2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
25 * Inode locking rules:
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
40 * inode->i_sb->s_inode_list_lock
42 * Inode LRU list locks
48 * inode->i_sb->s_inode_list_lock
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
64 const struct address_space_operations empty_aops = {
66 EXPORT_SYMBOL(empty_aops);
69 * Statistics gathering..
71 struct inodes_stat_t inodes_stat;
73 static DEFINE_PER_CPU(unsigned long, nr_inodes);
74 static DEFINE_PER_CPU(unsigned long, nr_unused);
76 static struct kmem_cache *inode_cachep __read_mostly;
78 static long get_nr_inodes(void)
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
87 static inline long get_nr_inodes_unused(void)
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
96 long get_nr_dirty_inodes(void)
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
104 * Handle nr_inode sysctl
107 int proc_nr_inodes(struct ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116 static int no_open(struct inode *inode, struct file *file)
122 * inode_init_always - perform inode structure initialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
129 int inode_init_always(struct super_block *sb, struct inode *inode)
131 static const struct inode_operations empty_iops;
132 static const struct file_operations no_open_fops = {.open = no_open};
133 struct address_space *const mapping = &inode->i_data;
136 inode->i_blkbits = sb->s_blocksize_bits;
138 atomic_set(&inode->i_count, 1);
139 inode->i_op = &empty_iops;
140 inode->i_fop = &no_open_fops;
141 inode->__i_nlink = 1;
142 inode->i_opflags = 0;
144 inode->i_opflags |= IOP_XATTR;
145 i_uid_write(inode, 0);
146 i_gid_write(inode, 0);
147 atomic_set(&inode->i_writecount, 0);
149 inode->i_write_hint = WRITE_LIFE_NOT_SET;
152 inode->i_generation = 0;
153 inode->i_pipe = NULL;
154 inode->i_bdev = NULL;
155 inode->i_cdev = NULL;
156 inode->i_link = NULL;
157 inode->i_dir_seq = 0;
159 inode->dirtied_when = 0;
161 #ifdef CONFIG_CGROUP_WRITEBACK
162 inode->i_wb_frn_winner = 0;
163 inode->i_wb_frn_avg_time = 0;
164 inode->i_wb_frn_history = 0;
167 if (security_inode_alloc(inode))
169 spin_lock_init(&inode->i_lock);
170 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
172 init_rwsem(&inode->i_rwsem);
173 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
175 atomic_set(&inode->i_dio_count, 0);
177 mapping->a_ops = &empty_aops;
178 mapping->host = inode;
180 atomic_set(&mapping->i_mmap_writable, 0);
181 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
182 mapping->private_data = NULL;
183 mapping->writeback_index = 0;
184 inode->i_private = NULL;
185 inode->i_mapping = mapping;
186 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
187 #ifdef CONFIG_FS_POSIX_ACL
188 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
191 #ifdef CONFIG_FSNOTIFY
192 inode->i_fsnotify_mask = 0;
194 inode->i_flctx = NULL;
195 this_cpu_inc(nr_inodes);
201 EXPORT_SYMBOL(inode_init_always);
203 static struct inode *alloc_inode(struct super_block *sb)
207 if (sb->s_op->alloc_inode)
208 inode = sb->s_op->alloc_inode(sb);
210 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
215 if (unlikely(inode_init_always(sb, inode))) {
216 if (inode->i_sb->s_op->destroy_inode)
217 inode->i_sb->s_op->destroy_inode(inode);
219 kmem_cache_free(inode_cachep, inode);
226 void free_inode_nonrcu(struct inode *inode)
228 kmem_cache_free(inode_cachep, inode);
230 EXPORT_SYMBOL(free_inode_nonrcu);
232 void __destroy_inode(struct inode *inode)
234 BUG_ON(inode_has_buffers(inode));
235 inode_detach_wb(inode);
236 security_inode_free(inode);
237 fsnotify_inode_delete(inode);
238 locks_free_lock_context(inode);
239 if (!inode->i_nlink) {
240 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
241 atomic_long_dec(&inode->i_sb->s_remove_count);
244 #ifdef CONFIG_FS_POSIX_ACL
245 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
246 posix_acl_release(inode->i_acl);
247 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
248 posix_acl_release(inode->i_default_acl);
250 this_cpu_dec(nr_inodes);
252 EXPORT_SYMBOL(__destroy_inode);
254 static void i_callback(struct rcu_head *head)
256 struct inode *inode = container_of(head, struct inode, i_rcu);
257 kmem_cache_free(inode_cachep, inode);
260 static void destroy_inode(struct inode *inode)
262 BUG_ON(!list_empty(&inode->i_lru));
263 __destroy_inode(inode);
264 if (inode->i_sb->s_op->destroy_inode)
265 inode->i_sb->s_op->destroy_inode(inode);
267 call_rcu(&inode->i_rcu, i_callback);
271 * drop_nlink - directly drop an inode's link count
274 * This is a low-level filesystem helper to replace any
275 * direct filesystem manipulation of i_nlink. In cases
276 * where we are attempting to track writes to the
277 * filesystem, a decrement to zero means an imminent
278 * write when the file is truncated and actually unlinked
281 void drop_nlink(struct inode *inode)
283 WARN_ON(inode->i_nlink == 0);
286 atomic_long_inc(&inode->i_sb->s_remove_count);
288 EXPORT_SYMBOL(drop_nlink);
291 * clear_nlink - directly zero an inode's link count
294 * This is a low-level filesystem helper to replace any
295 * direct filesystem manipulation of i_nlink. See
296 * drop_nlink() for why we care about i_nlink hitting zero.
298 void clear_nlink(struct inode *inode)
300 if (inode->i_nlink) {
301 inode->__i_nlink = 0;
302 atomic_long_inc(&inode->i_sb->s_remove_count);
305 EXPORT_SYMBOL(clear_nlink);
308 * set_nlink - directly set an inode's link count
310 * @nlink: new nlink (should be non-zero)
312 * This is a low-level filesystem helper to replace any
313 * direct filesystem manipulation of i_nlink.
315 void set_nlink(struct inode *inode, unsigned int nlink)
320 /* Yes, some filesystems do change nlink from zero to one */
321 if (inode->i_nlink == 0)
322 atomic_long_dec(&inode->i_sb->s_remove_count);
324 inode->__i_nlink = nlink;
327 EXPORT_SYMBOL(set_nlink);
330 * inc_nlink - directly increment an inode's link count
333 * This is a low-level filesystem helper to replace any
334 * direct filesystem manipulation of i_nlink. Currently,
335 * it is only here for parity with dec_nlink().
337 void inc_nlink(struct inode *inode)
339 if (unlikely(inode->i_nlink == 0)) {
340 WARN_ON(!(inode->i_state & I_LINKABLE));
341 atomic_long_dec(&inode->i_sb->s_remove_count);
346 EXPORT_SYMBOL(inc_nlink);
348 void address_space_init_once(struct address_space *mapping)
350 memset(mapping, 0, sizeof(*mapping));
351 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
352 spin_lock_init(&mapping->tree_lock);
353 init_rwsem(&mapping->i_mmap_rwsem);
354 INIT_LIST_HEAD(&mapping->private_list);
355 spin_lock_init(&mapping->private_lock);
356 mapping->i_mmap = RB_ROOT_CACHED;
358 EXPORT_SYMBOL(address_space_init_once);
361 * These are initializations that only need to be done
362 * once, because the fields are idempotent across use
363 * of the inode, so let the slab aware of that.
365 void inode_init_once(struct inode *inode)
367 memset(inode, 0, sizeof(*inode));
368 INIT_HLIST_NODE(&inode->i_hash);
369 INIT_LIST_HEAD(&inode->i_devices);
370 INIT_LIST_HEAD(&inode->i_io_list);
371 INIT_LIST_HEAD(&inode->i_wb_list);
372 INIT_LIST_HEAD(&inode->i_lru);
373 address_space_init_once(&inode->i_data);
374 i_size_ordered_init(inode);
376 EXPORT_SYMBOL(inode_init_once);
378 static void init_once(void *foo)
380 struct inode *inode = (struct inode *) foo;
382 inode_init_once(inode);
386 * inode->i_lock must be held
388 void __iget(struct inode *inode)
390 atomic_inc(&inode->i_count);
394 * get additional reference to inode; caller must already hold one.
396 void ihold(struct inode *inode)
398 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
400 EXPORT_SYMBOL(ihold);
402 static void inode_lru_list_add(struct inode *inode)
404 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
405 this_cpu_inc(nr_unused);
407 inode->i_state |= I_REFERENCED;
411 * Add inode to LRU if needed (inode is unused and clean).
413 * Needs inode->i_lock held.
415 void inode_add_lru(struct inode *inode)
417 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
418 I_FREEING | I_WILL_FREE)) &&
419 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
420 inode_lru_list_add(inode);
424 static void inode_lru_list_del(struct inode *inode)
427 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
428 this_cpu_dec(nr_unused);
432 * inode_sb_list_add - add inode to the superblock list of inodes
433 * @inode: inode to add
435 void inode_sb_list_add(struct inode *inode)
437 spin_lock(&inode->i_sb->s_inode_list_lock);
438 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
439 spin_unlock(&inode->i_sb->s_inode_list_lock);
441 EXPORT_SYMBOL_GPL(inode_sb_list_add);
443 static inline void inode_sb_list_del(struct inode *inode)
445 if (!list_empty(&inode->i_sb_list)) {
446 spin_lock(&inode->i_sb->s_inode_list_lock);
447 list_del_init(&inode->i_sb_list);
448 spin_unlock(&inode->i_sb->s_inode_list_lock);
452 static unsigned long hash(struct super_block *sb, unsigned long hashval)
456 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
458 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
459 return tmp & i_hash_mask;
463 * __insert_inode_hash - hash an inode
464 * @inode: unhashed inode
465 * @hashval: unsigned long value used to locate this object in the
468 * Add an inode to the inode hash for this superblock.
470 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
472 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
474 spin_lock(&inode_hash_lock);
475 spin_lock(&inode->i_lock);
476 hlist_add_head(&inode->i_hash, b);
477 spin_unlock(&inode->i_lock);
478 spin_unlock(&inode_hash_lock);
480 EXPORT_SYMBOL(__insert_inode_hash);
483 * __remove_inode_hash - remove an inode from the hash
484 * @inode: inode to unhash
486 * Remove an inode from the superblock.
488 void __remove_inode_hash(struct inode *inode)
490 spin_lock(&inode_hash_lock);
491 spin_lock(&inode->i_lock);
492 hlist_del_init(&inode->i_hash);
493 spin_unlock(&inode->i_lock);
494 spin_unlock(&inode_hash_lock);
496 EXPORT_SYMBOL(__remove_inode_hash);
498 void clear_inode(struct inode *inode)
502 * We have to cycle tree_lock here because reclaim can be still in the
503 * process of removing the last page (in __delete_from_page_cache())
504 * and we must not free mapping under it.
506 spin_lock_irq(&inode->i_data.tree_lock);
507 BUG_ON(inode->i_data.nrpages);
508 BUG_ON(inode->i_data.nrexceptional);
509 spin_unlock_irq(&inode->i_data.tree_lock);
510 BUG_ON(!list_empty(&inode->i_data.private_list));
511 BUG_ON(!(inode->i_state & I_FREEING));
512 BUG_ON(inode->i_state & I_CLEAR);
513 BUG_ON(!list_empty(&inode->i_wb_list));
514 /* don't need i_lock here, no concurrent mods to i_state */
515 inode->i_state = I_FREEING | I_CLEAR;
517 EXPORT_SYMBOL(clear_inode);
520 * Free the inode passed in, removing it from the lists it is still connected
521 * to. We remove any pages still attached to the inode and wait for any IO that
522 * is still in progress before finally destroying the inode.
524 * An inode must already be marked I_FREEING so that we avoid the inode being
525 * moved back onto lists if we race with other code that manipulates the lists
526 * (e.g. writeback_single_inode). The caller is responsible for setting this.
528 * An inode must already be removed from the LRU list before being evicted from
529 * the cache. This should occur atomically with setting the I_FREEING state
530 * flag, so no inodes here should ever be on the LRU when being evicted.
532 static void evict(struct inode *inode)
534 const struct super_operations *op = inode->i_sb->s_op;
536 BUG_ON(!(inode->i_state & I_FREEING));
537 BUG_ON(!list_empty(&inode->i_lru));
539 if (!list_empty(&inode->i_io_list))
540 inode_io_list_del(inode);
542 inode_sb_list_del(inode);
545 * Wait for flusher thread to be done with the inode so that filesystem
546 * does not start destroying it while writeback is still running. Since
547 * the inode has I_FREEING set, flusher thread won't start new work on
548 * the inode. We just have to wait for running writeback to finish.
550 inode_wait_for_writeback(inode);
552 if (op->evict_inode) {
553 op->evict_inode(inode);
555 truncate_inode_pages_final(&inode->i_data);
558 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
560 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
563 remove_inode_hash(inode);
565 spin_lock(&inode->i_lock);
566 wake_up_bit(&inode->i_state, __I_NEW);
567 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
568 spin_unlock(&inode->i_lock);
570 destroy_inode(inode);
574 * dispose_list - dispose of the contents of a local list
575 * @head: the head of the list to free
577 * Dispose-list gets a local list with local inodes in it, so it doesn't
578 * need to worry about list corruption and SMP locks.
580 static void dispose_list(struct list_head *head)
582 while (!list_empty(head)) {
585 inode = list_first_entry(head, struct inode, i_lru);
586 list_del_init(&inode->i_lru);
594 * evict_inodes - evict all evictable inodes for a superblock
595 * @sb: superblock to operate on
597 * Make sure that no inodes with zero refcount are retained. This is
598 * called by superblock shutdown after having MS_ACTIVE flag removed,
599 * so any inode reaching zero refcount during or after that call will
600 * be immediately evicted.
602 void evict_inodes(struct super_block *sb)
604 struct inode *inode, *next;
608 spin_lock(&sb->s_inode_list_lock);
609 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
610 if (atomic_read(&inode->i_count))
613 spin_lock(&inode->i_lock);
614 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
615 spin_unlock(&inode->i_lock);
619 inode->i_state |= I_FREEING;
620 inode_lru_list_del(inode);
621 spin_unlock(&inode->i_lock);
622 list_add(&inode->i_lru, &dispose);
625 * We can have a ton of inodes to evict at unmount time given
626 * enough memory, check to see if we need to go to sleep for a
627 * bit so we don't livelock.
629 if (need_resched()) {
630 spin_unlock(&sb->s_inode_list_lock);
632 dispose_list(&dispose);
636 spin_unlock(&sb->s_inode_list_lock);
638 dispose_list(&dispose);
640 EXPORT_SYMBOL_GPL(evict_inodes);
643 * invalidate_inodes - attempt to free all inodes on a superblock
644 * @sb: superblock to operate on
645 * @kill_dirty: flag to guide handling of dirty inodes
647 * Attempts to free all inodes for a given superblock. If there were any
648 * busy inodes return a non-zero value, else zero.
649 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
652 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
655 struct inode *inode, *next;
658 spin_lock(&sb->s_inode_list_lock);
659 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
660 spin_lock(&inode->i_lock);
661 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
662 spin_unlock(&inode->i_lock);
665 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
666 spin_unlock(&inode->i_lock);
670 if (atomic_read(&inode->i_count)) {
671 spin_unlock(&inode->i_lock);
676 inode->i_state |= I_FREEING;
677 inode_lru_list_del(inode);
678 spin_unlock(&inode->i_lock);
679 list_add(&inode->i_lru, &dispose);
681 spin_unlock(&sb->s_inode_list_lock);
683 dispose_list(&dispose);
689 * Isolate the inode from the LRU in preparation for freeing it.
691 * Any inodes which are pinned purely because of attached pagecache have their
692 * pagecache removed. If the inode has metadata buffers attached to
693 * mapping->private_list then try to remove them.
695 * If the inode has the I_REFERENCED flag set, then it means that it has been
696 * used recently - the flag is set in iput_final(). When we encounter such an
697 * inode, clear the flag and move it to the back of the LRU so it gets another
698 * pass through the LRU before it gets reclaimed. This is necessary because of
699 * the fact we are doing lazy LRU updates to minimise lock contention so the
700 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
701 * with this flag set because they are the inodes that are out of order.
703 static enum lru_status inode_lru_isolate(struct list_head *item,
704 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
706 struct list_head *freeable = arg;
707 struct inode *inode = container_of(item, struct inode, i_lru);
710 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
711 * If we fail to get the lock, just skip it.
713 if (!spin_trylock(&inode->i_lock))
717 * Referenced or dirty inodes are still in use. Give them another pass
718 * through the LRU as we canot reclaim them now.
720 if (atomic_read(&inode->i_count) ||
721 (inode->i_state & ~I_REFERENCED)) {
722 list_lru_isolate(lru, &inode->i_lru);
723 spin_unlock(&inode->i_lock);
724 this_cpu_dec(nr_unused);
728 /* recently referenced inodes get one more pass */
729 if (inode->i_state & I_REFERENCED) {
730 inode->i_state &= ~I_REFERENCED;
731 spin_unlock(&inode->i_lock);
735 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
737 spin_unlock(&inode->i_lock);
738 spin_unlock(lru_lock);
739 if (remove_inode_buffers(inode)) {
741 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
742 if (current_is_kswapd())
743 __count_vm_events(KSWAPD_INODESTEAL, reap);
745 __count_vm_events(PGINODESTEAL, reap);
746 if (current->reclaim_state)
747 current->reclaim_state->reclaimed_slab += reap;
754 WARN_ON(inode->i_state & I_NEW);
755 inode->i_state |= I_FREEING;
756 list_lru_isolate_move(lru, &inode->i_lru, freeable);
757 spin_unlock(&inode->i_lock);
759 this_cpu_dec(nr_unused);
764 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
765 * This is called from the superblock shrinker function with a number of inodes
766 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
767 * then are freed outside inode_lock by dispose_list().
769 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
774 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
775 inode_lru_isolate, &freeable);
776 dispose_list(&freeable);
780 static void __wait_on_freeing_inode(struct inode *inode);
782 * Called with the inode lock held.
784 static struct inode *find_inode(struct super_block *sb,
785 struct hlist_head *head,
786 int (*test)(struct inode *, void *),
789 struct inode *inode = NULL;
792 hlist_for_each_entry(inode, head, i_hash) {
793 if (inode->i_sb != sb)
795 if (!test(inode, data))
797 spin_lock(&inode->i_lock);
798 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
799 __wait_on_freeing_inode(inode);
803 spin_unlock(&inode->i_lock);
810 * find_inode_fast is the fast path version of find_inode, see the comment at
811 * iget_locked for details.
813 static struct inode *find_inode_fast(struct super_block *sb,
814 struct hlist_head *head, unsigned long ino)
816 struct inode *inode = NULL;
819 hlist_for_each_entry(inode, head, i_hash) {
820 if (inode->i_ino != ino)
822 if (inode->i_sb != sb)
824 spin_lock(&inode->i_lock);
825 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
826 __wait_on_freeing_inode(inode);
830 spin_unlock(&inode->i_lock);
837 * Each cpu owns a range of LAST_INO_BATCH numbers.
838 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
839 * to renew the exhausted range.
841 * This does not significantly increase overflow rate because every CPU can
842 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
843 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
844 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
845 * overflow rate by 2x, which does not seem too significant.
847 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
848 * error if st_ino won't fit in target struct field. Use 32bit counter
849 * here to attempt to avoid that.
851 #define LAST_INO_BATCH 1024
852 static DEFINE_PER_CPU(unsigned int, last_ino);
854 unsigned int get_next_ino(void)
856 unsigned int *p = &get_cpu_var(last_ino);
857 unsigned int res = *p;
860 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
861 static atomic_t shared_last_ino;
862 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
864 res = next - LAST_INO_BATCH;
869 /* get_next_ino should not provide a 0 inode number */
873 put_cpu_var(last_ino);
876 EXPORT_SYMBOL(get_next_ino);
879 * new_inode_pseudo - obtain an inode
882 * Allocates a new inode for given superblock.
883 * Inode wont be chained in superblock s_inodes list
885 * - fs can't be unmount
886 * - quotas, fsnotify, writeback can't work
888 struct inode *new_inode_pseudo(struct super_block *sb)
890 struct inode *inode = alloc_inode(sb);
893 spin_lock(&inode->i_lock);
895 spin_unlock(&inode->i_lock);
896 INIT_LIST_HEAD(&inode->i_sb_list);
902 * new_inode - obtain an inode
905 * Allocates a new inode for given superblock. The default gfp_mask
906 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
907 * If HIGHMEM pages are unsuitable or it is known that pages allocated
908 * for the page cache are not reclaimable or migratable,
909 * mapping_set_gfp_mask() must be called with suitable flags on the
910 * newly created inode's mapping
913 struct inode *new_inode(struct super_block *sb)
917 spin_lock_prefetch(&sb->s_inode_list_lock);
919 inode = new_inode_pseudo(sb);
921 inode_sb_list_add(inode);
924 EXPORT_SYMBOL(new_inode);
926 #ifdef CONFIG_DEBUG_LOCK_ALLOC
927 void lockdep_annotate_inode_mutex_key(struct inode *inode)
929 if (S_ISDIR(inode->i_mode)) {
930 struct file_system_type *type = inode->i_sb->s_type;
932 /* Set new key only if filesystem hasn't already changed it */
933 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
935 * ensure nobody is actually holding i_mutex
937 // mutex_destroy(&inode->i_mutex);
938 init_rwsem(&inode->i_rwsem);
939 lockdep_set_class(&inode->i_rwsem,
940 &type->i_mutex_dir_key);
944 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
948 * unlock_new_inode - clear the I_NEW state and wake up any waiters
949 * @inode: new inode to unlock
951 * Called when the inode is fully initialised to clear the new state of the
952 * inode and wake up anyone waiting for the inode to finish initialisation.
954 void unlock_new_inode(struct inode *inode)
956 lockdep_annotate_inode_mutex_key(inode);
957 spin_lock(&inode->i_lock);
958 WARN_ON(!(inode->i_state & I_NEW));
959 inode->i_state &= ~I_NEW;
961 wake_up_bit(&inode->i_state, __I_NEW);
962 spin_unlock(&inode->i_lock);
964 EXPORT_SYMBOL(unlock_new_inode);
967 * lock_two_nondirectories - take two i_mutexes on non-directory objects
969 * Lock any non-NULL argument that is not a directory.
970 * Zero, one or two objects may be locked by this function.
972 * @inode1: first inode to lock
973 * @inode2: second inode to lock
975 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
978 swap(inode1, inode2);
980 if (inode1 && !S_ISDIR(inode1->i_mode))
982 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
983 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
985 EXPORT_SYMBOL(lock_two_nondirectories);
988 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
989 * @inode1: first inode to unlock
990 * @inode2: second inode to unlock
992 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
994 if (inode1 && !S_ISDIR(inode1->i_mode))
995 inode_unlock(inode1);
996 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
997 inode_unlock(inode2);
999 EXPORT_SYMBOL(unlock_two_nondirectories);
1002 * iget5_locked - obtain an inode from a mounted file system
1003 * @sb: super block of file system
1004 * @hashval: hash value (usually inode number) to get
1005 * @test: callback used for comparisons between inodes
1006 * @set: callback used to initialize a new struct inode
1007 * @data: opaque data pointer to pass to @test and @set
1009 * Search for the inode specified by @hashval and @data in the inode cache,
1010 * and if present it is return it with an increased reference count. This is
1011 * a generalized version of iget_locked() for file systems where the inode
1012 * number is not sufficient for unique identification of an inode.
1014 * If the inode is not in cache, allocate a new inode and return it locked,
1015 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1016 * before unlocking it via unlock_new_inode().
1018 * Note both @test and @set are called with the inode_hash_lock held, so can't
1021 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1022 int (*test)(struct inode *, void *),
1023 int (*set)(struct inode *, void *), void *data)
1025 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1026 struct inode *inode;
1028 spin_lock(&inode_hash_lock);
1029 inode = find_inode(sb, head, test, data);
1030 spin_unlock(&inode_hash_lock);
1033 wait_on_inode(inode);
1034 if (unlikely(inode_unhashed(inode))) {
1041 inode = alloc_inode(sb);
1045 spin_lock(&inode_hash_lock);
1046 /* We released the lock, so.. */
1047 old = find_inode(sb, head, test, data);
1049 if (set(inode, data))
1052 spin_lock(&inode->i_lock);
1053 inode->i_state = I_NEW;
1054 hlist_add_head(&inode->i_hash, head);
1055 spin_unlock(&inode->i_lock);
1056 inode_sb_list_add(inode);
1057 spin_unlock(&inode_hash_lock);
1059 /* Return the locked inode with I_NEW set, the
1060 * caller is responsible for filling in the contents
1066 * Uhhuh, somebody else created the same inode under
1067 * us. Use the old inode instead of the one we just
1070 spin_unlock(&inode_hash_lock);
1071 destroy_inode(inode);
1073 wait_on_inode(inode);
1074 if (unlikely(inode_unhashed(inode))) {
1082 spin_unlock(&inode_hash_lock);
1083 destroy_inode(inode);
1086 EXPORT_SYMBOL(iget5_locked);
1089 * iget_locked - obtain an inode from a mounted file system
1090 * @sb: super block of file system
1091 * @ino: inode number to get
1093 * Search for the inode specified by @ino in the inode cache and if present
1094 * return it with an increased reference count. This is for file systems
1095 * where the inode number is sufficient for unique identification of an inode.
1097 * If the inode is not in cache, allocate a new inode and return it locked,
1098 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1099 * before unlocking it via unlock_new_inode().
1101 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1103 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1104 struct inode *inode;
1106 spin_lock(&inode_hash_lock);
1107 inode = find_inode_fast(sb, head, ino);
1108 spin_unlock(&inode_hash_lock);
1110 wait_on_inode(inode);
1111 if (unlikely(inode_unhashed(inode))) {
1118 inode = alloc_inode(sb);
1122 spin_lock(&inode_hash_lock);
1123 /* We released the lock, so.. */
1124 old = find_inode_fast(sb, head, ino);
1127 spin_lock(&inode->i_lock);
1128 inode->i_state = I_NEW;
1129 hlist_add_head(&inode->i_hash, head);
1130 spin_unlock(&inode->i_lock);
1131 inode_sb_list_add(inode);
1132 spin_unlock(&inode_hash_lock);
1134 /* Return the locked inode with I_NEW set, the
1135 * caller is responsible for filling in the contents
1141 * Uhhuh, somebody else created the same inode under
1142 * us. Use the old inode instead of the one we just
1145 spin_unlock(&inode_hash_lock);
1146 destroy_inode(inode);
1148 wait_on_inode(inode);
1149 if (unlikely(inode_unhashed(inode))) {
1156 EXPORT_SYMBOL(iget_locked);
1159 * search the inode cache for a matching inode number.
1160 * If we find one, then the inode number we are trying to
1161 * allocate is not unique and so we should not use it.
1163 * Returns 1 if the inode number is unique, 0 if it is not.
1165 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1167 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1168 struct inode *inode;
1170 spin_lock(&inode_hash_lock);
1171 hlist_for_each_entry(inode, b, i_hash) {
1172 if (inode->i_ino == ino && inode->i_sb == sb) {
1173 spin_unlock(&inode_hash_lock);
1177 spin_unlock(&inode_hash_lock);
1183 * iunique - get a unique inode number
1185 * @max_reserved: highest reserved inode number
1187 * Obtain an inode number that is unique on the system for a given
1188 * superblock. This is used by file systems that have no natural
1189 * permanent inode numbering system. An inode number is returned that
1190 * is higher than the reserved limit but unique.
1193 * With a large number of inodes live on the file system this function
1194 * currently becomes quite slow.
1196 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1199 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1200 * error if st_ino won't fit in target struct field. Use 32bit counter
1201 * here to attempt to avoid that.
1203 static DEFINE_SPINLOCK(iunique_lock);
1204 static unsigned int counter;
1207 spin_lock(&iunique_lock);
1209 if (counter <= max_reserved)
1210 counter = max_reserved + 1;
1212 } while (!test_inode_iunique(sb, res));
1213 spin_unlock(&iunique_lock);
1217 EXPORT_SYMBOL(iunique);
1219 struct inode *igrab(struct inode *inode)
1221 spin_lock(&inode->i_lock);
1222 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1224 spin_unlock(&inode->i_lock);
1226 spin_unlock(&inode->i_lock);
1228 * Handle the case where s_op->clear_inode is not been
1229 * called yet, and somebody is calling igrab
1230 * while the inode is getting freed.
1236 EXPORT_SYMBOL(igrab);
1239 * ilookup5_nowait - search for an inode in the inode cache
1240 * @sb: super block of file system to search
1241 * @hashval: hash value (usually inode number) to search for
1242 * @test: callback used for comparisons between inodes
1243 * @data: opaque data pointer to pass to @test
1245 * Search for the inode specified by @hashval and @data in the inode cache.
1246 * If the inode is in the cache, the inode is returned with an incremented
1249 * Note: I_NEW is not waited upon so you have to be very careful what you do
1250 * with the returned inode. You probably should be using ilookup5() instead.
1252 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1254 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1255 int (*test)(struct inode *, void *), void *data)
1257 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1258 struct inode *inode;
1260 spin_lock(&inode_hash_lock);
1261 inode = find_inode(sb, head, test, data);
1262 spin_unlock(&inode_hash_lock);
1266 EXPORT_SYMBOL(ilookup5_nowait);
1269 * ilookup5 - search for an inode in the inode cache
1270 * @sb: super block of file system to search
1271 * @hashval: hash value (usually inode number) to search for
1272 * @test: callback used for comparisons between inodes
1273 * @data: opaque data pointer to pass to @test
1275 * Search for the inode specified by @hashval and @data in the inode cache,
1276 * and if the inode is in the cache, return the inode with an incremented
1277 * reference count. Waits on I_NEW before returning the inode.
1278 * returned with an incremented reference count.
1280 * This is a generalized version of ilookup() for file systems where the
1281 * inode number is not sufficient for unique identification of an inode.
1283 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1285 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1286 int (*test)(struct inode *, void *), void *data)
1288 struct inode *inode;
1290 inode = ilookup5_nowait(sb, hashval, test, data);
1292 wait_on_inode(inode);
1293 if (unlikely(inode_unhashed(inode))) {
1300 EXPORT_SYMBOL(ilookup5);
1303 * ilookup - search for an inode in the inode cache
1304 * @sb: super block of file system to search
1305 * @ino: inode number to search for
1307 * Search for the inode @ino in the inode cache, and if the inode is in the
1308 * cache, the inode is returned with an incremented reference count.
1310 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1312 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1313 struct inode *inode;
1315 spin_lock(&inode_hash_lock);
1316 inode = find_inode_fast(sb, head, ino);
1317 spin_unlock(&inode_hash_lock);
1320 wait_on_inode(inode);
1321 if (unlikely(inode_unhashed(inode))) {
1328 EXPORT_SYMBOL(ilookup);
1331 * find_inode_nowait - find an inode in the inode cache
1332 * @sb: super block of file system to search
1333 * @hashval: hash value (usually inode number) to search for
1334 * @match: callback used for comparisons between inodes
1335 * @data: opaque data pointer to pass to @match
1337 * Search for the inode specified by @hashval and @data in the inode
1338 * cache, where the helper function @match will return 0 if the inode
1339 * does not match, 1 if the inode does match, and -1 if the search
1340 * should be stopped. The @match function must be responsible for
1341 * taking the i_lock spin_lock and checking i_state for an inode being
1342 * freed or being initialized, and incrementing the reference count
1343 * before returning 1. It also must not sleep, since it is called with
1344 * the inode_hash_lock spinlock held.
1346 * This is a even more generalized version of ilookup5() when the
1347 * function must never block --- find_inode() can block in
1348 * __wait_on_freeing_inode() --- or when the caller can not increment
1349 * the reference count because the resulting iput() might cause an
1350 * inode eviction. The tradeoff is that the @match funtion must be
1351 * very carefully implemented.
1353 struct inode *find_inode_nowait(struct super_block *sb,
1354 unsigned long hashval,
1355 int (*match)(struct inode *, unsigned long,
1359 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1360 struct inode *inode, *ret_inode = NULL;
1363 spin_lock(&inode_hash_lock);
1364 hlist_for_each_entry(inode, head, i_hash) {
1365 if (inode->i_sb != sb)
1367 mval = match(inode, hashval, data);
1375 spin_unlock(&inode_hash_lock);
1378 EXPORT_SYMBOL(find_inode_nowait);
1380 int insert_inode_locked(struct inode *inode)
1382 struct super_block *sb = inode->i_sb;
1383 ino_t ino = inode->i_ino;
1384 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1387 struct inode *old = NULL;
1388 spin_lock(&inode_hash_lock);
1389 hlist_for_each_entry(old, head, i_hash) {
1390 if (old->i_ino != ino)
1392 if (old->i_sb != sb)
1394 spin_lock(&old->i_lock);
1395 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1396 spin_unlock(&old->i_lock);
1402 spin_lock(&inode->i_lock);
1403 inode->i_state |= I_NEW;
1404 hlist_add_head(&inode->i_hash, head);
1405 spin_unlock(&inode->i_lock);
1406 spin_unlock(&inode_hash_lock);
1410 spin_unlock(&old->i_lock);
1411 spin_unlock(&inode_hash_lock);
1413 if (unlikely(!inode_unhashed(old))) {
1420 EXPORT_SYMBOL(insert_inode_locked);
1422 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1423 int (*test)(struct inode *, void *), void *data)
1425 struct super_block *sb = inode->i_sb;
1426 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1429 struct inode *old = NULL;
1431 spin_lock(&inode_hash_lock);
1432 hlist_for_each_entry(old, head, i_hash) {
1433 if (old->i_sb != sb)
1435 if (!test(old, data))
1437 spin_lock(&old->i_lock);
1438 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1439 spin_unlock(&old->i_lock);
1445 spin_lock(&inode->i_lock);
1446 inode->i_state |= I_NEW;
1447 hlist_add_head(&inode->i_hash, head);
1448 spin_unlock(&inode->i_lock);
1449 spin_unlock(&inode_hash_lock);
1453 spin_unlock(&old->i_lock);
1454 spin_unlock(&inode_hash_lock);
1456 if (unlikely(!inode_unhashed(old))) {
1463 EXPORT_SYMBOL(insert_inode_locked4);
1466 int generic_delete_inode(struct inode *inode)
1470 EXPORT_SYMBOL(generic_delete_inode);
1473 * Called when we're dropping the last reference
1476 * Call the FS "drop_inode()" function, defaulting to
1477 * the legacy UNIX filesystem behaviour. If it tells
1478 * us to evict inode, do so. Otherwise, retain inode
1479 * in cache if fs is alive, sync and evict if fs is
1482 static void iput_final(struct inode *inode)
1484 struct super_block *sb = inode->i_sb;
1485 const struct super_operations *op = inode->i_sb->s_op;
1488 WARN_ON(inode->i_state & I_NEW);
1491 drop = op->drop_inode(inode);
1493 drop = generic_drop_inode(inode);
1495 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1496 inode_add_lru(inode);
1497 spin_unlock(&inode->i_lock);
1502 inode->i_state |= I_WILL_FREE;
1503 spin_unlock(&inode->i_lock);
1504 write_inode_now(inode, 1);
1505 spin_lock(&inode->i_lock);
1506 WARN_ON(inode->i_state & I_NEW);
1507 inode->i_state &= ~I_WILL_FREE;
1510 inode->i_state |= I_FREEING;
1511 if (!list_empty(&inode->i_lru))
1512 inode_lru_list_del(inode);
1513 spin_unlock(&inode->i_lock);
1519 * iput - put an inode
1520 * @inode: inode to put
1522 * Puts an inode, dropping its usage count. If the inode use count hits
1523 * zero, the inode is then freed and may also be destroyed.
1525 * Consequently, iput() can sleep.
1527 void iput(struct inode *inode)
1531 BUG_ON(inode->i_state & I_CLEAR);
1533 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1534 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1535 atomic_inc(&inode->i_count);
1536 inode->i_state &= ~I_DIRTY_TIME;
1537 spin_unlock(&inode->i_lock);
1538 trace_writeback_lazytime_iput(inode);
1539 mark_inode_dirty_sync(inode);
1545 EXPORT_SYMBOL(iput);
1548 * bmap - find a block number in a file
1549 * @inode: inode of file
1550 * @block: block to find
1552 * Returns the block number on the device holding the inode that
1553 * is the disk block number for the block of the file requested.
1554 * That is, asked for block 4 of inode 1 the function will return the
1555 * disk block relative to the disk start that holds that block of the
1558 sector_t bmap(struct inode *inode, sector_t block)
1561 if (inode->i_mapping->a_ops->bmap)
1562 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1565 EXPORT_SYMBOL(bmap);
1568 * Update times in overlayed inode from underlying real inode
1570 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1573 struct dentry *upperdentry;
1576 * Nothing to do if in rcu or if non-overlayfs
1578 if (rcu || likely(!(dentry->d_flags & DCACHE_OP_REAL)))
1581 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
1584 * If file is on lower then we can't update atime, so no worries about
1585 * stale mtime/ctime.
1588 struct inode *realinode = d_inode(upperdentry);
1590 if ((!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1591 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1592 inode->i_mtime = realinode->i_mtime;
1593 inode->i_ctime = realinode->i_ctime;
1599 * With relative atime, only update atime if the previous atime is
1600 * earlier than either the ctime or mtime or if at least a day has
1601 * passed since the last atime update.
1603 static int relatime_need_update(const struct path *path, struct inode *inode,
1604 struct timespec now, bool rcu)
1607 if (!(path->mnt->mnt_flags & MNT_RELATIME))
1610 update_ovl_inode_times(path->dentry, inode, rcu);
1612 * Is mtime younger than atime? If yes, update atime:
1614 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1617 * Is ctime younger than atime? If yes, update atime:
1619 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1623 * Is the previous atime value older than a day? If yes,
1626 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1629 * Good, we can skip the atime update:
1634 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1636 int iflags = I_DIRTY_TIME;
1638 if (flags & S_ATIME)
1639 inode->i_atime = *time;
1640 if (flags & S_VERSION)
1641 inode_inc_iversion(inode);
1642 if (flags & S_CTIME)
1643 inode->i_ctime = *time;
1644 if (flags & S_MTIME)
1645 inode->i_mtime = *time;
1647 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1648 iflags |= I_DIRTY_SYNC;
1649 __mark_inode_dirty(inode, iflags);
1652 EXPORT_SYMBOL(generic_update_time);
1655 * This does the actual work of updating an inodes time or version. Must have
1656 * had called mnt_want_write() before calling this.
1658 static int update_time(struct inode *inode, struct timespec *time, int flags)
1660 int (*update_time)(struct inode *, struct timespec *, int);
1662 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1663 generic_update_time;
1665 return update_time(inode, time, flags);
1669 * touch_atime - update the access time
1670 * @path: the &struct path to update
1671 * @inode: inode to update
1673 * Update the accessed time on an inode and mark it for writeback.
1674 * This function automatically handles read only file systems and media,
1675 * as well as the "noatime" flag and inode specific "noatime" markers.
1677 bool __atime_needs_update(const struct path *path, struct inode *inode,
1680 struct vfsmount *mnt = path->mnt;
1681 struct timespec now;
1683 if (inode->i_flags & S_NOATIME)
1686 /* Atime updates will likely cause i_uid and i_gid to be written
1687 * back improprely if their true value is unknown to the vfs.
1689 if (HAS_UNMAPPED_ID(inode))
1692 if (IS_NOATIME(inode))
1694 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1697 if (mnt->mnt_flags & MNT_NOATIME)
1699 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1702 now = current_time(inode);
1704 if (!relatime_need_update(path, inode, now, rcu))
1707 if (timespec_equal(&inode->i_atime, &now))
1713 void touch_atime(const struct path *path)
1715 struct vfsmount *mnt = path->mnt;
1716 struct inode *inode = d_inode(path->dentry);
1717 struct timespec now;
1719 if (!__atime_needs_update(path, inode, false))
1722 if (!sb_start_write_trylock(inode->i_sb))
1725 if (__mnt_want_write(mnt) != 0)
1728 * File systems can error out when updating inodes if they need to
1729 * allocate new space to modify an inode (such is the case for
1730 * Btrfs), but since we touch atime while walking down the path we
1731 * really don't care if we failed to update the atime of the file,
1732 * so just ignore the return value.
1733 * We may also fail on filesystems that have the ability to make parts
1734 * of the fs read only, e.g. subvolumes in Btrfs.
1736 now = current_time(inode);
1737 update_time(inode, &now, S_ATIME);
1738 __mnt_drop_write(mnt);
1740 sb_end_write(inode->i_sb);
1742 EXPORT_SYMBOL(touch_atime);
1745 * The logic we want is
1747 * if suid or (sgid and xgrp)
1750 int should_remove_suid(struct dentry *dentry)
1752 umode_t mode = d_inode(dentry)->i_mode;
1755 /* suid always must be killed */
1756 if (unlikely(mode & S_ISUID))
1757 kill = ATTR_KILL_SUID;
1760 * sgid without any exec bits is just a mandatory locking mark; leave
1761 * it alone. If some exec bits are set, it's a real sgid; kill it.
1763 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1764 kill |= ATTR_KILL_SGID;
1766 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1771 EXPORT_SYMBOL(should_remove_suid);
1774 * Return mask of changes for notify_change() that need to be done as a
1775 * response to write or truncate. Return 0 if nothing has to be changed.
1776 * Negative value on error (change should be denied).
1778 int dentry_needs_remove_privs(struct dentry *dentry)
1780 struct inode *inode = d_inode(dentry);
1784 if (IS_NOSEC(inode))
1787 mask = should_remove_suid(dentry);
1788 ret = security_inode_need_killpriv(dentry);
1792 mask |= ATTR_KILL_PRIV;
1796 static int __remove_privs(struct dentry *dentry, int kill)
1798 struct iattr newattrs;
1800 newattrs.ia_valid = ATTR_FORCE | kill;
1802 * Note we call this on write, so notify_change will not
1803 * encounter any conflicting delegations:
1805 return notify_change(dentry, &newattrs, NULL);
1809 * Remove special file priviledges (suid, capabilities) when file is written
1812 int file_remove_privs(struct file *file)
1814 struct dentry *dentry = file_dentry(file);
1815 struct inode *inode = file_inode(file);
1819 /* Fast path for nothing security related */
1820 if (IS_NOSEC(inode))
1823 kill = dentry_needs_remove_privs(dentry);
1827 error = __remove_privs(dentry, kill);
1829 inode_has_no_xattr(inode);
1833 EXPORT_SYMBOL(file_remove_privs);
1836 * file_update_time - update mtime and ctime time
1837 * @file: file accessed
1839 * Update the mtime and ctime members of an inode and mark the inode
1840 * for writeback. Note that this function is meant exclusively for
1841 * usage in the file write path of filesystems, and filesystems may
1842 * choose to explicitly ignore update via this function with the
1843 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1844 * timestamps are handled by the server. This can return an error for
1845 * file systems who need to allocate space in order to update an inode.
1848 int file_update_time(struct file *file)
1850 struct inode *inode = file_inode(file);
1851 struct timespec now;
1855 /* First try to exhaust all avenues to not sync */
1856 if (IS_NOCMTIME(inode))
1859 now = current_time(inode);
1860 if (!timespec_equal(&inode->i_mtime, &now))
1863 if (!timespec_equal(&inode->i_ctime, &now))
1866 if (IS_I_VERSION(inode))
1867 sync_it |= S_VERSION;
1872 /* Finally allowed to write? Takes lock. */
1873 if (__mnt_want_write_file(file))
1876 ret = update_time(inode, &now, sync_it);
1877 __mnt_drop_write_file(file);
1881 EXPORT_SYMBOL(file_update_time);
1883 int inode_needs_sync(struct inode *inode)
1887 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1891 EXPORT_SYMBOL(inode_needs_sync);
1894 * If we try to find an inode in the inode hash while it is being
1895 * deleted, we have to wait until the filesystem completes its
1896 * deletion before reporting that it isn't found. This function waits
1897 * until the deletion _might_ have completed. Callers are responsible
1898 * to recheck inode state.
1900 * It doesn't matter if I_NEW is not set initially, a call to
1901 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1904 static void __wait_on_freeing_inode(struct inode *inode)
1906 wait_queue_head_t *wq;
1907 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1908 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1909 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1910 spin_unlock(&inode->i_lock);
1911 spin_unlock(&inode_hash_lock);
1913 finish_wait(wq, &wait.wq_entry);
1914 spin_lock(&inode_hash_lock);
1917 static __initdata unsigned long ihash_entries;
1918 static int __init set_ihash_entries(char *str)
1922 ihash_entries = simple_strtoul(str, &str, 0);
1925 __setup("ihash_entries=", set_ihash_entries);
1928 * Initialize the waitqueues and inode hash table.
1930 void __init inode_init_early(void)
1932 /* If hashes are distributed across NUMA nodes, defer
1933 * hash allocation until vmalloc space is available.
1939 alloc_large_system_hash("Inode-cache",
1940 sizeof(struct hlist_head),
1943 HASH_EARLY | HASH_ZERO,
1950 void __init inode_init(void)
1952 /* inode slab cache */
1953 inode_cachep = kmem_cache_create("inode_cache",
1954 sizeof(struct inode),
1956 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1957 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1960 /* Hash may have been set up in inode_init_early */
1965 alloc_large_system_hash("Inode-cache",
1966 sizeof(struct hlist_head),
1976 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1978 inode->i_mode = mode;
1979 if (S_ISCHR(mode)) {
1980 inode->i_fop = &def_chr_fops;
1981 inode->i_rdev = rdev;
1982 } else if (S_ISBLK(mode)) {
1983 inode->i_fop = &def_blk_fops;
1984 inode->i_rdev = rdev;
1985 } else if (S_ISFIFO(mode))
1986 inode->i_fop = &pipefifo_fops;
1987 else if (S_ISSOCK(mode))
1988 ; /* leave it no_open_fops */
1990 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1991 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1994 EXPORT_SYMBOL(init_special_inode);
1997 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1999 * @dir: Directory inode
2000 * @mode: mode of the new inode
2002 void inode_init_owner(struct inode *inode, const struct inode *dir,
2005 inode->i_uid = current_fsuid();
2006 if (dir && dir->i_mode & S_ISGID) {
2007 inode->i_gid = dir->i_gid;
2011 inode->i_gid = current_fsgid();
2012 inode->i_mode = mode;
2014 EXPORT_SYMBOL(inode_init_owner);
2017 * inode_owner_or_capable - check current task permissions to inode
2018 * @inode: inode being checked
2020 * Return true if current either has CAP_FOWNER in a namespace with the
2021 * inode owner uid mapped, or owns the file.
2023 bool inode_owner_or_capable(const struct inode *inode)
2025 struct user_namespace *ns;
2027 if (uid_eq(current_fsuid(), inode->i_uid))
2030 ns = current_user_ns();
2031 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2035 EXPORT_SYMBOL(inode_owner_or_capable);
2038 * Direct i/o helper functions
2040 static void __inode_dio_wait(struct inode *inode)
2042 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2043 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2046 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2047 if (atomic_read(&inode->i_dio_count))
2049 } while (atomic_read(&inode->i_dio_count));
2050 finish_wait(wq, &q.wq_entry);
2054 * inode_dio_wait - wait for outstanding DIO requests to finish
2055 * @inode: inode to wait for
2057 * Waits for all pending direct I/O requests to finish so that we can
2058 * proceed with a truncate or equivalent operation.
2060 * Must be called under a lock that serializes taking new references
2061 * to i_dio_count, usually by inode->i_mutex.
2063 void inode_dio_wait(struct inode *inode)
2065 if (atomic_read(&inode->i_dio_count))
2066 __inode_dio_wait(inode);
2068 EXPORT_SYMBOL(inode_dio_wait);
2071 * inode_set_flags - atomically set some inode flags
2073 * Note: the caller should be holding i_mutex, or else be sure that
2074 * they have exclusive access to the inode structure (i.e., while the
2075 * inode is being instantiated). The reason for the cmpxchg() loop
2076 * --- which wouldn't be necessary if all code paths which modify
2077 * i_flags actually followed this rule, is that there is at least one
2078 * code path which doesn't today so we use cmpxchg() out of an abundance
2081 * In the long run, i_mutex is overkill, and we should probably look
2082 * at using the i_lock spinlock to protect i_flags, and then make sure
2083 * it is so documented in include/linux/fs.h and that all code follows
2084 * the locking convention!!
2086 void inode_set_flags(struct inode *inode, unsigned int flags,
2089 unsigned int old_flags, new_flags;
2091 WARN_ON_ONCE(flags & ~mask);
2093 old_flags = ACCESS_ONCE(inode->i_flags);
2094 new_flags = (old_flags & ~mask) | flags;
2095 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2096 new_flags) != old_flags));
2098 EXPORT_SYMBOL(inode_set_flags);
2100 void inode_nohighmem(struct inode *inode)
2102 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2104 EXPORT_SYMBOL(inode_nohighmem);
2107 * current_time - Return FS time
2110 * Return the current time truncated to the time granularity supported by
2113 * Note that inode and inode->sb cannot be NULL.
2114 * Otherwise, the function warns and returns time without truncation.
2116 struct timespec current_time(struct inode *inode)
2118 struct timespec now = current_kernel_time();
2120 if (unlikely(!inode->i_sb)) {
2121 WARN(1, "current_time() called with uninitialized super_block in the inode");
2125 return timespec_trunc(now, inode->i_sb->s_time_gran);
2127 EXPORT_SYMBOL(current_time);