2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13 #include <linux/completion.h>
14 #include <linux/buffer_head.h>
15 #include <linux/pagemap.h>
16 #include <linux/pagevec.h>
17 #include <linux/mpage.h>
19 #include <linux/writeback.h>
20 #include <linux/swap.h>
21 #include <linux/gfs2_ondisk.h>
22 #include <linux/backing-dev.h>
23 #include <linux/aio.h>
24 #include <trace/events/writeback.h>
41 static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
42 unsigned int from, unsigned int to)
44 struct buffer_head *head = page_buffers(page);
45 unsigned int bsize = head->b_size;
46 struct buffer_head *bh;
47 unsigned int start, end;
49 for (bh = head, start = 0; bh != head || !start;
50 bh = bh->b_this_page, start = end) {
52 if (end <= from || start >= to)
54 if (gfs2_is_jdata(ip))
55 set_buffer_uptodate(bh);
56 gfs2_trans_add_data(ip->i_gl, bh);
61 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
63 * @lblock: The block number to look up
64 * @bh_result: The buffer head to return the result in
65 * @create: Non-zero if we may add block to the file
70 static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
71 struct buffer_head *bh_result, int create)
75 error = gfs2_block_map(inode, lblock, bh_result, 0);
78 if (!buffer_mapped(bh_result))
83 static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
84 struct buffer_head *bh_result, int create)
86 return gfs2_block_map(inode, lblock, bh_result, 0);
90 * gfs2_writepage_common - Common bits of writepage
91 * @page: The page to be written
92 * @wbc: The writeback control
94 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
97 static int gfs2_writepage_common(struct page *page,
98 struct writeback_control *wbc)
100 struct inode *inode = page->mapping->host;
101 struct gfs2_inode *ip = GFS2_I(inode);
102 struct gfs2_sbd *sdp = GFS2_SB(inode);
103 loff_t i_size = i_size_read(inode);
104 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
107 if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
109 if (current->journal_info)
111 /* Is the page fully outside i_size? (truncate in progress) */
112 offset = i_size & (PAGE_CACHE_SIZE-1);
113 if (page->index > end_index || (page->index == end_index && !offset)) {
114 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
119 redirty_page_for_writepage(wbc, page);
126 * gfs2_writepage - Write page for writeback mappings
128 * @wbc: The writeback control
132 static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
136 ret = gfs2_writepage_common(page, wbc);
140 return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
144 * __gfs2_jdata_writepage - The core of jdata writepage
145 * @page: The page to write
146 * @wbc: The writeback control
148 * This is shared between writepage and writepages and implements the
149 * core of the writepage operation. If a transaction is required then
150 * PageChecked will have been set and the transaction will have
151 * already been started before this is called.
154 static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
156 struct inode *inode = page->mapping->host;
157 struct gfs2_inode *ip = GFS2_I(inode);
158 struct gfs2_sbd *sdp = GFS2_SB(inode);
160 if (PageChecked(page)) {
161 ClearPageChecked(page);
162 if (!page_has_buffers(page)) {
163 create_empty_buffers(page, inode->i_sb->s_blocksize,
164 (1 << BH_Dirty)|(1 << BH_Uptodate));
166 gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
168 return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
172 * gfs2_jdata_writepage - Write complete page
173 * @page: Page to write
179 static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
181 struct inode *inode = page->mapping->host;
182 struct gfs2_sbd *sdp = GFS2_SB(inode);
186 if (PageChecked(page)) {
187 if (wbc->sync_mode != WB_SYNC_ALL)
189 ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
194 ret = gfs2_writepage_common(page, wbc);
196 ret = __gfs2_jdata_writepage(page, wbc);
202 redirty_page_for_writepage(wbc, page);
208 * gfs2_writepages - Write a bunch of dirty pages back to disk
209 * @mapping: The mapping to write
210 * @wbc: Write-back control
212 * Used for both ordered and writeback modes.
214 static int gfs2_writepages(struct address_space *mapping,
215 struct writeback_control *wbc)
217 return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
221 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
222 * @mapping: The mapping
223 * @wbc: The writeback control
224 * @writepage: The writepage function to call for each page
225 * @pvec: The vector of pages
226 * @nr_pages: The number of pages to write
228 * Returns: non-zero if loop should terminate, zero otherwise
231 static int gfs2_write_jdata_pagevec(struct address_space *mapping,
232 struct writeback_control *wbc,
233 struct pagevec *pvec,
234 int nr_pages, pgoff_t end,
237 struct inode *inode = mapping->host;
238 struct gfs2_sbd *sdp = GFS2_SB(inode);
239 unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
243 ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
247 for(i = 0; i < nr_pages; i++) {
248 struct page *page = pvec->pages[i];
251 * At this point, the page may be truncated or
252 * invalidated (changing page->mapping to NULL), or
253 * even swizzled back from swapper_space to tmpfs file
254 * mapping. However, page->index will not change
255 * because we have a reference on the page.
257 if (page->index > end) {
259 * can't be range_cyclic (1st pass) because
260 * end == -1 in that case.
266 *done_index = page->index;
270 if (unlikely(page->mapping != mapping)) {
276 if (!PageDirty(page)) {
277 /* someone wrote it for us */
278 goto continue_unlock;
281 if (PageWriteback(page)) {
282 if (wbc->sync_mode != WB_SYNC_NONE)
283 wait_on_page_writeback(page);
285 goto continue_unlock;
288 BUG_ON(PageWriteback(page));
289 if (!clear_page_dirty_for_io(page))
290 goto continue_unlock;
292 trace_wbc_writepage(wbc, mapping->backing_dev_info);
294 ret = __gfs2_jdata_writepage(page, wbc);
296 if (ret == AOP_WRITEPAGE_ACTIVATE) {
302 * done_index is set past this page,
303 * so media errors will not choke
304 * background writeout for the entire
305 * file. This has consequences for
306 * range_cyclic semantics (ie. it may
307 * not be suitable for data integrity
310 *done_index = page->index + 1;
317 * We stop writing back only if we are not doing
318 * integrity sync. In case of integrity sync we have to
319 * keep going until we have written all the pages
320 * we tagged for writeback prior to entering this loop.
322 if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
333 * gfs2_write_cache_jdata - Like write_cache_pages but different
334 * @mapping: The mapping to write
335 * @wbc: The writeback control
336 * @writepage: The writepage function to call
337 * @data: The data to pass to writepage
339 * The reason that we use our own function here is that we need to
340 * start transactions before we grab page locks. This allows us
341 * to get the ordering right.
344 static int gfs2_write_cache_jdata(struct address_space *mapping,
345 struct writeback_control *wbc)
351 pgoff_t uninitialized_var(writeback_index);
359 pagevec_init(&pvec, 0);
360 if (wbc->range_cyclic) {
361 writeback_index = mapping->writeback_index; /* prev offset */
362 index = writeback_index;
369 index = wbc->range_start >> PAGE_CACHE_SHIFT;
370 end = wbc->range_end >> PAGE_CACHE_SHIFT;
371 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
373 cycled = 1; /* ignore range_cyclic tests */
375 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
376 tag = PAGECACHE_TAG_TOWRITE;
378 tag = PAGECACHE_TAG_DIRTY;
381 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
382 tag_pages_for_writeback(mapping, index, end);
384 while (!done && (index <= end)) {
385 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
386 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
390 ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end, &done_index);
395 pagevec_release(&pvec);
399 if (!cycled && !done) {
402 * We hit the last page and there is more work to be done: wrap
403 * back to the start of the file
407 end = writeback_index - 1;
411 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
412 mapping->writeback_index = done_index;
419 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
420 * @mapping: The mapping to write
421 * @wbc: The writeback control
425 static int gfs2_jdata_writepages(struct address_space *mapping,
426 struct writeback_control *wbc)
428 struct gfs2_inode *ip = GFS2_I(mapping->host);
429 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
432 ret = gfs2_write_cache_jdata(mapping, wbc);
433 if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
434 gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH);
435 ret = gfs2_write_cache_jdata(mapping, wbc);
441 * stuffed_readpage - Fill in a Linux page with stuffed file data
448 static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
450 struct buffer_head *dibh;
451 u64 dsize = i_size_read(&ip->i_inode);
456 * Due to the order of unstuffing files and ->fault(), we can be
457 * asked for a zero page in the case of a stuffed file being extended,
458 * so we need to supply one here. It doesn't happen often.
460 if (unlikely(page->index)) {
461 zero_user(page, 0, PAGE_CACHE_SIZE);
462 SetPageUptodate(page);
466 error = gfs2_meta_inode_buffer(ip, &dibh);
470 kaddr = kmap_atomic(page);
471 if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
472 dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
473 memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
474 memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
475 kunmap_atomic(kaddr);
476 flush_dcache_page(page);
478 SetPageUptodate(page);
485 * __gfs2_readpage - readpage
486 * @file: The file to read a page for
487 * @page: The page to read
489 * This is the core of gfs2's readpage. Its used by the internal file
490 * reading code as in that case we already hold the glock. Also its
491 * called by gfs2_readpage() once the required lock has been granted.
495 static int __gfs2_readpage(void *file, struct page *page)
497 struct gfs2_inode *ip = GFS2_I(page->mapping->host);
498 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
501 if (gfs2_is_stuffed(ip)) {
502 error = stuffed_readpage(ip, page);
505 error = mpage_readpage(page, gfs2_block_map);
508 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
515 * gfs2_readpage - read a page of a file
516 * @file: The file to read
517 * @page: The page of the file
519 * This deals with the locking required. We have to unlock and
520 * relock the page in order to get the locking in the right
524 static int gfs2_readpage(struct file *file, struct page *page)
526 struct address_space *mapping = page->mapping;
527 struct gfs2_inode *ip = GFS2_I(mapping->host);
528 struct gfs2_holder gh;
532 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
533 error = gfs2_glock_nq(&gh);
536 error = AOP_TRUNCATED_PAGE;
538 if (page->mapping == mapping && !PageUptodate(page))
539 error = __gfs2_readpage(file, page);
544 gfs2_holder_uninit(&gh);
545 if (error && error != AOP_TRUNCATED_PAGE)
551 * gfs2_internal_read - read an internal file
552 * @ip: The gfs2 inode
553 * @buf: The buffer to fill
554 * @pos: The file position
555 * @size: The amount to read
559 int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
562 struct address_space *mapping = ip->i_inode.i_mapping;
563 unsigned long index = *pos / PAGE_CACHE_SIZE;
564 unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
572 if (offset + size > PAGE_CACHE_SIZE)
573 amt = PAGE_CACHE_SIZE - offset;
574 page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
576 return PTR_ERR(page);
577 p = kmap_atomic(page);
578 memcpy(buf + copied, p + offset, amt);
580 page_cache_release(page);
584 } while(copied < size);
590 * gfs2_readpages - Read a bunch of pages at once
593 * 1. This is only for readahead, so we can simply ignore any things
594 * which are slightly inconvenient (such as locking conflicts between
595 * the page lock and the glock) and return having done no I/O. Its
596 * obviously not something we'd want to do on too regular a basis.
597 * Any I/O we ignore at this time will be done via readpage later.
598 * 2. We don't handle stuffed files here we let readpage do the honours.
599 * 3. mpage_readpages() does most of the heavy lifting in the common case.
600 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
603 static int gfs2_readpages(struct file *file, struct address_space *mapping,
604 struct list_head *pages, unsigned nr_pages)
606 struct inode *inode = mapping->host;
607 struct gfs2_inode *ip = GFS2_I(inode);
608 struct gfs2_sbd *sdp = GFS2_SB(inode);
609 struct gfs2_holder gh;
612 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
613 ret = gfs2_glock_nq(&gh);
616 if (!gfs2_is_stuffed(ip))
617 ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
620 gfs2_holder_uninit(&gh);
621 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
627 * gfs2_write_begin - Begin to write to a file
628 * @file: The file to write to
629 * @mapping: The mapping in which to write
630 * @pos: The file offset at which to start writing
631 * @len: Length of the write
632 * @flags: Various flags
633 * @pagep: Pointer to return the page
634 * @fsdata: Pointer to return fs data (unused by GFS2)
639 static int gfs2_write_begin(struct file *file, struct address_space *mapping,
640 loff_t pos, unsigned len, unsigned flags,
641 struct page **pagep, void **fsdata)
643 struct gfs2_inode *ip = GFS2_I(mapping->host);
644 struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
645 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
646 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
647 unsigned requested = 0;
650 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
651 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
654 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
655 error = gfs2_glock_nq(&ip->i_gh);
658 if (&ip->i_inode == sdp->sd_rindex) {
659 error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
660 GL_NOCACHE, &m_ip->i_gh);
661 if (unlikely(error)) {
662 gfs2_glock_dq(&ip->i_gh);
667 alloc_required = gfs2_write_alloc_required(ip, pos, len);
669 if (alloc_required || gfs2_is_jdata(ip))
670 gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
672 if (alloc_required) {
673 struct gfs2_alloc_parms ap = { .aflags = 0, };
674 error = gfs2_quota_lock_check(ip);
678 requested = data_blocks + ind_blocks;
679 ap.target = requested;
680 error = gfs2_inplace_reserve(ip, &ap);
685 rblocks = RES_DINODE + ind_blocks;
686 if (gfs2_is_jdata(ip))
687 rblocks += data_blocks ? data_blocks : 1;
688 if (ind_blocks || data_blocks)
689 rblocks += RES_STATFS + RES_QUOTA;
690 if (&ip->i_inode == sdp->sd_rindex)
691 rblocks += 2 * RES_STATFS;
693 rblocks += gfs2_rg_blocks(ip, requested);
695 error = gfs2_trans_begin(sdp, rblocks,
696 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
701 flags |= AOP_FLAG_NOFS;
702 page = grab_cache_page_write_begin(mapping, index, flags);
707 if (gfs2_is_stuffed(ip)) {
709 if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
710 error = gfs2_unstuff_dinode(ip, page);
713 } else if (!PageUptodate(page)) {
714 error = stuffed_readpage(ip, page);
720 error = __block_write_begin(page, from, len, gfs2_block_map);
726 page_cache_release(page);
729 if (pos + len > ip->i_inode.i_size)
730 gfs2_trim_blocks(&ip->i_inode);
736 if (alloc_required) {
737 gfs2_inplace_release(ip);
739 gfs2_quota_unlock(ip);
742 if (&ip->i_inode == sdp->sd_rindex) {
743 gfs2_glock_dq(&m_ip->i_gh);
744 gfs2_holder_uninit(&m_ip->i_gh);
746 gfs2_glock_dq(&ip->i_gh);
748 gfs2_holder_uninit(&ip->i_gh);
753 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
754 * @inode: the rindex inode
756 static void adjust_fs_space(struct inode *inode)
758 struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
759 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
760 struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
761 struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
762 struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
763 struct buffer_head *m_bh, *l_bh;
764 u64 fs_total, new_free;
766 /* Total up the file system space, according to the latest rindex. */
767 fs_total = gfs2_ri_total(sdp);
768 if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
771 spin_lock(&sdp->sd_statfs_spin);
772 gfs2_statfs_change_in(m_sc, m_bh->b_data +
773 sizeof(struct gfs2_dinode));
774 if (fs_total > (m_sc->sc_total + l_sc->sc_total))
775 new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
778 spin_unlock(&sdp->sd_statfs_spin);
779 fs_warn(sdp, "File system extended by %llu blocks.\n",
780 (unsigned long long)new_free);
781 gfs2_statfs_change(sdp, new_free, new_free, 0);
783 if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
785 update_statfs(sdp, m_bh, l_bh);
792 * gfs2_stuffed_write_end - Write end for stuffed files
794 * @dibh: The buffer_head containing the on-disk inode
795 * @pos: The file position
796 * @len: The length of the write
797 * @copied: How much was actually copied by the VFS
800 * This copies the data from the page into the inode block after
801 * the inode data structure itself.
805 static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
806 loff_t pos, unsigned len, unsigned copied,
809 struct gfs2_inode *ip = GFS2_I(inode);
810 struct gfs2_sbd *sdp = GFS2_SB(inode);
811 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
812 u64 to = pos + copied;
814 unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
816 BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
817 kaddr = kmap_atomic(page);
818 memcpy(buf + pos, kaddr + pos, copied);
819 memset(kaddr + pos + copied, 0, len - copied);
820 flush_dcache_page(page);
821 kunmap_atomic(kaddr);
823 if (!PageUptodate(page))
824 SetPageUptodate(page);
826 page_cache_release(page);
829 if (inode->i_size < to)
830 i_size_write(inode, to);
831 mark_inode_dirty(inode);
834 if (inode == sdp->sd_rindex) {
835 adjust_fs_space(inode);
836 sdp->sd_rindex_uptodate = 0;
841 if (inode == sdp->sd_rindex) {
842 gfs2_glock_dq(&m_ip->i_gh);
843 gfs2_holder_uninit(&m_ip->i_gh);
845 gfs2_glock_dq(&ip->i_gh);
846 gfs2_holder_uninit(&ip->i_gh);
852 * @file: The file to write to
853 * @mapping: The address space to write to
854 * @pos: The file position
855 * @len: The length of the data
857 * @page: The page that has been written
858 * @fsdata: The fsdata (unused in GFS2)
860 * The main write_end function for GFS2. We have a separate one for
861 * stuffed files as they are slightly different, otherwise we just
862 * put our locking around the VFS provided functions.
867 static int gfs2_write_end(struct file *file, struct address_space *mapping,
868 loff_t pos, unsigned len, unsigned copied,
869 struct page *page, void *fsdata)
871 struct inode *inode = page->mapping->host;
872 struct gfs2_inode *ip = GFS2_I(inode);
873 struct gfs2_sbd *sdp = GFS2_SB(inode);
874 struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
875 struct buffer_head *dibh;
876 unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
877 unsigned int to = from + len;
879 struct gfs2_trans *tr = current->journal_info;
882 BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
884 ret = gfs2_meta_inode_buffer(ip, &dibh);
887 page_cache_release(page);
891 if (gfs2_is_stuffed(ip))
892 return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
894 if (!gfs2_is_writeback(ip))
895 gfs2_page_add_databufs(ip, page, from, to);
897 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
898 if (tr->tr_num_buf_new)
899 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
901 gfs2_trans_add_meta(ip->i_gl, dibh);
904 if (inode == sdp->sd_rindex) {
905 adjust_fs_space(inode);
906 sdp->sd_rindex_uptodate = 0;
912 gfs2_inplace_release(ip);
913 if (ip->i_res->rs_qa_qd_num)
914 gfs2_quota_unlock(ip);
915 if (inode == sdp->sd_rindex) {
916 gfs2_glock_dq(&m_ip->i_gh);
917 gfs2_holder_uninit(&m_ip->i_gh);
919 gfs2_glock_dq(&ip->i_gh);
920 gfs2_holder_uninit(&ip->i_gh);
925 * gfs2_set_page_dirty - Page dirtying function
926 * @page: The page to dirty
928 * Returns: 1 if it dirtyed the page, or 0 otherwise
931 static int gfs2_set_page_dirty(struct page *page)
933 SetPageChecked(page);
934 return __set_page_dirty_buffers(page);
938 * gfs2_bmap - Block map function
939 * @mapping: Address space info
940 * @lblock: The block to map
942 * Returns: The disk address for the block or 0 on hole or error
945 static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
947 struct gfs2_inode *ip = GFS2_I(mapping->host);
948 struct gfs2_holder i_gh;
952 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
956 if (!gfs2_is_stuffed(ip))
957 dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
959 gfs2_glock_dq_uninit(&i_gh);
964 static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
966 struct gfs2_bufdata *bd;
970 clear_buffer_dirty(bh);
973 if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
974 list_del_init(&bd->bd_list);
976 gfs2_remove_from_journal(bh, current->journal_info, 0);
979 clear_buffer_mapped(bh);
980 clear_buffer_req(bh);
981 clear_buffer_new(bh);
982 gfs2_log_unlock(sdp);
986 static void gfs2_invalidatepage(struct page *page, unsigned int offset,
989 struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
990 unsigned int stop = offset + length;
991 int partial_page = (offset || length < PAGE_CACHE_SIZE);
992 struct buffer_head *bh, *head;
993 unsigned long pos = 0;
995 BUG_ON(!PageLocked(page));
997 ClearPageChecked(page);
998 if (!page_has_buffers(page))
1001 bh = head = page_buffers(page);
1003 if (pos + bh->b_size > stop)
1007 gfs2_discard(sdp, bh);
1009 bh = bh->b_this_page;
1010 } while (bh != head);
1013 try_to_release_page(page, 0);
1017 * gfs2_ok_for_dio - check that dio is valid on this file
1019 * @rw: READ or WRITE
1020 * @offset: The offset at which we are reading or writing
1022 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1023 * 1 (to accept the i/o request)
1025 static int gfs2_ok_for_dio(struct gfs2_inode *ip, int rw, loff_t offset)
1028 * Should we return an error here? I can't see that O_DIRECT for
1029 * a stuffed file makes any sense. For now we'll silently fall
1030 * back to buffered I/O
1032 if (gfs2_is_stuffed(ip))
1035 if (offset >= i_size_read(&ip->i_inode))
1042 static ssize_t gfs2_direct_IO(int rw, struct kiocb *iocb,
1043 struct iov_iter *iter, loff_t offset)
1045 struct file *file = iocb->ki_filp;
1046 struct inode *inode = file->f_mapping->host;
1047 struct address_space *mapping = inode->i_mapping;
1048 struct gfs2_inode *ip = GFS2_I(inode);
1049 struct gfs2_holder gh;
1053 * Deferred lock, even if its a write, since we do no allocation
1054 * on this path. All we need change is atime, and this lock mode
1055 * ensures that other nodes have flushed their buffered read caches
1056 * (i.e. their page cache entries for this inode). We do not,
1057 * unfortunately have the option of only flushing a range like
1060 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1061 rv = gfs2_glock_nq(&gh);
1064 rv = gfs2_ok_for_dio(ip, rw, offset);
1066 goto out; /* dio not valid, fall back to buffered i/o */
1069 * Now since we are holding a deferred (CW) lock at this point, you
1070 * might be wondering why this is ever needed. There is a case however
1071 * where we've granted a deferred local lock against a cached exclusive
1072 * glock. That is ok provided all granted local locks are deferred, but
1073 * it also means that it is possible to encounter pages which are
1074 * cached and possibly also mapped. So here we check for that and sort
1075 * them out ahead of the dio. The glock state machine will take care of
1078 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1079 * the first place, mapping->nr_pages will always be zero.
1081 if (mapping->nrpages) {
1082 loff_t lstart = offset & (PAGE_CACHE_SIZE - 1);
1083 loff_t len = iov_iter_count(iter);
1084 loff_t end = PAGE_ALIGN(offset + len) - 1;
1089 if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1090 unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1091 rv = filemap_write_and_wait_range(mapping, lstart, end);
1095 truncate_inode_pages_range(mapping, lstart, end);
1098 rv = __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
1100 gfs2_get_block_direct, NULL, NULL, 0);
1103 gfs2_holder_uninit(&gh);
1108 * gfs2_releasepage - free the metadata associated with a page
1109 * @page: the page that's being released
1110 * @gfp_mask: passed from Linux VFS, ignored by us
1112 * Call try_to_free_buffers() if the buffers in this page can be
1118 int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1120 struct address_space *mapping = page->mapping;
1121 struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1122 struct buffer_head *bh, *head;
1123 struct gfs2_bufdata *bd;
1125 if (!page_has_buffers(page))
1129 spin_lock(&sdp->sd_ail_lock);
1130 head = bh = page_buffers(page);
1132 if (atomic_read(&bh->b_count))
1133 goto cannot_release;
1135 if (bd && bd->bd_tr)
1136 goto cannot_release;
1137 if (buffer_pinned(bh) || buffer_dirty(bh))
1139 bh = bh->b_this_page;
1140 } while(bh != head);
1141 spin_unlock(&sdp->sd_ail_lock);
1143 head = bh = page_buffers(page);
1147 gfs2_assert_warn(sdp, bd->bd_bh == bh);
1148 if (!list_empty(&bd->bd_list))
1149 list_del_init(&bd->bd_list);
1151 bh->b_private = NULL;
1152 kmem_cache_free(gfs2_bufdata_cachep, bd);
1155 bh = bh->b_this_page;
1156 } while (bh != head);
1157 gfs2_log_unlock(sdp);
1159 return try_to_free_buffers(page);
1161 not_possible: /* Should never happen */
1162 WARN_ON(buffer_dirty(bh));
1163 WARN_ON(buffer_pinned(bh));
1165 spin_unlock(&sdp->sd_ail_lock);
1166 gfs2_log_unlock(sdp);
1170 static const struct address_space_operations gfs2_writeback_aops = {
1171 .writepage = gfs2_writepage,
1172 .writepages = gfs2_writepages,
1173 .readpage = gfs2_readpage,
1174 .readpages = gfs2_readpages,
1175 .write_begin = gfs2_write_begin,
1176 .write_end = gfs2_write_end,
1178 .invalidatepage = gfs2_invalidatepage,
1179 .releasepage = gfs2_releasepage,
1180 .direct_IO = gfs2_direct_IO,
1181 .migratepage = buffer_migrate_page,
1182 .is_partially_uptodate = block_is_partially_uptodate,
1183 .error_remove_page = generic_error_remove_page,
1186 static const struct address_space_operations gfs2_ordered_aops = {
1187 .writepage = gfs2_writepage,
1188 .writepages = gfs2_writepages,
1189 .readpage = gfs2_readpage,
1190 .readpages = gfs2_readpages,
1191 .write_begin = gfs2_write_begin,
1192 .write_end = gfs2_write_end,
1193 .set_page_dirty = gfs2_set_page_dirty,
1195 .invalidatepage = gfs2_invalidatepage,
1196 .releasepage = gfs2_releasepage,
1197 .direct_IO = gfs2_direct_IO,
1198 .migratepage = buffer_migrate_page,
1199 .is_partially_uptodate = block_is_partially_uptodate,
1200 .error_remove_page = generic_error_remove_page,
1203 static const struct address_space_operations gfs2_jdata_aops = {
1204 .writepage = gfs2_jdata_writepage,
1205 .writepages = gfs2_jdata_writepages,
1206 .readpage = gfs2_readpage,
1207 .readpages = gfs2_readpages,
1208 .write_begin = gfs2_write_begin,
1209 .write_end = gfs2_write_end,
1210 .set_page_dirty = gfs2_set_page_dirty,
1212 .invalidatepage = gfs2_invalidatepage,
1213 .releasepage = gfs2_releasepage,
1214 .is_partially_uptodate = block_is_partially_uptodate,
1215 .error_remove_page = generic_error_remove_page,
1218 void gfs2_set_aops(struct inode *inode)
1220 struct gfs2_inode *ip = GFS2_I(inode);
1222 if (gfs2_is_writeback(ip))
1223 inode->i_mapping->a_ops = &gfs2_writeback_aops;
1224 else if (gfs2_is_ordered(ip))
1225 inode->i_mapping->a_ops = &gfs2_ordered_aops;
1226 else if (gfs2_is_jdata(ip))
1227 inode->i_mapping->a_ops = &gfs2_jdata_aops;