fast is the fast path version of find_inode, see the comment at
910 * iget_locked for details.
912 static struct inode *find_inode_fast(struct super_block *sb,
913 struct hlist_head *head, unsigned long ino)
915 struct inode *inode = NULL;
918 hlist_for_each_entry(inode, head, i_hash) {
919 if (inode->i_ino != ino)
921 if (inode->i_sb != sb)
923 spin_lock(&inode->i_lock);
924 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
925 __wait_on_freeing_inode(inode);
928 if (unlikely(inode->i_state & I_CREATING)) {
929 spin_unlock(&inode->i_lock);
930 return ERR_PTR(-ESTALE);
933 spin_unlock(&inode->i_lock);
940 * Each cpu owns a range of LAST_INO_BATCH numbers.
941 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
942 * to renew the exhausted range.
944 * This does not significantly increase overflow rate because every CPU can
945 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
946 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
947 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
948 * overflow rate by 2x, which does not seem too significant.
950 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
951 * error if st_ino won't fit in target struct field. Use 32bit counter
952 * here to attempt to avoid that.
954 #define LAST_INO_BATCH 1024
955 static DEFINE_PER_CPU(unsigned int, last_ino);
957 unsigned int get_next_ino(void)
959 unsigned int *p = &get_cpu_var(last_ino);
960 unsigned int res = *p;
963 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
964 static atomic_t shared_last_ino;
965 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
967 res = next - LAST_INO_BATCH;
972 /* get_next_ino should not provide a 0 inode number */
976 put_cpu_var(last_ino);
979 EXPORT_SYMBOL(get_next_ino);
982 * new_inode_pseudo - obtain an inode
985 * Allocates a new inode for given superblock.
986 * Inode wont be chained in superblock s_inodes list
988 * - fs can't be unmount
989 * - quotas, fsnotify, writeback can't work
991 struct inode *new_inode_pseudo(struct super_block *sb)
993 struct inode *inode = alloc_inode(sb);
996 spin_lock(&inode->i_lock);
998 spin_unlock(&inode->i_lock);
999 INIT_LIST_HEAD(&inode->i_sb_list);
1005 * new_inode - obtain an inode
1008 * Allocates a new inode for given superblock. The default gfp_mask
1009 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1010 * If HIGHMEM pages are unsuitable or it is known that pages allocated
1011 * for the page cache are not reclaimable or migratable,
1012 * mapping_set_gfp_mask() must be called with suitable flags on the
1013 * newly created inode's mapping
1016 struct inode *new_inode(struct super_block *sb)
1018 struct inode *inode;
1020 spin_lock_prefetch(&sb->s_inode_list_lock);
1022 inode = new_inode_pseudo(sb);
1024 inode_sb_list_add(inode);
1027 EXPORT_SYMBOL(new_inode);
1029 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1030 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1032 if (S_ISDIR(inode->i_mode)) {
1033 struct file_system_type *type = inode->i_sb->s_type;
1035 /* Set new key only if filesystem hasn't already changed it */
1036 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1038 * ensure nobody is actually holding i_mutex
1040 // mutex_destroy(&inode->i_mutex);
1041 init_rwsem(&inode->i_rwsem);
1042 lockdep_set_class(&inode->i_rwsem,
1043 &type->i_mutex_dir_key);
1047 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1051 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1052 * @inode: new inode to unlock
1054 * Called when the inode is fully initialised to clear the new state of the
1055 * inode and wake up anyone waiting for the inode to finish initialisation.
1057 void unlock_new_inode(struct inode *inode)
1059 lockdep_annotate_inode_mutex_key(inode);
1060 spin_lock(&inode->i_lock);
1061 WARN_ON(!(inode->i_state & I_NEW));
1062 inode->i_state &= ~I_NEW & ~I_CREATING;
1064 wake_up_bit(&inode->i_state, __I_NEW);
1065 spin_unlock(&inode->i_lock);
1067 EXPORT_SYMBOL(unlock_new_inode);
1069 void discard_new_inode(struct inode *inode)
1071 lockdep_annotate_inode_mutex_key(inode);
1072 spin_lock(&inode->i_lock);
1073 WARN_ON(!(inode->i_state & I_NEW));
1074 inode->i_state &= ~I_NEW;
1076 wake_up_bit(&inode->i_state, __I_NEW);
1077 spin_unlock(&inode->i_lock);
1080 EXPORT_SYMBOL(discard_new_inode);
1083 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1085 * Lock any non-NULL argument that is not a directory.
1086 * Zero, one or two objects may be locked by this function.
1088 * @inode1: first inode to lock
1089 * @inode2: second inode to lock
1091 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1093 if (inode1 > inode2)
1094 swap(inode1, inode2);
1096 if (inode1 && !S_ISDIR(inode1->i_mode))
1098 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1099 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1101 EXPORT_SYMBOL(lock_two_nondirectories);
1104 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1105 * @inode1: first inode to unlock
1106 * @inode2: second inode to unlock
1108 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1110 if (inode1 && !S_ISDIR(inode1->i_mode))
1111 inode_unlock(inode1);
1112 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1113 inode_unlock(inode2);
1115 EXPORT_SYMBOL(unlock_two_nondirectories);
1118 * inode_insert5 - obtain an inode from a mounted file system
1119 * @inode: pre-allocated inode to use for insert to cache
1120 * @hashval: hash value (usually inode number) to get
1121 * @test: callback used for comparisons between inodes
1122 * @set: callback used to initialize a new struct inode
1123 * @data: opaque data pointer to pass to @test and @set
1125 * Search for the inode specified by @hashval and @data in the inode cache,
1126 * and if present it is return it with an increased reference count. This is
1127 * a variant of iget5_locked() for callers that don't want to fail on memory
1128 * allocation of inode.
1130 * If the inode is not in cache, insert the pre-allocated inode to cache and
1131 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1132 * to fill it in before unlocking it via unlock_new_inode().
1134 * Note both @test and @set are called with the inode_hash_lock held, so can't
1137 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1138 int (*test)(struct inode *, void *),
1139 int (*set)(struct inode *, void *), void *data)
1141 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1143 bool creating = inode->i_state & I_CREATING;
1146 spin_lock(&inode_hash_lock);
1147 old = find_inode(inode->i_sb, head, test, data);
1148 if (unlikely(old)) {
1150 * Uhhuh, somebody else created the same inode under us.
1151 * Use the old inode instead of the preallocated one.
1153 spin_unlock(&inode_hash_lock);
1157 if (unlikely(inode_unhashed(old))) {
1164 if (set && unlikely(set(inode, data))) {
1170 * Return the locked inode with I_NEW set, the
1171 * caller is responsible for filling in the contents
1173 spin_lock(&inode->i_lock);
1174 inode->i_state |= I_NEW;
1175 hlist_add_head_rcu(&inode->i_hash, head);
1176 spin_unlock(&inode->i_lock);
1178 inode_sb_list_add(inode);
1180 spin_unlock(&inode_hash_lock);
1184 EXPORT_SYMBOL(inode_insert5);
1187 * iget5_locked - obtain an inode from a mounted file system
1188 * @sb: super block of file system
1189 * @hashval: hash value (usually inode number) to get
1190 * @test: callback used for comparisons between inodes
1191 * @set: callback used to initialize a new struct inode
1192 * @data: opaque data pointer to pass to @test and @set
1194 * Search for the inode specified by @hashval and @data in the inode cache,
1195 * and if present it is return it with an increased reference count. This is
1196 * a generalized version of iget_locked() for file systems where the inode
1197 * number is not sufficient for unique identification of an inode.
1199 * If the inode is not in cache, allocate a new inode and return it locked,
1200 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1201 * before unlocking it via unlock_new_inode().
1203 * Note both @test and @set are called with the inode_hash_lock held, so can't
1206 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1207 int (*test)(struct inode *, void *),
1208 int (*set)(struct inode *, void *), void *data)
1210 struct inode *inode = ilookup5(sb, hashval, test, data);
1213 struct inode *new = alloc_inode(sb);
1217 inode = inode_insert5(new, hashval, test, set, data);
1218 if (unlikely(inode != new))
1224 EXPORT_SYMBOL(iget5_locked);
1227 * iget_locked - obtain an inode from a mounted file system
1228 * @sb: super block of file system
1229 * @ino: inode number to get
1231 * Search for the inode specified by @ino in the inode cache and if present
1232 * return it with an increased reference count. This is for file systems
1233 * where the inode number is sufficient for unique identification of an inode.
1235 * If the inode is not in cache, allocate a new inode and return it locked,
1236 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1237 * before unlocking it via unlock_new_inode().
1239 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1241 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1242 struct inode *inode;
1244 spin_lock(&inode_hash_lock);
1245 inode = find_inode_fast(sb, head, ino);
1246 spin_unlock(&inode_hash_lock);
1250 wait_on_inode(inode);
1251 if (unlikely(inode_unhashed(inode))) {
1258 inode = alloc_inode(sb);
1262 spin_lock(&inode_hash_lock);
1263 /* We released the lock, so.. */
1264 old = find_inode_fast(sb, head, ino);
1267 spin_lock(&inode->i_lock);
1268 inode->i_state = I_NEW;
1269 hlist_add_head_rcu(&inode->i_hash, head);
1270 spin_unlock(&inode->i_lock);
1271 inode_sb_list_add(inode);
1272 spin_unlock(&inode_hash_lock);
1274 /* Return the locked inode with I_NEW set, the
1275 * caller is responsible for filling in the contents
1281 * Uhhuh, somebody else created the same inode under
1282 * us. Use the old inode instead of the one we just
1285 spin_unlock(&inode_hash_lock);
1286 destroy_inode(inode);
1290 wait_on_inode(inode);
1291 if (unlikely(inode_unhashed(inode))) {
1298 EXPORT_SYMBOL(iget_locked);
1301 * search the inode cache for a matching inode number.
1302 * If we find one, then the inode number we are trying to
1303 * allocate is not unique and so we should not use it.
1305 * Returns 1 if the inode number is unique, 0 if it is not.
1307 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1309 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1310 struct inode *inode;
1312 hlist_for_each_entry_rcu(inode, b, i_hash) {
1313 if (inode->i_ino == ino && inode->i_sb == sb)
1320 * iunique - get a unique inode number
1322 * @max_reserved: highest reserved inode number
1324 * Obtain an inode number that is unique on the system for a given
1325 * superblock. This is used by file systems that have no natural
1326 * permanent inode numbering system. An inode number is returned that
1327 * is higher than the reserved limit but unique.
1330 * With a large number of inodes live on the file system this function
1331 * currently becomes quite slow.
1333 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1336 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1337 * error if st_ino won't fit in target struct field. Use 32bit counter
1338 * here to attempt to avoid that.
1340 static DEFINE_SPINLOCK(iunique_lock);
1341 static unsigned int counter;
1345 spin_lock(&iunique_lock);
1347 if (counter <= max_reserved)
1348 counter = max_reserved + 1;
1350 } while (!test_inode_iunique(sb, res));
1351 spin_unlock(&iunique_lock);
1356 EXPORT_SYMBOL(iunique);
1358 struct inode *igrab(struct inode *inode)
1360 spin_lock(&inode->i_lock);
1361 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1363 spin_unlock(&inode->i_lock);
1365 spin_unlock(&inode->i_lock);
1367 * Handle the case where s_op->clear_inode is not been
1368 * called yet, and somebody is calling igrab
1369 * while the inode is getting freed.
1375 EXPORT_SYMBOL(igrab);
1378 * ilookup5_nowait - search for an inode in the inode cache
1379 * @sb: super block of file system to search
1380 * @hashval: hash value (usually inode number) to search for
1381 * @test: callback used for comparisons between inodes
1382 * @data: opaque data pointer to pass to @test
1384 * Search for the inode specified by @hashval and @data in the inode cache.
1385 * If the inode is in the cache, the inode is returned with an incremented
1388 * Note: I_NEW is not waited upon so you have to be very careful what you do
1389 * with the returned inode. You probably should be using ilookup5() instead.
1391 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1393 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1394 int (*test)(struct inode *, void *), void *data)
1396 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1397 struct inode *inode;
1399 spin_lock(&inode_hash_lock);
1400 inode = find_inode(sb, head, test, data);
1401 spin_unlock(&inode_hash_lock);
1403 return IS_ERR(inode) ? NULL : inode;
1405 EXPORT_SYMBOL(ilookup5_nowait);
1408 * ilookup5 - search for an inode in the inode cache
1409 * @sb: super block of file system to search
1410 * @hashval: hash value (usually inode number) to search for
1411 * @test: callback used for comparisons between inodes
1412 * @data: opaque data pointer to pass to @test
1414 * Search for the inode specified by @hashval and @data in the inode cache,
1415 * and if the inode is in the cache, return the inode with an incremented
1416 * reference count. Waits on I_NEW before returning the inode.
1417 * returned with an incremented reference count.
1419 * This is a generalized version of ilookup() for file systems where the
1420 * inode number is not sufficient for unique identification of an inode.
1422 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1424 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1425 int (*test)(struct inode *, void *), void *data)
1427 struct inode *inode;
1429 inode = ilookup5_nowait(sb, hashval, test, data);
1431 wait_on_inode(inode);
1432 if (unlikely(inode_unhashed(inode))) {
1439 EXPORT_SYMBOL(ilookup5);
1442 * ilookup - search for an inode in the inode cache
1443 * @sb: super block of file system to search
1444 * @ino: inode number to search for
1446 * Search for the inode @ino in the inode cache, and if the inode is in the
1447 * cache, the inode is returned with an incremented reference count.
1449 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1451 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1452 struct inode *inode;
1454 spin_lock(&inode_hash_lock);
1455 inode = find_inode_fast(sb, head, ino);
1456 spin_unlock(&inode_hash_lock);
1461 wait_on_inode(inode);
1462 if (unlikely(inode_unhashed(inode))) {
1469 EXPORT_SYMBOL(ilookup);
1472 * find_inode_nowait - find an inode in the inode cache
1473 * @sb: super block of file system to search
1474 * @hashval: hash value (usually inode number) to search for
1475 * @match: callback used for comparisons between inodes
1476 * @data: opaque data pointer to pass to @match
1478 * Search for the inode specified by @hashval and @data in the inode
1479 * cache, where the helper function @match will return 0 if the inode
1480 * does not match, 1 if the inode does match, and -1 if the search
1481 * should be stopped. The @match function must be responsible for
1482 * taking the i_lock spin_lock and checking i_state for an inode being
1483 * freed or being initialized, and incrementing the reference count
1484 * before returning 1. It also must not sleep, since it is called with
1485 * the inode_hash_lock spinlock held.
1487 * This is a even more generalized version of ilookup5() when the
1488 * function must never block --- find_inode() can block in
1489 * __wait_on_freeing_inode() --- or when the caller can not increment
1490 * the reference count because the resulting iput() might cause an
1491 * inode eviction. The tradeoff is that the @match funtion must be
1492 * very carefully implemented.
1494 struct inode *find_inode_nowait(struct super_block *sb,
1495 unsigned long hashval,
1496 int (*match)(struct inode *, unsigned long,
1500 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1501 struct inode *inode, *ret_inode = NULL;
1504 spin_lock(&inode_hash_lock);
1505 hlist_for_each_entry(inode, head, i_hash) {
1506 if (inode->i_sb != sb)
1508 mval = match(inode, hashval, data);
1516 spin_unlock(&inode_hash_lock);
1519 EXPORT_SYMBOL(find_inode_nowait);
1522 * find_inode_rcu - find an inode in the inode cache
1523 * @sb: Super block of file system to search
1524 * @hashval: Key to hash
1525 * @test: Function to test match on an inode
1526 * @data: Data for test function
1528 * Search for the inode specified by @hashval and @data in the inode cache,
1529 * where the helper function @test will return 0 if the inode does not match
1530 * and 1 if it does. The @test function must be responsible for taking the
1531 * i_lock spin_lock and checking i_state for an inode being freed or being
1534 * If successful, this will return the inode for which the @test function
1535 * returned 1 and NULL otherwise.
1537 * The @test function is not permitted to take a ref on any inode presented.
1538 * It is also not permitted to sleep.
1540 * The caller must hold the RCU read lock.
1542 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1543 int (*test)(struct inode *, void *), void *data)
1545 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1546 struct inode *inode;
1548 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1549 "suspicious find_inode_rcu() usage");
1551 hlist_for_each_entry_rcu(inode, head, i_hash) {
1552 if (inode->i_sb == sb &&
1553 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1559 EXPORT_SYMBOL(find_inode_rcu);
1562 * find_inode_by_ino_rcu - Find an inode in the inode cache
1563 * @sb: Super block of file system to search
1564 * @ino: The inode number to match
1566 * Search for the inode specified by @hashval and @data in the inode cache,
1567 * where the helper function @test will return 0 if the inode does not match
1568 * and 1 if it does. The @test function must be responsible for taking the
1569 * i_lock spin_lock and checking i_state for an inode being freed or being
1572 * If successful, this will return the inode for which the @test function
1573 * returned 1 and NULL otherwise.
1575 * The @test function is not permitted to take a ref on any inode presented.
1576 * It is also not permitted to sleep.
1578 * The caller must hold the RCU read lock.
1580 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1583 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1584 struct inode *inode;
1586 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1587 "suspicious find_inode_by_ino_rcu() usage");
1589 hlist_for_each_entry_rcu(inode, head, i_hash) {
1590 if (inode->i_ino == ino &&
1591 inode->i_sb == sb &&
1592 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1597 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1599 int insert_inode_locked(struct inode *inode)
1601 struct super_block *sb = inode->i_sb;
1602 ino_t ino = inode->i_ino;
1603 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1606 struct inode *old = NULL;
1607 spin_lock(&inode_hash_lock);
1608 hlist_for_each_entry(old, head, i_hash) {
1609 if (old->i_ino != ino)
1611 if (old->i_sb != sb)
1613 spin_lock(&old->i_lock);
1614 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1615 spin_unlock(&old->i_lock);
1621 spin_lock(&inode->i_lock);
1622 inode->i_state |= I_NEW | I_CREATING;
1623 hlist_add_head_rcu(&inode->i_hash, head);
1624 spin_unlock(&inode->i_lock);
1625 spin_unlock(&inode_hash_lock);
1628 if (unlikely(old->i_state & I_CREATING)) {
1629 spin_unlock(&old->i_lock);
1630 spin_unlock(&inode_hash_lock);
1634 spin_unlock(&old->i_lock);
1635 spin_unlock(&inode_hash_lock);
1637 if (unlikely(!inode_unhashed(old))) {
1644 EXPORT_SYMBOL(insert_inode_locked);
1646 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1647 int (*test)(struct inode *, void *), void *data)
1651 inode->i_state |= I_CREATING;
1652 old = inode_insert5(inode, hashval, test, NULL, data);
1660 EXPORT_SYMBOL(insert_inode_locked4);
1663 int generic_delete_inode(struct inode *inode)
1667 EXPORT_SYMBOL(generic_delete_inode);
1670 * Called when we're dropping the last reference
1673 * Call the FS "drop_inode()" function, defaulting to
1674 * the legacy UNIX filesystem behaviour. If it tells
1675 * us to evict inode, do so. Otherwise, retain inode
1676 * in cache if fs is alive, sync and evict if fs is
1679 static void iput_final(struct inode *inode)
1681 struct super_block *sb = inode->i_sb;
1682 const struct super_operations *op = inode->i_sb->s_op;
1683 unsigned long state;
1686 WARN_ON(inode->i_state & I_NEW);
1689 drop = op->drop_inode(inode);
1691 drop = generic_drop_inode(inode);
1694 !(inode->i_state & I_DONTCACHE) &&
1695 (sb->s_flags & SB_ACTIVE)) {
1696 __inode_add_lru(inode, true);
1697 spin_unlock(&inode->i_lock);
1701 state = inode->i_state;
1703 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1704 spin_unlock(&inode->i_lock);
1706 write_inode_now(inode, 1);
1708 spin_lock(&inode->i_lock);
1709 state = inode->i_state;
1710 WARN_ON(state & I_NEW);
1711 state &= ~I_WILL_FREE;
1714 WRITE_ONCE(inode->i_state, state | I_FREEING);
1715 if (!list_empty(&inode->i_lru))
1716 inode_lru_list_del(inode);
1717 spin_unlock(&inode->i_lock);
1723 * iput - put an inode
1724 * @inode: inode to put
1726 * Puts an inode, dropping its usage count. If the inode use count hits
1727 * zero, the inode is then freed and may also be destroyed.
1729 * Consequently, iput() can sleep.
1731 void iput(struct inode *inode)
1735 BUG_ON(inode->i_state & I_CLEAR);
1737 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1738 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1739 atomic_inc(&inode->i_count);
1740 spin_unlock(&inode->i_lock);
1741 trace_writeback_lazytime_iput(inode);
1742 mark_inode_dirty_sync(inode);
1748 EXPORT_SYMBOL(iput);
1752 * bmap - find a block number in a file
1753 * @inode: inode owning the block number being requested
1754 * @block: pointer containing the block to find
1756 * Replaces the value in ``*block`` with the block number on the device holding
1757 * corresponding to the requested block number in the file.
1758 * That is, asked for block 4 of inode 1 the function will replace the
1759 * 4 in ``*block``, with disk block relative to the disk start that holds that
1760 * block of the file.
1762 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1763 * hole, returns 0 and ``*block`` is also set to 0.
1765 int bmap(struct inode *inode, sector_t *block)
1767 if (!inode->i_mapping->a_ops->bmap)
1770 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1773 EXPORT_SYMBOL(bmap);
1777 * With relative atime, only update atime if the previous atime is
1778 * earlier than either the ctime or mtime or if at least a day has
1779 * passed since the last atime update.
1781 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1782 struct timespec64 now)
1785 if (!(mnt->mnt_flags & MNT_RELATIME))
1788 * Is mtime younger than atime? If yes, update atime:
1790 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1793 * Is ctime younger than atime? If yes, update atime:
1795 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1799 * Is the previous atime value older than a day? If yes,
1802 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1805 * Good, we can skip the atime update:
1810 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1812 int dirty_flags = 0;
1814 if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1815 if (flags & S_ATIME)
1816 inode->i_atime = *time;
1817 if (flags & S_CTIME)
1818 inode->i_ctime = *time;
1819 if (flags & S_MTIME)
1820 inode->i_mtime = *time;
1822 if (inode->i_sb->s_flags & SB_LAZYTIME)
1823 dirty_flags |= I_DIRTY_TIME;
1825 dirty_flags |= I_DIRTY_SYNC;
1828 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1829 dirty_flags |= I_DIRTY_SYNC;
1831 __mark_inode_dirty(inode, dirty_flags);
1834 EXPORT_SYMBOL(generic_update_time);
1837 * This does the actual work of updating an inodes time or version. Must have
1838 * had called mnt_want_write() before calling this.
1840 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1842 if (inode->i_op->update_time)
1843 return inode->i_op->update_time(inode, time, flags);
1844 return generic_update_time(inode, time, flags);
1846 EXPORT_SYMBOL(inode_update_time);
1849 * atime_needs_update - update the access time
1850 * @path: the &struct path to update
1851 * @inode: inode to update
1853 * Update the accessed time on an inode and mark it for writeback.
1854 * This function automatically handles read only file systems and media,
1855 * as well as the "noatime" flag and inode specific "noatime" markers.
1857 bool atime_needs_update(const struct path *path, struct inode *inode)
1859 struct vfsmount *mnt = path->mnt;
1860 struct timespec64 now;
1862 if (inode->i_flags & S_NOATIME)
1865 /* Atime updates will likely cause i_uid and i_gid to be written
1866 * back improprely if their true value is unknown to the vfs.
1868 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1871 if (IS_NOATIME(inode))
1873 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1876 if (mnt->mnt_flags & MNT_NOATIME)
1878 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1881 now = current_time(inode);
1883 if (!relatime_need_update(mnt, inode, now))
1886 if (timespec64_equal(&inode->i_atime, &now))
1892 void touch_atime(const struct path *path)
1894 struct vfsmount *mnt = path->mnt;
1895 struct inode *inode = d_inode(path->dentry);
1896 struct timespec64 now;
1898 if (!atime_needs_update(path, inode))
1901 if (!sb_start_write_trylock(inode->i_sb))
1904 if (__mnt_want_write(mnt) != 0)
1907 * File systems can error out when updating inodes if they need to
1908 * allocate new space to modify an inode (such is the case for
1909 * Btrfs), but since we touch atime while walking down the path we
1910 * really don't care if we failed to update the atime of the file,
1911 * so just ignore the return value.
1912 * We may also fail on filesystems that have the ability to make parts
1913 * of the fs read only, e.g. subvolumes in Btrfs.
1915 now = current_time(inode);
1916 inode_update_time(inode, &now, S_ATIME);
1917 __mnt_drop_write(mnt);
1919 sb_end_write(inode->i_sb);
1921 EXPORT_SYMBOL(touch_atime);
1924 * The logic we want is
1926 * if suid or (sgid and xgrp)
1929 int should_remove_suid(struct dentry *dentry)
1931 umode_t mode = d_inode(dentry)->i_mode;
1934 /* suid always must be killed */
1935 if (unlikely(mode & S_ISUID))
1936 kill = ATTR_KILL_SUID;
1939 * sgid without any exec bits is just a mandatory locking mark; leave
1940 * it alone. If some exec bits are set, it's a real sgid; kill it.
1942 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1943 kill |= ATTR_KILL_SGID;
1945 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1950 EXPORT_SYMBOL(should_remove_suid);
1953 * Return mask of changes for notify_change() that need to be done as a
1954 * response to write or truncate. Return 0 if nothing has to be changed.
1955 * Negative value on error (change should be denied).
1957 int dentry_needs_remove_privs(struct dentry *dentry)
1959 struct inode *inode = d_inode(dentry);
1963 if (IS_NOSEC(inode))
1966 mask = should_remove_suid(dentry);
1967 ret = security_inode_need_killpriv(dentry);
1971 mask |= ATTR_KILL_PRIV;
1975 static int __remove_privs(struct user_namespace *mnt_userns,
1976 struct dentry *dentry, int kill)
1978 struct iattr newattrs;
1980 newattrs.ia_valid = ATTR_FORCE | kill;
1982 * Note we call this on write, so notify_change will not
1983 * encounter any conflicting delegations:
1985 return notify_change(mnt_userns, dentry, &newattrs, NULL);
1989 * Remove special file priviledges (suid, capabilities) when file is written
1992 int file_remove_privs(struct file *file)
1994 struct dentry *dentry = file_dentry(file);
1995 struct inode *inode = file_inode(file);
2000 * Fast path for nothing security related.
2001 * As well for non-regular files, e.g. blkdev inodes.
2002 * For example, blkdev_write_iter() might get here
2003 * trying to remove privs which it is not allowed to.
2005 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2008 kill = dentry_needs_remove_privs(dentry);
2012 error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
2014 inode_has_no_xattr(inode);
2018 EXPORT_SYMBOL(file_remove_privs);
2021 * file_update_time - update mtime and ctime time
2022 * @file: file accessed
2024 * Update the mtime and ctime members of an inode and mark the inode
2025 * for writeback. Note that this function is meant exclusively for
2026 * usage in the file write path of filesystems, and filesystems may
2027 * choose to explicitly ignore update via this function with the
2028 * S_NOCMTIME inode flag, e.g. for network filesystem where these
2029 * timestamps are handled by the server. This can return an error for
2030 * file systems who need to allocate space in order to update an inode.
2033 int file_update_time(struct file *file)
2035 struct inode *inode = file_inode(file);
2036 struct timespec64 now;
2040 /* First try to exhaust all avenues to not sync */
2041 if (IS_NOCMTIME(inode))
2044 now = current_time(inode);
2045 if (!timespec64_equal(&inode->i_mtime, &now))
2048 if (!timespec64_equal(&inode->i_ctime, &now))
2051 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2052 sync_it |= S_VERSION;
2057 /* Finally allowed to write? Takes lock. */
2058 if (__mnt_want_write_file(file))
2061 ret = inode_update_time(inode, &now, sync_it);
2062 __mnt_drop_write_file(file);
2066 EXPORT_SYMBOL(file_update_time);
2068 /* Caller must hold the file's inode lock */
2069 int file_modified(struct file *file)
2074 * Clear the security bits if the process is not being run by root.
2075 * This keeps people from modifying setuid and setgid binaries.
2077 err = file_remove_privs(file);
2081 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2084 return file_update_time(file);
2086 EXPORT_SYMBOL(file_modified);
2088 int inode_needs_sync(struct inode *inode)
2092 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2096 EXPORT_SYMBOL(inode_needs_sync);
2099 * If we try to find an inode in the inode hash while it is being
2100 * deleted, we have to wait until the filesystem completes its
2101 * deletion before reporting that it isn't found. This function waits
2102 * until the deletion _might_ have completed. Callers are responsible
2103 * to recheck inode state.
2105 * It doesn't matter if I_NEW is not set initially, a call to
2106 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2109 static void __wait_on_freeing_inode(struct inode *inode)
2111 wait_queue_head_t *wq;
2112 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2113 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2114 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2115 spin_unlock(&inode->i_lock);
2116 spin_unlock(&inode_hash_lock);
2118 finish_wait(wq, &wait.wq_entry);
2119 spin_lock(&inode_hash_lock);
2122 static __initdata unsigned long ihash_entries;
2123 static int __init set_ihash_entries(char *str)
2127 ihash_entries = simple_strtoul(str, &str, 0);
2130 __setup("ihash_entries=", set_ihash_entries);
2133 * Initialize the waitqueues and inode hash table.
2135 void __init inode_init_early(void)
2137 /* If hashes are distributed across NUMA nodes, defer
2138 * hash allocation until vmalloc space is available.
2144 alloc_large_system_hash("Inode-cache",
2145 sizeof(struct hlist_head),
2148 HASH_EARLY | HASH_ZERO,
2155 void __init inode_init(void)
2157 /* inode slab cache */
2158 inode_cachep = kmem_cache_create("inode_cache",
2159 sizeof(struct inode),
2161 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2162 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2165 /* Hash may have been set up in inode_init_early */
2170 alloc_large_system_hash("Inode-cache",
2171 sizeof(struct hlist_head),
2181 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2183 inode->i_mode = mode;
2184 if (S_ISCHR(mode)) {
2185 inode->i_fop = &def_chr_fops;
2186 inode->i_rdev = rdev;
2187 } else if (S_ISBLK(mode)) {
2188 inode->i_fop = &def_blk_fops;
2189 inode->i_rdev = rdev;
2190 } else if (S_ISFIFO(mode))
2191 inode->i_fop = &pipefifo_fops;
2192 else if (S_ISSOCK(mode))
2193 ; /* leave it no_open_fops */
2195 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2196 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2199 EXPORT_SYMBOL(init_special_inode);
2202 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2203 * @mnt_userns: User namespace of the mount the inode was created from
2205 * @dir: Directory inode
2206 * @mode: mode of the new inode
2208 * If the inode has been created through an idmapped mount the user namespace of
2209 * the vfsmount must be passed through @mnt_userns. This function will then take
2210 * care to map the inode according to @mnt_userns before checking permissions
2211 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2212 * checking is to be performed on the raw inode simply passs init_user_ns.
2214 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2215 const struct inode *dir, umode_t mode)
2217 inode_fsuid_set(inode, mnt_userns);
2218 if (dir && dir->i_mode & S_ISGID) {
2219 inode->i_gid = dir->i_gid;
2221 /* Directories are special, and always inherit S_ISGID */
2224 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2225 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) &&
2226 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2229 inode_fsgid_set(inode, mnt_userns);
2230 inode->i_mode = mode;
2232 EXPORT_SYMBOL(inode_init_owner);
2235 * inode_owner_or_capable - check current task permissions to inode
2236 * @mnt_userns: user namespace of the mount the inode was found from
2237 * @inode: inode being checked
2239 * Return true if current either has CAP_FOWNER in a namespace with the
2240 * inode owner uid mapped, or owns the file.
2242 * If the inode has been found through an idmapped mount the user namespace of
2243 * the vfsmount must be passed through @mnt_userns. This function will then take
2244 * care to map the inode according to @mnt_userns before checking permissions.
2245 * On non-idmapped mounts or if permission checking is to be performed on the
2246 * raw inode simply passs init_user_ns.
2248 bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2249 const struct inode *inode)
2252 struct user_namespace *ns;
2254 i_uid = i_uid_into_mnt(mnt_userns, inode);
2255 if (uid_eq(current_fsuid(), i_uid))
2258 ns = current_user_ns();
2259 if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2263 EXPORT_SYMBOL(inode_owner_or_capable);
2266 * Direct i/o helper functions
2268 static void __inode_dio_wait(struct inode *inode)
2270 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2271 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2274 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2275 if (atomic_read(&inode->i_dio_count))
2277 } while (atomic_read(&inode->i_dio_count));
2278 finish_wait(wq, &q.wq_entry);
2282 * inode_dio_wait - wait for outstanding DIO requests to finish
2283 * @inode: inode to wait for
2285 * Waits for all pending direct I/O requests to finish so that we can
2286 * proceed with a truncate or equivalent operation.
2288 * Must be called under a lock that serializes taking new references
2289 * to i_dio_count, usually by inode->i_mutex.
2291 void inode_dio_wait(struct inode *inode)
2293 if (atomic_read(&inode->i_dio_count))
2294 __inode_dio_wait(inode);
2296 EXPORT_SYMBOL(inode_dio_wait);
2299 * inode_set_flags - atomically set some inode flags
2301 * Note: the caller should be holding i_mutex, or else be sure that
2302 * they have exclusive access to the inode structure (i.e., while the
2303 * inode is being instantiated). The reason for the cmpxchg() loop
2304 * --- which wouldn't be necessary if all code paths which modify
2305 * i_flags actually followed this rule, is that there is at least one
2306 * code path which doesn't today so we use cmpxchg() out of an abundance
2309 * In the long run, i_mutex is overkill, and we should probably look
2310 * at using the i_lock spinlock to protect i_flags, and then make sure
2311 * it is so documented in include/linux/fs.h and that all code follows
2312 * the locking convention!!
2314 void inode_set_flags(struct inode *inode, unsigned int flags,
2317 WARN_ON_ONCE(flags & ~mask);
2318 set_mask_bits(&inode->i_flags, mask, flags);
2320 EXPORT_SYMBOL(inode_set_flags);
2322 void inode_nohighmem(struct inode *inode)
2324 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2326 EXPORT_SYMBOL(inode_nohighmem);
2329 * timestamp_truncate - Truncate timespec to a granularity
2331 * @inode: inode being updated
2333 * Truncate a timespec to the granularity supported by the fs
2334 * containing the inode. Always rounds down. gran must
2335 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2337 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2339 struct super_block *sb = inode->i_sb;
2340 unsigned int gran = sb->s_time_gran;
2342 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2343 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2346 /* Avoid division in the common cases 1 ns and 1 s. */
2349 else if (gran == NSEC_PER_SEC)
2351 else if (gran > 1 && gran < NSEC_PER_SEC)
2352 t.tv_nsec -= t.tv_nsec % gran;
2354 WARN(1, "invalid file time granularity: %u", gran);
2357 EXPORT_SYMBOL(timestamp_truncate);
2360 * current_time - Return FS time
2363 * Return the current time truncated to the time granularity supported by
2366 * Note that inode and inode->sb cannot be NULL.
2367 * Otherwise, the function warns and returns time without truncation.
2369 struct timespec64 current_time(struct inode *inode)
2371 struct timespec64 now;
2373 ktime_get_coarse_real_ts64(&now);
2375 if (unlikely(!inode->i_sb)) {
2376 WARN(1, "current_time() called with uninitialized super_block in the inode");
2380 return timestamp_truncate(now, inode);
2382 EXPORT_SYMBOL(current_time);