2 * hugetlbpage-backed filesystem. Based on ramfs.
4 * Nadia Yvette Chambers, 2002
6 * Copyright (C) 2002 Linus Torvalds.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h> /* remove ASAP */
15 #include <linux/falloc.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
51 struct hugetlbfs_fs_context {
52 struct hstate *hstate;
53 unsigned long long max_size_opt;
54 unsigned long long min_size_opt;
58 enum hugetlbfs_size_type max_val_type;
59 enum hugetlbfs_size_type min_val_type;
65 int sysctl_hugetlb_shm_group;
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78 fsparam_u32 ("gid", Opt_gid),
79 fsparam_string("min_size", Opt_min_size),
80 fsparam_u32oct("mode", Opt_mode),
81 fsparam_string("nr_inodes", Opt_nr_inodes),
82 fsparam_string("pagesize", Opt_pagesize),
83 fsparam_string("size", Opt_size),
84 fsparam_u32 ("uid", Opt_uid),
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 struct inode *inode, pgoff_t index)
92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
98 mpol_cond_put(vma->vm_policy);
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 struct inode *inode, pgoff_t index)
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
111 static void huge_pagevec_release(struct pagevec *pvec)
115 for (i = 0; i < pagevec_count(pvec); ++i)
116 put_page(pvec->pages[i]);
118 pagevec_reinit(pvec);
122 * Mask used when checking the page offset value passed in via system
123 * calls. This value will be converted to a loff_t which is signed.
124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125 * value. The extra bit (- 1 in the shift value) is to take the sign
128 #define PGOFF_LOFFT_MAX \
129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
133 struct inode *inode = file_inode(file);
134 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
137 struct hstate *h = hstate_file(file);
140 * vma address alignment (but not the pgoff alignment) has
141 * already been checked by prepare_hugepage_range. If you add
142 * any error returns here, do so after setting VM_HUGETLB, so
143 * is_vm_hugetlb_page tests below unmap_region go the right
144 * way when do_mmap unwinds (may be important on powerpc
147 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
148 vma->vm_ops = &hugetlb_vm_ops;
150 ret = seal_check_future_write(info->seals, vma);
155 * page based offset in vm_pgoff could be sufficiently large to
156 * overflow a loff_t when converted to byte offset. This can
157 * only happen on architectures where sizeof(loff_t) ==
158 * sizeof(unsigned long). So, only check in those instances.
160 if (sizeof(unsigned long) == sizeof(loff_t)) {
161 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
165 /* must be huge page aligned */
166 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
169 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
170 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
171 /* check for overflow */
179 if (!hugetlb_reserve_pages(inode,
180 vma->vm_pgoff >> huge_page_order(h),
181 len >> huge_page_shift(h), vma,
186 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
187 i_size_write(inode, len);
195 * Called under mmap_write_lock(mm).
198 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
200 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
201 unsigned long len, unsigned long pgoff, unsigned long flags)
203 struct hstate *h = hstate_file(file);
204 struct vm_unmapped_area_info info;
208 info.low_limit = current->mm->mmap_base;
209 info.high_limit = TASK_SIZE;
210 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
211 info.align_offset = 0;
212 return vm_unmapped_area(&info);
216 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
217 unsigned long len, unsigned long pgoff, unsigned long flags)
219 struct hstate *h = hstate_file(file);
220 struct vm_unmapped_area_info info;
222 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
224 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
225 info.high_limit = current->mm->mmap_base;
226 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
227 info.align_offset = 0;
228 addr = vm_unmapped_area(&info);
231 * A failed mmap() very likely causes application failure,
232 * so fall back to the bottom-up function here. This scenario
233 * can happen with large stack limits and large mmap()
236 if (unlikely(offset_in_page(addr))) {
237 VM_BUG_ON(addr != -ENOMEM);
239 info.low_limit = current->mm->mmap_base;
240 info.high_limit = TASK_SIZE;
241 addr = vm_unmapped_area(&info);
248 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
249 unsigned long len, unsigned long pgoff, unsigned long flags)
251 struct mm_struct *mm = current->mm;
252 struct vm_area_struct *vma;
253 struct hstate *h = hstate_file(file);
255 if (len & ~huge_page_mask(h))
260 if (flags & MAP_FIXED) {
261 if (prepare_hugepage_range(file, addr, len))
267 addr = ALIGN(addr, huge_page_size(h));
268 vma = find_vma(mm, addr);
269 if (TASK_SIZE - len >= addr &&
270 (!vma || addr + len <= vm_start_gap(vma)))
275 * Use mm->get_unmapped_area value as a hint to use topdown routine.
276 * If architectures have special needs, they should define their own
277 * version of hugetlb_get_unmapped_area.
279 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
280 return hugetlb_get_unmapped_area_topdown(file, addr, len,
282 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
288 hugetlbfs_read_actor(struct page *page, unsigned long offset,
289 struct iov_iter *to, unsigned long size)
294 /* Find which 4k chunk and offset with in that chunk */
295 i = offset >> PAGE_SHIFT;
296 offset = offset & ~PAGE_MASK;
300 chunksize = PAGE_SIZE;
303 if (chunksize > size)
305 n = copy_page_to_iter(&page[i], offset, chunksize, to);
317 * Support for read() - Find the page attached to f_mapping and copy out the
318 * data. Its *very* similar to generic_file_buffered_read(), we can't use that
319 * since it has PAGE_SIZE assumptions.
321 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
323 struct file *file = iocb->ki_filp;
324 struct hstate *h = hstate_file(file);
325 struct address_space *mapping = file->f_mapping;
326 struct inode *inode = mapping->host;
327 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
328 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
329 unsigned long end_index;
333 while (iov_iter_count(to)) {
337 /* nr is the maximum number of bytes to copy from this page */
338 nr = huge_page_size(h);
339 isize = i_size_read(inode);
342 end_index = (isize - 1) >> huge_page_shift(h);
343 if (index > end_index)
345 if (index == end_index) {
346 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
353 page = find_lock_page(mapping, index);
354 if (unlikely(page == NULL)) {
356 * We have a HOLE, zero out the user-buffer for the
357 * length of the hole or request.
359 copied = iov_iter_zero(nr, to);
364 * We have the page, copy it to user space buffer.
366 copied = hugetlbfs_read_actor(page, offset, to, nr);
371 if (copied != nr && iov_iter_count(to)) {
376 index += offset >> huge_page_shift(h);
377 offset &= ~huge_page_mask(h);
379 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
383 static int hugetlbfs_write_begin(struct file *file,
384 struct address_space *mapping,
385 loff_t pos, unsigned len, unsigned flags,
386 struct page **pagep, void **fsdata)
391 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
392 loff_t pos, unsigned len, unsigned copied,
393 struct page *page, void *fsdata)
399 static void remove_huge_page(struct page *page)
401 ClearPageDirty(page);
402 ClearPageUptodate(page);
403 delete_from_page_cache(page);
407 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
409 struct vm_area_struct *vma;
412 * end == 0 indicates that the entire range after start should be
413 * unmapped. Note, end is exclusive, whereas the interval tree takes
414 * an inclusive "last".
416 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
417 unsigned long v_offset;
421 * Can the expression below overflow on 32-bit arches?
422 * No, because the interval tree returns us only those vmas
423 * which overlap the truncated area starting at pgoff,
424 * and no vma on a 32-bit arch can span beyond the 4GB.
426 if (vma->vm_pgoff < start)
427 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
434 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
436 if (v_end > vma->vm_end)
440 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
446 * remove_inode_hugepages handles two distinct cases: truncation and hole
447 * punch. There are subtle differences in operation for each case.
449 * truncation is indicated by end of range being LLONG_MAX
450 * In this case, we first scan the range and release found pages.
451 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
452 * maps and global counts. Page faults can not race with truncation
453 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents
454 * page faults in the truncated range by checking i_size. i_size is
455 * modified while holding i_mmap_rwsem.
456 * hole punch is indicated if end is not LLONG_MAX
457 * In the hole punch case we scan the range and release found pages.
458 * Only when releasing a page is the associated region/reserve map
459 * deleted. The region/reserve map for ranges without associated
460 * pages are not modified. Page faults can race with hole punch.
461 * This is indicated if we find a mapped page.
462 * Note: If the passed end of range value is beyond the end of file, but
463 * not LLONG_MAX this routine still performs a hole punch operation.
465 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
468 struct hstate *h = hstate_inode(inode);
469 struct address_space *mapping = &inode->i_data;
470 const pgoff_t start = lstart >> huge_page_shift(h);
471 const pgoff_t end = lend >> huge_page_shift(h);
475 bool truncate_op = (lend == LLONG_MAX);
481 * When no more pages are found, we are done.
483 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
486 for (i = 0; i < pagevec_count(&pvec); ++i) {
487 struct page *page = pvec.pages[i];
493 * Only need to hold the fault mutex in the
494 * hole punch case. This prevents races with
495 * page faults. Races are not possible in the
496 * case of truncation.
498 hash = hugetlb_fault_mutex_hash(mapping, index);
499 mutex_lock(&hugetlb_fault_mutex_table[hash]);
503 * If page is mapped, it was faulted in after being
504 * unmapped in caller. Unmap (again) now after taking
505 * the fault mutex. The mutex will prevent faults
506 * until we finish removing the page.
508 * This race can only happen in the hole punch case.
509 * Getting here in a truncate operation is a bug.
511 if (unlikely(page_mapped(page))) {
514 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
515 i_mmap_lock_write(mapping);
516 mutex_lock(&hugetlb_fault_mutex_table[hash]);
517 hugetlb_vmdelete_list(&mapping->i_mmap,
518 index * pages_per_huge_page(h),
519 (index + 1) * pages_per_huge_page(h));
520 i_mmap_unlock_write(mapping);
525 * We must free the huge page and remove from page
526 * cache (remove_huge_page) BEFORE removing the
527 * region/reserve map (hugetlb_unreserve_pages). In
528 * rare out of memory conditions, removal of the
529 * region/reserve map could fail. Correspondingly,
530 * the subpool and global reserve usage count can need
533 VM_BUG_ON(HPageRestoreReserve(page));
534 remove_huge_page(page);
537 if (unlikely(hugetlb_unreserve_pages(inode,
538 index, index + 1, 1)))
539 hugetlb_fix_reserve_counts(inode);
544 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
546 huge_pagevec_release(&pvec);
551 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
554 static void hugetlbfs_evict_inode(struct inode *inode)
556 struct resv_map *resv_map;
558 remove_inode_hugepages(inode, 0, LLONG_MAX);
561 * Get the resv_map from the address space embedded in the inode.
562 * This is the address space which points to any resv_map allocated
563 * at inode creation time. If this is a device special inode,
564 * i_mapping may not point to the original address space.
566 resv_map = (struct resv_map *)(&inode->i_data)->private_data;
567 /* Only regular and link inodes have associated reserve maps */
569 resv_map_release(&resv_map->refs);
573 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
576 struct address_space *mapping = inode->i_mapping;
577 struct hstate *h = hstate_inode(inode);
579 BUG_ON(offset & ~huge_page_mask(h));
580 pgoff = offset >> PAGE_SHIFT;
582 i_mmap_lock_write(mapping);
583 i_size_write(inode, offset);
584 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
585 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
586 i_mmap_unlock_write(mapping);
587 remove_inode_hugepages(inode, offset, LLONG_MAX);
590 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
592 struct hstate *h = hstate_inode(inode);
593 loff_t hpage_size = huge_page_size(h);
594 loff_t hole_start, hole_end;
597 * For hole punch round up the beginning offset of the hole and
598 * round down the end.
600 hole_start = round_up(offset, hpage_size);
601 hole_end = round_down(offset + len, hpage_size);
603 if (hole_end > hole_start) {
604 struct address_space *mapping = inode->i_mapping;
605 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
609 /* protected by i_rwsem */
610 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
615 i_mmap_lock_write(mapping);
616 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
617 hugetlb_vmdelete_list(&mapping->i_mmap,
618 hole_start >> PAGE_SHIFT,
619 hole_end >> PAGE_SHIFT);
620 i_mmap_unlock_write(mapping);
621 remove_inode_hugepages(inode, hole_start, hole_end);
628 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
631 struct inode *inode = file_inode(file);
632 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
633 struct address_space *mapping = inode->i_mapping;
634 struct hstate *h = hstate_inode(inode);
635 struct vm_area_struct pseudo_vma;
636 struct mm_struct *mm = current->mm;
637 loff_t hpage_size = huge_page_size(h);
638 unsigned long hpage_shift = huge_page_shift(h);
639 pgoff_t start, index, end;
643 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
646 if (mode & FALLOC_FL_PUNCH_HOLE)
647 return hugetlbfs_punch_hole(inode, offset, len);
650 * Default preallocate case.
651 * For this range, start is rounded down and end is rounded up
652 * as well as being converted to page offsets.
654 start = offset >> hpage_shift;
655 end = (offset + len + hpage_size - 1) >> hpage_shift;
659 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
660 error = inode_newsize_ok(inode, offset + len);
664 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
670 * Initialize a pseudo vma as this is required by the huge page
671 * allocation routines. If NUMA is configured, use page index
672 * as input to create an allocation policy.
674 vma_init(&pseudo_vma, mm);
675 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
676 pseudo_vma.vm_file = file;
678 for (index = start; index < end; index++) {
680 * This is supposed to be the vaddr where the page is being
681 * faulted in, but we have no vaddr here.
689 * fallocate(2) manpage permits EINTR; we may have been
690 * interrupted because we are using up too much memory.
692 if (signal_pending(current)) {
697 /* Set numa allocation policy based on index */
698 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
700 /* addr is the offset within the file (zero based) */
701 addr = index * hpage_size;
704 * fault mutex taken here, protects against fault path
705 * and hole punch. inode_lock previously taken protects
706 * against truncation.
708 hash = hugetlb_fault_mutex_hash(mapping, index);
709 mutex_lock(&hugetlb_fault_mutex_table[hash]);
711 /* See if already present in mapping to avoid alloc/free */
712 page = find_get_page(mapping, index);
715 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
716 hugetlb_drop_vma_policy(&pseudo_vma);
721 * Allocate page without setting the avoid_reserve argument.
722 * There certainly are no reserves associated with the
723 * pseudo_vma. However, there could be shared mappings with
724 * reserves for the file at the inode level. If we fallocate
725 * pages in these areas, we need to consume the reserves
726 * to keep reservation accounting consistent.
728 page = alloc_huge_page(&pseudo_vma, addr, 0);
729 hugetlb_drop_vma_policy(&pseudo_vma);
731 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
732 error = PTR_ERR(page);
735 clear_huge_page(page, addr, pages_per_huge_page(h));
736 __SetPageUptodate(page);
737 error = huge_add_to_page_cache(page, mapping, index);
738 if (unlikely(error)) {
739 restore_reserve_on_error(h, &pseudo_vma, addr, page);
741 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
745 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
747 SetHPageMigratable(page);
749 * unlock_page because locked by add_to_page_cache()
750 * put_page() due to reference from alloc_huge_page()
756 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
757 i_size_write(inode, offset + len);
758 inode->i_ctime = current_time(inode);
764 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
765 struct dentry *dentry, struct iattr *attr)
767 struct inode *inode = d_inode(dentry);
768 struct hstate *h = hstate_inode(inode);
770 unsigned int ia_valid = attr->ia_valid;
771 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
773 error = setattr_prepare(&init_user_ns, dentry, attr);
777 if (ia_valid & ATTR_SIZE) {
778 loff_t oldsize = inode->i_size;
779 loff_t newsize = attr->ia_size;
781 if (newsize & ~huge_page_mask(h))
783 /* protected by i_rwsem */
784 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
785 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
787 hugetlb_vmtruncate(inode, newsize);
790 setattr_copy(&init_user_ns, inode, attr);
791 mark_inode_dirty(inode);
795 static struct inode *hugetlbfs_get_root(struct super_block *sb,
796 struct hugetlbfs_fs_context *ctx)
800 inode = new_inode(sb);
802 inode->i_ino = get_next_ino();
803 inode->i_mode = S_IFDIR | ctx->mode;
804 inode->i_uid = ctx->uid;
805 inode->i_gid = ctx->gid;
806 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
807 inode->i_op = &hugetlbfs_dir_inode_operations;
808 inode->i_fop = &simple_dir_operations;
809 /* directory inodes start off with i_nlink == 2 (for "." entry) */
811 lockdep_annotate_inode_mutex_key(inode);
817 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
818 * be taken from reclaim -- unlike regular filesystems. This needs an
819 * annotation because huge_pmd_share() does an allocation under hugetlb's
822 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
824 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
826 umode_t mode, dev_t dev)
829 struct resv_map *resv_map = NULL;
832 * Reserve maps are only needed for inodes that can have associated
835 if (S_ISREG(mode) || S_ISLNK(mode)) {
836 resv_map = resv_map_alloc();
841 inode = new_inode(sb);
843 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
845 inode->i_ino = get_next_ino();
846 inode_init_owner(&init_user_ns, inode, dir, mode);
847 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
848 &hugetlbfs_i_mmap_rwsem_key);
849 inode->i_mapping->a_ops = &hugetlbfs_aops;
850 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
851 inode->i_mapping->private_data = resv_map;
852 info->seals = F_SEAL_SEAL;
853 switch (mode & S_IFMT) {
855 init_special_inode(inode, mode, dev);
858 inode->i_op = &hugetlbfs_inode_operations;
859 inode->i_fop = &hugetlbfs_file_operations;
862 inode->i_op = &hugetlbfs_dir_inode_operations;
863 inode->i_fop = &simple_dir_operations;
865 /* directory inodes start off with i_nlink == 2 (for "." entry) */
869 inode->i_op = &page_symlink_inode_operations;
870 inode_nohighmem(inode);
873 lockdep_annotate_inode_mutex_key(inode);
876 kref_put(&resv_map->refs, resv_map_release);
883 * File creation. Allocate an inode, and we're done..
885 static int do_hugetlbfs_mknod(struct inode *dir,
886 struct dentry *dentry,
894 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
896 dir->i_ctime = dir->i_mtime = current_time(dir);
898 d_tmpfile(dentry, inode);
900 d_instantiate(dentry, inode);
901 dget(dentry);/* Extra count - pin the dentry in core */
908 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
909 struct dentry *dentry, umode_t mode, dev_t dev)
911 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
914 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
915 struct dentry *dentry, umode_t mode)
917 int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
924 static int hugetlbfs_create(struct user_namespace *mnt_userns,
925 struct inode *dir, struct dentry *dentry,
926 umode_t mode, bool excl)
928 return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
931 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
932 struct inode *dir, struct dentry *dentry,
935 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
938 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
939 struct inode *dir, struct dentry *dentry,
945 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
947 int l = strlen(symname)+1;
948 error = page_symlink(inode, symname, l);
950 d_instantiate(dentry, inode);
955 dir->i_ctime = dir->i_mtime = current_time(dir);
960 static int hugetlbfs_migrate_page(struct address_space *mapping,
961 struct page *newpage, struct page *page,
962 enum migrate_mode mode)
966 rc = migrate_huge_page_move_mapping(mapping, newpage, page);
967 if (rc != MIGRATEPAGE_SUCCESS)
970 if (hugetlb_page_subpool(page)) {
971 hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page));
972 hugetlb_set_page_subpool(page, NULL);
975 if (mode != MIGRATE_SYNC_NO_COPY)
976 migrate_page_copy(newpage, page);
978 migrate_page_states(newpage, page);
980 return MIGRATEPAGE_SUCCESS;
983 static int hugetlbfs_error_remove_page(struct address_space *mapping,
986 struct inode *inode = mapping->host;
987 pgoff_t index = page->index;
989 remove_huge_page(page);
990 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
991 hugetlb_fix_reserve_counts(inode);
997 * Display the mount options in /proc/mounts.
999 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1001 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1002 struct hugepage_subpool *spool = sbinfo->spool;
1003 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1004 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1007 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1008 seq_printf(m, ",uid=%u",
1009 from_kuid_munged(&init_user_ns, sbinfo->uid));
1010 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1011 seq_printf(m, ",gid=%u",
1012 from_kgid_munged(&init_user_ns, sbinfo->gid));
1013 if (sbinfo->mode != 0755)
1014 seq_printf(m, ",mode=%o", sbinfo->mode);
1015 if (sbinfo->max_inodes != -1)
1016 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1020 if (hpage_size >= 1024) {
1024 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1026 if (spool->max_hpages != -1)
1027 seq_printf(m, ",size=%llu",
1028 (unsigned long long)spool->max_hpages << hpage_shift);
1029 if (spool->min_hpages != -1)
1030 seq_printf(m, ",min_size=%llu",
1031 (unsigned long long)spool->min_hpages << hpage_shift);
1036 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1038 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1039 struct hstate *h = hstate_inode(d_inode(dentry));
1041 buf->f_type = HUGETLBFS_MAGIC;
1042 buf->f_bsize = huge_page_size(h);
1044 spin_lock(&sbinfo->stat_lock);
1045 /* If no limits set, just report 0 for max/free/used
1046 * blocks, like simple_statfs() */
1047 if (sbinfo->spool) {
1050 spin_lock(&sbinfo->spool->lock);
1051 buf->f_blocks = sbinfo->spool->max_hpages;
1052 free_pages = sbinfo->spool->max_hpages
1053 - sbinfo->spool->used_hpages;
1054 buf->f_bavail = buf->f_bfree = free_pages;
1055 spin_unlock(&sbinfo->spool->lock);
1056 buf->f_files = sbinfo->max_inodes;
1057 buf->f_ffree = sbinfo->free_inodes;
1059 spin_unlock(&sbinfo->stat_lock);
1061 buf->f_namelen = NAME_MAX;
1065 static void hugetlbfs_put_super(struct super_block *sb)
1067 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1070 sb->s_fs_info = NULL;
1073 hugepage_put_subpool(sbi->spool);
1079 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1081 if (sbinfo->free_inodes >= 0) {
1082 spin_lock(&sbinfo->stat_lock);
1083 if (unlikely(!sbinfo->free_inodes)) {
1084 spin_unlock(&sbinfo->stat_lock);
1087 sbinfo->free_inodes--;
1088 spin_unlock(&sbinfo->stat_lock);
1094 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1096 if (sbinfo->free_inodes >= 0) {
1097 spin_lock(&sbinfo->stat_lock);
1098 sbinfo->free_inodes++;
1099 spin_unlock(&sbinfo->stat_lock);
1104 static struct kmem_cache *hugetlbfs_inode_cachep;
1106 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1108 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1109 struct hugetlbfs_inode_info *p;
1111 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1113 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1115 hugetlbfs_inc_free_inodes(sbinfo);
1120 * Any time after allocation, hugetlbfs_destroy_inode can be called
1121 * for the inode. mpol_free_shared_policy is unconditionally called
1122 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1123 * in case of a quick call to destroy.
1125 * Note that the policy is initialized even if we are creating a
1126 * private inode. This simplifies hugetlbfs_destroy_inode.
1128 mpol_shared_policy_init(&p->policy, NULL);
1130 return &p->vfs_inode;
1133 static void hugetlbfs_free_inode(struct inode *inode)
1135 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1138 static void hugetlbfs_destroy_inode(struct inode *inode)
1140 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1141 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1144 static const struct address_space_operations hugetlbfs_aops = {
1145 .write_begin = hugetlbfs_write_begin,
1146 .write_end = hugetlbfs_write_end,
1147 .dirty_folio = noop_dirty_folio,
1148 .migratepage = hugetlbfs_migrate_page,
1149 .error_remove_page = hugetlbfs_error_remove_page,
1153 static void init_once(void *foo)
1155 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1157 inode_init_once(&ei->vfs_inode);
1160 const struct file_operations hugetlbfs_file_operations = {
1161 .read_iter = hugetlbfs_read_iter,
1162 .mmap = hugetlbfs_file_mmap,
1163 .fsync = noop_fsync,
1164 .get_unmapped_area = hugetlb_get_unmapped_area,
1165 .llseek = default_llseek,
1166 .fallocate = hugetlbfs_fallocate,
1169 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1170 .create = hugetlbfs_create,
1171 .lookup = simple_lookup,
1172 .link = simple_link,
1173 .unlink = simple_unlink,
1174 .symlink = hugetlbfs_symlink,
1175 .mkdir = hugetlbfs_mkdir,
1176 .rmdir = simple_rmdir,
1177 .mknod = hugetlbfs_mknod,
1178 .rename = simple_rename,
1179 .setattr = hugetlbfs_setattr,
1180 .tmpfile = hugetlbfs_tmpfile,
1183 static const struct inode_operations hugetlbfs_inode_operations = {
1184 .setattr = hugetlbfs_setattr,
1187 static const struct super_operations hugetlbfs_ops = {
1188 .alloc_inode = hugetlbfs_alloc_inode,
1189 .free_inode = hugetlbfs_free_inode,
1190 .destroy_inode = hugetlbfs_destroy_inode,
1191 .evict_inode = hugetlbfs_evict_inode,
1192 .statfs = hugetlbfs_statfs,
1193 .put_super = hugetlbfs_put_super,
1194 .show_options = hugetlbfs_show_options,
1198 * Convert size option passed from command line to number of huge pages
1199 * in the pool specified by hstate. Size option could be in bytes
1200 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1203 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1204 enum hugetlbfs_size_type val_type)
1206 if (val_type == NO_SIZE)
1209 if (val_type == SIZE_PERCENT) {
1210 size_opt <<= huge_page_shift(h);
1211 size_opt *= h->max_huge_pages;
1212 do_div(size_opt, 100);
1215 size_opt >>= huge_page_shift(h);
1220 * Parse one mount parameter.
1222 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1224 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1225 struct fs_parse_result result;
1230 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1236 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1237 if (!uid_valid(ctx->uid))
1242 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1243 if (!gid_valid(ctx->gid))
1248 ctx->mode = result.uint_32 & 01777U;
1252 /* memparse() will accept a K/M/G without a digit */
1253 if (!isdigit(param->string[0]))
1255 ctx->max_size_opt = memparse(param->string, &rest);
1256 ctx->max_val_type = SIZE_STD;
1258 ctx->max_val_type = SIZE_PERCENT;
1262 /* memparse() will accept a K/M/G without a digit */
1263 if (!isdigit(param->string[0]))
1265 ctx->nr_inodes = memparse(param->string, &rest);
1269 ps = memparse(param->string, &rest);
1270 ctx->hstate = size_to_hstate(ps);
1272 pr_err("Unsupported page size %lu MB\n", ps >> 20);
1278 /* memparse() will accept a K/M/G without a digit */
1279 if (!isdigit(param->string[0]))
1281 ctx->min_size_opt = memparse(param->string, &rest);
1282 ctx->min_val_type = SIZE_STD;
1284 ctx->min_val_type = SIZE_PERCENT;
1292 return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1293 param->string, param->key);
1297 * Validate the parsed options.
1299 static int hugetlbfs_validate(struct fs_context *fc)
1301 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1304 * Use huge page pool size (in hstate) to convert the size
1305 * options to number of huge pages. If NO_SIZE, -1 is returned.
1307 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1310 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1315 * If max_size was specified, then min_size must be smaller
1317 if (ctx->max_val_type > NO_SIZE &&
1318 ctx->min_hpages > ctx->max_hpages) {
1319 pr_err("Minimum size can not be greater than maximum size\n");
1327 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1329 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1330 struct hugetlbfs_sb_info *sbinfo;
1332 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1335 sb->s_fs_info = sbinfo;
1336 spin_lock_init(&sbinfo->stat_lock);
1337 sbinfo->hstate = ctx->hstate;
1338 sbinfo->max_inodes = ctx->nr_inodes;
1339 sbinfo->free_inodes = ctx->nr_inodes;
1340 sbinfo->spool = NULL;
1341 sbinfo->uid = ctx->uid;
1342 sbinfo->gid = ctx->gid;
1343 sbinfo->mode = ctx->mode;
1346 * Allocate and initialize subpool if maximum or minimum size is
1347 * specified. Any needed reservations (for minimum size) are taken
1348 * taken when the subpool is created.
1350 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1351 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1357 sb->s_maxbytes = MAX_LFS_FILESIZE;
1358 sb->s_blocksize = huge_page_size(ctx->hstate);
1359 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1360 sb->s_magic = HUGETLBFS_MAGIC;
1361 sb->s_op = &hugetlbfs_ops;
1362 sb->s_time_gran = 1;
1365 * Due to the special and limited functionality of hugetlbfs, it does
1366 * not work well as a stacking filesystem.
1368 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1369 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1374 kfree(sbinfo->spool);
1379 static int hugetlbfs_get_tree(struct fs_context *fc)
1381 int err = hugetlbfs_validate(fc);
1384 return get_tree_nodev(fc, hugetlbfs_fill_super);
1387 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1389 kfree(fc->fs_private);
1392 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1393 .free = hugetlbfs_fs_context_free,
1394 .parse_param = hugetlbfs_parse_param,
1395 .get_tree = hugetlbfs_get_tree,
1398 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1400 struct hugetlbfs_fs_context *ctx;
1402 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1406 ctx->max_hpages = -1; /* No limit on size by default */
1407 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1408 ctx->uid = current_fsuid();
1409 ctx->gid = current_fsgid();
1411 ctx->hstate = &default_hstate;
1412 ctx->min_hpages = -1; /* No default minimum size */
1413 ctx->max_val_type = NO_SIZE;
1414 ctx->min_val_type = NO_SIZE;
1415 fc->fs_private = ctx;
1416 fc->ops = &hugetlbfs_fs_context_ops;
1420 static struct file_system_type hugetlbfs_fs_type = {
1421 .name = "hugetlbfs",
1422 .init_fs_context = hugetlbfs_init_fs_context,
1423 .parameters = hugetlb_fs_parameters,
1424 .kill_sb = kill_litter_super,
1427 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1429 static int can_do_hugetlb_shm(void)
1432 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1433 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1436 static int get_hstate_idx(int page_size_log)
1438 struct hstate *h = hstate_sizelog(page_size_log);
1442 return hstate_index(h);
1446 * Note that size should be aligned to proper hugepage size in caller side,
1447 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1449 struct file *hugetlb_file_setup(const char *name, size_t size,
1450 vm_flags_t acctflag, int creat_flags,
1453 struct inode *inode;
1454 struct vfsmount *mnt;
1458 hstate_idx = get_hstate_idx(page_size_log);
1460 return ERR_PTR(-ENODEV);
1462 mnt = hugetlbfs_vfsmount[hstate_idx];
1464 return ERR_PTR(-ENOENT);
1466 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1467 struct ucounts *ucounts = current_ucounts();
1469 if (user_shm_lock(size, ucounts)) {
1470 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1471 current->comm, current->pid);
1472 user_shm_unlock(size, ucounts);
1474 return ERR_PTR(-EPERM);
1477 file = ERR_PTR(-ENOSPC);
1478 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1481 if (creat_flags == HUGETLB_SHMFS_INODE)
1482 inode->i_flags |= S_PRIVATE;
1484 inode->i_size = size;
1487 if (!hugetlb_reserve_pages(inode, 0,
1488 size >> huge_page_shift(hstate_inode(inode)), NULL,
1490 file = ERR_PTR(-ENOMEM);
1492 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1493 &hugetlbfs_file_operations);
1502 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1504 struct fs_context *fc;
1505 struct vfsmount *mnt;
1507 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1511 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1517 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1518 huge_page_size(h) >> 10);
1522 static int __init init_hugetlbfs_fs(void)
1524 struct vfsmount *mnt;
1529 if (!hugepages_supported()) {
1530 pr_info("disabling because there are no supported hugepage sizes\n");
1535 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1536 sizeof(struct hugetlbfs_inode_info),
1537 0, SLAB_ACCOUNT, init_once);
1538 if (hugetlbfs_inode_cachep == NULL)
1541 error = register_filesystem(&hugetlbfs_fs_type);
1545 /* default hstate mount is required */
1546 mnt = mount_one_hugetlbfs(&default_hstate);
1548 error = PTR_ERR(mnt);
1551 hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1553 /* other hstates are optional */
1555 for_each_hstate(h) {
1556 if (i == default_hstate_idx) {
1561 mnt = mount_one_hugetlbfs(h);
1563 hugetlbfs_vfsmount[i] = NULL;
1565 hugetlbfs_vfsmount[i] = mnt;
1572 (void)unregister_filesystem(&hugetlbfs_fs_type);
1574 kmem_cache_destroy(hugetlbfs_inode_cachep);
1578 fs_initcall(init_hugetlbfs_fs)