Merge tag 'idmapped-mounts-v5.12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-rpi.git] / fs / hugetlbfs / inode.c
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>         /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50
51 struct hugetlbfs_fs_context {
52         struct hstate           *hstate;
53         unsigned long long      max_size_opt;
54         unsigned long long      min_size_opt;
55         long                    max_hpages;
56         long                    nr_inodes;
57         long                    min_hpages;
58         enum hugetlbfs_size_type max_val_type;
59         enum hugetlbfs_size_type min_val_type;
60         kuid_t                  uid;
61         kgid_t                  gid;
62         umode_t                 mode;
63 };
64
65 int sysctl_hugetlb_shm_group;
66
67 enum hugetlb_param {
68         Opt_gid,
69         Opt_min_size,
70         Opt_mode,
71         Opt_nr_inodes,
72         Opt_pagesize,
73         Opt_size,
74         Opt_uid,
75 };
76
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78         fsparam_u32   ("gid",           Opt_gid),
79         fsparam_string("min_size",      Opt_min_size),
80         fsparam_u32   ("mode",          Opt_mode),
81         fsparam_string("nr_inodes",     Opt_nr_inodes),
82         fsparam_string("pagesize",      Opt_pagesize),
83         fsparam_string("size",          Opt_size),
84         fsparam_u32   ("uid",           Opt_uid),
85         {}
86 };
87
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90                                         struct inode *inode, pgoff_t index)
91 {
92         vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93                                                         index);
94 }
95
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98         mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102                                         struct inode *inode, pgoff_t index)
103 {
104 }
105
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113         int i;
114
115         for (i = 0; i < pagevec_count(pvec); ++i)
116                 put_page(pvec->pages[i]);
117
118         pagevec_reinit(pvec);
119 }
120
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129         (((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133         struct inode *inode = file_inode(file);
134         loff_t len, vma_len;
135         int ret;
136         struct hstate *h = hstate_file(file);
137
138         /*
139          * vma address alignment (but not the pgoff alignment) has
140          * already been checked by prepare_hugepage_range.  If you add
141          * any error returns here, do so after setting VM_HUGETLB, so
142          * is_vm_hugetlb_page tests below unmap_region go the right
143          * way when do_mmap unwinds (may be important on powerpc
144          * and ia64).
145          */
146         vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
147         vma->vm_ops = &hugetlb_vm_ops;
148
149         /*
150          * page based offset in vm_pgoff could be sufficiently large to
151          * overflow a loff_t when converted to byte offset.  This can
152          * only happen on architectures where sizeof(loff_t) ==
153          * sizeof(unsigned long).  So, only check in those instances.
154          */
155         if (sizeof(unsigned long) == sizeof(loff_t)) {
156                 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
157                         return -EINVAL;
158         }
159
160         /* must be huge page aligned */
161         if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
162                 return -EINVAL;
163
164         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
165         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
166         /* check for overflow */
167         if (len < vma_len)
168                 return -EINVAL;
169
170         inode_lock(inode);
171         file_accessed(file);
172
173         ret = -ENOMEM;
174         if (hugetlb_reserve_pages(inode,
175                                 vma->vm_pgoff >> huge_page_order(h),
176                                 len >> huge_page_shift(h), vma,
177                                 vma->vm_flags))
178                 goto out;
179
180         ret = 0;
181         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
182                 i_size_write(inode, len);
183 out:
184         inode_unlock(inode);
185
186         return ret;
187 }
188
189 /*
190  * Called under mmap_write_lock(mm).
191  */
192
193 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
194 static unsigned long
195 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
196                 unsigned long len, unsigned long pgoff, unsigned long flags)
197 {
198         struct hstate *h = hstate_file(file);
199         struct vm_unmapped_area_info info;
200
201         info.flags = 0;
202         info.length = len;
203         info.low_limit = current->mm->mmap_base;
204         info.high_limit = TASK_SIZE;
205         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
206         info.align_offset = 0;
207         return vm_unmapped_area(&info);
208 }
209
210 static unsigned long
211 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
212                 unsigned long len, unsigned long pgoff, unsigned long flags)
213 {
214         struct hstate *h = hstate_file(file);
215         struct vm_unmapped_area_info info;
216
217         info.flags = VM_UNMAPPED_AREA_TOPDOWN;
218         info.length = len;
219         info.low_limit = max(PAGE_SIZE, mmap_min_addr);
220         info.high_limit = current->mm->mmap_base;
221         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
222         info.align_offset = 0;
223         addr = vm_unmapped_area(&info);
224
225         /*
226          * A failed mmap() very likely causes application failure,
227          * so fall back to the bottom-up function here. This scenario
228          * can happen with large stack limits and large mmap()
229          * allocations.
230          */
231         if (unlikely(offset_in_page(addr))) {
232                 VM_BUG_ON(addr != -ENOMEM);
233                 info.flags = 0;
234                 info.low_limit = current->mm->mmap_base;
235                 info.high_limit = TASK_SIZE;
236                 addr = vm_unmapped_area(&info);
237         }
238
239         return addr;
240 }
241
242 static unsigned long
243 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
244                 unsigned long len, unsigned long pgoff, unsigned long flags)
245 {
246         struct mm_struct *mm = current->mm;
247         struct vm_area_struct *vma;
248         struct hstate *h = hstate_file(file);
249
250         if (len & ~huge_page_mask(h))
251                 return -EINVAL;
252         if (len > TASK_SIZE)
253                 return -ENOMEM;
254
255         if (flags & MAP_FIXED) {
256                 if (prepare_hugepage_range(file, addr, len))
257                         return -EINVAL;
258                 return addr;
259         }
260
261         if (addr) {
262                 addr = ALIGN(addr, huge_page_size(h));
263                 vma = find_vma(mm, addr);
264                 if (TASK_SIZE - len >= addr &&
265                     (!vma || addr + len <= vm_start_gap(vma)))
266                         return addr;
267         }
268
269         /*
270          * Use mm->get_unmapped_area value as a hint to use topdown routine.
271          * If architectures have special needs, they should define their own
272          * version of hugetlb_get_unmapped_area.
273          */
274         if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
275                 return hugetlb_get_unmapped_area_topdown(file, addr, len,
276                                 pgoff, flags);
277         return hugetlb_get_unmapped_area_bottomup(file, addr, len,
278                         pgoff, flags);
279 }
280 #endif
281
282 static size_t
283 hugetlbfs_read_actor(struct page *page, unsigned long offset,
284                         struct iov_iter *to, unsigned long size)
285 {
286         size_t copied = 0;
287         int i, chunksize;
288
289         /* Find which 4k chunk and offset with in that chunk */
290         i = offset >> PAGE_SHIFT;
291         offset = offset & ~PAGE_MASK;
292
293         while (size) {
294                 size_t n;
295                 chunksize = PAGE_SIZE;
296                 if (offset)
297                         chunksize -= offset;
298                 if (chunksize > size)
299                         chunksize = size;
300                 n = copy_page_to_iter(&page[i], offset, chunksize, to);
301                 copied += n;
302                 if (n != chunksize)
303                         return copied;
304                 offset = 0;
305                 size -= chunksize;
306                 i++;
307         }
308         return copied;
309 }
310
311 /*
312  * Support for read() - Find the page attached to f_mapping and copy out the
313  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
314  * since it has PAGE_SIZE assumptions.
315  */
316 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
317 {
318         struct file *file = iocb->ki_filp;
319         struct hstate *h = hstate_file(file);
320         struct address_space *mapping = file->f_mapping;
321         struct inode *inode = mapping->host;
322         unsigned long index = iocb->ki_pos >> huge_page_shift(h);
323         unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
324         unsigned long end_index;
325         loff_t isize;
326         ssize_t retval = 0;
327
328         while (iov_iter_count(to)) {
329                 struct page *page;
330                 size_t nr, copied;
331
332                 /* nr is the maximum number of bytes to copy from this page */
333                 nr = huge_page_size(h);
334                 isize = i_size_read(inode);
335                 if (!isize)
336                         break;
337                 end_index = (isize - 1) >> huge_page_shift(h);
338                 if (index > end_index)
339                         break;
340                 if (index == end_index) {
341                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
342                         if (nr <= offset)
343                                 break;
344                 }
345                 nr = nr - offset;
346
347                 /* Find the page */
348                 page = find_lock_page(mapping, index);
349                 if (unlikely(page == NULL)) {
350                         /*
351                          * We have a HOLE, zero out the user-buffer for the
352                          * length of the hole or request.
353                          */
354                         copied = iov_iter_zero(nr, to);
355                 } else {
356                         unlock_page(page);
357
358                         /*
359                          * We have the page, copy it to user space buffer.
360                          */
361                         copied = hugetlbfs_read_actor(page, offset, to, nr);
362                         put_page(page);
363                 }
364                 offset += copied;
365                 retval += copied;
366                 if (copied != nr && iov_iter_count(to)) {
367                         if (!retval)
368                                 retval = -EFAULT;
369                         break;
370                 }
371                 index += offset >> huge_page_shift(h);
372                 offset &= ~huge_page_mask(h);
373         }
374         iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
375         return retval;
376 }
377
378 static int hugetlbfs_write_begin(struct file *file,
379                         struct address_space *mapping,
380                         loff_t pos, unsigned len, unsigned flags,
381                         struct page **pagep, void **fsdata)
382 {
383         return -EINVAL;
384 }
385
386 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
387                         loff_t pos, unsigned len, unsigned copied,
388                         struct page *page, void *fsdata)
389 {
390         BUG();
391         return -EINVAL;
392 }
393
394 static void remove_huge_page(struct page *page)
395 {
396         ClearPageDirty(page);
397         ClearPageUptodate(page);
398         delete_from_page_cache(page);
399 }
400
401 static void
402 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
403 {
404         struct vm_area_struct *vma;
405
406         /*
407          * end == 0 indicates that the entire range after
408          * start should be unmapped.
409          */
410         vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
411                 unsigned long v_offset;
412                 unsigned long v_end;
413
414                 /*
415                  * Can the expression below overflow on 32-bit arches?
416                  * No, because the interval tree returns us only those vmas
417                  * which overlap the truncated area starting at pgoff,
418                  * and no vma on a 32-bit arch can span beyond the 4GB.
419                  */
420                 if (vma->vm_pgoff < start)
421                         v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
422                 else
423                         v_offset = 0;
424
425                 if (!end)
426                         v_end = vma->vm_end;
427                 else {
428                         v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
429                                                         + vma->vm_start;
430                         if (v_end > vma->vm_end)
431                                 v_end = vma->vm_end;
432                 }
433
434                 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
435                                                                         NULL);
436         }
437 }
438
439 /*
440  * remove_inode_hugepages handles two distinct cases: truncation and hole
441  * punch.  There are subtle differences in operation for each case.
442  *
443  * truncation is indicated by end of range being LLONG_MAX
444  *      In this case, we first scan the range and release found pages.
445  *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
446  *      maps and global counts.  Page faults can not race with truncation
447  *      in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
448  *      page faults in the truncated range by checking i_size.  i_size is
449  *      modified while holding i_mmap_rwsem.
450  * hole punch is indicated if end is not LLONG_MAX
451  *      In the hole punch case we scan the range and release found pages.
452  *      Only when releasing a page is the associated region/reserv map
453  *      deleted.  The region/reserv map for ranges without associated
454  *      pages are not modified.  Page faults can race with hole punch.
455  *      This is indicated if we find a mapped page.
456  * Note: If the passed end of range value is beyond the end of file, but
457  * not LLONG_MAX this routine still performs a hole punch operation.
458  */
459 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
460                                    loff_t lend)
461 {
462         struct hstate *h = hstate_inode(inode);
463         struct address_space *mapping = &inode->i_data;
464         const pgoff_t start = lstart >> huge_page_shift(h);
465         const pgoff_t end = lend >> huge_page_shift(h);
466         struct vm_area_struct pseudo_vma;
467         struct pagevec pvec;
468         pgoff_t next, index;
469         int i, freed = 0;
470         bool truncate_op = (lend == LLONG_MAX);
471
472         vma_init(&pseudo_vma, current->mm);
473         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
474         pagevec_init(&pvec);
475         next = start;
476         while (next < end) {
477                 /*
478                  * When no more pages are found, we are done.
479                  */
480                 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
481                         break;
482
483                 for (i = 0; i < pagevec_count(&pvec); ++i) {
484                         struct page *page = pvec.pages[i];
485                         u32 hash;
486
487                         index = page->index;
488                         hash = hugetlb_fault_mutex_hash(mapping, index);
489                         if (!truncate_op) {
490                                 /*
491                                  * Only need to hold the fault mutex in the
492                                  * hole punch case.  This prevents races with
493                                  * page faults.  Races are not possible in the
494                                  * case of truncation.
495                                  */
496                                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
497                         }
498
499                         /*
500                          * If page is mapped, it was faulted in after being
501                          * unmapped in caller.  Unmap (again) now after taking
502                          * the fault mutex.  The mutex will prevent faults
503                          * until we finish removing the page.
504                          *
505                          * This race can only happen in the hole punch case.
506                          * Getting here in a truncate operation is a bug.
507                          */
508                         if (unlikely(page_mapped(page))) {
509                                 BUG_ON(truncate_op);
510
511                                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
512                                 i_mmap_lock_write(mapping);
513                                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
514                                 hugetlb_vmdelete_list(&mapping->i_mmap,
515                                         index * pages_per_huge_page(h),
516                                         (index + 1) * pages_per_huge_page(h));
517                                 i_mmap_unlock_write(mapping);
518                         }
519
520                         lock_page(page);
521                         /*
522                          * We must free the huge page and remove from page
523                          * cache (remove_huge_page) BEFORE removing the
524                          * region/reserve map (hugetlb_unreserve_pages).  In
525                          * rare out of memory conditions, removal of the
526                          * region/reserve map could fail. Correspondingly,
527                          * the subpool and global reserve usage count can need
528                          * to be adjusted.
529                          */
530                         VM_BUG_ON(PagePrivate(page));
531                         remove_huge_page(page);
532                         freed++;
533                         if (!truncate_op) {
534                                 if (unlikely(hugetlb_unreserve_pages(inode,
535                                                         index, index + 1, 1)))
536                                         hugetlb_fix_reserve_counts(inode);
537                         }
538
539                         unlock_page(page);
540                         if (!truncate_op)
541                                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
542                 }
543                 huge_pagevec_release(&pvec);
544                 cond_resched();
545         }
546
547         if (truncate_op)
548                 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
549 }
550
551 static void hugetlbfs_evict_inode(struct inode *inode)
552 {
553         struct resv_map *resv_map;
554
555         remove_inode_hugepages(inode, 0, LLONG_MAX);
556
557         /*
558          * Get the resv_map from the address space embedded in the inode.
559          * This is the address space which points to any resv_map allocated
560          * at inode creation time.  If this is a device special inode,
561          * i_mapping may not point to the original address space.
562          */
563         resv_map = (struct resv_map *)(&inode->i_data)->private_data;
564         /* Only regular and link inodes have associated reserve maps */
565         if (resv_map)
566                 resv_map_release(&resv_map->refs);
567         clear_inode(inode);
568 }
569
570 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
571 {
572         pgoff_t pgoff;
573         struct address_space *mapping = inode->i_mapping;
574         struct hstate *h = hstate_inode(inode);
575
576         BUG_ON(offset & ~huge_page_mask(h));
577         pgoff = offset >> PAGE_SHIFT;
578
579         i_mmap_lock_write(mapping);
580         i_size_write(inode, offset);
581         if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
582                 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
583         i_mmap_unlock_write(mapping);
584         remove_inode_hugepages(inode, offset, LLONG_MAX);
585         return 0;
586 }
587
588 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
589 {
590         struct hstate *h = hstate_inode(inode);
591         loff_t hpage_size = huge_page_size(h);
592         loff_t hole_start, hole_end;
593
594         /*
595          * For hole punch round up the beginning offset of the hole and
596          * round down the end.
597          */
598         hole_start = round_up(offset, hpage_size);
599         hole_end = round_down(offset + len, hpage_size);
600
601         if (hole_end > hole_start) {
602                 struct address_space *mapping = inode->i_mapping;
603                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
604
605                 inode_lock(inode);
606
607                 /* protected by i_mutex */
608                 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
609                         inode_unlock(inode);
610                         return -EPERM;
611                 }
612
613                 i_mmap_lock_write(mapping);
614                 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
615                         hugetlb_vmdelete_list(&mapping->i_mmap,
616                                                 hole_start >> PAGE_SHIFT,
617                                                 hole_end  >> PAGE_SHIFT);
618                 i_mmap_unlock_write(mapping);
619                 remove_inode_hugepages(inode, hole_start, hole_end);
620                 inode_unlock(inode);
621         }
622
623         return 0;
624 }
625
626 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
627                                 loff_t len)
628 {
629         struct inode *inode = file_inode(file);
630         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
631         struct address_space *mapping = inode->i_mapping;
632         struct hstate *h = hstate_inode(inode);
633         struct vm_area_struct pseudo_vma;
634         struct mm_struct *mm = current->mm;
635         loff_t hpage_size = huge_page_size(h);
636         unsigned long hpage_shift = huge_page_shift(h);
637         pgoff_t start, index, end;
638         int error;
639         u32 hash;
640
641         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
642                 return -EOPNOTSUPP;
643
644         if (mode & FALLOC_FL_PUNCH_HOLE)
645                 return hugetlbfs_punch_hole(inode, offset, len);
646
647         /*
648          * Default preallocate case.
649          * For this range, start is rounded down and end is rounded up
650          * as well as being converted to page offsets.
651          */
652         start = offset >> hpage_shift;
653         end = (offset + len + hpage_size - 1) >> hpage_shift;
654
655         inode_lock(inode);
656
657         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
658         error = inode_newsize_ok(inode, offset + len);
659         if (error)
660                 goto out;
661
662         if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
663                 error = -EPERM;
664                 goto out;
665         }
666
667         /*
668          * Initialize a pseudo vma as this is required by the huge page
669          * allocation routines.  If NUMA is configured, use page index
670          * as input to create an allocation policy.
671          */
672         vma_init(&pseudo_vma, mm);
673         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
674         pseudo_vma.vm_file = file;
675
676         for (index = start; index < end; index++) {
677                 /*
678                  * This is supposed to be the vaddr where the page is being
679                  * faulted in, but we have no vaddr here.
680                  */
681                 struct page *page;
682                 unsigned long addr;
683                 int avoid_reserve = 0;
684
685                 cond_resched();
686
687                 /*
688                  * fallocate(2) manpage permits EINTR; we may have been
689                  * interrupted because we are using up too much memory.
690                  */
691                 if (signal_pending(current)) {
692                         error = -EINTR;
693                         break;
694                 }
695
696                 /* Set numa allocation policy based on index */
697                 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
698
699                 /* addr is the offset within the file (zero based) */
700                 addr = index * hpage_size;
701
702                 /*
703                  * fault mutex taken here, protects against fault path
704                  * and hole punch.  inode_lock previously taken protects
705                  * against truncation.
706                  */
707                 hash = hugetlb_fault_mutex_hash(mapping, index);
708                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
709
710                 /* See if already present in mapping to avoid alloc/free */
711                 page = find_get_page(mapping, index);
712                 if (page) {
713                         put_page(page);
714                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
715                         hugetlb_drop_vma_policy(&pseudo_vma);
716                         continue;
717                 }
718
719                 /* Allocate page and add to page cache */
720                 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
721                 hugetlb_drop_vma_policy(&pseudo_vma);
722                 if (IS_ERR(page)) {
723                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
724                         error = PTR_ERR(page);
725                         goto out;
726                 }
727                 clear_huge_page(page, addr, pages_per_huge_page(h));
728                 __SetPageUptodate(page);
729                 error = huge_add_to_page_cache(page, mapping, index);
730                 if (unlikely(error)) {
731                         put_page(page);
732                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
733                         goto out;
734                 }
735
736                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
737
738                 set_page_huge_active(page);
739                 /*
740                  * unlock_page because locked by add_to_page_cache()
741                  * put_page() due to reference from alloc_huge_page()
742                  */
743                 unlock_page(page);
744                 put_page(page);
745         }
746
747         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
748                 i_size_write(inode, offset + len);
749         inode->i_ctime = current_time(inode);
750 out:
751         inode_unlock(inode);
752         return error;
753 }
754
755 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
756                              struct dentry *dentry, struct iattr *attr)
757 {
758         struct inode *inode = d_inode(dentry);
759         struct hstate *h = hstate_inode(inode);
760         int error;
761         unsigned int ia_valid = attr->ia_valid;
762         struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
763
764         BUG_ON(!inode);
765
766         error = setattr_prepare(&init_user_ns, dentry, attr);
767         if (error)
768                 return error;
769
770         if (ia_valid & ATTR_SIZE) {
771                 loff_t oldsize = inode->i_size;
772                 loff_t newsize = attr->ia_size;
773
774                 if (newsize & ~huge_page_mask(h))
775                         return -EINVAL;
776                 /* protected by i_mutex */
777                 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
778                     (newsize > oldsize && (info->seals & F_SEAL_GROW)))
779                         return -EPERM;
780                 error = hugetlb_vmtruncate(inode, newsize);
781                 if (error)
782                         return error;
783         }
784
785         setattr_copy(&init_user_ns, inode, attr);
786         mark_inode_dirty(inode);
787         return 0;
788 }
789
790 static struct inode *hugetlbfs_get_root(struct super_block *sb,
791                                         struct hugetlbfs_fs_context *ctx)
792 {
793         struct inode *inode;
794
795         inode = new_inode(sb);
796         if (inode) {
797                 inode->i_ino = get_next_ino();
798                 inode->i_mode = S_IFDIR | ctx->mode;
799                 inode->i_uid = ctx->uid;
800                 inode->i_gid = ctx->gid;
801                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
802                 inode->i_op = &hugetlbfs_dir_inode_operations;
803                 inode->i_fop = &simple_dir_operations;
804                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
805                 inc_nlink(inode);
806                 lockdep_annotate_inode_mutex_key(inode);
807         }
808         return inode;
809 }
810
811 /*
812  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
813  * be taken from reclaim -- unlike regular filesystems. This needs an
814  * annotation because huge_pmd_share() does an allocation under hugetlb's
815  * i_mmap_rwsem.
816  */
817 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
818
819 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
820                                         struct inode *dir,
821                                         umode_t mode, dev_t dev)
822 {
823         struct inode *inode;
824         struct resv_map *resv_map = NULL;
825
826         /*
827          * Reserve maps are only needed for inodes that can have associated
828          * page allocations.
829          */
830         if (S_ISREG(mode) || S_ISLNK(mode)) {
831                 resv_map = resv_map_alloc();
832                 if (!resv_map)
833                         return NULL;
834         }
835
836         inode = new_inode(sb);
837         if (inode) {
838                 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
839
840                 inode->i_ino = get_next_ino();
841                 inode_init_owner(&init_user_ns, inode, dir, mode);
842                 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
843                                 &hugetlbfs_i_mmap_rwsem_key);
844                 inode->i_mapping->a_ops = &hugetlbfs_aops;
845                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
846                 inode->i_mapping->private_data = resv_map;
847                 info->seals = F_SEAL_SEAL;
848                 switch (mode & S_IFMT) {
849                 default:
850                         init_special_inode(inode, mode, dev);
851                         break;
852                 case S_IFREG:
853                         inode->i_op = &hugetlbfs_inode_operations;
854                         inode->i_fop = &hugetlbfs_file_operations;
855                         break;
856                 case S_IFDIR:
857                         inode->i_op = &hugetlbfs_dir_inode_operations;
858                         inode->i_fop = &simple_dir_operations;
859
860                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
861                         inc_nlink(inode);
862                         break;
863                 case S_IFLNK:
864                         inode->i_op = &page_symlink_inode_operations;
865                         inode_nohighmem(inode);
866                         break;
867                 }
868                 lockdep_annotate_inode_mutex_key(inode);
869         } else {
870                 if (resv_map)
871                         kref_put(&resv_map->refs, resv_map_release);
872         }
873
874         return inode;
875 }
876
877 /*
878  * File creation. Allocate an inode, and we're done..
879  */
880 static int do_hugetlbfs_mknod(struct inode *dir,
881                         struct dentry *dentry,
882                         umode_t mode,
883                         dev_t dev,
884                         bool tmpfile)
885 {
886         struct inode *inode;
887         int error = -ENOSPC;
888
889         inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
890         if (inode) {
891                 dir->i_ctime = dir->i_mtime = current_time(dir);
892                 if (tmpfile) {
893                         d_tmpfile(dentry, inode);
894                 } else {
895                         d_instantiate(dentry, inode);
896                         dget(dentry);/* Extra count - pin the dentry in core */
897                 }
898                 error = 0;
899         }
900         return error;
901 }
902
903 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
904                            struct dentry *dentry, umode_t mode, dev_t dev)
905 {
906         return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
907 }
908
909 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
910                            struct dentry *dentry, umode_t mode)
911 {
912         int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
913                                      mode | S_IFDIR, 0);
914         if (!retval)
915                 inc_nlink(dir);
916         return retval;
917 }
918
919 static int hugetlbfs_create(struct user_namespace *mnt_userns,
920                             struct inode *dir, struct dentry *dentry,
921                             umode_t mode, bool excl)
922 {
923         return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
924 }
925
926 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
927                              struct inode *dir, struct dentry *dentry,
928                              umode_t mode)
929 {
930         return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
931 }
932
933 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
934                              struct inode *dir, struct dentry *dentry,
935                              const char *symname)
936 {
937         struct inode *inode;
938         int error = -ENOSPC;
939
940         inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
941         if (inode) {
942                 int l = strlen(symname)+1;
943                 error = page_symlink(inode, symname, l);
944                 if (!error) {
945                         d_instantiate(dentry, inode);
946                         dget(dentry);
947                 } else
948                         iput(inode);
949         }
950         dir->i_ctime = dir->i_mtime = current_time(dir);
951
952         return error;
953 }
954
955 /*
956  * mark the head page dirty
957  */
958 static int hugetlbfs_set_page_dirty(struct page *page)
959 {
960         struct page *head = compound_head(page);
961
962         SetPageDirty(head);
963         return 0;
964 }
965
966 static int hugetlbfs_migrate_page(struct address_space *mapping,
967                                 struct page *newpage, struct page *page,
968                                 enum migrate_mode mode)
969 {
970         int rc;
971
972         rc = migrate_huge_page_move_mapping(mapping, newpage, page);
973         if (rc != MIGRATEPAGE_SUCCESS)
974                 return rc;
975
976         /*
977          * page_private is subpool pointer in hugetlb pages.  Transfer to
978          * new page.  PagePrivate is not associated with page_private for
979          * hugetlb pages and can not be set here as only page_huge_active
980          * pages can be migrated.
981          */
982         if (page_private(page)) {
983                 set_page_private(newpage, page_private(page));
984                 set_page_private(page, 0);
985         }
986
987         if (mode != MIGRATE_SYNC_NO_COPY)
988                 migrate_page_copy(newpage, page);
989         else
990                 migrate_page_states(newpage, page);
991
992         return MIGRATEPAGE_SUCCESS;
993 }
994
995 static int hugetlbfs_error_remove_page(struct address_space *mapping,
996                                 struct page *page)
997 {
998         struct inode *inode = mapping->host;
999         pgoff_t index = page->index;
1000
1001         remove_huge_page(page);
1002         if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
1003                 hugetlb_fix_reserve_counts(inode);
1004
1005         return 0;
1006 }
1007
1008 /*
1009  * Display the mount options in /proc/mounts.
1010  */
1011 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1012 {
1013         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1014         struct hugepage_subpool *spool = sbinfo->spool;
1015         unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1016         unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1017         char mod;
1018
1019         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1020                 seq_printf(m, ",uid=%u",
1021                            from_kuid_munged(&init_user_ns, sbinfo->uid));
1022         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1023                 seq_printf(m, ",gid=%u",
1024                            from_kgid_munged(&init_user_ns, sbinfo->gid));
1025         if (sbinfo->mode != 0755)
1026                 seq_printf(m, ",mode=%o", sbinfo->mode);
1027         if (sbinfo->max_inodes != -1)
1028                 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1029
1030         hpage_size /= 1024;
1031         mod = 'K';
1032         if (hpage_size >= 1024) {
1033                 hpage_size /= 1024;
1034                 mod = 'M';
1035         }
1036         seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1037         if (spool) {
1038                 if (spool->max_hpages != -1)
1039                         seq_printf(m, ",size=%llu",
1040                                    (unsigned long long)spool->max_hpages << hpage_shift);
1041                 if (spool->min_hpages != -1)
1042                         seq_printf(m, ",min_size=%llu",
1043                                    (unsigned long long)spool->min_hpages << hpage_shift);
1044         }
1045         return 0;
1046 }
1047
1048 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1049 {
1050         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1051         struct hstate *h = hstate_inode(d_inode(dentry));
1052
1053         buf->f_type = HUGETLBFS_MAGIC;
1054         buf->f_bsize = huge_page_size(h);
1055         if (sbinfo) {
1056                 spin_lock(&sbinfo->stat_lock);
1057                 /* If no limits set, just report 0 for max/free/used
1058                  * blocks, like simple_statfs() */
1059                 if (sbinfo->spool) {
1060                         long free_pages;
1061
1062                         spin_lock(&sbinfo->spool->lock);
1063                         buf->f_blocks = sbinfo->spool->max_hpages;
1064                         free_pages = sbinfo->spool->max_hpages
1065                                 - sbinfo->spool->used_hpages;
1066                         buf->f_bavail = buf->f_bfree = free_pages;
1067                         spin_unlock(&sbinfo->spool->lock);
1068                         buf->f_files = sbinfo->max_inodes;
1069                         buf->f_ffree = sbinfo->free_inodes;
1070                 }
1071                 spin_unlock(&sbinfo->stat_lock);
1072         }
1073         buf->f_namelen = NAME_MAX;
1074         return 0;
1075 }
1076
1077 static void hugetlbfs_put_super(struct super_block *sb)
1078 {
1079         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1080
1081         if (sbi) {
1082                 sb->s_fs_info = NULL;
1083
1084                 if (sbi->spool)
1085                         hugepage_put_subpool(sbi->spool);
1086
1087                 kfree(sbi);
1088         }
1089 }
1090
1091 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1092 {
1093         if (sbinfo->free_inodes >= 0) {
1094                 spin_lock(&sbinfo->stat_lock);
1095                 if (unlikely(!sbinfo->free_inodes)) {
1096                         spin_unlock(&sbinfo->stat_lock);
1097                         return 0;
1098                 }
1099                 sbinfo->free_inodes--;
1100                 spin_unlock(&sbinfo->stat_lock);
1101         }
1102
1103         return 1;
1104 }
1105
1106 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1107 {
1108         if (sbinfo->free_inodes >= 0) {
1109                 spin_lock(&sbinfo->stat_lock);
1110                 sbinfo->free_inodes++;
1111                 spin_unlock(&sbinfo->stat_lock);
1112         }
1113 }
1114
1115
1116 static struct kmem_cache *hugetlbfs_inode_cachep;
1117
1118 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1119 {
1120         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1121         struct hugetlbfs_inode_info *p;
1122
1123         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1124                 return NULL;
1125         p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1126         if (unlikely(!p)) {
1127                 hugetlbfs_inc_free_inodes(sbinfo);
1128                 return NULL;
1129         }
1130
1131         /*
1132          * Any time after allocation, hugetlbfs_destroy_inode can be called
1133          * for the inode.  mpol_free_shared_policy is unconditionally called
1134          * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1135          * in case of a quick call to destroy.
1136          *
1137          * Note that the policy is initialized even if we are creating a
1138          * private inode.  This simplifies hugetlbfs_destroy_inode.
1139          */
1140         mpol_shared_policy_init(&p->policy, NULL);
1141
1142         return &p->vfs_inode;
1143 }
1144
1145 static void hugetlbfs_free_inode(struct inode *inode)
1146 {
1147         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1148 }
1149
1150 static void hugetlbfs_destroy_inode(struct inode *inode)
1151 {
1152         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1153         mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1154 }
1155
1156 static const struct address_space_operations hugetlbfs_aops = {
1157         .write_begin    = hugetlbfs_write_begin,
1158         .write_end      = hugetlbfs_write_end,
1159         .set_page_dirty = hugetlbfs_set_page_dirty,
1160         .migratepage    = hugetlbfs_migrate_page,
1161         .error_remove_page      = hugetlbfs_error_remove_page,
1162 };
1163
1164
1165 static void init_once(void *foo)
1166 {
1167         struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1168
1169         inode_init_once(&ei->vfs_inode);
1170 }
1171
1172 const struct file_operations hugetlbfs_file_operations = {
1173         .read_iter              = hugetlbfs_read_iter,
1174         .mmap                   = hugetlbfs_file_mmap,
1175         .fsync                  = noop_fsync,
1176         .get_unmapped_area      = hugetlb_get_unmapped_area,
1177         .llseek                 = default_llseek,
1178         .fallocate              = hugetlbfs_fallocate,
1179 };
1180
1181 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1182         .create         = hugetlbfs_create,
1183         .lookup         = simple_lookup,
1184         .link           = simple_link,
1185         .unlink         = simple_unlink,
1186         .symlink        = hugetlbfs_symlink,
1187         .mkdir          = hugetlbfs_mkdir,
1188         .rmdir          = simple_rmdir,
1189         .mknod          = hugetlbfs_mknod,
1190         .rename         = simple_rename,
1191         .setattr        = hugetlbfs_setattr,
1192         .tmpfile        = hugetlbfs_tmpfile,
1193 };
1194
1195 static const struct inode_operations hugetlbfs_inode_operations = {
1196         .setattr        = hugetlbfs_setattr,
1197 };
1198
1199 static const struct super_operations hugetlbfs_ops = {
1200         .alloc_inode    = hugetlbfs_alloc_inode,
1201         .free_inode     = hugetlbfs_free_inode,
1202         .destroy_inode  = hugetlbfs_destroy_inode,
1203         .evict_inode    = hugetlbfs_evict_inode,
1204         .statfs         = hugetlbfs_statfs,
1205         .put_super      = hugetlbfs_put_super,
1206         .show_options   = hugetlbfs_show_options,
1207 };
1208
1209 /*
1210  * Convert size option passed from command line to number of huge pages
1211  * in the pool specified by hstate.  Size option could be in bytes
1212  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1213  */
1214 static long
1215 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1216                          enum hugetlbfs_size_type val_type)
1217 {
1218         if (val_type == NO_SIZE)
1219                 return -1;
1220
1221         if (val_type == SIZE_PERCENT) {
1222                 size_opt <<= huge_page_shift(h);
1223                 size_opt *= h->max_huge_pages;
1224                 do_div(size_opt, 100);
1225         }
1226
1227         size_opt >>= huge_page_shift(h);
1228         return size_opt;
1229 }
1230
1231 /*
1232  * Parse one mount parameter.
1233  */
1234 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1235 {
1236         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1237         struct fs_parse_result result;
1238         char *rest;
1239         unsigned long ps;
1240         int opt;
1241
1242         opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1243         if (opt < 0)
1244                 return opt;
1245
1246         switch (opt) {
1247         case Opt_uid:
1248                 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1249                 if (!uid_valid(ctx->uid))
1250                         goto bad_val;
1251                 return 0;
1252
1253         case Opt_gid:
1254                 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1255                 if (!gid_valid(ctx->gid))
1256                         goto bad_val;
1257                 return 0;
1258
1259         case Opt_mode:
1260                 ctx->mode = result.uint_32 & 01777U;
1261                 return 0;
1262
1263         case Opt_size:
1264                 /* memparse() will accept a K/M/G without a digit */
1265                 if (!isdigit(param->string[0]))
1266                         goto bad_val;
1267                 ctx->max_size_opt = memparse(param->string, &rest);
1268                 ctx->max_val_type = SIZE_STD;
1269                 if (*rest == '%')
1270                         ctx->max_val_type = SIZE_PERCENT;
1271                 return 0;
1272
1273         case Opt_nr_inodes:
1274                 /* memparse() will accept a K/M/G without a digit */
1275                 if (!isdigit(param->string[0]))
1276                         goto bad_val;
1277                 ctx->nr_inodes = memparse(param->string, &rest);
1278                 return 0;
1279
1280         case Opt_pagesize:
1281                 ps = memparse(param->string, &rest);
1282                 ctx->hstate = size_to_hstate(ps);
1283                 if (!ctx->hstate) {
1284                         pr_err("Unsupported page size %lu MB\n", ps >> 20);
1285                         return -EINVAL;
1286                 }
1287                 return 0;
1288
1289         case Opt_min_size:
1290                 /* memparse() will accept a K/M/G without a digit */
1291                 if (!isdigit(param->string[0]))
1292                         goto bad_val;
1293                 ctx->min_size_opt = memparse(param->string, &rest);
1294                 ctx->min_val_type = SIZE_STD;
1295                 if (*rest == '%')
1296                         ctx->min_val_type = SIZE_PERCENT;
1297                 return 0;
1298
1299         default:
1300                 return -EINVAL;
1301         }
1302
1303 bad_val:
1304         return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1305                       param->string, param->key);
1306 }
1307
1308 /*
1309  * Validate the parsed options.
1310  */
1311 static int hugetlbfs_validate(struct fs_context *fc)
1312 {
1313         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1314
1315         /*
1316          * Use huge page pool size (in hstate) to convert the size
1317          * options to number of huge pages.  If NO_SIZE, -1 is returned.
1318          */
1319         ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1320                                                    ctx->max_size_opt,
1321                                                    ctx->max_val_type);
1322         ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1323                                                    ctx->min_size_opt,
1324                                                    ctx->min_val_type);
1325
1326         /*
1327          * If max_size was specified, then min_size must be smaller
1328          */
1329         if (ctx->max_val_type > NO_SIZE &&
1330             ctx->min_hpages > ctx->max_hpages) {
1331                 pr_err("Minimum size can not be greater than maximum size\n");
1332                 return -EINVAL;
1333         }
1334
1335         return 0;
1336 }
1337
1338 static int
1339 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1340 {
1341         struct hugetlbfs_fs_context *ctx = fc->fs_private;
1342         struct hugetlbfs_sb_info *sbinfo;
1343
1344         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1345         if (!sbinfo)
1346                 return -ENOMEM;
1347         sb->s_fs_info = sbinfo;
1348         spin_lock_init(&sbinfo->stat_lock);
1349         sbinfo->hstate          = ctx->hstate;
1350         sbinfo->max_inodes      = ctx->nr_inodes;
1351         sbinfo->free_inodes     = ctx->nr_inodes;
1352         sbinfo->spool           = NULL;
1353         sbinfo->uid             = ctx->uid;
1354         sbinfo->gid             = ctx->gid;
1355         sbinfo->mode            = ctx->mode;
1356
1357         /*
1358          * Allocate and initialize subpool if maximum or minimum size is
1359          * specified.  Any needed reservations (for minimim size) are taken
1360          * taken when the subpool is created.
1361          */
1362         if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1363                 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1364                                                      ctx->max_hpages,
1365                                                      ctx->min_hpages);
1366                 if (!sbinfo->spool)
1367                         goto out_free;
1368         }
1369         sb->s_maxbytes = MAX_LFS_FILESIZE;
1370         sb->s_blocksize = huge_page_size(ctx->hstate);
1371         sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1372         sb->s_magic = HUGETLBFS_MAGIC;
1373         sb->s_op = &hugetlbfs_ops;
1374         sb->s_time_gran = 1;
1375
1376         /*
1377          * Due to the special and limited functionality of hugetlbfs, it does
1378          * not work well as a stacking filesystem.
1379          */
1380         sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1381         sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1382         if (!sb->s_root)
1383                 goto out_free;
1384         return 0;
1385 out_free:
1386         kfree(sbinfo->spool);
1387         kfree(sbinfo);
1388         return -ENOMEM;
1389 }
1390
1391 static int hugetlbfs_get_tree(struct fs_context *fc)
1392 {
1393         int err = hugetlbfs_validate(fc);
1394         if (err)
1395                 return err;
1396         return get_tree_nodev(fc, hugetlbfs_fill_super);
1397 }
1398
1399 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1400 {
1401         kfree(fc->fs_private);
1402 }
1403
1404 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1405         .free           = hugetlbfs_fs_context_free,
1406         .parse_param    = hugetlbfs_parse_param,
1407         .get_tree       = hugetlbfs_get_tree,
1408 };
1409
1410 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1411 {
1412         struct hugetlbfs_fs_context *ctx;
1413
1414         ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1415         if (!ctx)
1416                 return -ENOMEM;
1417
1418         ctx->max_hpages = -1; /* No limit on size by default */
1419         ctx->nr_inodes  = -1; /* No limit on number of inodes by default */
1420         ctx->uid        = current_fsuid();
1421         ctx->gid        = current_fsgid();
1422         ctx->mode       = 0755;
1423         ctx->hstate     = &default_hstate;
1424         ctx->min_hpages = -1; /* No default minimum size */
1425         ctx->max_val_type = NO_SIZE;
1426         ctx->min_val_type = NO_SIZE;
1427         fc->fs_private = ctx;
1428         fc->ops = &hugetlbfs_fs_context_ops;
1429         return 0;
1430 }
1431
1432 static struct file_system_type hugetlbfs_fs_type = {
1433         .name                   = "hugetlbfs",
1434         .init_fs_context        = hugetlbfs_init_fs_context,
1435         .parameters             = hugetlb_fs_parameters,
1436         .kill_sb                = kill_litter_super,
1437 };
1438
1439 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1440
1441 static int can_do_hugetlb_shm(void)
1442 {
1443         kgid_t shm_group;
1444         shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1445         return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1446 }
1447
1448 static int get_hstate_idx(int page_size_log)
1449 {
1450         struct hstate *h = hstate_sizelog(page_size_log);
1451
1452         if (!h)
1453                 return -1;
1454         return h - hstates;
1455 }
1456
1457 /*
1458  * Note that size should be aligned to proper hugepage size in caller side,
1459  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1460  */
1461 struct file *hugetlb_file_setup(const char *name, size_t size,
1462                                 vm_flags_t acctflag, struct user_struct **user,
1463                                 int creat_flags, int page_size_log)
1464 {
1465         struct inode *inode;
1466         struct vfsmount *mnt;
1467         int hstate_idx;
1468         struct file *file;
1469
1470         hstate_idx = get_hstate_idx(page_size_log);
1471         if (hstate_idx < 0)
1472                 return ERR_PTR(-ENODEV);
1473
1474         *user = NULL;
1475         mnt = hugetlbfs_vfsmount[hstate_idx];
1476         if (!mnt)
1477                 return ERR_PTR(-ENOENT);
1478
1479         if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1480                 *user = current_user();
1481                 if (user_shm_lock(size, *user)) {
1482                         task_lock(current);
1483                         pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1484                                 current->comm, current->pid);
1485                         task_unlock(current);
1486                 } else {
1487                         *user = NULL;
1488                         return ERR_PTR(-EPERM);
1489                 }
1490         }
1491
1492         file = ERR_PTR(-ENOSPC);
1493         inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1494         if (!inode)
1495                 goto out;
1496         if (creat_flags == HUGETLB_SHMFS_INODE)
1497                 inode->i_flags |= S_PRIVATE;
1498
1499         inode->i_size = size;
1500         clear_nlink(inode);
1501
1502         if (hugetlb_reserve_pages(inode, 0,
1503                         size >> huge_page_shift(hstate_inode(inode)), NULL,
1504                         acctflag))
1505                 file = ERR_PTR(-ENOMEM);
1506         else
1507                 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1508                                         &hugetlbfs_file_operations);
1509         if (!IS_ERR(file))
1510                 return file;
1511
1512         iput(inode);
1513 out:
1514         if (*user) {
1515                 user_shm_unlock(size, *user);
1516                 *user = NULL;
1517         }
1518         return file;
1519 }
1520
1521 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1522 {
1523         struct fs_context *fc;
1524         struct vfsmount *mnt;
1525
1526         fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1527         if (IS_ERR(fc)) {
1528                 mnt = ERR_CAST(fc);
1529         } else {
1530                 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1531                 ctx->hstate = h;
1532                 mnt = fc_mount(fc);
1533                 put_fs_context(fc);
1534         }
1535         if (IS_ERR(mnt))
1536                 pr_err("Cannot mount internal hugetlbfs for page size %uK",
1537                        1U << (h->order + PAGE_SHIFT - 10));
1538         return mnt;
1539 }
1540
1541 static int __init init_hugetlbfs_fs(void)
1542 {
1543         struct vfsmount *mnt;
1544         struct hstate *h;
1545         int error;
1546         int i;
1547
1548         if (!hugepages_supported()) {
1549                 pr_info("disabling because there are no supported hugepage sizes\n");
1550                 return -ENOTSUPP;
1551         }
1552
1553         error = -ENOMEM;
1554         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1555                                         sizeof(struct hugetlbfs_inode_info),
1556                                         0, SLAB_ACCOUNT, init_once);
1557         if (hugetlbfs_inode_cachep == NULL)
1558                 goto out;
1559
1560         error = register_filesystem(&hugetlbfs_fs_type);
1561         if (error)
1562                 goto out_free;
1563
1564         /* default hstate mount is required */
1565         mnt = mount_one_hugetlbfs(&hstates[default_hstate_idx]);
1566         if (IS_ERR(mnt)) {
1567                 error = PTR_ERR(mnt);
1568                 goto out_unreg;
1569         }
1570         hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1571
1572         /* other hstates are optional */
1573         i = 0;
1574         for_each_hstate(h) {
1575                 if (i == default_hstate_idx) {
1576                         i++;
1577                         continue;
1578                 }
1579
1580                 mnt = mount_one_hugetlbfs(h);
1581                 if (IS_ERR(mnt))
1582                         hugetlbfs_vfsmount[i] = NULL;
1583                 else
1584                         hugetlbfs_vfsmount[i] = mnt;
1585                 i++;
1586         }
1587
1588         return 0;
1589
1590  out_unreg:
1591         (void)unregister_filesystem(&hugetlbfs_fs_type);
1592  out_free:
1593         kmem_cache_destroy(hugetlbfs_inode_cachep);
1594  out:
1595         return error;
1596 }
1597 fs_initcall(init_hugetlbfs_fs)