1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/spinlock.h>
9 #include <linux/compat.h>
10 #include <linux/completion.h>
11 #include <linux/buffer_head.h>
12 #include <linux/pagemap.h>
13 #include <linux/uio.h>
14 #include <linux/blkdev.h>
16 #include <linux/mount.h>
18 #include <linux/filelock.h>
19 #include <linux/gfs2_ondisk.h>
20 #include <linux/falloc.h>
21 #include <linux/swap.h>
22 #include <linux/crc32.h>
23 #include <linux/writeback.h>
24 #include <linux/uaccess.h>
25 #include <linux/dlm.h>
26 #include <linux/dlm_plock.h>
27 #include <linux/delay.h>
28 #include <linux/backing-dev.h>
29 #include <linux/fileattr.h>
47 * gfs2_llseek - seek to a location in a file
50 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
52 * SEEK_END requires the glock for the file because it references the
55 * Returns: The new offset, or errno
58 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
60 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
61 struct gfs2_holder i_gh;
66 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
69 error = generic_file_llseek(file, offset, whence);
70 gfs2_glock_dq_uninit(&i_gh);
75 error = gfs2_seek_data(file, offset);
79 error = gfs2_seek_hole(file, offset);
85 * These don't reference inode->i_size and don't depend on the
86 * block mapping, so we don't need the glock.
88 error = generic_file_llseek(file, offset, whence);
98 * gfs2_readdir - Iterator for a directory
99 * @file: The directory to read from
100 * @ctx: What to feed directory entries to
105 static int gfs2_readdir(struct file *file, struct dir_context *ctx)
107 struct inode *dir = file->f_mapping->host;
108 struct gfs2_inode *dip = GFS2_I(dir);
109 struct gfs2_holder d_gh;
112 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
116 error = gfs2_dir_read(dir, ctx, &file->f_ra);
118 gfs2_glock_dq_uninit(&d_gh);
124 * struct fsflag_gfs2flag
126 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
127 * and to GFS2_DIF_JDATA for non-directories.
132 } fsflag_gfs2flag[] = {
133 {FS_SYNC_FL, GFS2_DIF_SYNC},
134 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
135 {FS_APPEND_FL, GFS2_DIF_APPENDONLY},
136 {FS_NOATIME_FL, GFS2_DIF_NOATIME},
137 {FS_INDEX_FL, GFS2_DIF_EXHASH},
138 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
139 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
142 static inline u32 gfs2_gfsflags_to_fsflags(struct inode *inode, u32 gfsflags)
147 if (S_ISDIR(inode->i_mode))
148 gfsflags &= ~GFS2_DIF_JDATA;
150 gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
152 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
153 if (gfsflags & fsflag_gfs2flag[i].gfsflag)
154 fsflags |= fsflag_gfs2flag[i].fsflag;
158 int gfs2_fileattr_get(struct dentry *dentry, struct fileattr *fa)
160 struct inode *inode = d_inode(dentry);
161 struct gfs2_inode *ip = GFS2_I(inode);
162 struct gfs2_holder gh;
166 if (d_is_special(dentry))
169 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
170 error = gfs2_glock_nq(&gh);
174 fsflags = gfs2_gfsflags_to_fsflags(inode, ip->i_diskflags);
176 fileattr_fill_flags(fa, fsflags);
180 gfs2_holder_uninit(&gh);
184 void gfs2_set_inode_flags(struct inode *inode)
186 struct gfs2_inode *ip = GFS2_I(inode);
187 unsigned int flags = inode->i_flags;
189 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
190 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
192 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
193 flags |= S_IMMUTABLE;
194 if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
196 if (ip->i_diskflags & GFS2_DIF_NOATIME)
198 if (ip->i_diskflags & GFS2_DIF_SYNC)
200 inode->i_flags = flags;
203 /* Flags that can be set by user space */
204 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \
205 GFS2_DIF_IMMUTABLE| \
206 GFS2_DIF_APPENDONLY| \
210 GFS2_DIF_INHERIT_JDATA)
213 * do_gfs2_set_flags - set flags on an inode
215 * @reqflags: The flags to set
216 * @mask: Indicates which flags are valid
219 static int do_gfs2_set_flags(struct inode *inode, u32 reqflags, u32 mask)
221 struct gfs2_inode *ip = GFS2_I(inode);
222 struct gfs2_sbd *sdp = GFS2_SB(inode);
223 struct buffer_head *bh;
224 struct gfs2_holder gh;
226 u32 new_flags, flags;
228 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
233 flags = ip->i_diskflags;
234 new_flags = (flags & ~mask) | (reqflags & mask);
235 if ((new_flags ^ flags) == 0)
238 if (!IS_IMMUTABLE(inode)) {
239 error = gfs2_permission(&nop_mnt_idmap, inode, MAY_WRITE);
243 if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
244 if (new_flags & GFS2_DIF_JDATA)
245 gfs2_log_flush(sdp, ip->i_gl,
246 GFS2_LOG_HEAD_FLUSH_NORMAL |
248 error = filemap_fdatawrite(inode->i_mapping);
251 error = filemap_fdatawait(inode->i_mapping);
254 if (new_flags & GFS2_DIF_JDATA)
255 gfs2_ordered_del_inode(ip);
257 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
260 error = gfs2_meta_inode_buffer(ip, &bh);
263 inode->i_ctime = current_time(inode);
264 gfs2_trans_add_meta(ip->i_gl, bh);
265 ip->i_diskflags = new_flags;
266 gfs2_dinode_out(ip, bh->b_data);
268 gfs2_set_inode_flags(inode);
269 gfs2_set_aops(inode);
273 gfs2_glock_dq_uninit(&gh);
277 int gfs2_fileattr_set(struct mnt_idmap *idmap,
278 struct dentry *dentry, struct fileattr *fa)
280 struct inode *inode = d_inode(dentry);
281 u32 fsflags = fa->flags, gfsflags = 0;
285 if (d_is_special(dentry))
288 if (fileattr_has_fsx(fa))
291 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
292 if (fsflags & fsflag_gfs2flag[i].fsflag) {
293 fsflags &= ~fsflag_gfs2flag[i].fsflag;
294 gfsflags |= fsflag_gfs2flag[i].gfsflag;
297 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
300 mask = GFS2_FLAGS_USER_SET;
301 if (S_ISDIR(inode->i_mode)) {
302 mask &= ~GFS2_DIF_JDATA;
304 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */
305 if (gfsflags & GFS2_DIF_TOPDIR)
307 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
310 return do_gfs2_set_flags(inode, gfsflags, mask);
313 static int gfs2_getlabel(struct file *filp, char __user *label)
315 struct inode *inode = file_inode(filp);
316 struct gfs2_sbd *sdp = GFS2_SB(inode);
318 if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
324 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
328 return gfs2_fitrim(filp, (void __user *)arg);
329 case FS_IOC_GETFSLABEL:
330 return gfs2_getlabel(filp, (char __user *)arg);
337 static long gfs2_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
340 /* Keep this list in sync with gfs2_ioctl */
342 case FS_IOC_GETFSLABEL:
348 return gfs2_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
351 #define gfs2_compat_ioctl NULL
355 * gfs2_size_hint - Give a hint to the size of a write request
356 * @filep: The struct file
357 * @offset: The file offset of the write
358 * @size: The length of the write
360 * When we are about to do a write, this function records the total
361 * write size in order to provide a suitable hint to the lower layers
362 * about how many blocks will be required.
366 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
368 struct inode *inode = file_inode(filep);
369 struct gfs2_sbd *sdp = GFS2_SB(inode);
370 struct gfs2_inode *ip = GFS2_I(inode);
371 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
372 int hint = min_t(size_t, INT_MAX, blks);
374 if (hint > atomic_read(&ip->i_sizehint))
375 atomic_set(&ip->i_sizehint, hint);
379 * gfs2_allocate_page_backing - Allocate blocks for a write fault
380 * @page: The (locked) page to allocate backing for
381 * @length: Size of the allocation
383 * We try to allocate all the blocks required for the page in one go. This
384 * might fail for various reasons, so we keep trying until all the blocks to
385 * back this page are allocated. If some of the blocks are already allocated,
388 static int gfs2_allocate_page_backing(struct page *page, unsigned int length)
390 u64 pos = page_offset(page);
393 struct iomap iomap = { };
395 if (gfs2_iomap_alloc(page->mapping->host, pos, length, &iomap))
398 if (length < iomap.length)
399 iomap.length = length;
400 length -= iomap.length;
402 } while (length > 0);
408 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
409 * @vmf: The virtual memory fault containing the page to become writable
411 * When the page becomes writable, we need to ensure that we have
412 * blocks allocated on disk to back that page.
415 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
417 struct page *page = vmf->page;
418 struct inode *inode = file_inode(vmf->vma->vm_file);
419 struct gfs2_inode *ip = GFS2_I(inode);
420 struct gfs2_sbd *sdp = GFS2_SB(inode);
421 struct gfs2_alloc_parms ap = { .aflags = 0, };
422 u64 offset = page_offset(page);
423 unsigned int data_blocks, ind_blocks, rblocks;
424 vm_fault_t ret = VM_FAULT_LOCKED;
425 struct gfs2_holder gh;
430 sb_start_pagefault(inode->i_sb);
432 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
433 err = gfs2_glock_nq(&gh);
435 ret = block_page_mkwrite_return(err);
439 /* Check page index against inode size */
440 size = i_size_read(inode);
441 if (offset >= size) {
442 ret = VM_FAULT_SIGBUS;
446 /* Update file times before taking page lock */
447 file_update_time(vmf->vma->vm_file);
449 /* page is wholly or partially inside EOF */
450 if (size - offset < PAGE_SIZE)
451 length = size - offset;
455 gfs2_size_hint(vmf->vma->vm_file, offset, length);
457 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
458 set_bit(GIF_SW_PAGED, &ip->i_flags);
461 * iomap_writepage / iomap_writepages currently don't support inline
462 * files, so always unstuff here.
465 if (!gfs2_is_stuffed(ip) &&
466 !gfs2_write_alloc_required(ip, offset, length)) {
468 if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
469 ret = VM_FAULT_NOPAGE;
475 err = gfs2_rindex_update(sdp);
477 ret = block_page_mkwrite_return(err);
481 gfs2_write_calc_reserv(ip, length, &data_blocks, &ind_blocks);
482 ap.target = data_blocks + ind_blocks;
483 err = gfs2_quota_lock_check(ip, &ap);
485 ret = block_page_mkwrite_return(err);
488 err = gfs2_inplace_reserve(ip, &ap);
490 ret = block_page_mkwrite_return(err);
491 goto out_quota_unlock;
494 rblocks = RES_DINODE + ind_blocks;
495 if (gfs2_is_jdata(ip))
496 rblocks += data_blocks ? data_blocks : 1;
497 if (ind_blocks || data_blocks) {
498 rblocks += RES_STATFS + RES_QUOTA;
499 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
501 err = gfs2_trans_begin(sdp, rblocks, 0);
503 ret = block_page_mkwrite_return(err);
507 /* Unstuff, if required, and allocate backing blocks for page */
508 if (gfs2_is_stuffed(ip)) {
509 err = gfs2_unstuff_dinode(ip);
511 ret = block_page_mkwrite_return(err);
517 /* If truncated, we must retry the operation, we may have raced
518 * with the glock demotion code.
520 if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
521 ret = VM_FAULT_NOPAGE;
522 goto out_page_locked;
525 err = gfs2_allocate_page_backing(page, length);
527 ret = block_page_mkwrite_return(err);
530 if (ret != VM_FAULT_LOCKED)
535 gfs2_inplace_release(ip);
537 gfs2_quota_unlock(ip);
541 gfs2_holder_uninit(&gh);
542 if (ret == VM_FAULT_LOCKED) {
543 set_page_dirty(page);
544 wait_for_stable_page(page);
546 sb_end_pagefault(inode->i_sb);
550 static vm_fault_t gfs2_fault(struct vm_fault *vmf)
552 struct inode *inode = file_inode(vmf->vma->vm_file);
553 struct gfs2_inode *ip = GFS2_I(inode);
554 struct gfs2_holder gh;
558 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
559 err = gfs2_glock_nq(&gh);
561 ret = block_page_mkwrite_return(err);
564 ret = filemap_fault(vmf);
567 gfs2_holder_uninit(&gh);
571 static const struct vm_operations_struct gfs2_vm_ops = {
573 .map_pages = filemap_map_pages,
574 .page_mkwrite = gfs2_page_mkwrite,
579 * @file: The file to map
580 * @vma: The VMA which described the mapping
582 * There is no need to get a lock here unless we should be updating
583 * atime. We ignore any locking errors since the only consequence is
584 * a missed atime update (which will just be deferred until later).
589 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
591 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
593 if (!(file->f_flags & O_NOATIME) &&
594 !IS_NOATIME(&ip->i_inode)) {
595 struct gfs2_holder i_gh;
598 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
602 /* grab lock to update inode */
603 gfs2_glock_dq_uninit(&i_gh);
606 vma->vm_ops = &gfs2_vm_ops;
612 * gfs2_open_common - This is common to open and atomic_open
613 * @inode: The inode being opened
614 * @file: The file being opened
616 * This maybe called under a glock or not depending upon how it has
617 * been called. We must always be called under a glock for regular
618 * files, however. For other file types, it does not matter whether
619 * we hold the glock or not.
621 * Returns: Error code or 0 for success
624 int gfs2_open_common(struct inode *inode, struct file *file)
626 struct gfs2_file *fp;
629 if (S_ISREG(inode->i_mode)) {
630 ret = generic_file_open(inode, file);
634 if (!gfs2_is_jdata(GFS2_I(inode)))
635 file->f_mode |= FMODE_CAN_ODIRECT;
638 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
642 mutex_init(&fp->f_fl_mutex);
644 gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
645 file->private_data = fp;
646 if (file->f_mode & FMODE_WRITE) {
647 ret = gfs2_qa_get(GFS2_I(inode));
654 kfree(file->private_data);
655 file->private_data = NULL;
660 * gfs2_open - open a file
661 * @inode: the inode to open
662 * @file: the struct file for this opening
664 * After atomic_open, this function is only used for opening files
665 * which are already cached. We must still get the glock for regular
666 * files to ensure that we have the file size uptodate for the large
667 * file check which is in the common code. That is only an issue for
668 * regular files though.
673 static int gfs2_open(struct inode *inode, struct file *file)
675 struct gfs2_inode *ip = GFS2_I(inode);
676 struct gfs2_holder i_gh;
678 bool need_unlock = false;
680 if (S_ISREG(ip->i_inode.i_mode)) {
681 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
688 error = gfs2_open_common(inode, file);
691 gfs2_glock_dq_uninit(&i_gh);
697 * gfs2_release - called to close a struct file
698 * @inode: the inode the struct file belongs to
699 * @file: the struct file being closed
704 static int gfs2_release(struct inode *inode, struct file *file)
706 struct gfs2_inode *ip = GFS2_I(inode);
708 kfree(file->private_data);
709 file->private_data = NULL;
711 if (file->f_mode & FMODE_WRITE) {
712 if (gfs2_rs_active(&ip->i_res))
720 * gfs2_fsync - sync the dirty data for a file (across the cluster)
721 * @file: the file that points to the dentry
722 * @start: the start position in the file to sync
723 * @end: the end position in the file to sync
724 * @datasync: set if we can ignore timestamp changes
726 * We split the data flushing here so that we don't wait for the data
727 * until after we've also sent the metadata to disk. Note that for
728 * data=ordered, we will write & wait for the data at the log flush
729 * stage anyway, so this is unlikely to make much of a difference
730 * except in the data=writeback case.
732 * If the fdatawrite fails due to any reason except -EIO, we will
733 * continue the remainder of the fsync, although we'll still report
734 * the error at the end. This is to match filemap_write_and_wait_range()
740 static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
743 struct address_space *mapping = file->f_mapping;
744 struct inode *inode = mapping->host;
745 int sync_state = inode->i_state & I_DIRTY;
746 struct gfs2_inode *ip = GFS2_I(inode);
747 int ret = 0, ret1 = 0;
749 if (mapping->nrpages) {
750 ret1 = filemap_fdatawrite_range(mapping, start, end);
755 if (!gfs2_is_jdata(ip))
756 sync_state &= ~I_DIRTY_PAGES;
758 sync_state &= ~I_DIRTY_SYNC;
761 ret = sync_inode_metadata(inode, 1);
764 if (gfs2_is_jdata(ip))
765 ret = file_write_and_wait(file);
768 gfs2_ail_flush(ip->i_gl, 1);
771 if (mapping->nrpages)
772 ret = file_fdatawait_range(file, start, end);
774 return ret ? ret : ret1;
777 static inline bool should_fault_in_pages(struct iov_iter *i,
782 size_t count = iov_iter_count(i);
787 if (!user_backed_iter(i))
791 * Try to fault in multiple pages initially. When that doesn't result
792 * in any progress, fall back to a single page.
795 offs = offset_in_page(iocb->ki_pos);
796 if (*prev_count != count) {
799 nr_dirtied = max(current->nr_dirtied_pause -
800 current->nr_dirtied, 8);
801 size = min_t(size_t, SZ_1M, nr_dirtied << PAGE_SHIFT);
805 *window_size = size - offs;
809 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to,
810 struct gfs2_holder *gh)
812 struct file *file = iocb->ki_filp;
813 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
814 size_t prev_count = 0, window_size = 0;
819 * In this function, we disable page faults when we're holding the
820 * inode glock while doing I/O. If a page fault occurs, we indicate
821 * that the inode glock may be dropped, fault in the pages manually,
824 * Unlike generic_file_read_iter, for reads, iomap_dio_rw can trigger
825 * physical as well as manual page faults, and we need to disable both
828 * For direct I/O, gfs2 takes the inode glock in deferred mode. This
829 * locking mode is compatible with other deferred holders, so multiple
830 * processes and nodes can do direct I/O to a file at the same time.
831 * There's no guarantee that reads or writes will be atomic. Any
832 * coordination among readers and writers needs to happen externally.
835 if (!iov_iter_count(to))
836 return 0; /* skip atime */
838 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
840 ret = gfs2_glock_nq(gh);
845 ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL,
846 IOMAP_DIO_PARTIAL, NULL, read);
849 if (ret <= 0 && ret != -EFAULT)
851 /* No increment (+=) because iomap_dio_rw returns a cumulative value. */
855 if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
857 window_size -= fault_in_iov_iter_writeable(to, window_size);
862 if (gfs2_holder_queued(gh))
865 gfs2_holder_uninit(gh);
866 /* User space doesn't expect partial success. */
872 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from,
873 struct gfs2_holder *gh)
875 struct file *file = iocb->ki_filp;
876 struct inode *inode = file->f_mapping->host;
877 struct gfs2_inode *ip = GFS2_I(inode);
878 size_t prev_count = 0, window_size = 0;
884 * In this function, we disable page faults when we're holding the
885 * inode glock while doing I/O. If a page fault occurs, we indicate
886 * that the inode glock may be dropped, fault in the pages manually,
889 * For writes, iomap_dio_rw only triggers manual page faults, so we
890 * don't need to disable physical ones.
894 * Deferred lock, even if its a write, since we do no allocation on
895 * this path. All we need to change is the atime, and this lock mode
896 * ensures that other nodes have flushed their buffered read caches
897 * (i.e. their page cache entries for this inode). We do not,
898 * unfortunately, have the option of only flushing a range like the
901 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, gh);
903 ret = gfs2_glock_nq(gh);
906 /* Silently fall back to buffered I/O when writing beyond EOF */
907 if (iocb->ki_pos + iov_iter_count(from) > i_size_read(&ip->i_inode))
910 from->nofault = true;
911 ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL,
912 IOMAP_DIO_PARTIAL, NULL, written);
913 from->nofault = false;
920 /* No increment (+=) because iomap_dio_rw returns a cumulative value. */
924 enough_retries = prev_count == iov_iter_count(from) &&
925 window_size <= PAGE_SIZE;
926 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
928 window_size -= fault_in_iov_iter_readable(from, window_size);
932 /* fall back to buffered I/O */
937 if (gfs2_holder_queued(gh))
940 gfs2_holder_uninit(gh);
941 /* User space doesn't expect partial success. */
947 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
949 struct gfs2_inode *ip;
950 struct gfs2_holder gh;
951 size_t prev_count = 0, window_size = 0;
956 * In this function, we disable page faults when we're holding the
957 * inode glock while doing I/O. If a page fault occurs, we indicate
958 * that the inode glock may be dropped, fault in the pages manually,
962 if (iocb->ki_flags & IOCB_DIRECT)
963 return gfs2_file_direct_read(iocb, to, &gh);
966 iocb->ki_flags |= IOCB_NOIO;
967 ret = generic_file_read_iter(iocb, to);
968 iocb->ki_flags &= ~IOCB_NOIO;
971 if (!iov_iter_count(to))
974 } else if (ret != -EFAULT) {
977 if (iocb->ki_flags & IOCB_NOWAIT)
980 ip = GFS2_I(iocb->ki_filp->f_mapping->host);
981 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
983 ret = gfs2_glock_nq(&gh);
987 ret = generic_file_read_iter(iocb, to);
989 if (ret <= 0 && ret != -EFAULT)
994 if (should_fault_in_pages(to, iocb, &prev_count, &window_size)) {
996 window_size -= fault_in_iov_iter_writeable(to, window_size);
1001 if (gfs2_holder_queued(&gh))
1004 gfs2_holder_uninit(&gh);
1005 return read ? read : ret;
1008 static ssize_t gfs2_file_buffered_write(struct kiocb *iocb,
1009 struct iov_iter *from,
1010 struct gfs2_holder *gh)
1012 struct file *file = iocb->ki_filp;
1013 struct inode *inode = file_inode(file);
1014 struct gfs2_inode *ip = GFS2_I(inode);
1015 struct gfs2_sbd *sdp = GFS2_SB(inode);
1016 struct gfs2_holder *statfs_gh = NULL;
1017 size_t prev_count = 0, window_size = 0;
1018 size_t orig_count = iov_iter_count(from);
1023 * In this function, we disable page faults when we're holding the
1024 * inode glock while doing I/O. If a page fault occurs, we indicate
1025 * that the inode glock may be dropped, fault in the pages manually,
1029 if (inode == sdp->sd_rindex) {
1030 statfs_gh = kmalloc(sizeof(*statfs_gh), GFP_NOFS);
1035 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, gh);
1036 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
1038 window_size -= fault_in_iov_iter_readable(from, window_size);
1043 from->count = min(from->count, window_size);
1045 ret = gfs2_glock_nq(gh);
1049 if (inode == sdp->sd_rindex) {
1050 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
1052 ret = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
1053 GL_NOCACHE, statfs_gh);
1058 pagefault_disable();
1059 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
1064 if (inode == sdp->sd_rindex)
1065 gfs2_glock_dq_uninit(statfs_gh);
1067 if (ret <= 0 && ret != -EFAULT)
1070 from->count = orig_count - written;
1071 if (should_fault_in_pages(from, iocb, &prev_count, &window_size)) {
1076 if (gfs2_holder_queued(gh))
1079 gfs2_holder_uninit(gh);
1081 from->count = orig_count - written;
1082 return written ? written : ret;
1086 * gfs2_file_write_iter - Perform a write to a file
1087 * @iocb: The io context
1088 * @from: The data to write
1090 * We have to do a lock/unlock here to refresh the inode size for
1091 * O_APPEND writes, otherwise we can land up writing at the wrong
1092 * offset. There is still a race, but provided the app is using its
1093 * own file locking, this will make O_APPEND work as expected.
1097 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1099 struct file *file = iocb->ki_filp;
1100 struct inode *inode = file_inode(file);
1101 struct gfs2_inode *ip = GFS2_I(inode);
1102 struct gfs2_holder gh;
1105 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
1107 if (iocb->ki_flags & IOCB_APPEND) {
1108 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
1111 gfs2_glock_dq_uninit(&gh);
1115 ret = generic_write_checks(iocb, from);
1119 ret = file_remove_privs(file);
1123 ret = file_update_time(file);
1127 if (iocb->ki_flags & IOCB_DIRECT) {
1128 struct address_space *mapping = file->f_mapping;
1129 ssize_t buffered, ret2;
1131 ret = gfs2_file_direct_write(iocb, from, &gh);
1132 if (ret < 0 || !iov_iter_count(from))
1135 iocb->ki_flags |= IOCB_DSYNC;
1136 buffered = gfs2_file_buffered_write(iocb, from, &gh);
1137 if (unlikely(buffered <= 0)) {
1144 * We need to ensure that the page cache pages are written to
1145 * disk and invalidated to preserve the expected O_DIRECT
1146 * semantics. If the writeback or invalidate fails, only report
1147 * the direct I/O range as we don't know if the buffered pages
1150 ret2 = generic_write_sync(iocb, buffered);
1151 invalidate_mapping_pages(mapping,
1152 (iocb->ki_pos - buffered) >> PAGE_SHIFT,
1153 (iocb->ki_pos - 1) >> PAGE_SHIFT);
1154 if (!ret || ret2 > 0)
1157 ret = gfs2_file_buffered_write(iocb, from, &gh);
1158 if (likely(ret > 0))
1159 ret = generic_write_sync(iocb, ret);
1163 inode_unlock(inode);
1167 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
1170 struct super_block *sb = inode->i_sb;
1171 struct gfs2_inode *ip = GFS2_I(inode);
1172 loff_t end = offset + len;
1173 struct buffer_head *dibh;
1176 error = gfs2_meta_inode_buffer(ip, &dibh);
1177 if (unlikely(error))
1180 gfs2_trans_add_meta(ip->i_gl, dibh);
1182 if (gfs2_is_stuffed(ip)) {
1183 error = gfs2_unstuff_dinode(ip);
1184 if (unlikely(error))
1188 while (offset < end) {
1189 struct iomap iomap = { };
1191 error = gfs2_iomap_alloc(inode, offset, end - offset, &iomap);
1194 offset = iomap.offset + iomap.length;
1195 if (!(iomap.flags & IOMAP_F_NEW))
1197 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
1198 iomap.length >> inode->i_blkbits,
1201 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
1211 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
1212 * blocks, determine how many bytes can be written.
1213 * @ip: The inode in question.
1214 * @len: Max cap of bytes. What we return in *len must be <= this.
1215 * @data_blocks: Compute and return the number of data blocks needed
1216 * @ind_blocks: Compute and return the number of indirect blocks needed
1217 * @max_blocks: The total blocks available to work with.
1219 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
1221 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
1222 unsigned int *data_blocks, unsigned int *ind_blocks,
1223 unsigned int max_blocks)
1226 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1227 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
1229 for (tmp = max_data; tmp > sdp->sd_diptrs;) {
1230 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
1234 *data_blocks = max_data;
1235 *ind_blocks = max_blocks - max_data;
1236 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
1239 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
1243 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1245 struct inode *inode = file_inode(file);
1246 struct gfs2_sbd *sdp = GFS2_SB(inode);
1247 struct gfs2_inode *ip = GFS2_I(inode);
1248 struct gfs2_alloc_parms ap = { .aflags = 0, };
1249 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
1250 loff_t bytes, max_bytes, max_blks;
1252 const loff_t pos = offset;
1253 const loff_t count = len;
1254 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
1255 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
1256 loff_t max_chunk_size = UINT_MAX & bsize_mask;
1258 next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
1260 offset &= bsize_mask;
1262 len = next - offset;
1263 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
1266 bytes &= bsize_mask;
1268 bytes = sdp->sd_sb.sb_bsize;
1270 gfs2_size_hint(file, offset, len);
1272 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
1273 ap.min_target = data_blocks + ind_blocks;
1278 if (!gfs2_write_alloc_required(ip, offset, bytes)) {
1284 /* We need to determine how many bytes we can actually
1285 * fallocate without exceeding quota or going over the
1286 * end of the fs. We start off optimistically by assuming
1287 * we can write max_bytes */
1288 max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1290 /* Since max_bytes is most likely a theoretical max, we
1291 * calculate a more realistic 'bytes' to serve as a good
1292 * starting point for the number of bytes we may be able
1294 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1295 ap.target = data_blocks + ind_blocks;
1297 error = gfs2_quota_lock_check(ip, &ap);
1300 /* ap.allowed tells us how many blocks quota will allow
1301 * us to write. Check if this reduces max_blks */
1302 max_blks = UINT_MAX;
1304 max_blks = ap.allowed;
1306 error = gfs2_inplace_reserve(ip, &ap);
1310 /* check if the selected rgrp limits our max_blks further */
1311 if (ip->i_res.rs_reserved < max_blks)
1312 max_blks = ip->i_res.rs_reserved;
1314 /* Almost done. Calculate bytes that can be written using
1315 * max_blks. We also recompute max_bytes, data_blocks and
1317 calc_max_reserv(ip, &max_bytes, &data_blocks,
1318 &ind_blocks, max_blks);
1320 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1321 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1322 if (gfs2_is_jdata(ip))
1323 rblocks += data_blocks ? data_blocks : 1;
1325 error = gfs2_trans_begin(sdp, rblocks,
1326 PAGE_SIZE >> inode->i_blkbits);
1328 goto out_trans_fail;
1330 error = fallocate_chunk(inode, offset, max_bytes, mode);
1331 gfs2_trans_end(sdp);
1334 goto out_trans_fail;
1337 offset += max_bytes;
1338 gfs2_inplace_release(ip);
1339 gfs2_quota_unlock(ip);
1342 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size)
1343 i_size_write(inode, pos + count);
1344 file_update_time(file);
1345 mark_inode_dirty(inode);
1347 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1348 return vfs_fsync_range(file, pos, pos + count - 1,
1349 (file->f_flags & __O_SYNC) ? 0 : 1);
1353 gfs2_inplace_release(ip);
1355 gfs2_quota_unlock(ip);
1359 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1361 struct inode *inode = file_inode(file);
1362 struct gfs2_sbd *sdp = GFS2_SB(inode);
1363 struct gfs2_inode *ip = GFS2_I(inode);
1364 struct gfs2_holder gh;
1367 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1369 /* fallocate is needed by gfs2_grow to reserve space in the rindex */
1370 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1375 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1376 ret = gfs2_glock_nq(&gh);
1380 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1381 (offset + len) > inode->i_size) {
1382 ret = inode_newsize_ok(inode, offset + len);
1387 ret = get_write_access(inode);
1391 if (mode & FALLOC_FL_PUNCH_HOLE) {
1392 ret = __gfs2_punch_hole(file, offset, len);
1394 ret = __gfs2_fallocate(file, mode, offset, len);
1396 gfs2_rs_deltree(&ip->i_res);
1399 put_write_access(inode);
1403 gfs2_holder_uninit(&gh);
1404 inode_unlock(inode);
1408 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1409 struct file *out, loff_t *ppos,
1410 size_t len, unsigned int flags)
1414 gfs2_size_hint(out, *ppos, len);
1416 ret = iter_file_splice_write(pipe, out, ppos, len, flags);
1420 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
1423 * gfs2_lock - acquire/release a posix lock on a file
1424 * @file: the file pointer
1425 * @cmd: either modify or retrieve lock state, possibly wait
1426 * @fl: type and range of lock
1431 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1433 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1434 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1435 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1437 if (!(fl->fl_flags & FL_POSIX))
1439 if (cmd == F_CANCELLK) {
1442 fl->fl_type = F_UNLCK;
1444 if (unlikely(gfs2_withdrawn(sdp))) {
1445 if (fl->fl_type == F_UNLCK)
1446 locks_lock_file_wait(file, fl);
1450 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1451 else if (fl->fl_type == F_UNLCK)
1452 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1454 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1457 static void __flock_holder_uninit(struct file *file, struct gfs2_holder *fl_gh)
1459 struct gfs2_glock *gl = gfs2_glock_hold(fl_gh->gh_gl);
1462 * Make sure gfs2_glock_put() won't sleep under the file->f_lock
1466 spin_lock(&file->f_lock);
1467 gfs2_holder_uninit(fl_gh);
1468 spin_unlock(&file->f_lock);
1472 static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1474 struct gfs2_file *fp = file->private_data;
1475 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1476 struct gfs2_inode *ip = GFS2_I(file_inode(file));
1477 struct gfs2_glock *gl;
1483 state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1484 flags = GL_EXACT | GL_NOPID;
1485 if (!IS_SETLKW(cmd))
1486 flags |= LM_FLAG_TRY_1CB;
1488 mutex_lock(&fp->f_fl_mutex);
1490 if (gfs2_holder_initialized(fl_gh)) {
1491 struct file_lock request;
1492 if (fl_gh->gh_state == state)
1494 locks_init_lock(&request);
1495 request.fl_type = F_UNLCK;
1496 request.fl_flags = FL_FLOCK;
1497 locks_lock_file_wait(file, &request);
1498 gfs2_glock_dq(fl_gh);
1499 gfs2_holder_reinit(state, flags, fl_gh);
1501 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1502 &gfs2_flock_glops, CREATE, &gl);
1505 spin_lock(&file->f_lock);
1506 gfs2_holder_init(gl, state, flags, fl_gh);
1507 spin_unlock(&file->f_lock);
1510 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1511 error = gfs2_glock_nq(fl_gh);
1512 if (error != GLR_TRYFAILED)
1514 fl_gh->gh_flags &= ~LM_FLAG_TRY_1CB;
1515 fl_gh->gh_flags |= LM_FLAG_TRY;
1519 __flock_holder_uninit(file, fl_gh);
1520 if (error == GLR_TRYFAILED)
1523 error = locks_lock_file_wait(file, fl);
1524 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1528 mutex_unlock(&fp->f_fl_mutex);
1532 static void do_unflock(struct file *file, struct file_lock *fl)
1534 struct gfs2_file *fp = file->private_data;
1535 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1537 mutex_lock(&fp->f_fl_mutex);
1538 locks_lock_file_wait(file, fl);
1539 if (gfs2_holder_initialized(fl_gh)) {
1540 gfs2_glock_dq(fl_gh);
1541 __flock_holder_uninit(file, fl_gh);
1543 mutex_unlock(&fp->f_fl_mutex);
1547 * gfs2_flock - acquire/release a flock lock on a file
1548 * @file: the file pointer
1549 * @cmd: either modify or retrieve lock state, possibly wait
1550 * @fl: type and range of lock
1555 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1557 if (!(fl->fl_flags & FL_FLOCK))
1560 if (fl->fl_type == F_UNLCK) {
1561 do_unflock(file, fl);
1564 return do_flock(file, cmd, fl);
1568 const struct file_operations gfs2_file_fops = {
1569 .llseek = gfs2_llseek,
1570 .read_iter = gfs2_file_read_iter,
1571 .write_iter = gfs2_file_write_iter,
1572 .iopoll = iocb_bio_iopoll,
1573 .unlocked_ioctl = gfs2_ioctl,
1574 .compat_ioctl = gfs2_compat_ioctl,
1577 .release = gfs2_release,
1578 .fsync = gfs2_fsync,
1580 .flock = gfs2_flock,
1581 .splice_read = copy_splice_read,
1582 .splice_write = gfs2_file_splice_write,
1583 .setlease = simple_nosetlease,
1584 .fallocate = gfs2_fallocate,
1587 const struct file_operations gfs2_dir_fops = {
1588 .iterate_shared = gfs2_readdir,
1589 .unlocked_ioctl = gfs2_ioctl,
1590 .compat_ioctl = gfs2_compat_ioctl,
1592 .release = gfs2_release,
1593 .fsync = gfs2_fsync,
1595 .flock = gfs2_flock,
1596 .llseek = default_llseek,
1599 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1601 const struct file_operations gfs2_file_fops_nolock = {
1602 .llseek = gfs2_llseek,
1603 .read_iter = gfs2_file_read_iter,
1604 .write_iter = gfs2_file_write_iter,
1605 .iopoll = iocb_bio_iopoll,
1606 .unlocked_ioctl = gfs2_ioctl,
1607 .compat_ioctl = gfs2_compat_ioctl,
1610 .release = gfs2_release,
1611 .fsync = gfs2_fsync,
1612 .splice_read = copy_splice_read,
1613 .splice_write = gfs2_file_splice_write,
1614 .setlease = generic_setlease,
1615 .fallocate = gfs2_fallocate,
1618 const struct file_operations gfs2_dir_fops_nolock = {
1619 .iterate_shared = gfs2_readdir,
1620 .unlocked_ioctl = gfs2_ioctl,
1621 .compat_ioctl = gfs2_compat_ioctl,
1623 .release = gfs2_release,
1624 .fsync = gfs2_fsync,
1625 .llseek = default_llseek,