2 * hugetlbpage-backed filesystem. Based on ramfs.
4 * Nadia Yvette Chambers, 2002
6 * Copyright (C) 2002 Linus Torvalds.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
42 static const struct address_space_operations hugetlbfs_aops;
43 const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
49 struct hugetlbfs_fs_context {
50 struct hstate *hstate;
51 unsigned long long max_size_opt;
52 unsigned long long min_size_opt;
56 enum hugetlbfs_size_type max_val_type;
57 enum hugetlbfs_size_type min_val_type;
63 int sysctl_hugetlb_shm_group;
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76 fsparam_u32 ("gid", Opt_gid),
77 fsparam_string("min_size", Opt_min_size),
78 fsparam_u32oct("mode", Opt_mode),
79 fsparam_string("nr_inodes", Opt_nr_inodes),
80 fsparam_string("pagesize", Opt_pagesize),
81 fsparam_string("size", Opt_size),
82 fsparam_u32 ("uid", Opt_uid),
87 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
88 struct inode *inode, pgoff_t index)
90 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
94 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
96 mpol_cond_put(vma->vm_policy);
99 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
100 struct inode *inode, pgoff_t index)
104 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
110 * Mask used when checking the page offset value passed in via system
111 * calls. This value will be converted to a loff_t which is signed.
112 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
113 * value. The extra bit (- 1 in the shift value) is to take the sign
116 #define PGOFF_LOFFT_MAX \
117 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
119 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
121 struct inode *inode = file_inode(file);
122 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
125 struct hstate *h = hstate_file(file);
128 * vma address alignment (but not the pgoff alignment) has
129 * already been checked by prepare_hugepage_range. If you add
130 * any error returns here, do so after setting VM_HUGETLB, so
131 * is_vm_hugetlb_page tests below unmap_region go the right
132 * way when do_mmap unwinds (may be important on powerpc
135 vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
136 vma->vm_ops = &hugetlb_vm_ops;
138 ret = seal_check_future_write(info->seals, vma);
143 * page based offset in vm_pgoff could be sufficiently large to
144 * overflow a loff_t when converted to byte offset. This can
145 * only happen on architectures where sizeof(loff_t) ==
146 * sizeof(unsigned long). So, only check in those instances.
148 if (sizeof(unsigned long) == sizeof(loff_t)) {
149 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
153 /* must be huge page aligned */
154 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
157 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
158 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
159 /* check for overflow */
167 if (!hugetlb_reserve_pages(inode,
168 vma->vm_pgoff >> huge_page_order(h),
169 len >> huge_page_shift(h), vma,
174 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
175 i_size_write(inode, len);
183 * Called under mmap_write_lock(mm).
187 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
188 unsigned long len, unsigned long pgoff, unsigned long flags)
190 struct hstate *h = hstate_file(file);
191 struct vm_unmapped_area_info info;
195 info.low_limit = current->mm->mmap_base;
196 info.high_limit = arch_get_mmap_end(addr, len, flags);
197 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
198 info.align_offset = 0;
199 return vm_unmapped_area(&info);
203 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
204 unsigned long len, unsigned long pgoff, unsigned long flags)
206 struct hstate *h = hstate_file(file);
207 struct vm_unmapped_area_info info;
209 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
211 info.low_limit = PAGE_SIZE;
212 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
213 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
214 info.align_offset = 0;
215 addr = vm_unmapped_area(&info);
218 * A failed mmap() very likely causes application failure,
219 * so fall back to the bottom-up function here. This scenario
220 * can happen with large stack limits and large mmap()
223 if (unlikely(offset_in_page(addr))) {
224 VM_BUG_ON(addr != -ENOMEM);
226 info.low_limit = current->mm->mmap_base;
227 info.high_limit = arch_get_mmap_end(addr, len, flags);
228 addr = vm_unmapped_area(&info);
235 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
236 unsigned long len, unsigned long pgoff,
239 struct mm_struct *mm = current->mm;
240 struct vm_area_struct *vma;
241 struct hstate *h = hstate_file(file);
242 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
244 if (len & ~huge_page_mask(h))
249 if (flags & MAP_FIXED) {
250 if (prepare_hugepage_range(file, addr, len))
256 addr = ALIGN(addr, huge_page_size(h));
257 vma = find_vma(mm, addr);
258 if (mmap_end - len >= addr &&
259 (!vma || addr + len <= vm_start_gap(vma)))
264 * Use mm->get_unmapped_area value as a hint to use topdown routine.
265 * If architectures have special needs, they should define their own
266 * version of hugetlb_get_unmapped_area.
268 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
269 return hugetlb_get_unmapped_area_topdown(file, addr, len,
271 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
275 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
277 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
278 unsigned long len, unsigned long pgoff,
281 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
286 * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
287 * Returns the maximum number of bytes one can read without touching the 1st raw
290 * The implementation borrows the iteration logic from copy_page_to_iter*.
292 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes)
297 /* First subpage to start the loop. */
298 page += offset / PAGE_SIZE;
301 if (is_raw_hwpoison_page_in_hugepage(page))
304 /* Safe to read n bytes without touching HWPOISON subpage. */
305 n = min(bytes, (size_t)PAGE_SIZE - offset);
311 if (offset == PAGE_SIZE) {
321 * Support for read() - Find the page attached to f_mapping and copy out the
322 * data. This provides functionality similar to filemap_read().
324 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
326 struct file *file = iocb->ki_filp;
327 struct hstate *h = hstate_file(file);
328 struct address_space *mapping = file->f_mapping;
329 struct inode *inode = mapping->host;
330 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
331 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
332 unsigned long end_index;
336 while (iov_iter_count(to)) {
338 size_t nr, copied, want;
340 /* nr is the maximum number of bytes to copy from this page */
341 nr = huge_page_size(h);
342 isize = i_size_read(inode);
345 end_index = (isize - 1) >> huge_page_shift(h);
346 if (index > end_index)
348 if (index == end_index) {
349 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
356 page = find_lock_page(mapping, index);
357 if (unlikely(page == NULL)) {
359 * We have a HOLE, zero out the user-buffer for the
360 * length of the hole or request.
362 copied = iov_iter_zero(nr, to);
366 if (!PageHWPoison(page))
370 * Adjust how many bytes safe to read without
371 * touching the 1st raw HWPOISON subpage after
374 want = adjust_range_hwpoison(page, offset, nr);
383 * We have the page, copy it to user space buffer.
385 copied = copy_page_to_iter(page, offset, want, to);
390 if (copied != nr && iov_iter_count(to)) {
395 index += offset >> huge_page_shift(h);
396 offset &= ~huge_page_mask(h);
398 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
402 static int hugetlbfs_write_begin(struct file *file,
403 struct address_space *mapping,
404 loff_t pos, unsigned len,
405 struct page **pagep, void **fsdata)
410 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
411 loff_t pos, unsigned len, unsigned copied,
412 struct page *page, void *fsdata)
418 static void hugetlb_delete_from_page_cache(struct folio *folio)
420 folio_clear_dirty(folio);
421 folio_clear_uptodate(folio);
422 filemap_remove_folio(folio);
426 * Called with i_mmap_rwsem held for inode based vma maps. This makes
427 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault
428 * mutex for the page in the mapping. So, we can not race with page being
429 * faulted into the vma.
431 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
432 unsigned long addr, struct page *page)
436 ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
440 pte = huge_ptep_get(ptep);
441 if (huge_pte_none(pte) || !pte_present(pte))
444 if (pte_page(pte) == page)
451 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
452 * No, because the interval tree returns us only those vmas
453 * which overlap the truncated area starting at pgoff,
454 * and no vma on a 32-bit arch can span beyond the 4GB.
456 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
458 unsigned long offset = 0;
460 if (vma->vm_pgoff < start)
461 offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
463 return vma->vm_start + offset;
466 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
473 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
474 if (t_end > vma->vm_end)
480 * Called with hugetlb fault mutex held. Therefore, no more mappings to
481 * this folio can be created while executing the routine.
483 static void hugetlb_unmap_file_folio(struct hstate *h,
484 struct address_space *mapping,
485 struct folio *folio, pgoff_t index)
487 struct rb_root_cached *root = &mapping->i_mmap;
488 struct hugetlb_vma_lock *vma_lock;
489 struct page *page = &folio->page;
490 struct vm_area_struct *vma;
491 unsigned long v_start;
495 start = index * pages_per_huge_page(h);
496 end = (index + 1) * pages_per_huge_page(h);
498 i_mmap_lock_write(mapping);
501 vma_interval_tree_foreach(vma, root, start, end - 1) {
502 v_start = vma_offset_start(vma, start);
503 v_end = vma_offset_end(vma, end);
505 if (!hugetlb_vma_maps_page(vma, v_start, page))
508 if (!hugetlb_vma_trylock_write(vma)) {
509 vma_lock = vma->vm_private_data;
511 * If we can not get vma lock, we need to drop
512 * immap_sema and take locks in order. First,
513 * take a ref on the vma_lock structure so that
514 * we can be guaranteed it will not go away when
515 * dropping immap_sema.
517 kref_get(&vma_lock->refs);
521 unmap_hugepage_range(vma, v_start, v_end, NULL,
522 ZAP_FLAG_DROP_MARKER);
523 hugetlb_vma_unlock_write(vma);
526 i_mmap_unlock_write(mapping);
530 * Wait on vma_lock. We know it is still valid as we have
531 * a reference. We must 'open code' vma locking as we do
532 * not know if vma_lock is still attached to vma.
534 down_write(&vma_lock->rw_sema);
535 i_mmap_lock_write(mapping);
540 * If lock is no longer attached to vma, then just
541 * unlock, drop our reference and retry looking for
544 up_write(&vma_lock->rw_sema);
545 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
550 * vma_lock is still attached to vma. Check to see if vma
551 * still maps page and if so, unmap.
553 v_start = vma_offset_start(vma, start);
554 v_end = vma_offset_end(vma, end);
555 if (hugetlb_vma_maps_page(vma, v_start, page))
556 unmap_hugepage_range(vma, v_start, v_end, NULL,
557 ZAP_FLAG_DROP_MARKER);
559 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
560 hugetlb_vma_unlock_write(vma);
567 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
568 zap_flags_t zap_flags)
570 struct vm_area_struct *vma;
573 * end == 0 indicates that the entire range after start should be
574 * unmapped. Note, end is exclusive, whereas the interval tree takes
575 * an inclusive "last".
577 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
578 unsigned long v_start;
581 if (!hugetlb_vma_trylock_write(vma))
584 v_start = vma_offset_start(vma, start);
585 v_end = vma_offset_end(vma, end);
587 unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
590 * Note that vma lock only exists for shared/non-private
591 * vmas. Therefore, lock is not held when calling
592 * unmap_hugepage_range for private vmas.
594 hugetlb_vma_unlock_write(vma);
599 * Called with hugetlb fault mutex held.
600 * Returns true if page was actually removed, false otherwise.
602 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
603 struct address_space *mapping,
604 struct folio *folio, pgoff_t index,
610 * If folio is mapped, it was faulted in after being
611 * unmapped in caller. Unmap (again) while holding
612 * the fault mutex. The mutex will prevent faults
613 * until we finish removing the folio.
615 if (unlikely(folio_mapped(folio)))
616 hugetlb_unmap_file_folio(h, mapping, folio, index);
620 * We must remove the folio from page cache before removing
621 * the region/ reserve map (hugetlb_unreserve_pages). In
622 * rare out of memory conditions, removal of the region/reserve
623 * map could fail. Correspondingly, the subpool and global
624 * reserve usage count can need to be adjusted.
626 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
627 hugetlb_delete_from_page_cache(folio);
630 if (unlikely(hugetlb_unreserve_pages(inode, index,
632 hugetlb_fix_reserve_counts(inode);
640 * remove_inode_hugepages handles two distinct cases: truncation and hole
641 * punch. There are subtle differences in operation for each case.
643 * truncation is indicated by end of range being LLONG_MAX
644 * In this case, we first scan the range and release found pages.
645 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
646 * maps and global counts. Page faults can race with truncation.
647 * During faults, hugetlb_no_page() checks i_size before page allocation,
648 * and again after obtaining page table lock. It will 'back out'
649 * allocations in the truncated range.
650 * hole punch is indicated if end is not LLONG_MAX
651 * In the hole punch case we scan the range and release found pages.
652 * Only when releasing a page is the associated region/reserve map
653 * deleted. The region/reserve map for ranges without associated
654 * pages are not modified. Page faults can race with hole punch.
655 * This is indicated if we find a mapped page.
656 * Note: If the passed end of range value is beyond the end of file, but
657 * not LLONG_MAX this routine still performs a hole punch operation.
659 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
662 struct hstate *h = hstate_inode(inode);
663 struct address_space *mapping = &inode->i_data;
664 const pgoff_t start = lstart >> huge_page_shift(h);
665 const pgoff_t end = lend >> huge_page_shift(h);
666 struct folio_batch fbatch;
669 bool truncate_op = (lend == LLONG_MAX);
671 folio_batch_init(&fbatch);
673 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
674 for (i = 0; i < folio_batch_count(&fbatch); ++i) {
675 struct folio *folio = fbatch.folios[i];
678 index = folio->index;
679 hash = hugetlb_fault_mutex_hash(mapping, index);
680 mutex_lock(&hugetlb_fault_mutex_table[hash]);
683 * Remove folio that was part of folio_batch.
685 if (remove_inode_single_folio(h, inode, mapping, folio,
689 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
691 folio_batch_release(&fbatch);
696 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
699 static void hugetlbfs_evict_inode(struct inode *inode)
701 struct resv_map *resv_map;
703 remove_inode_hugepages(inode, 0, LLONG_MAX);
706 * Get the resv_map from the address space embedded in the inode.
707 * This is the address space which points to any resv_map allocated
708 * at inode creation time. If this is a device special inode,
709 * i_mapping may not point to the original address space.
711 resv_map = (struct resv_map *)(&inode->i_data)->private_data;
712 /* Only regular and link inodes have associated reserve maps */
714 resv_map_release(&resv_map->refs);
718 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
721 struct address_space *mapping = inode->i_mapping;
722 struct hstate *h = hstate_inode(inode);
724 BUG_ON(offset & ~huge_page_mask(h));
725 pgoff = offset >> PAGE_SHIFT;
727 i_size_write(inode, offset);
728 i_mmap_lock_write(mapping);
729 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
730 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
731 ZAP_FLAG_DROP_MARKER);
732 i_mmap_unlock_write(mapping);
733 remove_inode_hugepages(inode, offset, LLONG_MAX);
736 static void hugetlbfs_zero_partial_page(struct hstate *h,
737 struct address_space *mapping,
741 pgoff_t idx = start >> huge_page_shift(h);
744 folio = filemap_lock_folio(mapping, idx);
748 start = start & ~huge_page_mask(h);
749 end = end & ~huge_page_mask(h);
751 end = huge_page_size(h);
753 folio_zero_segment(folio, (size_t)start, (size_t)end);
759 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
761 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
762 struct address_space *mapping = inode->i_mapping;
763 struct hstate *h = hstate_inode(inode);
764 loff_t hpage_size = huge_page_size(h);
765 loff_t hole_start, hole_end;
768 * hole_start and hole_end indicate the full pages within the hole.
770 hole_start = round_up(offset, hpage_size);
771 hole_end = round_down(offset + len, hpage_size);
775 /* protected by i_rwsem */
776 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
781 i_mmap_lock_write(mapping);
783 /* If range starts before first full page, zero partial page. */
784 if (offset < hole_start)
785 hugetlbfs_zero_partial_page(h, mapping,
786 offset, min(offset + len, hole_start));
788 /* Unmap users of full pages in the hole. */
789 if (hole_end > hole_start) {
790 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
791 hugetlb_vmdelete_list(&mapping->i_mmap,
792 hole_start >> PAGE_SHIFT,
793 hole_end >> PAGE_SHIFT, 0);
796 /* If range extends beyond last full page, zero partial page. */
797 if ((offset + len) > hole_end && (offset + len) > hole_start)
798 hugetlbfs_zero_partial_page(h, mapping,
799 hole_end, offset + len);
801 i_mmap_unlock_write(mapping);
803 /* Remove full pages from the file. */
804 if (hole_end > hole_start)
805 remove_inode_hugepages(inode, hole_start, hole_end);
812 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
815 struct inode *inode = file_inode(file);
816 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
817 struct address_space *mapping = inode->i_mapping;
818 struct hstate *h = hstate_inode(inode);
819 struct vm_area_struct pseudo_vma;
820 struct mm_struct *mm = current->mm;
821 loff_t hpage_size = huge_page_size(h);
822 unsigned long hpage_shift = huge_page_shift(h);
823 pgoff_t start, index, end;
827 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
830 if (mode & FALLOC_FL_PUNCH_HOLE)
831 return hugetlbfs_punch_hole(inode, offset, len);
834 * Default preallocate case.
835 * For this range, start is rounded down and end is rounded up
836 * as well as being converted to page offsets.
838 start = offset >> hpage_shift;
839 end = (offset + len + hpage_size - 1) >> hpage_shift;
843 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
844 error = inode_newsize_ok(inode, offset + len);
848 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
854 * Initialize a pseudo vma as this is required by the huge page
855 * allocation routines. If NUMA is configured, use page index
856 * as input to create an allocation policy.
858 vma_init(&pseudo_vma, mm);
859 vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
860 pseudo_vma.vm_file = file;
862 for (index = start; index < end; index++) {
864 * This is supposed to be the vaddr where the page is being
865 * faulted in, but we have no vaddr here.
873 * fallocate(2) manpage permits EINTR; we may have been
874 * interrupted because we are using up too much memory.
876 if (signal_pending(current)) {
881 /* addr is the offset within the file (zero based) */
882 addr = index * hpage_size;
884 /* mutex taken here, fault path and hole punch */
885 hash = hugetlb_fault_mutex_hash(mapping, index);
886 mutex_lock(&hugetlb_fault_mutex_table[hash]);
888 /* See if already present in mapping to avoid alloc/free */
889 folio = filemap_get_folio(mapping, index);
890 if (!IS_ERR(folio)) {
892 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
897 * Allocate folio without setting the avoid_reserve argument.
898 * There certainly are no reserves associated with the
899 * pseudo_vma. However, there could be shared mappings with
900 * reserves for the file at the inode level. If we fallocate
901 * folios in these areas, we need to consume the reserves
902 * to keep reservation accounting consistent.
904 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
905 folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
906 hugetlb_drop_vma_policy(&pseudo_vma);
908 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
909 error = PTR_ERR(folio);
912 clear_huge_page(&folio->page, addr, pages_per_huge_page(h));
913 __folio_mark_uptodate(folio);
914 error = hugetlb_add_to_page_cache(folio, mapping, index);
915 if (unlikely(error)) {
916 restore_reserve_on_error(h, &pseudo_vma, addr, folio);
918 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
922 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
924 folio_set_hugetlb_migratable(folio);
926 * folio_unlock because locked by hugetlb_add_to_page_cache()
927 * folio_put() due to reference from alloc_hugetlb_folio()
933 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
934 i_size_write(inode, offset + len);
935 inode_set_ctime_current(inode);
941 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
942 struct dentry *dentry, struct iattr *attr)
944 struct inode *inode = d_inode(dentry);
945 struct hstate *h = hstate_inode(inode);
947 unsigned int ia_valid = attr->ia_valid;
948 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
950 error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
954 if (ia_valid & ATTR_SIZE) {
955 loff_t oldsize = inode->i_size;
956 loff_t newsize = attr->ia_size;
958 if (newsize & ~huge_page_mask(h))
960 /* protected by i_rwsem */
961 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
962 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
964 hugetlb_vmtruncate(inode, newsize);
967 setattr_copy(&nop_mnt_idmap, inode, attr);
968 mark_inode_dirty(inode);
972 static struct inode *hugetlbfs_get_root(struct super_block *sb,
973 struct hugetlbfs_fs_context *ctx)
977 inode = new_inode(sb);
979 inode->i_ino = get_next_ino();
980 inode->i_mode = S_IFDIR | ctx->mode;
981 inode->i_uid = ctx->uid;
982 inode->i_gid = ctx->gid;
983 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
984 inode->i_op = &hugetlbfs_dir_inode_operations;
985 inode->i_fop = &simple_dir_operations;
986 /* directory inodes start off with i_nlink == 2 (for "." entry) */
988 lockdep_annotate_inode_mutex_key(inode);
994 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
995 * be taken from reclaim -- unlike regular filesystems. This needs an
996 * annotation because huge_pmd_share() does an allocation under hugetlb's
999 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
1001 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
1003 umode_t mode, dev_t dev)
1005 struct inode *inode;
1006 struct resv_map *resv_map = NULL;
1009 * Reserve maps are only needed for inodes that can have associated
1012 if (S_ISREG(mode) || S_ISLNK(mode)) {
1013 resv_map = resv_map_alloc();
1018 inode = new_inode(sb);
1020 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1022 inode->i_ino = get_next_ino();
1023 inode_init_owner(&nop_mnt_idmap, inode, dir, mode);
1024 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
1025 &hugetlbfs_i_mmap_rwsem_key);
1026 inode->i_mapping->a_ops = &hugetlbfs_aops;
1027 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
1028 inode->i_mapping->private_data = resv_map;
1029 info->seals = F_SEAL_SEAL;
1030 switch (mode & S_IFMT) {
1032 init_special_inode(inode, mode, dev);
1035 inode->i_op = &hugetlbfs_inode_operations;
1036 inode->i_fop = &hugetlbfs_file_operations;
1039 inode->i_op = &hugetlbfs_dir_inode_operations;
1040 inode->i_fop = &simple_dir_operations;
1042 /* directory inodes start off with i_nlink == 2 (for "." entry) */
1046 inode->i_op = &page_symlink_inode_operations;
1047 inode_nohighmem(inode);
1050 lockdep_annotate_inode_mutex_key(inode);
1053 kref_put(&resv_map->refs, resv_map_release);
1060 * File creation. Allocate an inode, and we're done..
1062 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
1063 struct dentry *dentry, umode_t mode, dev_t dev)
1065 struct inode *inode;
1067 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
1070 dir->i_mtime = inode_set_ctime_current(dir);
1071 d_instantiate(dentry, inode);
1072 dget(dentry);/* Extra count - pin the dentry in core */
1076 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
1077 struct dentry *dentry, umode_t mode)
1079 int retval = hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry,
1086 static int hugetlbfs_create(struct mnt_idmap *idmap,
1087 struct inode *dir, struct dentry *dentry,
1088 umode_t mode, bool excl)
1090 return hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFREG, 0);
1093 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1094 struct inode *dir, struct file *file,
1097 struct inode *inode;
1099 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0);
1102 dir->i_mtime = inode_set_ctime_current(dir);
1103 d_tmpfile(file, inode);
1104 return finish_open_simple(file, 0);
1107 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1108 struct inode *dir, struct dentry *dentry,
1109 const char *symname)
1111 struct inode *inode;
1112 int error = -ENOSPC;
1114 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
1116 int l = strlen(symname)+1;
1117 error = page_symlink(inode, symname, l);
1119 d_instantiate(dentry, inode);
1124 dir->i_mtime = inode_set_ctime_current(dir);
1129 #ifdef CONFIG_MIGRATION
1130 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1131 struct folio *dst, struct folio *src,
1132 enum migrate_mode mode)
1136 rc = migrate_huge_page_move_mapping(mapping, dst, src);
1137 if (rc != MIGRATEPAGE_SUCCESS)
1140 if (hugetlb_folio_subpool(src)) {
1141 hugetlb_set_folio_subpool(dst,
1142 hugetlb_folio_subpool(src));
1143 hugetlb_set_folio_subpool(src, NULL);
1146 if (mode != MIGRATE_SYNC_NO_COPY)
1147 folio_migrate_copy(dst, src);
1149 folio_migrate_flags(dst, src);
1151 return MIGRATEPAGE_SUCCESS;
1154 #define hugetlbfs_migrate_folio NULL
1157 static int hugetlbfs_error_remove_page(struct address_space *mapping,
1164 * Display the mount options in /proc/mounts.
1166 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1168 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1169 struct hugepage_subpool *spool = sbinfo->spool;
1170 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1171 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1174 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1175 seq_printf(m, ",uid=%u",
1176 from_kuid_munged(&init_user_ns, sbinfo->uid));
1177 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1178 seq_printf(m, ",gid=%u",
1179 from_kgid_munged(&init_user_ns, sbinfo->gid));
1180 if (sbinfo->mode != 0755)
1181 seq_printf(m, ",mode=%o", sbinfo->mode);
1182 if (sbinfo->max_inodes != -1)
1183 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1187 if (hpage_size >= 1024) {
1191 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1193 if (spool->max_hpages != -1)
1194 seq_printf(m, ",size=%llu",
1195 (unsigned long long)spool->max_hpages << hpage_shift);
1196 if (spool->min_hpages != -1)
1197 seq_printf(m, ",min_size=%llu",
1198 (unsigned long long)spool->min_hpages << hpage_shift);
1203 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1205 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1206 struct hstate *h = hstate_inode(d_inode(dentry));
1208 buf->f_type = HUGETLBFS_MAGIC;
1209 buf->f_bsize = huge_page_size(h);
1211 spin_lock(&sbinfo->stat_lock);
1212 /* If no limits set, just report 0 or -1 for max/free/used
1213 * blocks, like simple_statfs() */
1214 if (sbinfo->spool) {
1217 spin_lock_irq(&sbinfo->spool->lock);
1218 buf->f_blocks = sbinfo->spool->max_hpages;
1219 free_pages = sbinfo->spool->max_hpages
1220 - sbinfo->spool->used_hpages;
1221 buf->f_bavail = buf->f_bfree = free_pages;
1222 spin_unlock_irq(&sbinfo->spool->lock);
1223 buf->f_files = sbinfo->max_inodes;
1224 buf->f_ffree = sbinfo->free_inodes;
1226 spin_unlock(&sbinfo->stat_lock);
1228 buf->f_namelen = NAME_MAX;
1232 static void hugetlbfs_put_super(struct super_block *sb)
1234 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1237 sb->s_fs_info = NULL;
1240 hugepage_put_subpool(sbi->spool);
1246 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1248 if (sbinfo->free_inodes >= 0) {
1249 spin_lock(&sbinfo->stat_lock);
1250 if (unlikely(!sbinfo->free_inodes)) {
1251 spin_unlock(&sbinfo->stat_lock);
1254 sbinfo->free_inodes--;
1255 spin_unlock(&sbinfo->stat_lock);
1261 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1263 if (sbinfo->free_inodes >= 0) {
1264 spin_lock(&sbinfo->stat_lock);
1265 sbinfo->free_inodes++;
1266 spin_unlock(&sbinfo->stat_lock);
1271 static struct kmem_cache *hugetlbfs_inode_cachep;
1273 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1275 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1276 struct hugetlbfs_inode_info *p;
1278 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1280 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1282 hugetlbfs_inc_free_inodes(sbinfo);
1287 * Any time after allocation, hugetlbfs_destroy_inode can be called
1288 * for the inode. mpol_free_shared_policy is unconditionally called
1289 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1290 * in case of a quick call to destroy.
1292 * Note that the policy is initialized even if we are creating a
1293 * private inode. This simplifies hugetlbfs_destroy_inode.
1295 mpol_shared_policy_init(&p->policy, NULL);
1297 return &p->vfs_inode;
1300 static void hugetlbfs_free_inode(struct inode *inode)
1302 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1305 static void hugetlbfs_destroy_inode(struct inode *inode)
1307 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1308 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1311 static const struct address_space_operations hugetlbfs_aops = {
1312 .write_begin = hugetlbfs_write_begin,
1313 .write_end = hugetlbfs_write_end,
1314 .dirty_folio = noop_dirty_folio,
1315 .migrate_folio = hugetlbfs_migrate_folio,
1316 .error_remove_page = hugetlbfs_error_remove_page,
1320 static void init_once(void *foo)
1322 struct hugetlbfs_inode_info *ei = foo;
1324 inode_init_once(&ei->vfs_inode);
1327 const struct file_operations hugetlbfs_file_operations = {
1328 .read_iter = hugetlbfs_read_iter,
1329 .mmap = hugetlbfs_file_mmap,
1330 .fsync = noop_fsync,
1331 .get_unmapped_area = hugetlb_get_unmapped_area,
1332 .llseek = default_llseek,
1333 .fallocate = hugetlbfs_fallocate,
1336 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1337 .create = hugetlbfs_create,
1338 .lookup = simple_lookup,
1339 .link = simple_link,
1340 .unlink = simple_unlink,
1341 .symlink = hugetlbfs_symlink,
1342 .mkdir = hugetlbfs_mkdir,
1343 .rmdir = simple_rmdir,
1344 .mknod = hugetlbfs_mknod,
1345 .rename = simple_rename,
1346 .setattr = hugetlbfs_setattr,
1347 .tmpfile = hugetlbfs_tmpfile,
1350 static const struct inode_operations hugetlbfs_inode_operations = {
1351 .setattr = hugetlbfs_setattr,
1354 static const struct super_operations hugetlbfs_ops = {
1355 .alloc_inode = hugetlbfs_alloc_inode,
1356 .free_inode = hugetlbfs_free_inode,
1357 .destroy_inode = hugetlbfs_destroy_inode,
1358 .evict_inode = hugetlbfs_evict_inode,
1359 .statfs = hugetlbfs_statfs,
1360 .put_super = hugetlbfs_put_super,
1361 .show_options = hugetlbfs_show_options,
1365 * Convert size option passed from command line to number of huge pages
1366 * in the pool specified by hstate. Size option could be in bytes
1367 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1370 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1371 enum hugetlbfs_size_type val_type)
1373 if (val_type == NO_SIZE)
1376 if (val_type == SIZE_PERCENT) {
1377 size_opt <<= huge_page_shift(h);
1378 size_opt *= h->max_huge_pages;
1379 do_div(size_opt, 100);
1382 size_opt >>= huge_page_shift(h);
1387 * Parse one mount parameter.
1389 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1391 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1392 struct fs_parse_result result;
1397 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1403 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1404 if (!uid_valid(ctx->uid))
1409 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1410 if (!gid_valid(ctx->gid))
1415 ctx->mode = result.uint_32 & 01777U;
1419 /* memparse() will accept a K/M/G without a digit */
1420 if (!param->string || !isdigit(param->string[0]))
1422 ctx->max_size_opt = memparse(param->string, &rest);
1423 ctx->max_val_type = SIZE_STD;
1425 ctx->max_val_type = SIZE_PERCENT;
1429 /* memparse() will accept a K/M/G without a digit */
1430 if (!param->string || !isdigit(param->string[0]))
1432 ctx->nr_inodes = memparse(param->string, &rest);
1436 ps = memparse(param->string, &rest);
1437 ctx->hstate = size_to_hstate(ps);
1439 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1445 /* memparse() will accept a K/M/G without a digit */
1446 if (!param->string || !isdigit(param->string[0]))
1448 ctx->min_size_opt = memparse(param->string, &rest);
1449 ctx->min_val_type = SIZE_STD;
1451 ctx->min_val_type = SIZE_PERCENT;
1459 return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1460 param->string, param->key);
1464 * Validate the parsed options.
1466 static int hugetlbfs_validate(struct fs_context *fc)
1468 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1471 * Use huge page pool size (in hstate) to convert the size
1472 * options to number of huge pages. If NO_SIZE, -1 is returned.
1474 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1477 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1482 * If max_size was specified, then min_size must be smaller
1484 if (ctx->max_val_type > NO_SIZE &&
1485 ctx->min_hpages > ctx->max_hpages) {
1486 pr_err("Minimum size can not be greater than maximum size\n");
1494 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1496 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1497 struct hugetlbfs_sb_info *sbinfo;
1499 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1502 sb->s_fs_info = sbinfo;
1503 spin_lock_init(&sbinfo->stat_lock);
1504 sbinfo->hstate = ctx->hstate;
1505 sbinfo->max_inodes = ctx->nr_inodes;
1506 sbinfo->free_inodes = ctx->nr_inodes;
1507 sbinfo->spool = NULL;
1508 sbinfo->uid = ctx->uid;
1509 sbinfo->gid = ctx->gid;
1510 sbinfo->mode = ctx->mode;
1513 * Allocate and initialize subpool if maximum or minimum size is
1514 * specified. Any needed reservations (for minimum size) are taken
1515 * when the subpool is created.
1517 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1518 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1524 sb->s_maxbytes = MAX_LFS_FILESIZE;
1525 sb->s_blocksize = huge_page_size(ctx->hstate);
1526 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1527 sb->s_magic = HUGETLBFS_MAGIC;
1528 sb->s_op = &hugetlbfs_ops;
1529 sb->s_time_gran = 1;
1532 * Due to the special and limited functionality of hugetlbfs, it does
1533 * not work well as a stacking filesystem.
1535 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1536 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1541 kfree(sbinfo->spool);
1546 static int hugetlbfs_get_tree(struct fs_context *fc)
1548 int err = hugetlbfs_validate(fc);
1551 return get_tree_nodev(fc, hugetlbfs_fill_super);
1554 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1556 kfree(fc->fs_private);
1559 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1560 .free = hugetlbfs_fs_context_free,
1561 .parse_param = hugetlbfs_parse_param,
1562 .get_tree = hugetlbfs_get_tree,
1565 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1567 struct hugetlbfs_fs_context *ctx;
1569 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1573 ctx->max_hpages = -1; /* No limit on size by default */
1574 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1575 ctx->uid = current_fsuid();
1576 ctx->gid = current_fsgid();
1578 ctx->hstate = &default_hstate;
1579 ctx->min_hpages = -1; /* No default minimum size */
1580 ctx->max_val_type = NO_SIZE;
1581 ctx->min_val_type = NO_SIZE;
1582 fc->fs_private = ctx;
1583 fc->ops = &hugetlbfs_fs_context_ops;
1587 static struct file_system_type hugetlbfs_fs_type = {
1588 .name = "hugetlbfs",
1589 .init_fs_context = hugetlbfs_init_fs_context,
1590 .parameters = hugetlb_fs_parameters,
1591 .kill_sb = kill_litter_super,
1594 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1596 static int can_do_hugetlb_shm(void)
1599 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1600 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1603 static int get_hstate_idx(int page_size_log)
1605 struct hstate *h = hstate_sizelog(page_size_log);
1609 return hstate_index(h);
1613 * Note that size should be aligned to proper hugepage size in caller side,
1614 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1616 struct file *hugetlb_file_setup(const char *name, size_t size,
1617 vm_flags_t acctflag, int creat_flags,
1620 struct inode *inode;
1621 struct vfsmount *mnt;
1625 hstate_idx = get_hstate_idx(page_size_log);
1627 return ERR_PTR(-ENODEV);
1629 mnt = hugetlbfs_vfsmount[hstate_idx];
1631 return ERR_PTR(-ENOENT);
1633 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1634 struct ucounts *ucounts = current_ucounts();
1636 if (user_shm_lock(size, ucounts)) {
1637 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1638 current->comm, current->pid);
1639 user_shm_unlock(size, ucounts);
1641 return ERR_PTR(-EPERM);
1644 file = ERR_PTR(-ENOSPC);
1645 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1648 if (creat_flags == HUGETLB_SHMFS_INODE)
1649 inode->i_flags |= S_PRIVATE;
1651 inode->i_size = size;
1654 if (!hugetlb_reserve_pages(inode, 0,
1655 size >> huge_page_shift(hstate_inode(inode)), NULL,
1657 file = ERR_PTR(-ENOMEM);
1659 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1660 &hugetlbfs_file_operations);
1669 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1671 struct fs_context *fc;
1672 struct vfsmount *mnt;
1674 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1678 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1684 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1685 huge_page_size(h) / SZ_1K);
1689 static int __init init_hugetlbfs_fs(void)
1691 struct vfsmount *mnt;
1696 if (!hugepages_supported()) {
1697 pr_info("disabling because there are no supported hugepage sizes\n");
1702 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1703 sizeof(struct hugetlbfs_inode_info),
1704 0, SLAB_ACCOUNT, init_once);
1705 if (hugetlbfs_inode_cachep == NULL)
1708 error = register_filesystem(&hugetlbfs_fs_type);
1712 /* default hstate mount is required */
1713 mnt = mount_one_hugetlbfs(&default_hstate);
1715 error = PTR_ERR(mnt);
1718 hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1720 /* other hstates are optional */
1722 for_each_hstate(h) {
1723 if (i == default_hstate_idx) {
1728 mnt = mount_one_hugetlbfs(h);
1730 hugetlbfs_vfsmount[i] = NULL;
1732 hugetlbfs_vfsmount[i] = mnt;
1739 (void)unregister_filesystem(&hugetlbfs_fs_type);
1741 kmem_cache_destroy(hugetlbfs_inode_cachep);
1745 fs_initcall(init_hugetlbfs_fs)