2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright 2004-2011 Red Hat, Inc.
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/dlm.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/delay.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/sched/signal.h>
24 #include "trace_gfs2.h"
27 * gfs2_update_stats - Update time based stats
28 * @mv: Pointer to mean/variance structure to update
29 * @sample: New data to include
31 * @delta is the difference between the current rtt sample and the
32 * running average srtt. We add 1/8 of that to the srtt in order to
33 * update the current srtt estimate. The variance estimate is a bit
34 * more complicated. We subtract the abs value of the @delta from
35 * the current variance estimate and add 1/4 of that to the running
38 * Note that the index points at the array entry containing the smoothed
39 * mean value, and the variance is always in the following entry
41 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
42 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
43 * they are not scaled fixed point.
46 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
49 s64 delta = sample - s->stats[index];
50 s->stats[index] += (delta >> 3);
52 s->stats[index] += ((abs(delta) - s->stats[index]) >> 2);
56 * gfs2_update_reply_times - Update locking statistics
57 * @gl: The glock to update
59 * This assumes that gl->gl_dstamp has been set earlier.
61 * The rtt (lock round trip time) is an estimate of the time
62 * taken to perform a dlm lock request. We update it on each
65 * The blocking flag is set on the glock for all dlm requests
66 * which may potentially block due to lock requests from other nodes.
67 * DLM requests where the current lock state is exclusive, the
68 * requested state is null (or unlocked) or where the TRY or
69 * TRY_1CB flags are set are classified as non-blocking. All
70 * other DLM requests are counted as (potentially) blocking.
72 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
74 struct gfs2_pcpu_lkstats *lks;
75 const unsigned gltype = gl->gl_name.ln_type;
76 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
77 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
81 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
82 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
83 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
84 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
87 trace_gfs2_glock_lock_time(gl, rtt);
91 * gfs2_update_request_times - Update locking statistics
92 * @gl: The glock to update
94 * The irt (lock inter-request times) measures the average time
95 * between requests to the dlm. It is updated immediately before
99 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
101 struct gfs2_pcpu_lkstats *lks;
102 const unsigned gltype = gl->gl_name.ln_type;
107 dstamp = gl->gl_dstamp;
108 gl->gl_dstamp = ktime_get_real();
109 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
110 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
111 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
112 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
116 static void gdlm_ast(void *arg)
118 struct gfs2_glock *gl = arg;
119 unsigned ret = gl->gl_state;
121 gfs2_update_reply_times(gl);
122 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
124 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
125 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
127 switch (gl->gl_lksb.sb_status) {
128 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
131 case -DLM_ECANCEL: /* Cancel while getting lock */
132 ret |= LM_OUT_CANCELED;
134 case -EAGAIN: /* Try lock fails */
135 case -EDEADLK: /* Deadlock detected */
137 case -ETIMEDOUT: /* Canceled due to timeout */
140 case 0: /* Success */
142 default: /* Something unexpected */
147 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
148 if (gl->gl_req == LM_ST_SHARED)
149 ret = LM_ST_DEFERRED;
150 else if (gl->gl_req == LM_ST_DEFERRED)
156 set_bit(GLF_INITIAL, &gl->gl_flags);
157 gfs2_glock_complete(gl, ret);
160 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
161 gl->gl_lksb.sb_lkid = 0;
162 gfs2_glock_complete(gl, ret);
165 static void gdlm_bast(void *arg, int mode)
167 struct gfs2_glock *gl = arg;
171 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
174 gfs2_glock_cb(gl, LM_ST_DEFERRED);
177 gfs2_glock_cb(gl, LM_ST_SHARED);
180 pr_err("unknown bast mode %d\n", mode);
185 /* convert gfs lock-state to dlm lock-mode */
187 static int make_mode(const unsigned int lmstate)
192 case LM_ST_EXCLUSIVE:
199 pr_err("unknown LM state %d\n", lmstate);
204 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
209 if (gl->gl_lksb.sb_lvbptr)
210 lkf |= DLM_LKF_VALBLK;
212 if (gfs_flags & LM_FLAG_TRY)
213 lkf |= DLM_LKF_NOQUEUE;
215 if (gfs_flags & LM_FLAG_TRY_1CB) {
216 lkf |= DLM_LKF_NOQUEUE;
217 lkf |= DLM_LKF_NOQUEUEBAST;
220 if (gfs_flags & LM_FLAG_PRIORITY) {
221 lkf |= DLM_LKF_NOORDER;
222 lkf |= DLM_LKF_HEADQUE;
225 if (gfs_flags & LM_FLAG_ANY) {
226 if (req == DLM_LOCK_PR)
227 lkf |= DLM_LKF_ALTCW;
228 else if (req == DLM_LOCK_CW)
229 lkf |= DLM_LKF_ALTPR;
234 if (gl->gl_lksb.sb_lkid != 0) {
235 lkf |= DLM_LKF_CONVERT;
236 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
237 lkf |= DLM_LKF_QUECVT;
243 static void gfs2_reverse_hex(char *c, u64 value)
247 *c-- = hex_asc[value & 0x0f];
252 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
255 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
258 char strname[GDLM_STRNAME_BYTES] = "";
260 req = make_mode(req_state);
261 lkf = make_flags(gl, flags, req);
262 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
263 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
264 if (gl->gl_lksb.sb_lkid) {
265 gfs2_update_request_times(gl);
267 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
268 strname[GDLM_STRNAME_BYTES - 1] = '\0';
269 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
270 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
271 gl->gl_dstamp = ktime_get_real();
274 * Submit the actual lock request.
277 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
278 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
281 static void gdlm_put_lock(struct gfs2_glock *gl)
283 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
284 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
285 int lvb_needs_unlock = 0;
288 if (gl->gl_lksb.sb_lkid == 0) {
293 clear_bit(GLF_BLOCKING, &gl->gl_flags);
294 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
295 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
296 gfs2_update_request_times(gl);
298 /* don't want to skip dlm_unlock writing the lvb when lock is ex */
300 if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE))
301 lvb_needs_unlock = 1;
303 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
309 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
312 pr_err("gdlm_unlock %x,%llx err=%d\n",
314 (unsigned long long)gl->gl_name.ln_number, error);
319 static void gdlm_cancel(struct gfs2_glock *gl)
321 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
322 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
326 * dlm/gfs2 recovery coordination using dlm_recover callbacks
328 * 1. dlm_controld sees lockspace members change
329 * 2. dlm_controld blocks dlm-kernel locking activity
330 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
331 * 4. dlm_controld starts and finishes its own user level recovery
332 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
333 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
334 * 7. dlm_recoverd does its own lock recovery
335 * 8. dlm_recoverd unblocks dlm-kernel locking activity
336 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
337 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
338 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
339 * 12. gfs2_recover dequeues and recovers journals of failed nodes
340 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
341 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
342 * 15. gfs2_control unblocks normal locking when all journals are recovered
344 * - failures during recovery
346 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
347 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
348 * recovering for a prior failure. gfs2_control needs a way to detect
349 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
350 * the recover_block and recover_start values.
352 * recover_done() provides a new lockspace generation number each time it
353 * is called (step 9). This generation number is saved as recover_start.
354 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
355 * recover_block = recover_start. So, while recover_block is equal to
356 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
357 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
359 * - more specific gfs2 steps in sequence above
361 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
362 * 6. recover_slot records any failed jids (maybe none)
363 * 9. recover_done sets recover_start = new generation number
364 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
365 * 12. gfs2_recover does journal recoveries for failed jids identified above
366 * 14. gfs2_control clears control_lock lvb bits for recovered jids
367 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
368 * again) then do nothing, otherwise if recover_start > recover_block
369 * then clear BLOCK_LOCKS.
371 * - parallel recovery steps across all nodes
373 * All nodes attempt to update the control_lock lvb with the new generation
374 * number and jid bits, but only the first to get the control_lock EX will
375 * do so; others will see that it's already done (lvb already contains new
376 * generation number.)
378 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
379 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
380 * . One node gets control_lock first and writes the lvb, others see it's done
381 * . All nodes attempt to recover jids for which they see control_lock bits set
382 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
383 * . All nodes will eventually see all lvb bits clear and unblock locks
385 * - is there a problem with clearing an lvb bit that should be set
386 * and missing a journal recovery?
389 * 2. lvb bit set for step 1
390 * 3. jid recovered for step 1
391 * 4. jid taken again (new mount)
392 * 5. jid fails (for step 4)
393 * 6. lvb bit set for step 5 (will already be set)
394 * 7. lvb bit cleared for step 3
396 * This is not a problem because the failure in step 5 does not
397 * require recovery, because the mount in step 4 could not have
398 * progressed far enough to unblock locks and access the fs. The
399 * control_mount() function waits for all recoveries to be complete
400 * for the latest lockspace generation before ever unblocking locks
401 * and returning. The mount in step 4 waits until the recovery in
404 * - special case of first mounter: first node to mount the fs
406 * The first node to mount a gfs2 fs needs to check all the journals
407 * and recover any that need recovery before other nodes are allowed
408 * to mount the fs. (Others may begin mounting, but they must wait
409 * for the first mounter to be done before taking locks on the fs
410 * or accessing the fs.) This has two parts:
412 * 1. The mounted_lock tells a node it's the first to mount the fs.
413 * Each node holds the mounted_lock in PR while it's mounted.
414 * Each node tries to acquire the mounted_lock in EX when it mounts.
415 * If a node is granted the mounted_lock EX it means there are no
416 * other mounted nodes (no PR locks exist), and it is the first mounter.
417 * The mounted_lock is demoted to PR when first recovery is done, so
418 * others will fail to get an EX lock, but will get a PR lock.
420 * 2. The control_lock blocks others in control_mount() while the first
421 * mounter is doing first mount recovery of all journals.
422 * A mounting node needs to acquire control_lock in EX mode before
423 * it can proceed. The first mounter holds control_lock in EX while doing
424 * the first mount recovery, blocking mounts from other nodes, then demotes
425 * control_lock to NL when it's done (others_may_mount/first_done),
426 * allowing other nodes to continue mounting.
429 * control_lock EX/NOQUEUE success
430 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
432 * do first mounter recovery
433 * mounted_lock EX->PR
434 * control_lock EX->NL, write lvb generation
437 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
438 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
439 * mounted_lock PR/NOQUEUE success
440 * read lvb generation
441 * control_lock EX->NL
444 * - mount during recovery
446 * If a node mounts while others are doing recovery (not first mounter),
447 * the mounting node will get its initial recover_done() callback without
448 * having seen any previous failures/callbacks.
450 * It must wait for all recoveries preceding its mount to be finished
451 * before it unblocks locks. It does this by repeating the "other mounter"
452 * steps above until the lvb generation number is >= its mount generation
453 * number (from initial recover_done) and all lvb bits are clear.
455 * - control_lock lvb format
457 * 4 bytes generation number: the latest dlm lockspace generation number
458 * from recover_done callback. Indicates the jid bitmap has been updated
459 * to reflect all slot failures through that generation.
461 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
462 * that jid N needs recovery.
465 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
467 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
471 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
472 memcpy(&gen, lvb_bits, sizeof(__le32));
473 *lvb_gen = le32_to_cpu(gen);
476 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
480 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
481 gen = cpu_to_le32(lvb_gen);
482 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
485 static int all_jid_bits_clear(char *lvb)
487 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
488 GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
491 static void sync_wait_cb(void *arg)
493 struct lm_lockstruct *ls = arg;
494 complete(&ls->ls_sync_wait);
497 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
499 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
502 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
504 fs_err(sdp, "%s lkid %x error %d\n",
505 name, lksb->sb_lkid, error);
509 wait_for_completion(&ls->ls_sync_wait);
511 if (lksb->sb_status != -DLM_EUNLOCK) {
512 fs_err(sdp, "%s lkid %x status %d\n",
513 name, lksb->sb_lkid, lksb->sb_status);
519 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
520 unsigned int num, struct dlm_lksb *lksb, char *name)
522 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
523 char strname[GDLM_STRNAME_BYTES];
526 memset(strname, 0, GDLM_STRNAME_BYTES);
527 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
529 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
530 strname, GDLM_STRNAME_BYTES - 1,
531 0, sync_wait_cb, ls, NULL);
533 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
534 name, lksb->sb_lkid, flags, mode, error);
538 wait_for_completion(&ls->ls_sync_wait);
540 status = lksb->sb_status;
542 if (status && status != -EAGAIN) {
543 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
544 name, lksb->sb_lkid, flags, mode, status);
550 static int mounted_unlock(struct gfs2_sbd *sdp)
552 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
553 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
556 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
558 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
559 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
560 &ls->ls_mounted_lksb, "mounted_lock");
563 static int control_unlock(struct gfs2_sbd *sdp)
565 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
566 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
569 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
571 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
572 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
573 &ls->ls_control_lksb, "control_lock");
576 static void gfs2_control_func(struct work_struct *work)
578 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
579 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
580 uint32_t block_gen, start_gen, lvb_gen, flags;
586 spin_lock(&ls->ls_recover_spin);
588 * No MOUNT_DONE means we're still mounting; control_mount()
589 * will set this flag, after which this thread will take over
590 * all further clearing of BLOCK_LOCKS.
592 * FIRST_MOUNT means this node is doing first mounter recovery,
593 * for which recovery control is handled by
594 * control_mount()/control_first_done(), not this thread.
596 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
597 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
598 spin_unlock(&ls->ls_recover_spin);
601 block_gen = ls->ls_recover_block;
602 start_gen = ls->ls_recover_start;
603 spin_unlock(&ls->ls_recover_spin);
606 * Equal block_gen and start_gen implies we are between
607 * recover_prep and recover_done callbacks, which means
608 * dlm recovery is in progress and dlm locking is blocked.
609 * There's no point trying to do any work until recover_done.
612 if (block_gen == start_gen)
616 * Propagate recover_submit[] and recover_result[] to lvb:
617 * dlm_recoverd adds to recover_submit[] jids needing recovery
618 * gfs2_recover adds to recover_result[] journal recovery results
620 * set lvb bit for jids in recover_submit[] if the lvb has not
621 * yet been updated for the generation of the failure
623 * clear lvb bit for jids in recover_result[] if the result of
624 * the journal recovery is SUCCESS
627 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
629 fs_err(sdp, "control lock EX error %d\n", error);
633 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
635 spin_lock(&ls->ls_recover_spin);
636 if (block_gen != ls->ls_recover_block ||
637 start_gen != ls->ls_recover_start) {
638 fs_info(sdp, "recover generation %u block1 %u %u\n",
639 start_gen, block_gen, ls->ls_recover_block);
640 spin_unlock(&ls->ls_recover_spin);
641 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
645 recover_size = ls->ls_recover_size;
647 if (lvb_gen <= start_gen) {
649 * Clear lvb bits for jids we've successfully recovered.
650 * Because all nodes attempt to recover failed journals,
651 * a journal can be recovered multiple times successfully
652 * in succession. Only the first will really do recovery,
653 * the others find it clean, but still report a successful
654 * recovery. So, another node may have already recovered
655 * the jid and cleared the lvb bit for it.
657 for (i = 0; i < recover_size; i++) {
658 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
661 ls->ls_recover_result[i] = 0;
663 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
666 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
671 if (lvb_gen == start_gen) {
673 * Failed slots before start_gen are already set in lvb.
675 for (i = 0; i < recover_size; i++) {
676 if (!ls->ls_recover_submit[i])
678 if (ls->ls_recover_submit[i] < lvb_gen)
679 ls->ls_recover_submit[i] = 0;
681 } else if (lvb_gen < start_gen) {
683 * Failed slots before start_gen are not yet set in lvb.
685 for (i = 0; i < recover_size; i++) {
686 if (!ls->ls_recover_submit[i])
688 if (ls->ls_recover_submit[i] < start_gen) {
689 ls->ls_recover_submit[i] = 0;
690 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
693 /* even if there are no bits to set, we need to write the
694 latest generation to the lvb */
698 * we should be getting a recover_done() for lvb_gen soon
701 spin_unlock(&ls->ls_recover_spin);
704 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
705 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
707 flags = DLM_LKF_CONVERT;
710 error = control_lock(sdp, DLM_LOCK_NL, flags);
712 fs_err(sdp, "control lock NL error %d\n", error);
717 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
718 * and clear a jid bit in the lvb if the recovery is a success.
719 * Eventually all journals will be recovered, all jid bits will
720 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
723 for (i = 0; i < recover_size; i++) {
724 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
725 fs_info(sdp, "recover generation %u jid %d\n",
727 gfs2_recover_set(sdp, i);
735 * No more jid bits set in lvb, all recovery is done, unblock locks
736 * (unless a new recover_prep callback has occured blocking locks
737 * again while working above)
740 spin_lock(&ls->ls_recover_spin);
741 if (ls->ls_recover_block == block_gen &&
742 ls->ls_recover_start == start_gen) {
743 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
744 spin_unlock(&ls->ls_recover_spin);
745 fs_info(sdp, "recover generation %u done\n", start_gen);
746 gfs2_glock_thaw(sdp);
748 fs_info(sdp, "recover generation %u block2 %u %u\n",
749 start_gen, block_gen, ls->ls_recover_block);
750 spin_unlock(&ls->ls_recover_spin);
754 static int control_mount(struct gfs2_sbd *sdp)
756 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
757 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
762 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
763 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
764 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
765 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
766 init_completion(&ls->ls_sync_wait);
768 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
770 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
772 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
776 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
778 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
782 mounted_mode = DLM_LOCK_NL;
785 if (retries++ && signal_pending(current)) {
791 * We always start with both locks in NL. control_lock is
792 * demoted to NL below so we don't need to do it here.
795 if (mounted_mode != DLM_LOCK_NL) {
796 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
799 mounted_mode = DLM_LOCK_NL;
803 * Other nodes need to do some work in dlm recovery and gfs2_control
804 * before the recover_done and control_lock will be ready for us below.
805 * A delay here is not required but often avoids having to retry.
808 msleep_interruptible(500);
811 * Acquire control_lock in EX and mounted_lock in either EX or PR.
812 * control_lock lvb keeps track of any pending journal recoveries.
813 * mounted_lock indicates if any other nodes have the fs mounted.
816 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
817 if (error == -EAGAIN) {
820 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
825 * If we're a spectator, we don't want to take the lock in EX because
826 * we cannot do the first-mount responsibility it implies: recovery.
828 if (sdp->sd_args.ar_spectator)
831 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
833 mounted_mode = DLM_LOCK_EX;
835 } else if (error != -EAGAIN) {
836 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
840 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
842 mounted_mode = DLM_LOCK_PR;
845 /* not even -EAGAIN should happen here */
846 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
852 * If we got both locks above in EX, then we're the first mounter.
853 * If not, then we need to wait for the control_lock lvb to be
854 * updated by other mounted nodes to reflect our mount generation.
856 * In simple first mounter cases, first mounter will see zero lvb_gen,
857 * but in cases where all existing nodes leave/fail before mounting
858 * nodes finish control_mount, then all nodes will be mounting and
859 * lvb_gen will be non-zero.
862 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
864 if (lvb_gen == 0xFFFFFFFF) {
865 /* special value to force mount attempts to fail */
866 fs_err(sdp, "control_mount control_lock disabled\n");
871 if (mounted_mode == DLM_LOCK_EX) {
872 /* first mounter, keep both EX while doing first recovery */
873 spin_lock(&ls->ls_recover_spin);
874 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
875 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
876 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
877 spin_unlock(&ls->ls_recover_spin);
878 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
882 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
887 * We are not first mounter, now we need to wait for the control_lock
888 * lvb generation to be >= the generation from our first recover_done
889 * and all lvb bits to be clear (no pending journal recoveries.)
892 if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
893 /* journals need recovery, wait until all are clear */
894 fs_info(sdp, "control_mount wait for journal recovery\n");
898 spin_lock(&ls->ls_recover_spin);
899 block_gen = ls->ls_recover_block;
900 start_gen = ls->ls_recover_start;
901 mount_gen = ls->ls_recover_mount;
903 if (lvb_gen < mount_gen) {
904 /* wait for mounted nodes to update control_lock lvb to our
905 generation, which might include new recovery bits set */
906 if (sdp->sd_args.ar_spectator) {
907 fs_info(sdp, "Recovery is required. Waiting for a "
908 "non-spectator to mount.\n");
909 msleep_interruptible(1000);
911 fs_info(sdp, "control_mount wait1 block %u start %u "
912 "mount %u lvb %u flags %lx\n", block_gen,
913 start_gen, mount_gen, lvb_gen,
914 ls->ls_recover_flags);
916 spin_unlock(&ls->ls_recover_spin);
920 if (lvb_gen != start_gen) {
921 /* wait for mounted nodes to update control_lock lvb to the
922 latest recovery generation */
923 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
924 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
925 lvb_gen, ls->ls_recover_flags);
926 spin_unlock(&ls->ls_recover_spin);
930 if (block_gen == start_gen) {
931 /* dlm recovery in progress, wait for it to finish */
932 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
933 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
934 lvb_gen, ls->ls_recover_flags);
935 spin_unlock(&ls->ls_recover_spin);
939 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
940 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
941 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
942 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
943 spin_unlock(&ls->ls_recover_spin);
952 static int control_first_done(struct gfs2_sbd *sdp)
954 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
955 uint32_t start_gen, block_gen;
959 spin_lock(&ls->ls_recover_spin);
960 start_gen = ls->ls_recover_start;
961 block_gen = ls->ls_recover_block;
963 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
964 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
965 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
966 /* sanity check, should not happen */
967 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
968 start_gen, block_gen, ls->ls_recover_flags);
969 spin_unlock(&ls->ls_recover_spin);
974 if (start_gen == block_gen) {
976 * Wait for the end of a dlm recovery cycle to switch from
977 * first mounter recovery. We can ignore any recover_slot
978 * callbacks between the recover_prep and next recover_done
979 * because we are still the first mounter and any failed nodes
980 * have not fully mounted, so they don't need recovery.
982 spin_unlock(&ls->ls_recover_spin);
983 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
985 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
986 TASK_UNINTERRUPTIBLE);
990 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
991 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
992 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
993 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
994 spin_unlock(&ls->ls_recover_spin);
996 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
997 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
999 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1001 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1003 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1005 fs_err(sdp, "control_first_done control NL error %d\n", error);
1011 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1012 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
1013 * gfs2 jids start at 0, so jid = slot - 1)
1016 #define RECOVER_SIZE_INC 16
1018 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1021 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1022 uint32_t *submit = NULL;
1023 uint32_t *result = NULL;
1024 uint32_t old_size, new_size;
1027 if (!ls->ls_lvb_bits) {
1028 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1029 if (!ls->ls_lvb_bits)
1034 for (i = 0; i < num_slots; i++) {
1035 if (max_jid < slots[i].slot - 1)
1036 max_jid = slots[i].slot - 1;
1039 old_size = ls->ls_recover_size;
1041 if (old_size >= max_jid + 1)
1044 new_size = old_size + RECOVER_SIZE_INC;
1046 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1047 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1048 if (!submit || !result) {
1054 spin_lock(&ls->ls_recover_spin);
1055 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1056 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1057 kfree(ls->ls_recover_submit);
1058 kfree(ls->ls_recover_result);
1059 ls->ls_recover_submit = submit;
1060 ls->ls_recover_result = result;
1061 ls->ls_recover_size = new_size;
1062 spin_unlock(&ls->ls_recover_spin);
1066 static void free_recover_size(struct lm_lockstruct *ls)
1068 kfree(ls->ls_lvb_bits);
1069 kfree(ls->ls_recover_submit);
1070 kfree(ls->ls_recover_result);
1071 ls->ls_recover_submit = NULL;
1072 ls->ls_recover_result = NULL;
1073 ls->ls_recover_size = 0;
1074 ls->ls_lvb_bits = NULL;
1077 /* dlm calls before it does lock recovery */
1079 static void gdlm_recover_prep(void *arg)
1081 struct gfs2_sbd *sdp = arg;
1082 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1084 spin_lock(&ls->ls_recover_spin);
1085 ls->ls_recover_block = ls->ls_recover_start;
1086 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1088 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1089 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1090 spin_unlock(&ls->ls_recover_spin);
1093 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1094 spin_unlock(&ls->ls_recover_spin);
1097 /* dlm calls after recover_prep has been completed on all lockspace members;
1098 identifies slot/jid of failed member */
1100 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1102 struct gfs2_sbd *sdp = arg;
1103 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1104 int jid = slot->slot - 1;
1106 spin_lock(&ls->ls_recover_spin);
1107 if (ls->ls_recover_size < jid + 1) {
1108 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1109 jid, ls->ls_recover_block, ls->ls_recover_size);
1110 spin_unlock(&ls->ls_recover_spin);
1114 if (ls->ls_recover_submit[jid]) {
1115 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1116 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1118 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1119 spin_unlock(&ls->ls_recover_spin);
1122 /* dlm calls after recover_slot and after it completes lock recovery */
1124 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1125 int our_slot, uint32_t generation)
1127 struct gfs2_sbd *sdp = arg;
1128 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1130 /* ensure the ls jid arrays are large enough */
1131 set_recover_size(sdp, slots, num_slots);
1133 spin_lock(&ls->ls_recover_spin);
1134 ls->ls_recover_start = generation;
1136 if (!ls->ls_recover_mount) {
1137 ls->ls_recover_mount = generation;
1138 ls->ls_jid = our_slot - 1;
1141 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1142 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1144 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1145 smp_mb__after_atomic();
1146 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1147 spin_unlock(&ls->ls_recover_spin);
1150 /* gfs2_recover thread has a journal recovery result */
1152 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1153 unsigned int result)
1155 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1157 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1160 /* don't care about the recovery of own journal during mount */
1161 if (jid == ls->ls_jid)
1164 spin_lock(&ls->ls_recover_spin);
1165 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1166 spin_unlock(&ls->ls_recover_spin);
1169 if (ls->ls_recover_size < jid + 1) {
1170 fs_err(sdp, "recovery_result jid %d short size %d\n",
1171 jid, ls->ls_recover_size);
1172 spin_unlock(&ls->ls_recover_spin);
1176 fs_info(sdp, "recover jid %d result %s\n", jid,
1177 result == LM_RD_GAVEUP ? "busy" : "success");
1179 ls->ls_recover_result[jid] = result;
1181 /* GAVEUP means another node is recovering the journal; delay our
1182 next attempt to recover it, to give the other node a chance to
1183 finish before trying again */
1185 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1186 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1187 result == LM_RD_GAVEUP ? HZ : 0);
1188 spin_unlock(&ls->ls_recover_spin);
1191 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1192 .recover_prep = gdlm_recover_prep,
1193 .recover_slot = gdlm_recover_slot,
1194 .recover_done = gdlm_recover_done,
1197 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1199 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1200 char cluster[GFS2_LOCKNAME_LEN];
1203 int error, ops_result;
1206 * initialize everything
1209 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1210 spin_lock_init(&ls->ls_recover_spin);
1211 ls->ls_recover_flags = 0;
1212 ls->ls_recover_mount = 0;
1213 ls->ls_recover_start = 0;
1214 ls->ls_recover_block = 0;
1215 ls->ls_recover_size = 0;
1216 ls->ls_recover_submit = NULL;
1217 ls->ls_recover_result = NULL;
1218 ls->ls_lvb_bits = NULL;
1220 error = set_recover_size(sdp, NULL, 0);
1225 * prepare dlm_new_lockspace args
1228 fsname = strchr(table, ':');
1230 fs_info(sdp, "no fsname found\n");
1234 memset(cluster, 0, sizeof(cluster));
1235 memcpy(cluster, table, strlen(table) - strlen(fsname));
1238 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1241 * create/join lockspace
1244 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1245 &gdlm_lockspace_ops, sdp, &ops_result,
1248 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1252 if (ops_result < 0) {
1254 * dlm does not support ops callbacks,
1255 * old dlm_controld/gfs_controld are used, try without ops.
1257 fs_info(sdp, "dlm lockspace ops not used\n");
1258 free_recover_size(ls);
1259 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1263 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1264 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1270 * control_mount() uses control_lock to determine first mounter,
1271 * and for later mounts, waits for any recoveries to be cleared.
1274 error = control_mount(sdp);
1276 fs_err(sdp, "mount control error %d\n", error);
1280 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1281 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1282 smp_mb__after_atomic();
1283 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1287 dlm_release_lockspace(ls->ls_dlm, 2);
1289 free_recover_size(ls);
1294 static void gdlm_first_done(struct gfs2_sbd *sdp)
1296 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1299 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1302 error = control_first_done(sdp);
1304 fs_err(sdp, "mount first_done error %d\n", error);
1307 static void gdlm_unmount(struct gfs2_sbd *sdp)
1309 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1311 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1314 /* wait for gfs2_control_wq to be done with this mount */
1316 spin_lock(&ls->ls_recover_spin);
1317 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1318 spin_unlock(&ls->ls_recover_spin);
1319 flush_delayed_work(&sdp->sd_control_work);
1321 /* mounted_lock and control_lock will be purged in dlm recovery */
1324 dlm_release_lockspace(ls->ls_dlm, 2);
1328 free_recover_size(ls);
1331 static const match_table_t dlm_tokens = {
1332 { Opt_jid, "jid=%d"},
1334 { Opt_first, "first=%d"},
1335 { Opt_nodir, "nodir=%d"},
1339 const struct lm_lockops gfs2_dlm_ops = {
1340 .lm_proto_name = "lock_dlm",
1341 .lm_mount = gdlm_mount,
1342 .lm_first_done = gdlm_first_done,
1343 .lm_recovery_result = gdlm_recovery_result,
1344 .lm_unmount = gdlm_unmount,
1345 .lm_put_lock = gdlm_put_lock,
1346 .lm_lock = gdlm_lock,
1347 .lm_cancel = gdlm_cancel,
1348 .lm_tokens = &dlm_tokens,