1 // SPDX-License-Identifier: GPL-2.0-only
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
6 #include <linux/export.h>
8 #include <linux/filelock.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/prefetch.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <trace/events/writeback.h>
28 * Inode locking rules:
30 * inode->i_lock protects:
31 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list
32 * Inode LRU list locks protect:
33 * inode->i_sb->s_inode_lru, inode->i_lru
34 * inode->i_sb->s_inode_list_lock protects:
35 * inode->i_sb->s_inodes, inode->i_sb_list
36 * bdi->wb.list_lock protects:
37 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38 * inode_hash_lock protects:
39 * inode_hashtable, inode->i_hash
43 * inode->i_sb->s_inode_list_lock
45 * Inode LRU list locks
51 * inode->i_sb->s_inode_list_lock
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 static struct hlist_head *inode_hashtable __read_mostly;
61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
64 * Empty aops. Can be used for the cases where the user does not
65 * define any of the address_space operations.
67 const struct address_space_operations empty_aops = {
69 EXPORT_SYMBOL(empty_aops);
71 static DEFINE_PER_CPU(unsigned long, nr_inodes);
72 static DEFINE_PER_CPU(unsigned long, nr_unused);
74 static struct kmem_cache *inode_cachep __read_mostly;
76 static long get_nr_inodes(void)
80 for_each_possible_cpu(i)
81 sum += per_cpu(nr_inodes, i);
82 return sum < 0 ? 0 : sum;
85 static inline long get_nr_inodes_unused(void)
89 for_each_possible_cpu(i)
90 sum += per_cpu(nr_unused, i);
91 return sum < 0 ? 0 : sum;
94 long get_nr_dirty_inodes(void)
96 /* not actually dirty inodes, but a wild approximation */
97 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
98 return nr_dirty > 0 ? nr_dirty : 0;
102 * Handle nr_inode sysctl
106 * Statistics gathering..
108 static struct inodes_stat_t inodes_stat;
110 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
111 size_t *lenp, loff_t *ppos)
113 inodes_stat.nr_inodes = get_nr_inodes();
114 inodes_stat.nr_unused = get_nr_inodes_unused();
115 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
118 static struct ctl_table inodes_sysctls[] = {
120 .procname = "inode-nr",
121 .data = &inodes_stat,
122 .maxlen = 2*sizeof(long),
124 .proc_handler = proc_nr_inodes,
127 .procname = "inode-state",
128 .data = &inodes_stat,
129 .maxlen = 7*sizeof(long),
131 .proc_handler = proc_nr_inodes,
136 static int __init init_fs_inode_sysctls(void)
138 register_sysctl_init("fs", inodes_sysctls);
141 early_initcall(init_fs_inode_sysctls);
144 static int no_open(struct inode *inode, struct file *file)
150 * inode_init_always - perform inode structure initialisation
151 * @sb: superblock inode belongs to
152 * @inode: inode to initialise
154 * These are initializations that need to be done on every inode
155 * allocation as the fields are not initialised by slab allocation.
157 int inode_init_always(struct super_block *sb, struct inode *inode)
159 static const struct inode_operations empty_iops;
160 static const struct file_operations no_open_fops = {.open = no_open};
161 struct address_space *const mapping = &inode->i_data;
164 inode->i_blkbits = sb->s_blocksize_bits;
166 atomic64_set(&inode->i_sequence, 0);
167 atomic_set(&inode->i_count, 1);
168 inode->i_op = &empty_iops;
169 inode->i_fop = &no_open_fops;
171 inode->__i_nlink = 1;
172 inode->i_opflags = 0;
174 inode->i_opflags |= IOP_XATTR;
175 i_uid_write(inode, 0);
176 i_gid_write(inode, 0);
177 atomic_set(&inode->i_writecount, 0);
179 inode->i_write_hint = WRITE_LIFE_NOT_SET;
182 inode->i_generation = 0;
183 inode->i_pipe = NULL;
184 inode->i_cdev = NULL;
185 inode->i_link = NULL;
186 inode->i_dir_seq = 0;
188 inode->dirtied_when = 0;
190 #ifdef CONFIG_CGROUP_WRITEBACK
191 inode->i_wb_frn_winner = 0;
192 inode->i_wb_frn_avg_time = 0;
193 inode->i_wb_frn_history = 0;
196 spin_lock_init(&inode->i_lock);
197 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
199 init_rwsem(&inode->i_rwsem);
200 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
202 atomic_set(&inode->i_dio_count, 0);
204 mapping->a_ops = &empty_aops;
205 mapping->host = inode;
208 atomic_set(&mapping->i_mmap_writable, 0);
209 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
210 atomic_set(&mapping->nr_thps, 0);
212 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
213 mapping->private_data = NULL;
214 mapping->writeback_index = 0;
215 init_rwsem(&mapping->invalidate_lock);
216 lockdep_set_class_and_name(&mapping->invalidate_lock,
217 &sb->s_type->invalidate_lock_key,
218 "mapping.invalidate_lock");
219 inode->i_private = NULL;
220 inode->i_mapping = mapping;
221 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
222 #ifdef CONFIG_FS_POSIX_ACL
223 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
226 #ifdef CONFIG_FSNOTIFY
227 inode->i_fsnotify_mask = 0;
229 inode->i_flctx = NULL;
231 if (unlikely(security_inode_alloc(inode)))
233 this_cpu_inc(nr_inodes);
237 EXPORT_SYMBOL(inode_init_always);
239 void free_inode_nonrcu(struct inode *inode)
241 kmem_cache_free(inode_cachep, inode);
243 EXPORT_SYMBOL(free_inode_nonrcu);
245 static void i_callback(struct rcu_head *head)
247 struct inode *inode = container_of(head, struct inode, i_rcu);
248 if (inode->free_inode)
249 inode->free_inode(inode);
251 free_inode_nonrcu(inode);
254 static struct inode *alloc_inode(struct super_block *sb)
256 const struct super_operations *ops = sb->s_op;
259 if (ops->alloc_inode)
260 inode = ops->alloc_inode(sb);
262 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
267 if (unlikely(inode_init_always(sb, inode))) {
268 if (ops->destroy_inode) {
269 ops->destroy_inode(inode);
270 if (!ops->free_inode)
273 inode->free_inode = ops->free_inode;
274 i_callback(&inode->i_rcu);
281 void __destroy_inode(struct inode *inode)
283 BUG_ON(inode_has_buffers(inode));
284 inode_detach_wb(inode);
285 security_inode_free(inode);
286 fsnotify_inode_delete(inode);
287 locks_free_lock_context(inode);
288 if (!inode->i_nlink) {
289 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
290 atomic_long_dec(&inode->i_sb->s_remove_count);
293 #ifdef CONFIG_FS_POSIX_ACL
294 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
295 posix_acl_release(inode->i_acl);
296 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
297 posix_acl_release(inode->i_default_acl);
299 this_cpu_dec(nr_inodes);
301 EXPORT_SYMBOL(__destroy_inode);
303 static void destroy_inode(struct inode *inode)
305 const struct super_operations *ops = inode->i_sb->s_op;
307 BUG_ON(!list_empty(&inode->i_lru));
308 __destroy_inode(inode);
309 if (ops->destroy_inode) {
310 ops->destroy_inode(inode);
311 if (!ops->free_inode)
314 inode->free_inode = ops->free_inode;
315 call_rcu(&inode->i_rcu, i_callback);
319 * drop_nlink - directly drop an inode's link count
322 * This is a low-level filesystem helper to replace any
323 * direct filesystem manipulation of i_nlink. In cases
324 * where we are attempting to track writes to the
325 * filesystem, a decrement to zero means an imminent
326 * write when the file is truncated and actually unlinked
329 void drop_nlink(struct inode *inode)
331 WARN_ON(inode->i_nlink == 0);
334 atomic_long_inc(&inode->i_sb->s_remove_count);
336 EXPORT_SYMBOL(drop_nlink);
339 * clear_nlink - directly zero an inode's link count
342 * This is a low-level filesystem helper to replace any
343 * direct filesystem manipulation of i_nlink. See
344 * drop_nlink() for why we care about i_nlink hitting zero.
346 void clear_nlink(struct inode *inode)
348 if (inode->i_nlink) {
349 inode->__i_nlink = 0;
350 atomic_long_inc(&inode->i_sb->s_remove_count);
353 EXPORT_SYMBOL(clear_nlink);
356 * set_nlink - directly set an inode's link count
358 * @nlink: new nlink (should be non-zero)
360 * This is a low-level filesystem helper to replace any
361 * direct filesystem manipulation of i_nlink.
363 void set_nlink(struct inode *inode, unsigned int nlink)
368 /* Yes, some filesystems do change nlink from zero to one */
369 if (inode->i_nlink == 0)
370 atomic_long_dec(&inode->i_sb->s_remove_count);
372 inode->__i_nlink = nlink;
375 EXPORT_SYMBOL(set_nlink);
378 * inc_nlink - directly increment an inode's link count
381 * This is a low-level filesystem helper to replace any
382 * direct filesystem manipulation of i_nlink. Currently,
383 * it is only here for parity with dec_nlink().
385 void inc_nlink(struct inode *inode)
387 if (unlikely(inode->i_nlink == 0)) {
388 WARN_ON(!(inode->i_state & I_LINKABLE));
389 atomic_long_dec(&inode->i_sb->s_remove_count);
394 EXPORT_SYMBOL(inc_nlink);
396 static void __address_space_init_once(struct address_space *mapping)
398 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
399 init_rwsem(&mapping->i_mmap_rwsem);
400 INIT_LIST_HEAD(&mapping->private_list);
401 spin_lock_init(&mapping->private_lock);
402 mapping->i_mmap = RB_ROOT_CACHED;
405 void address_space_init_once(struct address_space *mapping)
407 memset(mapping, 0, sizeof(*mapping));
408 __address_space_init_once(mapping);
410 EXPORT_SYMBOL(address_space_init_once);
413 * These are initializations that only need to be done
414 * once, because the fields are idempotent across use
415 * of the inode, so let the slab aware of that.
417 void inode_init_once(struct inode *inode)
419 memset(inode, 0, sizeof(*inode));
420 INIT_HLIST_NODE(&inode->i_hash);
421 INIT_LIST_HEAD(&inode->i_devices);
422 INIT_LIST_HEAD(&inode->i_io_list);
423 INIT_LIST_HEAD(&inode->i_wb_list);
424 INIT_LIST_HEAD(&inode->i_lru);
425 INIT_LIST_HEAD(&inode->i_sb_list);
426 __address_space_init_once(&inode->i_data);
427 i_size_ordered_init(inode);
429 EXPORT_SYMBOL(inode_init_once);
431 static void init_once(void *foo)
433 struct inode *inode = (struct inode *) foo;
435 inode_init_once(inode);
439 * inode->i_lock must be held
441 void __iget(struct inode *inode)
443 atomic_inc(&inode->i_count);
447 * get additional reference to inode; caller must already hold one.
449 void ihold(struct inode *inode)
451 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
453 EXPORT_SYMBOL(ihold);
455 static void __inode_add_lru(struct inode *inode, bool rotate)
457 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
459 if (atomic_read(&inode->i_count))
461 if (!(inode->i_sb->s_flags & SB_ACTIVE))
463 if (!mapping_shrinkable(&inode->i_data))
466 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
467 this_cpu_inc(nr_unused);
469 inode->i_state |= I_REFERENCED;
473 * Add inode to LRU if needed (inode is unused and clean).
475 * Needs inode->i_lock held.
477 void inode_add_lru(struct inode *inode)
479 __inode_add_lru(inode, false);
482 static void inode_lru_list_del(struct inode *inode)
484 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
485 this_cpu_dec(nr_unused);
489 * inode_sb_list_add - add inode to the superblock list of inodes
490 * @inode: inode to add
492 void inode_sb_list_add(struct inode *inode)
494 spin_lock(&inode->i_sb->s_inode_list_lock);
495 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
496 spin_unlock(&inode->i_sb->s_inode_list_lock);
498 EXPORT_SYMBOL_GPL(inode_sb_list_add);
500 static inline void inode_sb_list_del(struct inode *inode)
502 if (!list_empty(&inode->i_sb_list)) {
503 spin_lock(&inode->i_sb->s_inode_list_lock);
504 list_del_init(&inode->i_sb_list);
505 spin_unlock(&inode->i_sb->s_inode_list_lock);
509 static unsigned long hash(struct super_block *sb, unsigned long hashval)
513 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
515 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
516 return tmp & i_hash_mask;
520 * __insert_inode_hash - hash an inode
521 * @inode: unhashed inode
522 * @hashval: unsigned long value used to locate this object in the
525 * Add an inode to the inode hash for this superblock.
527 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
529 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
531 spin_lock(&inode_hash_lock);
532 spin_lock(&inode->i_lock);
533 hlist_add_head_rcu(&inode->i_hash, b);
534 spin_unlock(&inode->i_lock);
535 spin_unlock(&inode_hash_lock);
537 EXPORT_SYMBOL(__insert_inode_hash);
540 * __remove_inode_hash - remove an inode from the hash
541 * @inode: inode to unhash
543 * Remove an inode from the superblock.
545 void __remove_inode_hash(struct inode *inode)
547 spin_lock(&inode_hash_lock);
548 spin_lock(&inode->i_lock);
549 hlist_del_init_rcu(&inode->i_hash);
550 spin_unlock(&inode->i_lock);
551 spin_unlock(&inode_hash_lock);
553 EXPORT_SYMBOL(__remove_inode_hash);
555 void dump_mapping(const struct address_space *mapping)
558 const struct address_space_operations *a_ops;
559 struct hlist_node *dentry_first;
560 struct dentry *dentry_ptr;
561 struct dentry dentry;
565 * If mapping is an invalid pointer, we don't want to crash
566 * accessing it, so probe everything depending on it carefully.
568 if (get_kernel_nofault(host, &mapping->host) ||
569 get_kernel_nofault(a_ops, &mapping->a_ops)) {
570 pr_warn("invalid mapping:%px\n", mapping);
575 pr_warn("aops:%ps\n", a_ops);
579 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
580 get_kernel_nofault(ino, &host->i_ino)) {
581 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
586 pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
590 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
591 if (get_kernel_nofault(dentry, dentry_ptr)) {
592 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
593 a_ops, ino, dentry_ptr);
598 * if dentry is corrupted, the %pd handler may still crash,
599 * but it's unlikely that we reach here with a corrupt mapping
601 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
604 void clear_inode(struct inode *inode)
607 * We have to cycle the i_pages lock here because reclaim can be in the
608 * process of removing the last page (in __filemap_remove_folio())
609 * and we must not free the mapping under it.
611 xa_lock_irq(&inode->i_data.i_pages);
612 BUG_ON(inode->i_data.nrpages);
614 * Almost always, mapping_empty(&inode->i_data) here; but there are
615 * two known and long-standing ways in which nodes may get left behind
616 * (when deep radix-tree node allocation failed partway; or when THP
617 * collapse_file() failed). Until those two known cases are cleaned up,
618 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
619 * nor even WARN_ON(!mapping_empty).
621 xa_unlock_irq(&inode->i_data.i_pages);
622 BUG_ON(!list_empty(&inode->i_data.private_list));
623 BUG_ON(!(inode->i_state & I_FREEING));
624 BUG_ON(inode->i_state & I_CLEAR);
625 BUG_ON(!list_empty(&inode->i_wb_list));
626 /* don't need i_lock here, no concurrent mods to i_state */
627 inode->i_state = I_FREEING | I_CLEAR;
629 EXPORT_SYMBOL(clear_inode);
632 * Free the inode passed in, removing it from the lists it is still connected
633 * to. We remove any pages still attached to the inode and wait for any IO that
634 * is still in progress before finally destroying the inode.
636 * An inode must already be marked I_FREEING so that we avoid the inode being
637 * moved back onto lists if we race with other code that manipulates the lists
638 * (e.g. writeback_single_inode). The caller is responsible for setting this.
640 * An inode must already be removed from the LRU list before being evicted from
641 * the cache. This should occur atomically with setting the I_FREEING state
642 * flag, so no inodes here should ever be on the LRU when being evicted.
644 static void evict(struct inode *inode)
646 const struct super_operations *op = inode->i_sb->s_op;
648 BUG_ON(!(inode->i_state & I_FREEING));
649 BUG_ON(!list_empty(&inode->i_lru));
651 if (!list_empty(&inode->i_io_list))
652 inode_io_list_del(inode);
654 inode_sb_list_del(inode);
657 * Wait for flusher thread to be done with the inode so that filesystem
658 * does not start destroying it while writeback is still running. Since
659 * the inode has I_FREEING set, flusher thread won't start new work on
660 * the inode. We just have to wait for running writeback to finish.
662 inode_wait_for_writeback(inode);
664 if (op->evict_inode) {
665 op->evict_inode(inode);
667 truncate_inode_pages_final(&inode->i_data);
670 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
673 remove_inode_hash(inode);
675 spin_lock(&inode->i_lock);
676 wake_up_bit(&inode->i_state, __I_NEW);
677 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
678 spin_unlock(&inode->i_lock);
680 destroy_inode(inode);
684 * dispose_list - dispose of the contents of a local list
685 * @head: the head of the list to free
687 * Dispose-list gets a local list with local inodes in it, so it doesn't
688 * need to worry about list corruption and SMP locks.
690 static void dispose_list(struct list_head *head)
692 while (!list_empty(head)) {
695 inode = list_first_entry(head, struct inode, i_lru);
696 list_del_init(&inode->i_lru);
704 * evict_inodes - evict all evictable inodes for a superblock
705 * @sb: superblock to operate on
707 * Make sure that no inodes with zero refcount are retained. This is
708 * called by superblock shutdown after having SB_ACTIVE flag removed,
709 * so any inode reaching zero refcount during or after that call will
710 * be immediately evicted.
712 void evict_inodes(struct super_block *sb)
714 struct inode *inode, *next;
718 spin_lock(&sb->s_inode_list_lock);
719 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
720 if (atomic_read(&inode->i_count))
723 spin_lock(&inode->i_lock);
724 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
725 spin_unlock(&inode->i_lock);
729 inode->i_state |= I_FREEING;
730 inode_lru_list_del(inode);
731 spin_unlock(&inode->i_lock);
732 list_add(&inode->i_lru, &dispose);
735 * We can have a ton of inodes to evict at unmount time given
736 * enough memory, check to see if we need to go to sleep for a
737 * bit so we don't livelock.
739 if (need_resched()) {
740 spin_unlock(&sb->s_inode_list_lock);
742 dispose_list(&dispose);
746 spin_unlock(&sb->s_inode_list_lock);
748 dispose_list(&dispose);
750 EXPORT_SYMBOL_GPL(evict_inodes);
753 * invalidate_inodes - attempt to free all inodes on a superblock
754 * @sb: superblock to operate on
755 * @kill_dirty: flag to guide handling of dirty inodes
757 * Attempts to free all inodes for a given superblock. If there were any
758 * busy inodes return a non-zero value, else zero.
759 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
762 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
765 struct inode *inode, *next;
769 spin_lock(&sb->s_inode_list_lock);
770 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
771 spin_lock(&inode->i_lock);
772 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
773 spin_unlock(&inode->i_lock);
776 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
777 spin_unlock(&inode->i_lock);
781 if (atomic_read(&inode->i_count)) {
782 spin_unlock(&inode->i_lock);
787 inode->i_state |= I_FREEING;
788 inode_lru_list_del(inode);
789 spin_unlock(&inode->i_lock);
790 list_add(&inode->i_lru, &dispose);
791 if (need_resched()) {
792 spin_unlock(&sb->s_inode_list_lock);
794 dispose_list(&dispose);
798 spin_unlock(&sb->s_inode_list_lock);
800 dispose_list(&dispose);
806 * Isolate the inode from the LRU in preparation for freeing it.
808 * If the inode has the I_REFERENCED flag set, then it means that it has been
809 * used recently - the flag is set in iput_final(). When we encounter such an
810 * inode, clear the flag and move it to the back of the LRU so it gets another
811 * pass through the LRU before it gets reclaimed. This is necessary because of
812 * the fact we are doing lazy LRU updates to minimise lock contention so the
813 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
814 * with this flag set because they are the inodes that are out of order.
816 static enum lru_status inode_lru_isolate(struct list_head *item,
817 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
819 struct list_head *freeable = arg;
820 struct inode *inode = container_of(item, struct inode, i_lru);
823 * We are inverting the lru lock/inode->i_lock here, so use a
824 * trylock. If we fail to get the lock, just skip it.
826 if (!spin_trylock(&inode->i_lock))
830 * Inodes can get referenced, redirtied, or repopulated while
831 * they're already on the LRU, and this can make them
832 * unreclaimable for a while. Remove them lazily here; iput,
833 * sync, or the last page cache deletion will requeue them.
835 if (atomic_read(&inode->i_count) ||
836 (inode->i_state & ~I_REFERENCED) ||
837 !mapping_shrinkable(&inode->i_data)) {
838 list_lru_isolate(lru, &inode->i_lru);
839 spin_unlock(&inode->i_lock);
840 this_cpu_dec(nr_unused);
844 /* Recently referenced inodes get one more pass */
845 if (inode->i_state & I_REFERENCED) {
846 inode->i_state &= ~I_REFERENCED;
847 spin_unlock(&inode->i_lock);
852 * On highmem systems, mapping_shrinkable() permits dropping
853 * page cache in order to free up struct inodes: lowmem might
854 * be under pressure before the cache inside the highmem zone.
856 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
858 spin_unlock(&inode->i_lock);
859 spin_unlock(lru_lock);
860 if (remove_inode_buffers(inode)) {
862 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
863 if (current_is_kswapd())
864 __count_vm_events(KSWAPD_INODESTEAL, reap);
866 __count_vm_events(PGINODESTEAL, reap);
867 mm_account_reclaimed_pages(reap);
874 WARN_ON(inode->i_state & I_NEW);
875 inode->i_state |= I_FREEING;
876 list_lru_isolate_move(lru, &inode->i_lru, freeable);
877 spin_unlock(&inode->i_lock);
879 this_cpu_dec(nr_unused);
884 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
885 * This is called from the superblock shrinker function with a number of inodes
886 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
887 * then are freed outside inode_lock by dispose_list().
889 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
894 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
895 inode_lru_isolate, &freeable);
896 dispose_list(&freeable);
900 static void __wait_on_freeing_inode(struct inode *inode);
902 * Called with the inode lock held.
904 static struct inode *find_inode(struct super_block *sb,
905 struct hlist_head *head,
906 int (*test)(struct inode *, void *),
909 struct inode *inode = NULL;
912 hlist_for_each_entry(inode, head, i_hash) {
913 if (inode->i_sb != sb)
915 if (!test(inode, data))
917 spin_lock(&inode->i_lock);
918 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
919 __wait_on_freeing_inode(inode);
922 if (unlikely(inode->i_state & I_CREATING)) {
923 spin_unlock(&inode->i_lock);
924 return ERR_PTR(-ESTALE);
927 spin_unlock(&inode->i_lock);
934 * find_inode_fast is the fast path version of find_inode, see the comment at
935 * iget_locked for details.
937 static struct inode *find_inode_fast(struct super_block *sb,
938 struct hlist_head *head, unsigned long ino)
940 struct inode *inode = NULL;
943 hlist_for_each_entry(inode, head, i_hash) {
944 if (inode->i_ino != ino)
946 if (inode->i_sb != sb)
948 spin_lock(&inode->i_lock);
949 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
950 __wait_on_freeing_inode(inode);
953 if (unlikely(inode->i_state & I_CREATING)) {
954 spin_unlock(&inode->i_lock);
955 return ERR_PTR(-ESTALE);
958 spin_unlock(&inode->i_lock);
965 * Each cpu owns a range of LAST_INO_BATCH numbers.
966 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
967 * to renew the exhausted range.
969 * This does not significantly increase overflow rate because every CPU can
970 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
971 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
972 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
973 * overflow rate by 2x, which does not seem too significant.
975 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
976 * error if st_ino won't fit in target struct field. Use 32bit counter
977 * here to attempt to avoid that.
979 #define LAST_INO_BATCH 1024
980 static DEFINE_PER_CPU(unsigned int, last_ino);
982 unsigned int get_next_ino(void)
984 unsigned int *p = &get_cpu_var(last_ino);
985 unsigned int res = *p;
988 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
989 static atomic_t shared_last_ino;
990 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
992 res = next - LAST_INO_BATCH;
997 /* get_next_ino should not provide a 0 inode number */
1001 put_cpu_var(last_ino);
1004 EXPORT_SYMBOL(get_next_ino);
1007 * new_inode_pseudo - obtain an inode
1010 * Allocates a new inode for given superblock.
1011 * Inode wont be chained in superblock s_inodes list
1013 * - fs can't be unmount
1014 * - quotas, fsnotify, writeback can't work
1016 struct inode *new_inode_pseudo(struct super_block *sb)
1018 struct inode *inode = alloc_inode(sb);
1021 spin_lock(&inode->i_lock);
1023 spin_unlock(&inode->i_lock);
1029 * new_inode - obtain an inode
1032 * Allocates a new inode for given superblock. The default gfp_mask
1033 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1034 * If HIGHMEM pages are unsuitable or it is known that pages allocated
1035 * for the page cache are not reclaimable or migratable,
1036 * mapping_set_gfp_mask() must be called with suitable flags on the
1037 * newly created inode's mapping
1040 struct inode *new_inode(struct super_block *sb)
1042 struct inode *inode;
1044 spin_lock_prefetch(&sb->s_inode_list_lock);
1046 inode = new_inode_pseudo(sb);
1048 inode_sb_list_add(inode);
1051 EXPORT_SYMBOL(new_inode);
1053 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1054 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1056 if (S_ISDIR(inode->i_mode)) {
1057 struct file_system_type *type = inode->i_sb->s_type;
1059 /* Set new key only if filesystem hasn't already changed it */
1060 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1062 * ensure nobody is actually holding i_mutex
1064 // mutex_destroy(&inode->i_mutex);
1065 init_rwsem(&inode->i_rwsem);
1066 lockdep_set_class(&inode->i_rwsem,
1067 &type->i_mutex_dir_key);
1071 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1075 * unlock_new_inode - clear the I_NEW state and wake up any waiters
1076 * @inode: new inode to unlock
1078 * Called when the inode is fully initialised to clear the new state of the
1079 * inode and wake up anyone waiting for the inode to finish initialisation.
1081 void unlock_new_inode(struct inode *inode)
1083 lockdep_annotate_inode_mutex_key(inode);
1084 spin_lock(&inode->i_lock);
1085 WARN_ON(!(inode->i_state & I_NEW));
1086 inode->i_state &= ~I_NEW & ~I_CREATING;
1088 wake_up_bit(&inode->i_state, __I_NEW);
1089 spin_unlock(&inode->i_lock);
1091 EXPORT_SYMBOL(unlock_new_inode);
1093 void discard_new_inode(struct inode *inode)
1095 lockdep_annotate_inode_mutex_key(inode);
1096 spin_lock(&inode->i_lock);
1097 WARN_ON(!(inode->i_state & I_NEW));
1098 inode->i_state &= ~I_NEW;
1100 wake_up_bit(&inode->i_state, __I_NEW);
1101 spin_unlock(&inode->i_lock);
1104 EXPORT_SYMBOL(discard_new_inode);
1107 * lock_two_inodes - lock two inodes (may be regular files but also dirs)
1109 * Lock any non-NULL argument. The caller must make sure that if he is passing
1110 * in two directories, one is not ancestor of the other. Zero, one or two
1111 * objects may be locked by this function.
1113 * @inode1: first inode to lock
1114 * @inode2: second inode to lock
1115 * @subclass1: inode lock subclass for the first lock obtained
1116 * @subclass2: inode lock subclass for the second lock obtained
1118 void lock_two_inodes(struct inode *inode1, struct inode *inode2,
1119 unsigned subclass1, unsigned subclass2)
1121 if (!inode1 || !inode2) {
1123 * Make sure @subclass1 will be used for the acquired lock.
1124 * This is not strictly necessary (no current caller cares) but
1125 * let's keep things consistent.
1128 swap(inode1, inode2);
1133 * If one object is directory and the other is not, we must make sure
1134 * to lock directory first as the other object may be its child.
1136 if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) {
1137 if (inode1 > inode2)
1138 swap(inode1, inode2);
1139 } else if (!S_ISDIR(inode1->i_mode))
1140 swap(inode1, inode2);
1143 inode_lock_nested(inode1, subclass1);
1144 if (inode2 && inode2 != inode1)
1145 inode_lock_nested(inode2, subclass2);
1149 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1151 * Lock any non-NULL argument. Passed objects must not be directories.
1152 * Zero, one or two objects may be locked by this function.
1154 * @inode1: first inode to lock
1155 * @inode2: second inode to lock
1157 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1159 WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1160 WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1161 lock_two_inodes(inode1, inode2, I_MUTEX_NORMAL, I_MUTEX_NONDIR2);
1163 EXPORT_SYMBOL(lock_two_nondirectories);
1166 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1167 * @inode1: first inode to unlock
1168 * @inode2: second inode to unlock
1170 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1173 WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1174 inode_unlock(inode1);
1176 if (inode2 && inode2 != inode1) {
1177 WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1178 inode_unlock(inode2);
1181 EXPORT_SYMBOL(unlock_two_nondirectories);
1184 * inode_insert5 - obtain an inode from a mounted file system
1185 * @inode: pre-allocated inode to use for insert to cache
1186 * @hashval: hash value (usually inode number) to get
1187 * @test: callback used for comparisons between inodes
1188 * @set: callback used to initialize a new struct inode
1189 * @data: opaque data pointer to pass to @test and @set
1191 * Search for the inode specified by @hashval and @data in the inode cache,
1192 * and if present it is return it with an increased reference count. This is
1193 * a variant of iget5_locked() for callers that don't want to fail on memory
1194 * allocation of inode.
1196 * If the inode is not in cache, insert the pre-allocated inode to cache and
1197 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1198 * to fill it in before unlocking it via unlock_new_inode().
1200 * Note both @test and @set are called with the inode_hash_lock held, so can't
1203 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1204 int (*test)(struct inode *, void *),
1205 int (*set)(struct inode *, void *), void *data)
1207 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1211 spin_lock(&inode_hash_lock);
1212 old = find_inode(inode->i_sb, head, test, data);
1213 if (unlikely(old)) {
1215 * Uhhuh, somebody else created the same inode under us.
1216 * Use the old inode instead of the preallocated one.
1218 spin_unlock(&inode_hash_lock);
1222 if (unlikely(inode_unhashed(old))) {
1229 if (set && unlikely(set(inode, data))) {
1235 * Return the locked inode with I_NEW set, the
1236 * caller is responsible for filling in the contents
1238 spin_lock(&inode->i_lock);
1239 inode->i_state |= I_NEW;
1240 hlist_add_head_rcu(&inode->i_hash, head);
1241 spin_unlock(&inode->i_lock);
1244 * Add inode to the sb list if it's not already. It has I_NEW at this
1245 * point, so it should be safe to test i_sb_list locklessly.
1247 if (list_empty(&inode->i_sb_list))
1248 inode_sb_list_add(inode);
1250 spin_unlock(&inode_hash_lock);
1254 EXPORT_SYMBOL(inode_insert5);
1257 * iget5_locked - obtain an inode from a mounted file system
1258 * @sb: super block of file system
1259 * @hashval: hash value (usually inode number) to get
1260 * @test: callback used for comparisons between inodes
1261 * @set: callback used to initialize a new struct inode
1262 * @data: opaque data pointer to pass to @test and @set
1264 * Search for the inode specified by @hashval and @data in the inode cache,
1265 * and if present it is return it with an increased reference count. This is
1266 * a generalized version of iget_locked() for file systems where the inode
1267 * number is not sufficient for unique identification of an inode.
1269 * If the inode is not in cache, allocate a new inode and return it locked,
1270 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1271 * before unlocking it via unlock_new_inode().
1273 * Note both @test and @set are called with the inode_hash_lock held, so can't
1276 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1277 int (*test)(struct inode *, void *),
1278 int (*set)(struct inode *, void *), void *data)
1280 struct inode *inode = ilookup5(sb, hashval, test, data);
1283 struct inode *new = alloc_inode(sb);
1287 inode = inode_insert5(new, hashval, test, set, data);
1288 if (unlikely(inode != new))
1294 EXPORT_SYMBOL(iget5_locked);
1297 * iget_locked - obtain an inode from a mounted file system
1298 * @sb: super block of file system
1299 * @ino: inode number to get
1301 * Search for the inode specified by @ino in the inode cache and if present
1302 * return it with an increased reference count. This is for file systems
1303 * where the inode number is sufficient for unique identification of an inode.
1305 * If the inode is not in cache, allocate a new inode and return it locked,
1306 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1307 * before unlocking it via unlock_new_inode().
1309 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1311 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1312 struct inode *inode;
1314 spin_lock(&inode_hash_lock);
1315 inode = find_inode_fast(sb, head, ino);
1316 spin_unlock(&inode_hash_lock);
1320 wait_on_inode(inode);
1321 if (unlikely(inode_unhashed(inode))) {
1328 inode = alloc_inode(sb);
1332 spin_lock(&inode_hash_lock);
1333 /* We released the lock, so.. */
1334 old = find_inode_fast(sb, head, ino);
1337 spin_lock(&inode->i_lock);
1338 inode->i_state = I_NEW;
1339 hlist_add_head_rcu(&inode->i_hash, head);
1340 spin_unlock(&inode->i_lock);
1341 inode_sb_list_add(inode);
1342 spin_unlock(&inode_hash_lock);
1344 /* Return the locked inode with I_NEW set, the
1345 * caller is responsible for filling in the contents
1351 * Uhhuh, somebody else created the same inode under
1352 * us. Use the old inode instead of the one we just
1355 spin_unlock(&inode_hash_lock);
1356 destroy_inode(inode);
1360 wait_on_inode(inode);
1361 if (unlikely(inode_unhashed(inode))) {
1368 EXPORT_SYMBOL(iget_locked);
1371 * search the inode cache for a matching inode number.
1372 * If we find one, then the inode number we are trying to
1373 * allocate is not unique and so we should not use it.
1375 * Returns 1 if the inode number is unique, 0 if it is not.
1377 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1379 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1380 struct inode *inode;
1382 hlist_for_each_entry_rcu(inode, b, i_hash) {
1383 if (inode->i_ino == ino && inode->i_sb == sb)
1390 * iunique - get a unique inode number
1392 * @max_reserved: highest reserved inode number
1394 * Obtain an inode number that is unique on the system for a given
1395 * superblock. This is used by file systems that have no natural
1396 * permanent inode numbering system. An inode number is returned that
1397 * is higher than the reserved limit but unique.
1400 * With a large number of inodes live on the file system this function
1401 * currently becomes quite slow.
1403 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1406 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1407 * error if st_ino won't fit in target struct field. Use 32bit counter
1408 * here to attempt to avoid that.
1410 static DEFINE_SPINLOCK(iunique_lock);
1411 static unsigned int counter;
1415 spin_lock(&iunique_lock);
1417 if (counter <= max_reserved)
1418 counter = max_reserved + 1;
1420 } while (!test_inode_iunique(sb, res));
1421 spin_unlock(&iunique_lock);
1426 EXPORT_SYMBOL(iunique);
1428 struct inode *igrab(struct inode *inode)
1430 spin_lock(&inode->i_lock);
1431 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1433 spin_unlock(&inode->i_lock);
1435 spin_unlock(&inode->i_lock);
1437 * Handle the case where s_op->clear_inode is not been
1438 * called yet, and somebody is calling igrab
1439 * while the inode is getting freed.
1445 EXPORT_SYMBOL(igrab);
1448 * ilookup5_nowait - search for an inode in the inode cache
1449 * @sb: super block of file system to search
1450 * @hashval: hash value (usually inode number) to search for
1451 * @test: callback used for comparisons between inodes
1452 * @data: opaque data pointer to pass to @test
1454 * Search for the inode specified by @hashval and @data in the inode cache.
1455 * If the inode is in the cache, the inode is returned with an incremented
1458 * Note: I_NEW is not waited upon so you have to be very careful what you do
1459 * with the returned inode. You probably should be using ilookup5() instead.
1461 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1463 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1464 int (*test)(struct inode *, void *), void *data)
1466 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1467 struct inode *inode;
1469 spin_lock(&inode_hash_lock);
1470 inode = find_inode(sb, head, test, data);
1471 spin_unlock(&inode_hash_lock);
1473 return IS_ERR(inode) ? NULL : inode;
1475 EXPORT_SYMBOL(ilookup5_nowait);
1478 * ilookup5 - search for an inode in the inode cache
1479 * @sb: super block of file system to search
1480 * @hashval: hash value (usually inode number) to search for
1481 * @test: callback used for comparisons between inodes
1482 * @data: opaque data pointer to pass to @test
1484 * Search for the inode specified by @hashval and @data in the inode cache,
1485 * and if the inode is in the cache, return the inode with an incremented
1486 * reference count. Waits on I_NEW before returning the inode.
1487 * returned with an incremented reference count.
1489 * This is a generalized version of ilookup() for file systems where the
1490 * inode number is not sufficient for unique identification of an inode.
1492 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1494 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1495 int (*test)(struct inode *, void *), void *data)
1497 struct inode *inode;
1499 inode = ilookup5_nowait(sb, hashval, test, data);
1501 wait_on_inode(inode);
1502 if (unlikely(inode_unhashed(inode))) {
1509 EXPORT_SYMBOL(ilookup5);
1512 * ilookup - search for an inode in the inode cache
1513 * @sb: super block of file system to search
1514 * @ino: inode number to search for
1516 * Search for the inode @ino in the inode cache, and if the inode is in the
1517 * cache, the inode is returned with an incremented reference count.
1519 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1521 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1522 struct inode *inode;
1524 spin_lock(&inode_hash_lock);
1525 inode = find_inode_fast(sb, head, ino);
1526 spin_unlock(&inode_hash_lock);
1531 wait_on_inode(inode);
1532 if (unlikely(inode_unhashed(inode))) {
1539 EXPORT_SYMBOL(ilookup);
1542 * find_inode_nowait - find an inode in the inode cache
1543 * @sb: super block of file system to search
1544 * @hashval: hash value (usually inode number) to search for
1545 * @match: callback used for comparisons between inodes
1546 * @data: opaque data pointer to pass to @match
1548 * Search for the inode specified by @hashval and @data in the inode
1549 * cache, where the helper function @match will return 0 if the inode
1550 * does not match, 1 if the inode does match, and -1 if the search
1551 * should be stopped. The @match function must be responsible for
1552 * taking the i_lock spin_lock and checking i_state for an inode being
1553 * freed or being initialized, and incrementing the reference count
1554 * before returning 1. It also must not sleep, since it is called with
1555 * the inode_hash_lock spinlock held.
1557 * This is a even more generalized version of ilookup5() when the
1558 * function must never block --- find_inode() can block in
1559 * __wait_on_freeing_inode() --- or when the caller can not increment
1560 * the reference count because the resulting iput() might cause an
1561 * inode eviction. The tradeoff is that the @match funtion must be
1562 * very carefully implemented.
1564 struct inode *find_inode_nowait(struct super_block *sb,
1565 unsigned long hashval,
1566 int (*match)(struct inode *, unsigned long,
1570 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1571 struct inode *inode, *ret_inode = NULL;
1574 spin_lock(&inode_hash_lock);
1575 hlist_for_each_entry(inode, head, i_hash) {
1576 if (inode->i_sb != sb)
1578 mval = match(inode, hashval, data);
1586 spin_unlock(&inode_hash_lock);
1589 EXPORT_SYMBOL(find_inode_nowait);
1592 * find_inode_rcu - find an inode in the inode cache
1593 * @sb: Super block of file system to search
1594 * @hashval: Key to hash
1595 * @test: Function to test match on an inode
1596 * @data: Data for test function
1598 * Search for the inode specified by @hashval and @data in the inode cache,
1599 * where the helper function @test will return 0 if the inode does not match
1600 * and 1 if it does. The @test function must be responsible for taking the
1601 * i_lock spin_lock and checking i_state for an inode being freed or being
1604 * If successful, this will return the inode for which the @test function
1605 * returned 1 and NULL otherwise.
1607 * The @test function is not permitted to take a ref on any inode presented.
1608 * It is also not permitted to sleep.
1610 * The caller must hold the RCU read lock.
1612 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1613 int (*test)(struct inode *, void *), void *data)
1615 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1616 struct inode *inode;
1618 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1619 "suspicious find_inode_rcu() usage");
1621 hlist_for_each_entry_rcu(inode, head, i_hash) {
1622 if (inode->i_sb == sb &&
1623 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1629 EXPORT_SYMBOL(find_inode_rcu);
1632 * find_inode_by_ino_rcu - Find an inode in the inode cache
1633 * @sb: Super block of file system to search
1634 * @ino: The inode number to match
1636 * Search for the inode specified by @hashval and @data in the inode cache,
1637 * where the helper function @test will return 0 if the inode does not match
1638 * and 1 if it does. The @test function must be responsible for taking the
1639 * i_lock spin_lock and checking i_state for an inode being freed or being
1642 * If successful, this will return the inode for which the @test function
1643 * returned 1 and NULL otherwise.
1645 * The @test function is not permitted to take a ref on any inode presented.
1646 * It is also not permitted to sleep.
1648 * The caller must hold the RCU read lock.
1650 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1653 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1654 struct inode *inode;
1656 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1657 "suspicious find_inode_by_ino_rcu() usage");
1659 hlist_for_each_entry_rcu(inode, head, i_hash) {
1660 if (inode->i_ino == ino &&
1661 inode->i_sb == sb &&
1662 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1667 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1669 int insert_inode_locked(struct inode *inode)
1671 struct super_block *sb = inode->i_sb;
1672 ino_t ino = inode->i_ino;
1673 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1676 struct inode *old = NULL;
1677 spin_lock(&inode_hash_lock);
1678 hlist_for_each_entry(old, head, i_hash) {
1679 if (old->i_ino != ino)
1681 if (old->i_sb != sb)
1683 spin_lock(&old->i_lock);
1684 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1685 spin_unlock(&old->i_lock);
1691 spin_lock(&inode->i_lock);
1692 inode->i_state |= I_NEW | I_CREATING;
1693 hlist_add_head_rcu(&inode->i_hash, head);
1694 spin_unlock(&inode->i_lock);
1695 spin_unlock(&inode_hash_lock);
1698 if (unlikely(old->i_state & I_CREATING)) {
1699 spin_unlock(&old->i_lock);
1700 spin_unlock(&inode_hash_lock);
1704 spin_unlock(&old->i_lock);
1705 spin_unlock(&inode_hash_lock);
1707 if (unlikely(!inode_unhashed(old))) {
1714 EXPORT_SYMBOL(insert_inode_locked);
1716 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1717 int (*test)(struct inode *, void *), void *data)
1721 inode->i_state |= I_CREATING;
1722 old = inode_insert5(inode, hashval, test, NULL, data);
1730 EXPORT_SYMBOL(insert_inode_locked4);
1733 int generic_delete_inode(struct inode *inode)
1737 EXPORT_SYMBOL(generic_delete_inode);
1740 * Called when we're dropping the last reference
1743 * Call the FS "drop_inode()" function, defaulting to
1744 * the legacy UNIX filesystem behaviour. If it tells
1745 * us to evict inode, do so. Otherwise, retain inode
1746 * in cache if fs is alive, sync and evict if fs is
1749 static void iput_final(struct inode *inode)
1751 struct super_block *sb = inode->i_sb;
1752 const struct super_operations *op = inode->i_sb->s_op;
1753 unsigned long state;
1756 WARN_ON(inode->i_state & I_NEW);
1759 drop = op->drop_inode(inode);
1761 drop = generic_drop_inode(inode);
1764 !(inode->i_state & I_DONTCACHE) &&
1765 (sb->s_flags & SB_ACTIVE)) {
1766 __inode_add_lru(inode, true);
1767 spin_unlock(&inode->i_lock);
1771 state = inode->i_state;
1773 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1774 spin_unlock(&inode->i_lock);
1776 write_inode_now(inode, 1);
1778 spin_lock(&inode->i_lock);
1779 state = inode->i_state;
1780 WARN_ON(state & I_NEW);
1781 state &= ~I_WILL_FREE;
1784 WRITE_ONCE(inode->i_state, state | I_FREEING);
1785 if (!list_empty(&inode->i_lru))
1786 inode_lru_list_del(inode);
1787 spin_unlock(&inode->i_lock);
1793 * iput - put an inode
1794 * @inode: inode to put
1796 * Puts an inode, dropping its usage count. If the inode use count hits
1797 * zero, the inode is then freed and may also be destroyed.
1799 * Consequently, iput() can sleep.
1801 void iput(struct inode *inode)
1805 BUG_ON(inode->i_state & I_CLEAR);
1807 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1808 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1809 atomic_inc(&inode->i_count);
1810 spin_unlock(&inode->i_lock);
1811 trace_writeback_lazytime_iput(inode);
1812 mark_inode_dirty_sync(inode);
1818 EXPORT_SYMBOL(iput);
1822 * bmap - find a block number in a file
1823 * @inode: inode owning the block number being requested
1824 * @block: pointer containing the block to find
1826 * Replaces the value in ``*block`` with the block number on the device holding
1827 * corresponding to the requested block number in the file.
1828 * That is, asked for block 4 of inode 1 the function will replace the
1829 * 4 in ``*block``, with disk block relative to the disk start that holds that
1830 * block of the file.
1832 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1833 * hole, returns 0 and ``*block`` is also set to 0.
1835 int bmap(struct inode *inode, sector_t *block)
1837 if (!inode->i_mapping->a_ops->bmap)
1840 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1843 EXPORT_SYMBOL(bmap);
1847 * With relative atime, only update atime if the previous atime is
1848 * earlier than or equal to either the ctime or mtime,
1849 * or if at least a day has passed since the last atime update.
1851 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1852 struct timespec64 now)
1855 if (!(mnt->mnt_flags & MNT_RELATIME))
1858 * Is mtime younger than or equal to atime? If yes, update atime:
1860 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1863 * Is ctime younger than or equal to atime? If yes, update atime:
1865 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1869 * Is the previous atime value older than a day? If yes,
1872 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1875 * Good, we can skip the atime update:
1880 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1882 int dirty_flags = 0;
1884 if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1885 if (flags & S_ATIME)
1886 inode->i_atime = *time;
1887 if (flags & S_CTIME)
1888 inode->i_ctime = *time;
1889 if (flags & S_MTIME)
1890 inode->i_mtime = *time;
1892 if (inode->i_sb->s_flags & SB_LAZYTIME)
1893 dirty_flags |= I_DIRTY_TIME;
1895 dirty_flags |= I_DIRTY_SYNC;
1898 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1899 dirty_flags |= I_DIRTY_SYNC;
1901 __mark_inode_dirty(inode, dirty_flags);
1904 EXPORT_SYMBOL(generic_update_time);
1907 * This does the actual work of updating an inodes time or version. Must have
1908 * had called mnt_want_write() before calling this.
1910 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1912 if (inode->i_op->update_time)
1913 return inode->i_op->update_time(inode, time, flags);
1914 return generic_update_time(inode, time, flags);
1916 EXPORT_SYMBOL(inode_update_time);
1919 * atime_needs_update - update the access time
1920 * @path: the &struct path to update
1921 * @inode: inode to update
1923 * Update the accessed time on an inode and mark it for writeback.
1924 * This function automatically handles read only file systems and media,
1925 * as well as the "noatime" flag and inode specific "noatime" markers.
1927 bool atime_needs_update(const struct path *path, struct inode *inode)
1929 struct vfsmount *mnt = path->mnt;
1930 struct timespec64 now;
1932 if (inode->i_flags & S_NOATIME)
1935 /* Atime updates will likely cause i_uid and i_gid to be written
1936 * back improprely if their true value is unknown to the vfs.
1938 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
1941 if (IS_NOATIME(inode))
1943 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1946 if (mnt->mnt_flags & MNT_NOATIME)
1948 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1951 now = current_time(inode);
1953 if (!relatime_need_update(mnt, inode, now))
1956 if (timespec64_equal(&inode->i_atime, &now))
1962 void touch_atime(const struct path *path)
1964 struct vfsmount *mnt = path->mnt;
1965 struct inode *inode = d_inode(path->dentry);
1966 struct timespec64 now;
1968 if (!atime_needs_update(path, inode))
1971 if (!sb_start_write_trylock(inode->i_sb))
1974 if (__mnt_want_write(mnt) != 0)
1977 * File systems can error out when updating inodes if they need to
1978 * allocate new space to modify an inode (such is the case for
1979 * Btrfs), but since we touch atime while walking down the path we
1980 * really don't care if we failed to update the atime of the file,
1981 * so just ignore the return value.
1982 * We may also fail on filesystems that have the ability to make parts
1983 * of the fs read only, e.g. subvolumes in Btrfs.
1985 now = current_time(inode);
1986 inode_update_time(inode, &now, S_ATIME);
1987 __mnt_drop_write(mnt);
1989 sb_end_write(inode->i_sb);
1991 EXPORT_SYMBOL(touch_atime);
1994 * Return mask of changes for notify_change() that need to be done as a
1995 * response to write or truncate. Return 0 if nothing has to be changed.
1996 * Negative value on error (change should be denied).
1998 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
1999 struct dentry *dentry)
2001 struct inode *inode = d_inode(dentry);
2005 if (IS_NOSEC(inode))
2008 mask = setattr_should_drop_suidgid(idmap, inode);
2009 ret = security_inode_need_killpriv(dentry);
2013 mask |= ATTR_KILL_PRIV;
2017 static int __remove_privs(struct mnt_idmap *idmap,
2018 struct dentry *dentry, int kill)
2020 struct iattr newattrs;
2022 newattrs.ia_valid = ATTR_FORCE | kill;
2024 * Note we call this on write, so notify_change will not
2025 * encounter any conflicting delegations:
2027 return notify_change(idmap, dentry, &newattrs, NULL);
2030 static int __file_remove_privs(struct file *file, unsigned int flags)
2032 struct dentry *dentry = file_dentry(file);
2033 struct inode *inode = file_inode(file);
2037 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2040 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2045 if (flags & IOCB_NOWAIT)
2048 error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2052 inode_has_no_xattr(inode);
2057 * file_remove_privs - remove special file privileges (suid, capabilities)
2058 * @file: file to remove privileges from
2060 * When file is modified by a write or truncation ensure that special
2061 * file privileges are removed.
2063 * Return: 0 on success, negative errno on failure.
2065 int file_remove_privs(struct file *file)
2067 return __file_remove_privs(file, 0);
2069 EXPORT_SYMBOL(file_remove_privs);
2071 static int inode_needs_update_time(struct inode *inode, struct timespec64 *now)
2075 /* First try to exhaust all avenues to not sync */
2076 if (IS_NOCMTIME(inode))
2079 if (!timespec64_equal(&inode->i_mtime, now))
2082 if (!timespec64_equal(&inode->i_ctime, now))
2085 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2086 sync_it |= S_VERSION;
2091 static int __file_update_time(struct file *file, struct timespec64 *now,
2095 struct inode *inode = file_inode(file);
2097 /* try to update time settings */
2098 if (!__mnt_want_write_file(file)) {
2099 ret = inode_update_time(inode, now, sync_mode);
2100 __mnt_drop_write_file(file);
2107 * file_update_time - update mtime and ctime time
2108 * @file: file accessed
2110 * Update the mtime and ctime members of an inode and mark the inode for
2111 * writeback. Note that this function is meant exclusively for usage in
2112 * the file write path of filesystems, and filesystems may choose to
2113 * explicitly ignore updates via this function with the _NOCMTIME inode
2114 * flag, e.g. for network filesystem where these imestamps are handled
2115 * by the server. This can return an error for file systems who need to
2116 * allocate space in order to update an inode.
2118 * Return: 0 on success, negative errno on failure.
2120 int file_update_time(struct file *file)
2123 struct inode *inode = file_inode(file);
2124 struct timespec64 now = current_time(inode);
2126 ret = inode_needs_update_time(inode, &now);
2130 return __file_update_time(file, &now, ret);
2132 EXPORT_SYMBOL(file_update_time);
2135 * file_modified_flags - handle mandated vfs changes when modifying a file
2136 * @file: file that was modified
2137 * @flags: kiocb flags
2139 * When file has been modified ensure that special
2140 * file privileges are removed and time settings are updated.
2142 * If IOCB_NOWAIT is set, special file privileges will not be removed and
2143 * time settings will not be updated. It will return -EAGAIN.
2145 * Context: Caller must hold the file's inode lock.
2147 * Return: 0 on success, negative errno on failure.
2149 static int file_modified_flags(struct file *file, int flags)
2152 struct inode *inode = file_inode(file);
2153 struct timespec64 now = current_time(inode);
2156 * Clear the security bits if the process is not being run by root.
2157 * This keeps people from modifying setuid and setgid binaries.
2159 ret = __file_remove_privs(file, flags);
2163 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2166 ret = inode_needs_update_time(inode, &now);
2169 if (flags & IOCB_NOWAIT)
2172 return __file_update_time(file, &now, ret);
2176 * file_modified - handle mandated vfs changes when modifying a file
2177 * @file: file that was modified
2179 * When file has been modified ensure that special
2180 * file privileges are removed and time settings are updated.
2182 * Context: Caller must hold the file's inode lock.
2184 * Return: 0 on success, negative errno on failure.
2186 int file_modified(struct file *file)
2188 return file_modified_flags(file, 0);
2190 EXPORT_SYMBOL(file_modified);
2193 * kiocb_modified - handle mandated vfs changes when modifying a file
2194 * @iocb: iocb that was modified
2196 * When file has been modified ensure that special
2197 * file privileges are removed and time settings are updated.
2199 * Context: Caller must hold the file's inode lock.
2201 * Return: 0 on success, negative errno on failure.
2203 int kiocb_modified(struct kiocb *iocb)
2205 return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2207 EXPORT_SYMBOL_GPL(kiocb_modified);
2209 int inode_needs_sync(struct inode *inode)
2213 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2217 EXPORT_SYMBOL(inode_needs_sync);
2220 * If we try to find an inode in the inode hash while it is being
2221 * deleted, we have to wait until the filesystem completes its
2222 * deletion before reporting that it isn't found. This function waits
2223 * until the deletion _might_ have completed. Callers are responsible
2224 * to recheck inode state.
2226 * It doesn't matter if I_NEW is not set initially, a call to
2227 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2230 static void __wait_on_freeing_inode(struct inode *inode)
2232 wait_queue_head_t *wq;
2233 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2234 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2235 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2236 spin_unlock(&inode->i_lock);
2237 spin_unlock(&inode_hash_lock);
2239 finish_wait(wq, &wait.wq_entry);
2240 spin_lock(&inode_hash_lock);
2243 static __initdata unsigned long ihash_entries;
2244 static int __init set_ihash_entries(char *str)
2248 ihash_entries = simple_strtoul(str, &str, 0);
2251 __setup("ihash_entries=", set_ihash_entries);
2254 * Initialize the waitqueues and inode hash table.
2256 void __init inode_init_early(void)
2258 /* If hashes are distributed across NUMA nodes, defer
2259 * hash allocation until vmalloc space is available.
2265 alloc_large_system_hash("Inode-cache",
2266 sizeof(struct hlist_head),
2269 HASH_EARLY | HASH_ZERO,
2276 void __init inode_init(void)
2278 /* inode slab cache */
2279 inode_cachep = kmem_cache_create("inode_cache",
2280 sizeof(struct inode),
2282 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2283 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2286 /* Hash may have been set up in inode_init_early */
2291 alloc_large_system_hash("Inode-cache",
2292 sizeof(struct hlist_head),
2302 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2304 inode->i_mode = mode;
2305 if (S_ISCHR(mode)) {
2306 inode->i_fop = &def_chr_fops;
2307 inode->i_rdev = rdev;
2308 } else if (S_ISBLK(mode)) {
2309 if (IS_ENABLED(CONFIG_BLOCK))
2310 inode->i_fop = &def_blk_fops;
2311 inode->i_rdev = rdev;
2312 } else if (S_ISFIFO(mode))
2313 inode->i_fop = &pipefifo_fops;
2314 else if (S_ISSOCK(mode))
2315 ; /* leave it no_open_fops */
2317 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2318 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2321 EXPORT_SYMBOL(init_special_inode);
2324 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2325 * @idmap: idmap of the mount the inode was created from
2327 * @dir: Directory inode
2328 * @mode: mode of the new inode
2330 * If the inode has been created through an idmapped mount the idmap of
2331 * the vfsmount must be passed through @idmap. This function will then take
2332 * care to map the inode according to @idmap before checking permissions
2333 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2334 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2336 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2337 const struct inode *dir, umode_t mode)
2339 inode_fsuid_set(inode, idmap);
2340 if (dir && dir->i_mode & S_ISGID) {
2341 inode->i_gid = dir->i_gid;
2343 /* Directories are special, and always inherit S_ISGID */
2347 inode_fsgid_set(inode, idmap);
2348 inode->i_mode = mode;
2350 EXPORT_SYMBOL(inode_init_owner);
2353 * inode_owner_or_capable - check current task permissions to inode
2354 * @idmap: idmap of the mount the inode was found from
2355 * @inode: inode being checked
2357 * Return true if current either has CAP_FOWNER in a namespace with the
2358 * inode owner uid mapped, or owns the file.
2360 * If the inode has been found through an idmapped mount the idmap of
2361 * the vfsmount must be passed through @idmap. This function will then take
2362 * care to map the inode according to @idmap before checking permissions.
2363 * On non-idmapped mounts or if permission checking is to be performed on the
2364 * raw inode simply passs @nop_mnt_idmap.
2366 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2367 const struct inode *inode)
2370 struct user_namespace *ns;
2372 vfsuid = i_uid_into_vfsuid(idmap, inode);
2373 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2376 ns = current_user_ns();
2377 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2381 EXPORT_SYMBOL(inode_owner_or_capable);
2384 * Direct i/o helper functions
2386 static void __inode_dio_wait(struct inode *inode)
2388 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2389 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2392 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2393 if (atomic_read(&inode->i_dio_count))
2395 } while (atomic_read(&inode->i_dio_count));
2396 finish_wait(wq, &q.wq_entry);
2400 * inode_dio_wait - wait for outstanding DIO requests to finish
2401 * @inode: inode to wait for
2403 * Waits for all pending direct I/O requests to finish so that we can
2404 * proceed with a truncate or equivalent operation.
2406 * Must be called under a lock that serializes taking new references
2407 * to i_dio_count, usually by inode->i_mutex.
2409 void inode_dio_wait(struct inode *inode)
2411 if (atomic_read(&inode->i_dio_count))
2412 __inode_dio_wait(inode);
2414 EXPORT_SYMBOL(inode_dio_wait);
2417 * inode_set_flags - atomically set some inode flags
2419 * Note: the caller should be holding i_mutex, or else be sure that
2420 * they have exclusive access to the inode structure (i.e., while the
2421 * inode is being instantiated). The reason for the cmpxchg() loop
2422 * --- which wouldn't be necessary if all code paths which modify
2423 * i_flags actually followed this rule, is that there is at least one
2424 * code path which doesn't today so we use cmpxchg() out of an abundance
2427 * In the long run, i_mutex is overkill, and we should probably look
2428 * at using the i_lock spinlock to protect i_flags, and then make sure
2429 * it is so documented in include/linux/fs.h and that all code follows
2430 * the locking convention!!
2432 void inode_set_flags(struct inode *inode, unsigned int flags,
2435 WARN_ON_ONCE(flags & ~mask);
2436 set_mask_bits(&inode->i_flags, mask, flags);
2438 EXPORT_SYMBOL(inode_set_flags);
2440 void inode_nohighmem(struct inode *inode)
2442 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2444 EXPORT_SYMBOL(inode_nohighmem);
2447 * timestamp_truncate - Truncate timespec to a granularity
2449 * @inode: inode being updated
2451 * Truncate a timespec to the granularity supported by the fs
2452 * containing the inode. Always rounds down. gran must
2453 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2455 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2457 struct super_block *sb = inode->i_sb;
2458 unsigned int gran = sb->s_time_gran;
2460 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2461 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2464 /* Avoid division in the common cases 1 ns and 1 s. */
2467 else if (gran == NSEC_PER_SEC)
2469 else if (gran > 1 && gran < NSEC_PER_SEC)
2470 t.tv_nsec -= t.tv_nsec % gran;
2472 WARN(1, "invalid file time granularity: %u", gran);
2475 EXPORT_SYMBOL(timestamp_truncate);
2478 * current_time - Return FS time
2481 * Return the current time truncated to the time granularity supported by
2484 * Note that inode and inode->sb cannot be NULL.
2485 * Otherwise, the function warns and returns time without truncation.
2487 struct timespec64 current_time(struct inode *inode)
2489 struct timespec64 now;
2491 ktime_get_coarse_real_ts64(&now);
2493 if (unlikely(!inode->i_sb)) {
2494 WARN(1, "current_time() called with uninitialized super_block in the inode");
2498 return timestamp_truncate(now, inode);
2500 EXPORT_SYMBOL(current_time);
2503 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2504 * @idmap: idmap of the mount @inode was found from
2505 * @inode: inode to check
2506 * @vfsgid: the new/current vfsgid of @inode
2508 * Check wether @vfsgid is in the caller's group list or if the caller is
2509 * privileged with CAP_FSETID over @inode. This can be used to determine
2510 * whether the setgid bit can be kept or must be dropped.
2512 * Return: true if the caller is sufficiently privileged, false if not.
2514 bool in_group_or_capable(struct mnt_idmap *idmap,
2515 const struct inode *inode, vfsgid_t vfsgid)
2517 if (vfsgid_in_group_p(vfsgid))
2519 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2525 * mode_strip_sgid - handle the sgid bit for non-directories
2526 * @idmap: idmap of the mount the inode was created from
2527 * @dir: parent directory inode
2528 * @mode: mode of the file to be created in @dir
2530 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2531 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2532 * either in the group of the parent directory or they have CAP_FSETID
2533 * in their user namespace and are privileged over the parent directory.
2534 * In all other cases, strip the S_ISGID bit from @mode.
2536 * Return: the new mode to use for the file
2538 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2539 const struct inode *dir, umode_t mode)
2541 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2543 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2545 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2547 return mode & ~S_ISGID;
2549 EXPORT_SYMBOL(mode_strip_sgid);