Merge tag 'linux-watchdog-5.3-rc1' of git://www.linux-watchdog.org/linux-watchdog
[platform/kernel/linux-rpi.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 struct wb_completion {
40         atomic_t                cnt;
41 };
42
43 /*
44  * Passed into wb_writeback(), essentially a subset of writeback_control
45  */
46 struct wb_writeback_work {
47         long nr_pages;
48         struct super_block *sb;
49         unsigned long *older_than_this;
50         enum writeback_sync_modes sync_mode;
51         unsigned int tagged_writepages:1;
52         unsigned int for_kupdate:1;
53         unsigned int range_cyclic:1;
54         unsigned int for_background:1;
55         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
56         unsigned int auto_free:1;       /* free on completion */
57         enum wb_reason reason;          /* why was writeback initiated? */
58
59         struct list_head list;          /* pending work list */
60         struct wb_completion *done;     /* set if the caller waits */
61 };
62
63 /*
64  * If one wants to wait for one or more wb_writeback_works, each work's
65  * ->done should be set to a wb_completion defined using the following
66  * macro.  Once all work items are issued with wb_queue_work(), the caller
67  * can wait for the completion of all using wb_wait_for_completion().  Work
68  * items which are waited upon aren't freed automatically on completion.
69  */
70 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
71         struct wb_completion cmpl = {                                   \
72                 .cnt            = ATOMIC_INIT(1),                       \
73         }
74
75
76 /*
77  * If an inode is constantly having its pages dirtied, but then the
78  * updates stop dirtytime_expire_interval seconds in the past, it's
79  * possible for the worst case time between when an inode has its
80  * timestamps updated and when they finally get written out to be two
81  * dirtytime_expire_intervals.  We set the default to 12 hours (in
82  * seconds), which means most of the time inodes will have their
83  * timestamps written to disk after 12 hours, but in the worst case a
84  * few inodes might not their timestamps updated for 24 hours.
85  */
86 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
87
88 static inline struct inode *wb_inode(struct list_head *head)
89 {
90         return list_entry(head, struct inode, i_io_list);
91 }
92
93 /*
94  * Include the creation of the trace points after defining the
95  * wb_writeback_work structure and inline functions so that the definition
96  * remains local to this file.
97  */
98 #define CREATE_TRACE_POINTS
99 #include <trace/events/writeback.h>
100
101 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
102
103 static bool wb_io_lists_populated(struct bdi_writeback *wb)
104 {
105         if (wb_has_dirty_io(wb)) {
106                 return false;
107         } else {
108                 set_bit(WB_has_dirty_io, &wb->state);
109                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
110                 atomic_long_add(wb->avg_write_bandwidth,
111                                 &wb->bdi->tot_write_bandwidth);
112                 return true;
113         }
114 }
115
116 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
117 {
118         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
119             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
120                 clear_bit(WB_has_dirty_io, &wb->state);
121                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
122                                         &wb->bdi->tot_write_bandwidth) < 0);
123         }
124 }
125
126 /**
127  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
128  * @inode: inode to be moved
129  * @wb: target bdi_writeback
130  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
131  *
132  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
133  * Returns %true if @inode is the first occupant of the !dirty_time IO
134  * lists; otherwise, %false.
135  */
136 static bool inode_io_list_move_locked(struct inode *inode,
137                                       struct bdi_writeback *wb,
138                                       struct list_head *head)
139 {
140         assert_spin_locked(&wb->list_lock);
141
142         list_move(&inode->i_io_list, head);
143
144         /* dirty_time doesn't count as dirty_io until expiration */
145         if (head != &wb->b_dirty_time)
146                 return wb_io_lists_populated(wb);
147
148         wb_io_lists_depopulated(wb);
149         return false;
150 }
151
152 /**
153  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
154  * @inode: inode to be removed
155  * @wb: bdi_writeback @inode is being removed from
156  *
157  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
158  * clear %WB_has_dirty_io if all are empty afterwards.
159  */
160 static void inode_io_list_del_locked(struct inode *inode,
161                                      struct bdi_writeback *wb)
162 {
163         assert_spin_locked(&wb->list_lock);
164
165         list_del_init(&inode->i_io_list);
166         wb_io_lists_depopulated(wb);
167 }
168
169 static void wb_wakeup(struct bdi_writeback *wb)
170 {
171         spin_lock_bh(&wb->work_lock);
172         if (test_bit(WB_registered, &wb->state))
173                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
174         spin_unlock_bh(&wb->work_lock);
175 }
176
177 static void finish_writeback_work(struct bdi_writeback *wb,
178                                   struct wb_writeback_work *work)
179 {
180         struct wb_completion *done = work->done;
181
182         if (work->auto_free)
183                 kfree(work);
184         if (done && atomic_dec_and_test(&done->cnt))
185                 wake_up_all(&wb->bdi->wb_waitq);
186 }
187
188 static void wb_queue_work(struct bdi_writeback *wb,
189                           struct wb_writeback_work *work)
190 {
191         trace_writeback_queue(wb, work);
192
193         if (work->done)
194                 atomic_inc(&work->done->cnt);
195
196         spin_lock_bh(&wb->work_lock);
197
198         if (test_bit(WB_registered, &wb->state)) {
199                 list_add_tail(&work->list, &wb->work_list);
200                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
201         } else
202                 finish_writeback_work(wb, work);
203
204         spin_unlock_bh(&wb->work_lock);
205 }
206
207 /**
208  * wb_wait_for_completion - wait for completion of bdi_writeback_works
209  * @bdi: bdi work items were issued to
210  * @done: target wb_completion
211  *
212  * Wait for one or more work items issued to @bdi with their ->done field
213  * set to @done, which should have been defined with
214  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
215  * work items are completed.  Work items which are waited upon aren't freed
216  * automatically on completion.
217  */
218 static void wb_wait_for_completion(struct backing_dev_info *bdi,
219                                    struct wb_completion *done)
220 {
221         atomic_dec(&done->cnt);         /* put down the initial count */
222         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
223 }
224
225 #ifdef CONFIG_CGROUP_WRITEBACK
226
227 /* parameters for foreign inode detection, see wb_detach_inode() */
228 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
229 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
230 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
231 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
232
233 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
234 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235                                         /* each slot's duration is 2s / 16 */
236 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
237                                         /* if foreign slots >= 8, switch */
238 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
239                                         /* one round can affect upto 5 slots */
240
241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242 static struct workqueue_struct *isw_wq;
243
244 void __inode_attach_wb(struct inode *inode, struct page *page)
245 {
246         struct backing_dev_info *bdi = inode_to_bdi(inode);
247         struct bdi_writeback *wb = NULL;
248
249         if (inode_cgwb_enabled(inode)) {
250                 struct cgroup_subsys_state *memcg_css;
251
252                 if (page) {
253                         memcg_css = mem_cgroup_css_from_page(page);
254                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255                 } else {
256                         /* must pin memcg_css, see wb_get_create() */
257                         memcg_css = task_get_css(current, memory_cgrp_id);
258                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259                         css_put(memcg_css);
260                 }
261         }
262
263         if (!wb)
264                 wb = &bdi->wb;
265
266         /*
267          * There may be multiple instances of this function racing to
268          * update the same inode.  Use cmpxchg() to tell the winner.
269          */
270         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271                 wb_put(wb);
272 }
273 EXPORT_SYMBOL_GPL(__inode_attach_wb);
274
275 /**
276  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
277  * @inode: inode of interest with i_lock held
278  *
279  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
280  * held on entry and is released on return.  The returned wb is guaranteed
281  * to stay @inode's associated wb until its list_lock is released.
282  */
283 static struct bdi_writeback *
284 locked_inode_to_wb_and_lock_list(struct inode *inode)
285         __releases(&inode->i_lock)
286         __acquires(&wb->list_lock)
287 {
288         while (true) {
289                 struct bdi_writeback *wb = inode_to_wb(inode);
290
291                 /*
292                  * inode_to_wb() association is protected by both
293                  * @inode->i_lock and @wb->list_lock but list_lock nests
294                  * outside i_lock.  Drop i_lock and verify that the
295                  * association hasn't changed after acquiring list_lock.
296                  */
297                 wb_get(wb);
298                 spin_unlock(&inode->i_lock);
299                 spin_lock(&wb->list_lock);
300
301                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
302                 if (likely(wb == inode->i_wb)) {
303                         wb_put(wb);     /* @inode already has ref */
304                         return wb;
305                 }
306
307                 spin_unlock(&wb->list_lock);
308                 wb_put(wb);
309                 cpu_relax();
310                 spin_lock(&inode->i_lock);
311         }
312 }
313
314 /**
315  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
316  * @inode: inode of interest
317  *
318  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
319  * on entry.
320  */
321 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
322         __acquires(&wb->list_lock)
323 {
324         spin_lock(&inode->i_lock);
325         return locked_inode_to_wb_and_lock_list(inode);
326 }
327
328 struct inode_switch_wbs_context {
329         struct inode            *inode;
330         struct bdi_writeback    *new_wb;
331
332         struct rcu_head         rcu_head;
333         struct work_struct      work;
334 };
335
336 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
337 {
338         down_write(&bdi->wb_switch_rwsem);
339 }
340
341 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342 {
343         up_write(&bdi->wb_switch_rwsem);
344 }
345
346 static void inode_switch_wbs_work_fn(struct work_struct *work)
347 {
348         struct inode_switch_wbs_context *isw =
349                 container_of(work, struct inode_switch_wbs_context, work);
350         struct inode *inode = isw->inode;
351         struct backing_dev_info *bdi = inode_to_bdi(inode);
352         struct address_space *mapping = inode->i_mapping;
353         struct bdi_writeback *old_wb = inode->i_wb;
354         struct bdi_writeback *new_wb = isw->new_wb;
355         XA_STATE(xas, &mapping->i_pages, 0);
356         struct page *page;
357         bool switched = false;
358
359         /*
360          * If @inode switches cgwb membership while sync_inodes_sb() is
361          * being issued, sync_inodes_sb() might miss it.  Synchronize.
362          */
363         down_read(&bdi->wb_switch_rwsem);
364
365         /*
366          * By the time control reaches here, RCU grace period has passed
367          * since I_WB_SWITCH assertion and all wb stat update transactions
368          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
369          * synchronizing against the i_pages lock.
370          *
371          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
372          * gives us exclusion against all wb related operations on @inode
373          * including IO list manipulations and stat updates.
374          */
375         if (old_wb < new_wb) {
376                 spin_lock(&old_wb->list_lock);
377                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
378         } else {
379                 spin_lock(&new_wb->list_lock);
380                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
381         }
382         spin_lock(&inode->i_lock);
383         xa_lock_irq(&mapping->i_pages);
384
385         /*
386          * Once I_FREEING is visible under i_lock, the eviction path owns
387          * the inode and we shouldn't modify ->i_io_list.
388          */
389         if (unlikely(inode->i_state & I_FREEING))
390                 goto skip_switch;
391
392         /*
393          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
394          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
395          * pages actually under writeback.
396          */
397         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
398                 if (PageDirty(page)) {
399                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
400                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
401                 }
402         }
403
404         xas_set(&xas, 0);
405         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
406                 WARN_ON_ONCE(!PageWriteback(page));
407                 dec_wb_stat(old_wb, WB_WRITEBACK);
408                 inc_wb_stat(new_wb, WB_WRITEBACK);
409         }
410
411         wb_get(new_wb);
412
413         /*
414          * Transfer to @new_wb's IO list if necessary.  The specific list
415          * @inode was on is ignored and the inode is put on ->b_dirty which
416          * is always correct including from ->b_dirty_time.  The transfer
417          * preserves @inode->dirtied_when ordering.
418          */
419         if (!list_empty(&inode->i_io_list)) {
420                 struct inode *pos;
421
422                 inode_io_list_del_locked(inode, old_wb);
423                 inode->i_wb = new_wb;
424                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
425                         if (time_after_eq(inode->dirtied_when,
426                                           pos->dirtied_when))
427                                 break;
428                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
429         } else {
430                 inode->i_wb = new_wb;
431         }
432
433         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
434         inode->i_wb_frn_winner = 0;
435         inode->i_wb_frn_avg_time = 0;
436         inode->i_wb_frn_history = 0;
437         switched = true;
438 skip_switch:
439         /*
440          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
441          * ensures that the new wb is visible if they see !I_WB_SWITCH.
442          */
443         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
444
445         xa_unlock_irq(&mapping->i_pages);
446         spin_unlock(&inode->i_lock);
447         spin_unlock(&new_wb->list_lock);
448         spin_unlock(&old_wb->list_lock);
449
450         up_read(&bdi->wb_switch_rwsem);
451
452         if (switched) {
453                 wb_wakeup(new_wb);
454                 wb_put(old_wb);
455         }
456         wb_put(new_wb);
457
458         iput(inode);
459         kfree(isw);
460
461         atomic_dec(&isw_nr_in_flight);
462 }
463
464 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
465 {
466         struct inode_switch_wbs_context *isw = container_of(rcu_head,
467                                 struct inode_switch_wbs_context, rcu_head);
468
469         /* needs to grab bh-unsafe locks, bounce to work item */
470         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
471         queue_work(isw_wq, &isw->work);
472 }
473
474 /**
475  * inode_switch_wbs - change the wb association of an inode
476  * @inode: target inode
477  * @new_wb_id: ID of the new wb
478  *
479  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
480  * switching is performed asynchronously and may fail silently.
481  */
482 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
483 {
484         struct backing_dev_info *bdi = inode_to_bdi(inode);
485         struct cgroup_subsys_state *memcg_css;
486         struct inode_switch_wbs_context *isw;
487
488         /* noop if seems to be already in progress */
489         if (inode->i_state & I_WB_SWITCH)
490                 return;
491
492         /*
493          * Avoid starting new switches while sync_inodes_sb() is in
494          * progress.  Otherwise, if the down_write protected issue path
495          * blocks heavily, we might end up starting a large number of
496          * switches which will block on the rwsem.
497          */
498         if (!down_read_trylock(&bdi->wb_switch_rwsem))
499                 return;
500
501         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
502         if (!isw)
503                 goto out_unlock;
504
505         /* find and pin the new wb */
506         rcu_read_lock();
507         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
508         if (memcg_css)
509                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
510         rcu_read_unlock();
511         if (!isw->new_wb)
512                 goto out_free;
513
514         /* while holding I_WB_SWITCH, no one else can update the association */
515         spin_lock(&inode->i_lock);
516         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
517             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
518             inode_to_wb(inode) == isw->new_wb) {
519                 spin_unlock(&inode->i_lock);
520                 goto out_free;
521         }
522         inode->i_state |= I_WB_SWITCH;
523         __iget(inode);
524         spin_unlock(&inode->i_lock);
525
526         isw->inode = inode;
527
528         /*
529          * In addition to synchronizing among switchers, I_WB_SWITCH tells
530          * the RCU protected stat update paths to grab the i_page
531          * lock so that stat transfer can synchronize against them.
532          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
533          */
534         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
535
536         atomic_inc(&isw_nr_in_flight);
537
538         goto out_unlock;
539
540 out_free:
541         if (isw->new_wb)
542                 wb_put(isw->new_wb);
543         kfree(isw);
544 out_unlock:
545         up_read(&bdi->wb_switch_rwsem);
546 }
547
548 /**
549  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
550  * @wbc: writeback_control of interest
551  * @inode: target inode
552  *
553  * @inode is locked and about to be written back under the control of @wbc.
554  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
555  * writeback completion, wbc_detach_inode() should be called.  This is used
556  * to track the cgroup writeback context.
557  */
558 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
559                                  struct inode *inode)
560 {
561         if (!inode_cgwb_enabled(inode)) {
562                 spin_unlock(&inode->i_lock);
563                 return;
564         }
565
566         wbc->wb = inode_to_wb(inode);
567         wbc->inode = inode;
568
569         wbc->wb_id = wbc->wb->memcg_css->id;
570         wbc->wb_lcand_id = inode->i_wb_frn_winner;
571         wbc->wb_tcand_id = 0;
572         wbc->wb_bytes = 0;
573         wbc->wb_lcand_bytes = 0;
574         wbc->wb_tcand_bytes = 0;
575
576         wb_get(wbc->wb);
577         spin_unlock(&inode->i_lock);
578
579         /*
580          * A dying wb indicates that the memcg-blkcg mapping has changed
581          * and a new wb is already serving the memcg.  Switch immediately.
582          */
583         if (unlikely(wb_dying(wbc->wb)))
584                 inode_switch_wbs(inode, wbc->wb_id);
585 }
586 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
587
588 /**
589  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
590  * @wbc: writeback_control of the just finished writeback
591  *
592  * To be called after a writeback attempt of an inode finishes and undoes
593  * wbc_attach_and_unlock_inode().  Can be called under any context.
594  *
595  * As concurrent write sharing of an inode is expected to be very rare and
596  * memcg only tracks page ownership on first-use basis severely confining
597  * the usefulness of such sharing, cgroup writeback tracks ownership
598  * per-inode.  While the support for concurrent write sharing of an inode
599  * is deemed unnecessary, an inode being written to by different cgroups at
600  * different points in time is a lot more common, and, more importantly,
601  * charging only by first-use can too readily lead to grossly incorrect
602  * behaviors (single foreign page can lead to gigabytes of writeback to be
603  * incorrectly attributed).
604  *
605  * To resolve this issue, cgroup writeback detects the majority dirtier of
606  * an inode and transfers the ownership to it.  To avoid unnnecessary
607  * oscillation, the detection mechanism keeps track of history and gives
608  * out the switch verdict only if the foreign usage pattern is stable over
609  * a certain amount of time and/or writeback attempts.
610  *
611  * On each writeback attempt, @wbc tries to detect the majority writer
612  * using Boyer-Moore majority vote algorithm.  In addition to the byte
613  * count from the majority voting, it also counts the bytes written for the
614  * current wb and the last round's winner wb (max of last round's current
615  * wb, the winner from two rounds ago, and the last round's majority
616  * candidate).  Keeping track of the historical winner helps the algorithm
617  * to semi-reliably detect the most active writer even when it's not the
618  * absolute majority.
619  *
620  * Once the winner of the round is determined, whether the winner is
621  * foreign or not and how much IO time the round consumed is recorded in
622  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
623  * over a certain threshold, the switch verdict is given.
624  */
625 void wbc_detach_inode(struct writeback_control *wbc)
626 {
627         struct bdi_writeback *wb = wbc->wb;
628         struct inode *inode = wbc->inode;
629         unsigned long avg_time, max_bytes, max_time;
630         u16 history;
631         int max_id;
632
633         if (!wb)
634                 return;
635
636         history = inode->i_wb_frn_history;
637         avg_time = inode->i_wb_frn_avg_time;
638
639         /* pick the winner of this round */
640         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
641             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
642                 max_id = wbc->wb_id;
643                 max_bytes = wbc->wb_bytes;
644         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
645                 max_id = wbc->wb_lcand_id;
646                 max_bytes = wbc->wb_lcand_bytes;
647         } else {
648                 max_id = wbc->wb_tcand_id;
649                 max_bytes = wbc->wb_tcand_bytes;
650         }
651
652         /*
653          * Calculate the amount of IO time the winner consumed and fold it
654          * into the running average kept per inode.  If the consumed IO
655          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
656          * deciding whether to switch or not.  This is to prevent one-off
657          * small dirtiers from skewing the verdict.
658          */
659         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
660                                 wb->avg_write_bandwidth);
661         if (avg_time)
662                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
663                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
664         else
665                 avg_time = max_time;    /* immediate catch up on first run */
666
667         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
668                 int slots;
669
670                 /*
671                  * The switch verdict is reached if foreign wb's consume
672                  * more than a certain proportion of IO time in a
673                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
674                  * history mask where each bit represents one sixteenth of
675                  * the period.  Determine the number of slots to shift into
676                  * history from @max_time.
677                  */
678                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
679                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
680                 history <<= slots;
681                 if (wbc->wb_id != max_id)
682                         history |= (1U << slots) - 1;
683
684                 /*
685                  * Switch if the current wb isn't the consistent winner.
686                  * If there are multiple closely competing dirtiers, the
687                  * inode may switch across them repeatedly over time, which
688                  * is okay.  The main goal is avoiding keeping an inode on
689                  * the wrong wb for an extended period of time.
690                  */
691                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
692                         inode_switch_wbs(inode, max_id);
693         }
694
695         /*
696          * Multiple instances of this function may race to update the
697          * following fields but we don't mind occassional inaccuracies.
698          */
699         inode->i_wb_frn_winner = max_id;
700         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
701         inode->i_wb_frn_history = history;
702
703         wb_put(wbc->wb);
704         wbc->wb = NULL;
705 }
706 EXPORT_SYMBOL_GPL(wbc_detach_inode);
707
708 /**
709  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
710  * @wbc: writeback_control of the writeback in progress
711  * @page: page being written out
712  * @bytes: number of bytes being written out
713  *
714  * @bytes from @page are about to written out during the writeback
715  * controlled by @wbc.  Keep the book for foreign inode detection.  See
716  * wbc_detach_inode().
717  */
718 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
719                               size_t bytes)
720 {
721         struct cgroup_subsys_state *css;
722         int id;
723
724         /*
725          * pageout() path doesn't attach @wbc to the inode being written
726          * out.  This is intentional as we don't want the function to block
727          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
728          * regular writeback instead of writing things out itself.
729          */
730         if (!wbc->wb || wbc->no_cgroup_owner)
731                 return;
732
733         css = mem_cgroup_css_from_page(page);
734         /* dead cgroups shouldn't contribute to inode ownership arbitration */
735         if (!(css->flags & CSS_ONLINE))
736                 return;
737
738         id = css->id;
739
740         if (id == wbc->wb_id) {
741                 wbc->wb_bytes += bytes;
742                 return;
743         }
744
745         if (id == wbc->wb_lcand_id)
746                 wbc->wb_lcand_bytes += bytes;
747
748         /* Boyer-Moore majority vote algorithm */
749         if (!wbc->wb_tcand_bytes)
750                 wbc->wb_tcand_id = id;
751         if (id == wbc->wb_tcand_id)
752                 wbc->wb_tcand_bytes += bytes;
753         else
754                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
755 }
756 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
757
758 /**
759  * inode_congested - test whether an inode is congested
760  * @inode: inode to test for congestion (may be NULL)
761  * @cong_bits: mask of WB_[a]sync_congested bits to test
762  *
763  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
764  * bits to test and the return value is the mask of set bits.
765  *
766  * If cgroup writeback is enabled for @inode, the congestion state is
767  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
768  * associated with @inode is congested; otherwise, the root wb's congestion
769  * state is used.
770  *
771  * @inode is allowed to be NULL as this function is often called on
772  * mapping->host which is NULL for the swapper space.
773  */
774 int inode_congested(struct inode *inode, int cong_bits)
775 {
776         /*
777          * Once set, ->i_wb never becomes NULL while the inode is alive.
778          * Start transaction iff ->i_wb is visible.
779          */
780         if (inode && inode_to_wb_is_valid(inode)) {
781                 struct bdi_writeback *wb;
782                 struct wb_lock_cookie lock_cookie = {};
783                 bool congested;
784
785                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
786                 congested = wb_congested(wb, cong_bits);
787                 unlocked_inode_to_wb_end(inode, &lock_cookie);
788                 return congested;
789         }
790
791         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
792 }
793 EXPORT_SYMBOL_GPL(inode_congested);
794
795 /**
796  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
797  * @wb: target bdi_writeback to split @nr_pages to
798  * @nr_pages: number of pages to write for the whole bdi
799  *
800  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
801  * relation to the total write bandwidth of all wb's w/ dirty inodes on
802  * @wb->bdi.
803  */
804 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
805 {
806         unsigned long this_bw = wb->avg_write_bandwidth;
807         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
808
809         if (nr_pages == LONG_MAX)
810                 return LONG_MAX;
811
812         /*
813          * This may be called on clean wb's and proportional distribution
814          * may not make sense, just use the original @nr_pages in those
815          * cases.  In general, we wanna err on the side of writing more.
816          */
817         if (!tot_bw || this_bw >= tot_bw)
818                 return nr_pages;
819         else
820                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
821 }
822
823 /**
824  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
825  * @bdi: target backing_dev_info
826  * @base_work: wb_writeback_work to issue
827  * @skip_if_busy: skip wb's which already have writeback in progress
828  *
829  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
830  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
831  * distributed to the busy wbs according to each wb's proportion in the
832  * total active write bandwidth of @bdi.
833  */
834 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
835                                   struct wb_writeback_work *base_work,
836                                   bool skip_if_busy)
837 {
838         struct bdi_writeback *last_wb = NULL;
839         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
840                                               struct bdi_writeback, bdi_node);
841
842         might_sleep();
843 restart:
844         rcu_read_lock();
845         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
846                 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
847                 struct wb_writeback_work fallback_work;
848                 struct wb_writeback_work *work;
849                 long nr_pages;
850
851                 if (last_wb) {
852                         wb_put(last_wb);
853                         last_wb = NULL;
854                 }
855
856                 /* SYNC_ALL writes out I_DIRTY_TIME too */
857                 if (!wb_has_dirty_io(wb) &&
858                     (base_work->sync_mode == WB_SYNC_NONE ||
859                      list_empty(&wb->b_dirty_time)))
860                         continue;
861                 if (skip_if_busy && writeback_in_progress(wb))
862                         continue;
863
864                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
865
866                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
867                 if (work) {
868                         *work = *base_work;
869                         work->nr_pages = nr_pages;
870                         work->auto_free = 1;
871                         wb_queue_work(wb, work);
872                         continue;
873                 }
874
875                 /* alloc failed, execute synchronously using on-stack fallback */
876                 work = &fallback_work;
877                 *work = *base_work;
878                 work->nr_pages = nr_pages;
879                 work->auto_free = 0;
880                 work->done = &fallback_work_done;
881
882                 wb_queue_work(wb, work);
883
884                 /*
885                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
886                  * continuing iteration from @wb after dropping and
887                  * regrabbing rcu read lock.
888                  */
889                 wb_get(wb);
890                 last_wb = wb;
891
892                 rcu_read_unlock();
893                 wb_wait_for_completion(bdi, &fallback_work_done);
894                 goto restart;
895         }
896         rcu_read_unlock();
897
898         if (last_wb)
899                 wb_put(last_wb);
900 }
901
902 /**
903  * cgroup_writeback_umount - flush inode wb switches for umount
904  *
905  * This function is called when a super_block is about to be destroyed and
906  * flushes in-flight inode wb switches.  An inode wb switch goes through
907  * RCU and then workqueue, so the two need to be flushed in order to ensure
908  * that all previously scheduled switches are finished.  As wb switches are
909  * rare occurrences and synchronize_rcu() can take a while, perform
910  * flushing iff wb switches are in flight.
911  */
912 void cgroup_writeback_umount(void)
913 {
914         if (atomic_read(&isw_nr_in_flight)) {
915                 /*
916                  * Use rcu_barrier() to wait for all pending callbacks to
917                  * ensure that all in-flight wb switches are in the workqueue.
918                  */
919                 rcu_barrier();
920                 flush_workqueue(isw_wq);
921         }
922 }
923
924 static int __init cgroup_writeback_init(void)
925 {
926         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
927         if (!isw_wq)
928                 return -ENOMEM;
929         return 0;
930 }
931 fs_initcall(cgroup_writeback_init);
932
933 #else   /* CONFIG_CGROUP_WRITEBACK */
934
935 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
936 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
937
938 static struct bdi_writeback *
939 locked_inode_to_wb_and_lock_list(struct inode *inode)
940         __releases(&inode->i_lock)
941         __acquires(&wb->list_lock)
942 {
943         struct bdi_writeback *wb = inode_to_wb(inode);
944
945         spin_unlock(&inode->i_lock);
946         spin_lock(&wb->list_lock);
947         return wb;
948 }
949
950 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
951         __acquires(&wb->list_lock)
952 {
953         struct bdi_writeback *wb = inode_to_wb(inode);
954
955         spin_lock(&wb->list_lock);
956         return wb;
957 }
958
959 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
960 {
961         return nr_pages;
962 }
963
964 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
965                                   struct wb_writeback_work *base_work,
966                                   bool skip_if_busy)
967 {
968         might_sleep();
969
970         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
971                 base_work->auto_free = 0;
972                 wb_queue_work(&bdi->wb, base_work);
973         }
974 }
975
976 #endif  /* CONFIG_CGROUP_WRITEBACK */
977
978 /*
979  * Add in the number of potentially dirty inodes, because each inode
980  * write can dirty pagecache in the underlying blockdev.
981  */
982 static unsigned long get_nr_dirty_pages(void)
983 {
984         return global_node_page_state(NR_FILE_DIRTY) +
985                 global_node_page_state(NR_UNSTABLE_NFS) +
986                 get_nr_dirty_inodes();
987 }
988
989 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
990 {
991         if (!wb_has_dirty_io(wb))
992                 return;
993
994         /*
995          * All callers of this function want to start writeback of all
996          * dirty pages. Places like vmscan can call this at a very
997          * high frequency, causing pointless allocations of tons of
998          * work items and keeping the flusher threads busy retrieving
999          * that work. Ensure that we only allow one of them pending and
1000          * inflight at the time.
1001          */
1002         if (test_bit(WB_start_all, &wb->state) ||
1003             test_and_set_bit(WB_start_all, &wb->state))
1004                 return;
1005
1006         wb->start_all_reason = reason;
1007         wb_wakeup(wb);
1008 }
1009
1010 /**
1011  * wb_start_background_writeback - start background writeback
1012  * @wb: bdi_writback to write from
1013  *
1014  * Description:
1015  *   This makes sure WB_SYNC_NONE background writeback happens. When
1016  *   this function returns, it is only guaranteed that for given wb
1017  *   some IO is happening if we are over background dirty threshold.
1018  *   Caller need not hold sb s_umount semaphore.
1019  */
1020 void wb_start_background_writeback(struct bdi_writeback *wb)
1021 {
1022         /*
1023          * We just wake up the flusher thread. It will perform background
1024          * writeback as soon as there is no other work to do.
1025          */
1026         trace_writeback_wake_background(wb);
1027         wb_wakeup(wb);
1028 }
1029
1030 /*
1031  * Remove the inode from the writeback list it is on.
1032  */
1033 void inode_io_list_del(struct inode *inode)
1034 {
1035         struct bdi_writeback *wb;
1036
1037         wb = inode_to_wb_and_lock_list(inode);
1038         inode_io_list_del_locked(inode, wb);
1039         spin_unlock(&wb->list_lock);
1040 }
1041
1042 /*
1043  * mark an inode as under writeback on the sb
1044  */
1045 void sb_mark_inode_writeback(struct inode *inode)
1046 {
1047         struct super_block *sb = inode->i_sb;
1048         unsigned long flags;
1049
1050         if (list_empty(&inode->i_wb_list)) {
1051                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1052                 if (list_empty(&inode->i_wb_list)) {
1053                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1054                         trace_sb_mark_inode_writeback(inode);
1055                 }
1056                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1057         }
1058 }
1059
1060 /*
1061  * clear an inode as under writeback on the sb
1062  */
1063 void sb_clear_inode_writeback(struct inode *inode)
1064 {
1065         struct super_block *sb = inode->i_sb;
1066         unsigned long flags;
1067
1068         if (!list_empty(&inode->i_wb_list)) {
1069                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1070                 if (!list_empty(&inode->i_wb_list)) {
1071                         list_del_init(&inode->i_wb_list);
1072                         trace_sb_clear_inode_writeback(inode);
1073                 }
1074                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1075         }
1076 }
1077
1078 /*
1079  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1080  * furthest end of its superblock's dirty-inode list.
1081  *
1082  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1083  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1084  * the case then the inode must have been redirtied while it was being written
1085  * out and we don't reset its dirtied_when.
1086  */
1087 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1088 {
1089         if (!list_empty(&wb->b_dirty)) {
1090                 struct inode *tail;
1091
1092                 tail = wb_inode(wb->b_dirty.next);
1093                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1094                         inode->dirtied_when = jiffies;
1095         }
1096         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1097 }
1098
1099 /*
1100  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1101  */
1102 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1103 {
1104         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1105 }
1106
1107 static void inode_sync_complete(struct inode *inode)
1108 {
1109         inode->i_state &= ~I_SYNC;
1110         /* If inode is clean an unused, put it into LRU now... */
1111         inode_add_lru(inode);
1112         /* Waiters must see I_SYNC cleared before being woken up */
1113         smp_mb();
1114         wake_up_bit(&inode->i_state, __I_SYNC);
1115 }
1116
1117 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1118 {
1119         bool ret = time_after(inode->dirtied_when, t);
1120 #ifndef CONFIG_64BIT
1121         /*
1122          * For inodes being constantly redirtied, dirtied_when can get stuck.
1123          * It _appears_ to be in the future, but is actually in distant past.
1124          * This test is necessary to prevent such wrapped-around relative times
1125          * from permanently stopping the whole bdi writeback.
1126          */
1127         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1128 #endif
1129         return ret;
1130 }
1131
1132 #define EXPIRE_DIRTY_ATIME 0x0001
1133
1134 /*
1135  * Move expired (dirtied before work->older_than_this) dirty inodes from
1136  * @delaying_queue to @dispatch_queue.
1137  */
1138 static int move_expired_inodes(struct list_head *delaying_queue,
1139                                struct list_head *dispatch_queue,
1140                                int flags,
1141                                struct wb_writeback_work *work)
1142 {
1143         unsigned long *older_than_this = NULL;
1144         unsigned long expire_time;
1145         LIST_HEAD(tmp);
1146         struct list_head *pos, *node;
1147         struct super_block *sb = NULL;
1148         struct inode *inode;
1149         int do_sb_sort = 0;
1150         int moved = 0;
1151
1152         if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1153                 older_than_this = work->older_than_this;
1154         else if (!work->for_sync) {
1155                 expire_time = jiffies - (dirtytime_expire_interval * HZ);
1156                 older_than_this = &expire_time;
1157         }
1158         while (!list_empty(delaying_queue)) {
1159                 inode = wb_inode(delaying_queue->prev);
1160                 if (older_than_this &&
1161                     inode_dirtied_after(inode, *older_than_this))
1162                         break;
1163                 list_move(&inode->i_io_list, &tmp);
1164                 moved++;
1165                 if (flags & EXPIRE_DIRTY_ATIME)
1166                         set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1167                 if (sb_is_blkdev_sb(inode->i_sb))
1168                         continue;
1169                 if (sb && sb != inode->i_sb)
1170                         do_sb_sort = 1;
1171                 sb = inode->i_sb;
1172         }
1173
1174         /* just one sb in list, splice to dispatch_queue and we're done */
1175         if (!do_sb_sort) {
1176                 list_splice(&tmp, dispatch_queue);
1177                 goto out;
1178         }
1179
1180         /* Move inodes from one superblock together */
1181         while (!list_empty(&tmp)) {
1182                 sb = wb_inode(tmp.prev)->i_sb;
1183                 list_for_each_prev_safe(pos, node, &tmp) {
1184                         inode = wb_inode(pos);
1185                         if (inode->i_sb == sb)
1186                                 list_move(&inode->i_io_list, dispatch_queue);
1187                 }
1188         }
1189 out:
1190         return moved;
1191 }
1192
1193 /*
1194  * Queue all expired dirty inodes for io, eldest first.
1195  * Before
1196  *         newly dirtied     b_dirty    b_io    b_more_io
1197  *         =============>    gf         edc     BA
1198  * After
1199  *         newly dirtied     b_dirty    b_io    b_more_io
1200  *         =============>    g          fBAedc
1201  *                                           |
1202  *                                           +--> dequeue for IO
1203  */
1204 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1205 {
1206         int moved;
1207
1208         assert_spin_locked(&wb->list_lock);
1209         list_splice_init(&wb->b_more_io, &wb->b_io);
1210         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1211         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1212                                      EXPIRE_DIRTY_ATIME, work);
1213         if (moved)
1214                 wb_io_lists_populated(wb);
1215         trace_writeback_queue_io(wb, work, moved);
1216 }
1217
1218 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1219 {
1220         int ret;
1221
1222         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1223                 trace_writeback_write_inode_start(inode, wbc);
1224                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1225                 trace_writeback_write_inode(inode, wbc);
1226                 return ret;
1227         }
1228         return 0;
1229 }
1230
1231 /*
1232  * Wait for writeback on an inode to complete. Called with i_lock held.
1233  * Caller must make sure inode cannot go away when we drop i_lock.
1234  */
1235 static void __inode_wait_for_writeback(struct inode *inode)
1236         __releases(inode->i_lock)
1237         __acquires(inode->i_lock)
1238 {
1239         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1240         wait_queue_head_t *wqh;
1241
1242         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1243         while (inode->i_state & I_SYNC) {
1244                 spin_unlock(&inode->i_lock);
1245                 __wait_on_bit(wqh, &wq, bit_wait,
1246                               TASK_UNINTERRUPTIBLE);
1247                 spin_lock(&inode->i_lock);
1248         }
1249 }
1250
1251 /*
1252  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1253  */
1254 void inode_wait_for_writeback(struct inode *inode)
1255 {
1256         spin_lock(&inode->i_lock);
1257         __inode_wait_for_writeback(inode);
1258         spin_unlock(&inode->i_lock);
1259 }
1260
1261 /*
1262  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1263  * held and drops it. It is aimed for callers not holding any inode reference
1264  * so once i_lock is dropped, inode can go away.
1265  */
1266 static void inode_sleep_on_writeback(struct inode *inode)
1267         __releases(inode->i_lock)
1268 {
1269         DEFINE_WAIT(wait);
1270         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1271         int sleep;
1272
1273         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1274         sleep = inode->i_state & I_SYNC;
1275         spin_unlock(&inode->i_lock);
1276         if (sleep)
1277                 schedule();
1278         finish_wait(wqh, &wait);
1279 }
1280
1281 /*
1282  * Find proper writeback list for the inode depending on its current state and
1283  * possibly also change of its state while we were doing writeback.  Here we
1284  * handle things such as livelock prevention or fairness of writeback among
1285  * inodes. This function can be called only by flusher thread - noone else
1286  * processes all inodes in writeback lists and requeueing inodes behind flusher
1287  * thread's back can have unexpected consequences.
1288  */
1289 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1290                           struct writeback_control *wbc)
1291 {
1292         if (inode->i_state & I_FREEING)
1293                 return;
1294
1295         /*
1296          * Sync livelock prevention. Each inode is tagged and synced in one
1297          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1298          * the dirty time to prevent enqueue and sync it again.
1299          */
1300         if ((inode->i_state & I_DIRTY) &&
1301             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1302                 inode->dirtied_when = jiffies;
1303
1304         if (wbc->pages_skipped) {
1305                 /*
1306                  * writeback is not making progress due to locked
1307                  * buffers. Skip this inode for now.
1308                  */
1309                 redirty_tail(inode, wb);
1310                 return;
1311         }
1312
1313         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1314                 /*
1315                  * We didn't write back all the pages.  nfs_writepages()
1316                  * sometimes bales out without doing anything.
1317                  */
1318                 if (wbc->nr_to_write <= 0) {
1319                         /* Slice used up. Queue for next turn. */
1320                         requeue_io(inode, wb);
1321                 } else {
1322                         /*
1323                          * Writeback blocked by something other than
1324                          * congestion. Delay the inode for some time to
1325                          * avoid spinning on the CPU (100% iowait)
1326                          * retrying writeback of the dirty page/inode
1327                          * that cannot be performed immediately.
1328                          */
1329                         redirty_tail(inode, wb);
1330                 }
1331         } else if (inode->i_state & I_DIRTY) {
1332                 /*
1333                  * Filesystems can dirty the inode during writeback operations,
1334                  * such as delayed allocation during submission or metadata
1335                  * updates after data IO completion.
1336                  */
1337                 redirty_tail(inode, wb);
1338         } else if (inode->i_state & I_DIRTY_TIME) {
1339                 inode->dirtied_when = jiffies;
1340                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1341         } else {
1342                 /* The inode is clean. Remove from writeback lists. */
1343                 inode_io_list_del_locked(inode, wb);
1344         }
1345 }
1346
1347 /*
1348  * Write out an inode and its dirty pages. Do not update the writeback list
1349  * linkage. That is left to the caller. The caller is also responsible for
1350  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1351  */
1352 static int
1353 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1354 {
1355         struct address_space *mapping = inode->i_mapping;
1356         long nr_to_write = wbc->nr_to_write;
1357         unsigned dirty;
1358         int ret;
1359
1360         WARN_ON(!(inode->i_state & I_SYNC));
1361
1362         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1363
1364         ret = do_writepages(mapping, wbc);
1365
1366         /*
1367          * Make sure to wait on the data before writing out the metadata.
1368          * This is important for filesystems that modify metadata on data
1369          * I/O completion. We don't do it for sync(2) writeback because it has a
1370          * separate, external IO completion path and ->sync_fs for guaranteeing
1371          * inode metadata is written back correctly.
1372          */
1373         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1374                 int err = filemap_fdatawait(mapping);
1375                 if (ret == 0)
1376                         ret = err;
1377         }
1378
1379         /*
1380          * Some filesystems may redirty the inode during the writeback
1381          * due to delalloc, clear dirty metadata flags right before
1382          * write_inode()
1383          */
1384         spin_lock(&inode->i_lock);
1385
1386         dirty = inode->i_state & I_DIRTY;
1387         if (inode->i_state & I_DIRTY_TIME) {
1388                 if ((dirty & I_DIRTY_INODE) ||
1389                     wbc->sync_mode == WB_SYNC_ALL ||
1390                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1391                     unlikely(time_after(jiffies,
1392                                         (inode->dirtied_time_when +
1393                                          dirtytime_expire_interval * HZ)))) {
1394                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1395                         trace_writeback_lazytime(inode);
1396                 }
1397         } else
1398                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1399         inode->i_state &= ~dirty;
1400
1401         /*
1402          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1403          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1404          * either they see the I_DIRTY bits cleared or we see the dirtied
1405          * inode.
1406          *
1407          * I_DIRTY_PAGES is always cleared together above even if @mapping
1408          * still has dirty pages.  The flag is reinstated after smp_mb() if
1409          * necessary.  This guarantees that either __mark_inode_dirty()
1410          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1411          */
1412         smp_mb();
1413
1414         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1415                 inode->i_state |= I_DIRTY_PAGES;
1416
1417         spin_unlock(&inode->i_lock);
1418
1419         if (dirty & I_DIRTY_TIME)
1420                 mark_inode_dirty_sync(inode);
1421         /* Don't write the inode if only I_DIRTY_PAGES was set */
1422         if (dirty & ~I_DIRTY_PAGES) {
1423                 int err = write_inode(inode, wbc);
1424                 if (ret == 0)
1425                         ret = err;
1426         }
1427         trace_writeback_single_inode(inode, wbc, nr_to_write);
1428         return ret;
1429 }
1430
1431 /*
1432  * Write out an inode's dirty pages. Either the caller has an active reference
1433  * on the inode or the inode has I_WILL_FREE set.
1434  *
1435  * This function is designed to be called for writing back one inode which
1436  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1437  * and does more profound writeback list handling in writeback_sb_inodes().
1438  */
1439 static int writeback_single_inode(struct inode *inode,
1440                                   struct writeback_control *wbc)
1441 {
1442         struct bdi_writeback *wb;
1443         int ret = 0;
1444
1445         spin_lock(&inode->i_lock);
1446         if (!atomic_read(&inode->i_count))
1447                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1448         else
1449                 WARN_ON(inode->i_state & I_WILL_FREE);
1450
1451         if (inode->i_state & I_SYNC) {
1452                 if (wbc->sync_mode != WB_SYNC_ALL)
1453                         goto out;
1454                 /*
1455                  * It's a data-integrity sync. We must wait. Since callers hold
1456                  * inode reference or inode has I_WILL_FREE set, it cannot go
1457                  * away under us.
1458                  */
1459                 __inode_wait_for_writeback(inode);
1460         }
1461         WARN_ON(inode->i_state & I_SYNC);
1462         /*
1463          * Skip inode if it is clean and we have no outstanding writeback in
1464          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1465          * function since flusher thread may be doing for example sync in
1466          * parallel and if we move the inode, it could get skipped. So here we
1467          * make sure inode is on some writeback list and leave it there unless
1468          * we have completely cleaned the inode.
1469          */
1470         if (!(inode->i_state & I_DIRTY_ALL) &&
1471             (wbc->sync_mode != WB_SYNC_ALL ||
1472              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1473                 goto out;
1474         inode->i_state |= I_SYNC;
1475         wbc_attach_and_unlock_inode(wbc, inode);
1476
1477         ret = __writeback_single_inode(inode, wbc);
1478
1479         wbc_detach_inode(wbc);
1480
1481         wb = inode_to_wb_and_lock_list(inode);
1482         spin_lock(&inode->i_lock);
1483         /*
1484          * If inode is clean, remove it from writeback lists. Otherwise don't
1485          * touch it. See comment above for explanation.
1486          */
1487         if (!(inode->i_state & I_DIRTY_ALL))
1488                 inode_io_list_del_locked(inode, wb);
1489         spin_unlock(&wb->list_lock);
1490         inode_sync_complete(inode);
1491 out:
1492         spin_unlock(&inode->i_lock);
1493         return ret;
1494 }
1495
1496 static long writeback_chunk_size(struct bdi_writeback *wb,
1497                                  struct wb_writeback_work *work)
1498 {
1499         long pages;
1500
1501         /*
1502          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1503          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1504          * here avoids calling into writeback_inodes_wb() more than once.
1505          *
1506          * The intended call sequence for WB_SYNC_ALL writeback is:
1507          *
1508          *      wb_writeback()
1509          *          writeback_sb_inodes()       <== called only once
1510          *              write_cache_pages()     <== called once for each inode
1511          *                   (quickly) tag currently dirty pages
1512          *                   (maybe slowly) sync all tagged pages
1513          */
1514         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1515                 pages = LONG_MAX;
1516         else {
1517                 pages = min(wb->avg_write_bandwidth / 2,
1518                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1519                 pages = min(pages, work->nr_pages);
1520                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1521                                    MIN_WRITEBACK_PAGES);
1522         }
1523
1524         return pages;
1525 }
1526
1527 /*
1528  * Write a portion of b_io inodes which belong to @sb.
1529  *
1530  * Return the number of pages and/or inodes written.
1531  *
1532  * NOTE! This is called with wb->list_lock held, and will
1533  * unlock and relock that for each inode it ends up doing
1534  * IO for.
1535  */
1536 static long writeback_sb_inodes(struct super_block *sb,
1537                                 struct bdi_writeback *wb,
1538                                 struct wb_writeback_work *work)
1539 {
1540         struct writeback_control wbc = {
1541                 .sync_mode              = work->sync_mode,
1542                 .tagged_writepages      = work->tagged_writepages,
1543                 .for_kupdate            = work->for_kupdate,
1544                 .for_background         = work->for_background,
1545                 .for_sync               = work->for_sync,
1546                 .range_cyclic           = work->range_cyclic,
1547                 .range_start            = 0,
1548                 .range_end              = LLONG_MAX,
1549         };
1550         unsigned long start_time = jiffies;
1551         long write_chunk;
1552         long wrote = 0;  /* count both pages and inodes */
1553
1554         while (!list_empty(&wb->b_io)) {
1555                 struct inode *inode = wb_inode(wb->b_io.prev);
1556                 struct bdi_writeback *tmp_wb;
1557
1558                 if (inode->i_sb != sb) {
1559                         if (work->sb) {
1560                                 /*
1561                                  * We only want to write back data for this
1562                                  * superblock, move all inodes not belonging
1563                                  * to it back onto the dirty list.
1564                                  */
1565                                 redirty_tail(inode, wb);
1566                                 continue;
1567                         }
1568
1569                         /*
1570                          * The inode belongs to a different superblock.
1571                          * Bounce back to the caller to unpin this and
1572                          * pin the next superblock.
1573                          */
1574                         break;
1575                 }
1576
1577                 /*
1578                  * Don't bother with new inodes or inodes being freed, first
1579                  * kind does not need periodic writeout yet, and for the latter
1580                  * kind writeout is handled by the freer.
1581                  */
1582                 spin_lock(&inode->i_lock);
1583                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1584                         spin_unlock(&inode->i_lock);
1585                         redirty_tail(inode, wb);
1586                         continue;
1587                 }
1588                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1589                         /*
1590                          * If this inode is locked for writeback and we are not
1591                          * doing writeback-for-data-integrity, move it to
1592                          * b_more_io so that writeback can proceed with the
1593                          * other inodes on s_io.
1594                          *
1595                          * We'll have another go at writing back this inode
1596                          * when we completed a full scan of b_io.
1597                          */
1598                         spin_unlock(&inode->i_lock);
1599                         requeue_io(inode, wb);
1600                         trace_writeback_sb_inodes_requeue(inode);
1601                         continue;
1602                 }
1603                 spin_unlock(&wb->list_lock);
1604
1605                 /*
1606                  * We already requeued the inode if it had I_SYNC set and we
1607                  * are doing WB_SYNC_NONE writeback. So this catches only the
1608                  * WB_SYNC_ALL case.
1609                  */
1610                 if (inode->i_state & I_SYNC) {
1611                         /* Wait for I_SYNC. This function drops i_lock... */
1612                         inode_sleep_on_writeback(inode);
1613                         /* Inode may be gone, start again */
1614                         spin_lock(&wb->list_lock);
1615                         continue;
1616                 }
1617                 inode->i_state |= I_SYNC;
1618                 wbc_attach_and_unlock_inode(&wbc, inode);
1619
1620                 write_chunk = writeback_chunk_size(wb, work);
1621                 wbc.nr_to_write = write_chunk;
1622                 wbc.pages_skipped = 0;
1623
1624                 /*
1625                  * We use I_SYNC to pin the inode in memory. While it is set
1626                  * evict_inode() will wait so the inode cannot be freed.
1627                  */
1628                 __writeback_single_inode(inode, &wbc);
1629
1630                 wbc_detach_inode(&wbc);
1631                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1632                 wrote += write_chunk - wbc.nr_to_write;
1633
1634                 if (need_resched()) {
1635                         /*
1636                          * We're trying to balance between building up a nice
1637                          * long list of IOs to improve our merge rate, and
1638                          * getting those IOs out quickly for anyone throttling
1639                          * in balance_dirty_pages().  cond_resched() doesn't
1640                          * unplug, so get our IOs out the door before we
1641                          * give up the CPU.
1642                          */
1643                         blk_flush_plug(current);
1644                         cond_resched();
1645                 }
1646
1647                 /*
1648                  * Requeue @inode if still dirty.  Be careful as @inode may
1649                  * have been switched to another wb in the meantime.
1650                  */
1651                 tmp_wb = inode_to_wb_and_lock_list(inode);
1652                 spin_lock(&inode->i_lock);
1653                 if (!(inode->i_state & I_DIRTY_ALL))
1654                         wrote++;
1655                 requeue_inode(inode, tmp_wb, &wbc);
1656                 inode_sync_complete(inode);
1657                 spin_unlock(&inode->i_lock);
1658
1659                 if (unlikely(tmp_wb != wb)) {
1660                         spin_unlock(&tmp_wb->list_lock);
1661                         spin_lock(&wb->list_lock);
1662                 }
1663
1664                 /*
1665                  * bail out to wb_writeback() often enough to check
1666                  * background threshold and other termination conditions.
1667                  */
1668                 if (wrote) {
1669                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1670                                 break;
1671                         if (work->nr_pages <= 0)
1672                                 break;
1673                 }
1674         }
1675         return wrote;
1676 }
1677
1678 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1679                                   struct wb_writeback_work *work)
1680 {
1681         unsigned long start_time = jiffies;
1682         long wrote = 0;
1683
1684         while (!list_empty(&wb->b_io)) {
1685                 struct inode *inode = wb_inode(wb->b_io.prev);
1686                 struct super_block *sb = inode->i_sb;
1687
1688                 if (!trylock_super(sb)) {
1689                         /*
1690                          * trylock_super() may fail consistently due to
1691                          * s_umount being grabbed by someone else. Don't use
1692                          * requeue_io() to avoid busy retrying the inode/sb.
1693                          */
1694                         redirty_tail(inode, wb);
1695                         continue;
1696                 }
1697                 wrote += writeback_sb_inodes(sb, wb, work);
1698                 up_read(&sb->s_umount);
1699
1700                 /* refer to the same tests at the end of writeback_sb_inodes */
1701                 if (wrote) {
1702                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1703                                 break;
1704                         if (work->nr_pages <= 0)
1705                                 break;
1706                 }
1707         }
1708         /* Leave any unwritten inodes on b_io */
1709         return wrote;
1710 }
1711
1712 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1713                                 enum wb_reason reason)
1714 {
1715         struct wb_writeback_work work = {
1716                 .nr_pages       = nr_pages,
1717                 .sync_mode      = WB_SYNC_NONE,
1718                 .range_cyclic   = 1,
1719                 .reason         = reason,
1720         };
1721         struct blk_plug plug;
1722
1723         blk_start_plug(&plug);
1724         spin_lock(&wb->list_lock);
1725         if (list_empty(&wb->b_io))
1726                 queue_io(wb, &work);
1727         __writeback_inodes_wb(wb, &work);
1728         spin_unlock(&wb->list_lock);
1729         blk_finish_plug(&plug);
1730
1731         return nr_pages - work.nr_pages;
1732 }
1733
1734 /*
1735  * Explicit flushing or periodic writeback of "old" data.
1736  *
1737  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1738  * dirtying-time in the inode's address_space.  So this periodic writeback code
1739  * just walks the superblock inode list, writing back any inodes which are
1740  * older than a specific point in time.
1741  *
1742  * Try to run once per dirty_writeback_interval.  But if a writeback event
1743  * takes longer than a dirty_writeback_interval interval, then leave a
1744  * one-second gap.
1745  *
1746  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1747  * all dirty pages if they are all attached to "old" mappings.
1748  */
1749 static long wb_writeback(struct bdi_writeback *wb,
1750                          struct wb_writeback_work *work)
1751 {
1752         unsigned long wb_start = jiffies;
1753         long nr_pages = work->nr_pages;
1754         unsigned long oldest_jif;
1755         struct inode *inode;
1756         long progress;
1757         struct blk_plug plug;
1758
1759         oldest_jif = jiffies;
1760         work->older_than_this = &oldest_jif;
1761
1762         blk_start_plug(&plug);
1763         spin_lock(&wb->list_lock);
1764         for (;;) {
1765                 /*
1766                  * Stop writeback when nr_pages has been consumed
1767                  */
1768                 if (work->nr_pages <= 0)
1769                         break;
1770
1771                 /*
1772                  * Background writeout and kupdate-style writeback may
1773                  * run forever. Stop them if there is other work to do
1774                  * so that e.g. sync can proceed. They'll be restarted
1775                  * after the other works are all done.
1776                  */
1777                 if ((work->for_background || work->for_kupdate) &&
1778                     !list_empty(&wb->work_list))
1779                         break;
1780
1781                 /*
1782                  * For background writeout, stop when we are below the
1783                  * background dirty threshold
1784                  */
1785                 if (work->for_background && !wb_over_bg_thresh(wb))
1786                         break;
1787
1788                 /*
1789                  * Kupdate and background works are special and we want to
1790                  * include all inodes that need writing. Livelock avoidance is
1791                  * handled by these works yielding to any other work so we are
1792                  * safe.
1793                  */
1794                 if (work->for_kupdate) {
1795                         oldest_jif = jiffies -
1796                                 msecs_to_jiffies(dirty_expire_interval * 10);
1797                 } else if (work->for_background)
1798                         oldest_jif = jiffies;
1799
1800                 trace_writeback_start(wb, work);
1801                 if (list_empty(&wb->b_io))
1802                         queue_io(wb, work);
1803                 if (work->sb)
1804                         progress = writeback_sb_inodes(work->sb, wb, work);
1805                 else
1806                         progress = __writeback_inodes_wb(wb, work);
1807                 trace_writeback_written(wb, work);
1808
1809                 wb_update_bandwidth(wb, wb_start);
1810
1811                 /*
1812                  * Did we write something? Try for more
1813                  *
1814                  * Dirty inodes are moved to b_io for writeback in batches.
1815                  * The completion of the current batch does not necessarily
1816                  * mean the overall work is done. So we keep looping as long
1817                  * as made some progress on cleaning pages or inodes.
1818                  */
1819                 if (progress)
1820                         continue;
1821                 /*
1822                  * No more inodes for IO, bail
1823                  */
1824                 if (list_empty(&wb->b_more_io))
1825                         break;
1826                 /*
1827                  * Nothing written. Wait for some inode to
1828                  * become available for writeback. Otherwise
1829                  * we'll just busyloop.
1830                  */
1831                 trace_writeback_wait(wb, work);
1832                 inode = wb_inode(wb->b_more_io.prev);
1833                 spin_lock(&inode->i_lock);
1834                 spin_unlock(&wb->list_lock);
1835                 /* This function drops i_lock... */
1836                 inode_sleep_on_writeback(inode);
1837                 spin_lock(&wb->list_lock);
1838         }
1839         spin_unlock(&wb->list_lock);
1840         blk_finish_plug(&plug);
1841
1842         return nr_pages - work->nr_pages;
1843 }
1844
1845 /*
1846  * Return the next wb_writeback_work struct that hasn't been processed yet.
1847  */
1848 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1849 {
1850         struct wb_writeback_work *work = NULL;
1851
1852         spin_lock_bh(&wb->work_lock);
1853         if (!list_empty(&wb->work_list)) {
1854                 work = list_entry(wb->work_list.next,
1855                                   struct wb_writeback_work, list);
1856                 list_del_init(&work->list);
1857         }
1858         spin_unlock_bh(&wb->work_lock);
1859         return work;
1860 }
1861
1862 static long wb_check_background_flush(struct bdi_writeback *wb)
1863 {
1864         if (wb_over_bg_thresh(wb)) {
1865
1866                 struct wb_writeback_work work = {
1867                         .nr_pages       = LONG_MAX,
1868                         .sync_mode      = WB_SYNC_NONE,
1869                         .for_background = 1,
1870                         .range_cyclic   = 1,
1871                         .reason         = WB_REASON_BACKGROUND,
1872                 };
1873
1874                 return wb_writeback(wb, &work);
1875         }
1876
1877         return 0;
1878 }
1879
1880 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1881 {
1882         unsigned long expired;
1883         long nr_pages;
1884
1885         /*
1886          * When set to zero, disable periodic writeback
1887          */
1888         if (!dirty_writeback_interval)
1889                 return 0;
1890
1891         expired = wb->last_old_flush +
1892                         msecs_to_jiffies(dirty_writeback_interval * 10);
1893         if (time_before(jiffies, expired))
1894                 return 0;
1895
1896         wb->last_old_flush = jiffies;
1897         nr_pages = get_nr_dirty_pages();
1898
1899         if (nr_pages) {
1900                 struct wb_writeback_work work = {
1901                         .nr_pages       = nr_pages,
1902                         .sync_mode      = WB_SYNC_NONE,
1903                         .for_kupdate    = 1,
1904                         .range_cyclic   = 1,
1905                         .reason         = WB_REASON_PERIODIC,
1906                 };
1907
1908                 return wb_writeback(wb, &work);
1909         }
1910
1911         return 0;
1912 }
1913
1914 static long wb_check_start_all(struct bdi_writeback *wb)
1915 {
1916         long nr_pages;
1917
1918         if (!test_bit(WB_start_all, &wb->state))
1919                 return 0;
1920
1921         nr_pages = get_nr_dirty_pages();
1922         if (nr_pages) {
1923                 struct wb_writeback_work work = {
1924                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
1925                         .sync_mode      = WB_SYNC_NONE,
1926                         .range_cyclic   = 1,
1927                         .reason         = wb->start_all_reason,
1928                 };
1929
1930                 nr_pages = wb_writeback(wb, &work);
1931         }
1932
1933         clear_bit(WB_start_all, &wb->state);
1934         return nr_pages;
1935 }
1936
1937
1938 /*
1939  * Retrieve work items and do the writeback they describe
1940  */
1941 static long wb_do_writeback(struct bdi_writeback *wb)
1942 {
1943         struct wb_writeback_work *work;
1944         long wrote = 0;
1945
1946         set_bit(WB_writeback_running, &wb->state);
1947         while ((work = get_next_work_item(wb)) != NULL) {
1948                 trace_writeback_exec(wb, work);
1949                 wrote += wb_writeback(wb, work);
1950                 finish_writeback_work(wb, work);
1951         }
1952
1953         /*
1954          * Check for a flush-everything request
1955          */
1956         wrote += wb_check_start_all(wb);
1957
1958         /*
1959          * Check for periodic writeback, kupdated() style
1960          */
1961         wrote += wb_check_old_data_flush(wb);
1962         wrote += wb_check_background_flush(wb);
1963         clear_bit(WB_writeback_running, &wb->state);
1964
1965         return wrote;
1966 }
1967
1968 /*
1969  * Handle writeback of dirty data for the device backed by this bdi. Also
1970  * reschedules periodically and does kupdated style flushing.
1971  */
1972 void wb_workfn(struct work_struct *work)
1973 {
1974         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1975                                                 struct bdi_writeback, dwork);
1976         long pages_written;
1977
1978         set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1979         current->flags |= PF_SWAPWRITE;
1980
1981         if (likely(!current_is_workqueue_rescuer() ||
1982                    !test_bit(WB_registered, &wb->state))) {
1983                 /*
1984                  * The normal path.  Keep writing back @wb until its
1985                  * work_list is empty.  Note that this path is also taken
1986                  * if @wb is shutting down even when we're running off the
1987                  * rescuer as work_list needs to be drained.
1988                  */
1989                 do {
1990                         pages_written = wb_do_writeback(wb);
1991                         trace_writeback_pages_written(pages_written);
1992                 } while (!list_empty(&wb->work_list));
1993         } else {
1994                 /*
1995                  * bdi_wq can't get enough workers and we're running off
1996                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1997                  * enough for efficient IO.
1998                  */
1999                 pages_written = writeback_inodes_wb(wb, 1024,
2000                                                     WB_REASON_FORKER_THREAD);
2001                 trace_writeback_pages_written(pages_written);
2002         }
2003
2004         if (!list_empty(&wb->work_list))
2005                 wb_wakeup(wb);
2006         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2007                 wb_wakeup_delayed(wb);
2008
2009         current->flags &= ~PF_SWAPWRITE;
2010 }
2011
2012 /*
2013  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2014  * write back the whole world.
2015  */
2016 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2017                                          enum wb_reason reason)
2018 {
2019         struct bdi_writeback *wb;
2020
2021         if (!bdi_has_dirty_io(bdi))
2022                 return;
2023
2024         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2025                 wb_start_writeback(wb, reason);
2026 }
2027
2028 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2029                                 enum wb_reason reason)
2030 {
2031         rcu_read_lock();
2032         __wakeup_flusher_threads_bdi(bdi, reason);
2033         rcu_read_unlock();
2034 }
2035
2036 /*
2037  * Wakeup the flusher threads to start writeback of all currently dirty pages
2038  */
2039 void wakeup_flusher_threads(enum wb_reason reason)
2040 {
2041         struct backing_dev_info *bdi;
2042
2043         /*
2044          * If we are expecting writeback progress we must submit plugged IO.
2045          */
2046         if (blk_needs_flush_plug(current))
2047                 blk_schedule_flush_plug(current);
2048
2049         rcu_read_lock();
2050         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2051                 __wakeup_flusher_threads_bdi(bdi, reason);
2052         rcu_read_unlock();
2053 }
2054
2055 /*
2056  * Wake up bdi's periodically to make sure dirtytime inodes gets
2057  * written back periodically.  We deliberately do *not* check the
2058  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2059  * kernel to be constantly waking up once there are any dirtytime
2060  * inodes on the system.  So instead we define a separate delayed work
2061  * function which gets called much more rarely.  (By default, only
2062  * once every 12 hours.)
2063  *
2064  * If there is any other write activity going on in the file system,
2065  * this function won't be necessary.  But if the only thing that has
2066  * happened on the file system is a dirtytime inode caused by an atime
2067  * update, we need this infrastructure below to make sure that inode
2068  * eventually gets pushed out to disk.
2069  */
2070 static void wakeup_dirtytime_writeback(struct work_struct *w);
2071 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2072
2073 static void wakeup_dirtytime_writeback(struct work_struct *w)
2074 {
2075         struct backing_dev_info *bdi;
2076
2077         rcu_read_lock();
2078         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2079                 struct bdi_writeback *wb;
2080
2081                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2082                         if (!list_empty(&wb->b_dirty_time))
2083                                 wb_wakeup(wb);
2084         }
2085         rcu_read_unlock();
2086         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2087 }
2088
2089 static int __init start_dirtytime_writeback(void)
2090 {
2091         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2092         return 0;
2093 }
2094 __initcall(start_dirtytime_writeback);
2095
2096 int dirtytime_interval_handler(struct ctl_table *table, int write,
2097                                void __user *buffer, size_t *lenp, loff_t *ppos)
2098 {
2099         int ret;
2100
2101         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2102         if (ret == 0 && write)
2103                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2104         return ret;
2105 }
2106
2107 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2108 {
2109         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2110                 struct dentry *dentry;
2111                 const char *name = "?";
2112
2113                 dentry = d_find_alias(inode);
2114                 if (dentry) {
2115                         spin_lock(&dentry->d_lock);
2116                         name = (const char *) dentry->d_name.name;
2117                 }
2118                 printk(KERN_DEBUG
2119                        "%s(%d): dirtied inode %lu (%s) on %s\n",
2120                        current->comm, task_pid_nr(current), inode->i_ino,
2121                        name, inode->i_sb->s_id);
2122                 if (dentry) {
2123                         spin_unlock(&dentry->d_lock);
2124                         dput(dentry);
2125                 }
2126         }
2127 }
2128
2129 /**
2130  * __mark_inode_dirty - internal function
2131  *
2132  * @inode: inode to mark
2133  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2134  *
2135  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2136  * mark_inode_dirty_sync.
2137  *
2138  * Put the inode on the super block's dirty list.
2139  *
2140  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2141  * dirty list only if it is hashed or if it refers to a blockdev.
2142  * If it was not hashed, it will never be added to the dirty list
2143  * even if it is later hashed, as it will have been marked dirty already.
2144  *
2145  * In short, make sure you hash any inodes _before_ you start marking
2146  * them dirty.
2147  *
2148  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2149  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2150  * the kernel-internal blockdev inode represents the dirtying time of the
2151  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2152  * page->mapping->host, so the page-dirtying time is recorded in the internal
2153  * blockdev inode.
2154  */
2155 void __mark_inode_dirty(struct inode *inode, int flags)
2156 {
2157         struct super_block *sb = inode->i_sb;
2158         int dirtytime;
2159
2160         trace_writeback_mark_inode_dirty(inode, flags);
2161
2162         /*
2163          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2164          * dirty the inode itself
2165          */
2166         if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2167                 trace_writeback_dirty_inode_start(inode, flags);
2168
2169                 if (sb->s_op->dirty_inode)
2170                         sb->s_op->dirty_inode(inode, flags);
2171
2172                 trace_writeback_dirty_inode(inode, flags);
2173         }
2174         if (flags & I_DIRTY_INODE)
2175                 flags &= ~I_DIRTY_TIME;
2176         dirtytime = flags & I_DIRTY_TIME;
2177
2178         /*
2179          * Paired with smp_mb() in __writeback_single_inode() for the
2180          * following lockless i_state test.  See there for details.
2181          */
2182         smp_mb();
2183
2184         if (((inode->i_state & flags) == flags) ||
2185             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2186                 return;
2187
2188         if (unlikely(block_dump))
2189                 block_dump___mark_inode_dirty(inode);
2190
2191         spin_lock(&inode->i_lock);
2192         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2193                 goto out_unlock_inode;
2194         if ((inode->i_state & flags) != flags) {
2195                 const int was_dirty = inode->i_state & I_DIRTY;
2196
2197                 inode_attach_wb(inode, NULL);
2198
2199                 if (flags & I_DIRTY_INODE)
2200                         inode->i_state &= ~I_DIRTY_TIME;
2201                 inode->i_state |= flags;
2202
2203                 /*
2204                  * If the inode is being synced, just update its dirty state.
2205                  * The unlocker will place the inode on the appropriate
2206                  * superblock list, based upon its state.
2207                  */
2208                 if (inode->i_state & I_SYNC)
2209                         goto out_unlock_inode;
2210
2211                 /*
2212                  * Only add valid (hashed) inodes to the superblock's
2213                  * dirty list.  Add blockdev inodes as well.
2214                  */
2215                 if (!S_ISBLK(inode->i_mode)) {
2216                         if (inode_unhashed(inode))
2217                                 goto out_unlock_inode;
2218                 }
2219                 if (inode->i_state & I_FREEING)
2220                         goto out_unlock_inode;
2221
2222                 /*
2223                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2224                  * reposition it (that would break b_dirty time-ordering).
2225                  */
2226                 if (!was_dirty) {
2227                         struct bdi_writeback *wb;
2228                         struct list_head *dirty_list;
2229                         bool wakeup_bdi = false;
2230
2231                         wb = locked_inode_to_wb_and_lock_list(inode);
2232
2233                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2234                              !test_bit(WB_registered, &wb->state),
2235                              "bdi-%s not registered\n", wb->bdi->name);
2236
2237                         inode->dirtied_when = jiffies;
2238                         if (dirtytime)
2239                                 inode->dirtied_time_when = jiffies;
2240
2241                         if (inode->i_state & I_DIRTY)
2242                                 dirty_list = &wb->b_dirty;
2243                         else
2244                                 dirty_list = &wb->b_dirty_time;
2245
2246                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2247                                                                dirty_list);
2248
2249                         spin_unlock(&wb->list_lock);
2250                         trace_writeback_dirty_inode_enqueue(inode);
2251
2252                         /*
2253                          * If this is the first dirty inode for this bdi,
2254                          * we have to wake-up the corresponding bdi thread
2255                          * to make sure background write-back happens
2256                          * later.
2257                          */
2258                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2259                                 wb_wakeup_delayed(wb);
2260                         return;
2261                 }
2262         }
2263 out_unlock_inode:
2264         spin_unlock(&inode->i_lock);
2265 }
2266 EXPORT_SYMBOL(__mark_inode_dirty);
2267
2268 /*
2269  * The @s_sync_lock is used to serialise concurrent sync operations
2270  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2271  * Concurrent callers will block on the s_sync_lock rather than doing contending
2272  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2273  * has been issued up to the time this function is enter is guaranteed to be
2274  * completed by the time we have gained the lock and waited for all IO that is
2275  * in progress regardless of the order callers are granted the lock.
2276  */
2277 static void wait_sb_inodes(struct super_block *sb)
2278 {
2279         LIST_HEAD(sync_list);
2280
2281         /*
2282          * We need to be protected against the filesystem going from
2283          * r/o to r/w or vice versa.
2284          */
2285         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2286
2287         mutex_lock(&sb->s_sync_lock);
2288
2289         /*
2290          * Splice the writeback list onto a temporary list to avoid waiting on
2291          * inodes that have started writeback after this point.
2292          *
2293          * Use rcu_read_lock() to keep the inodes around until we have a
2294          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2295          * the local list because inodes can be dropped from either by writeback
2296          * completion.
2297          */
2298         rcu_read_lock();
2299         spin_lock_irq(&sb->s_inode_wblist_lock);
2300         list_splice_init(&sb->s_inodes_wb, &sync_list);
2301
2302         /*
2303          * Data integrity sync. Must wait for all pages under writeback, because
2304          * there may have been pages dirtied before our sync call, but which had
2305          * writeout started before we write it out.  In which case, the inode
2306          * may not be on the dirty list, but we still have to wait for that
2307          * writeout.
2308          */
2309         while (!list_empty(&sync_list)) {
2310                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2311                                                        i_wb_list);
2312                 struct address_space *mapping = inode->i_mapping;
2313
2314                 /*
2315                  * Move each inode back to the wb list before we drop the lock
2316                  * to preserve consistency between i_wb_list and the mapping
2317                  * writeback tag. Writeback completion is responsible to remove
2318                  * the inode from either list once the writeback tag is cleared.
2319                  */
2320                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2321
2322                 /*
2323                  * The mapping can appear untagged while still on-list since we
2324                  * do not have the mapping lock. Skip it here, wb completion
2325                  * will remove it.
2326                  */
2327                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2328                         continue;
2329
2330                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2331
2332                 spin_lock(&inode->i_lock);
2333                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2334                         spin_unlock(&inode->i_lock);
2335
2336                         spin_lock_irq(&sb->s_inode_wblist_lock);
2337                         continue;
2338                 }
2339                 __iget(inode);
2340                 spin_unlock(&inode->i_lock);
2341                 rcu_read_unlock();
2342
2343                 /*
2344                  * We keep the error status of individual mapping so that
2345                  * applications can catch the writeback error using fsync(2).
2346                  * See filemap_fdatawait_keep_errors() for details.
2347                  */
2348                 filemap_fdatawait_keep_errors(mapping);
2349
2350                 cond_resched();
2351
2352                 iput(inode);
2353
2354                 rcu_read_lock();
2355                 spin_lock_irq(&sb->s_inode_wblist_lock);
2356         }
2357         spin_unlock_irq(&sb->s_inode_wblist_lock);
2358         rcu_read_unlock();
2359         mutex_unlock(&sb->s_sync_lock);
2360 }
2361
2362 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2363                                      enum wb_reason reason, bool skip_if_busy)
2364 {
2365         DEFINE_WB_COMPLETION_ONSTACK(done);
2366         struct wb_writeback_work work = {
2367                 .sb                     = sb,
2368                 .sync_mode              = WB_SYNC_NONE,
2369                 .tagged_writepages      = 1,
2370                 .done                   = &done,
2371                 .nr_pages               = nr,
2372                 .reason                 = reason,
2373         };
2374         struct backing_dev_info *bdi = sb->s_bdi;
2375
2376         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2377                 return;
2378         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2379
2380         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2381         wb_wait_for_completion(bdi, &done);
2382 }
2383
2384 /**
2385  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2386  * @sb: the superblock
2387  * @nr: the number of pages to write
2388  * @reason: reason why some writeback work initiated
2389  *
2390  * Start writeback on some inodes on this super_block. No guarantees are made
2391  * on how many (if any) will be written, and this function does not wait
2392  * for IO completion of submitted IO.
2393  */
2394 void writeback_inodes_sb_nr(struct super_block *sb,
2395                             unsigned long nr,
2396                             enum wb_reason reason)
2397 {
2398         __writeback_inodes_sb_nr(sb, nr, reason, false);
2399 }
2400 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2401
2402 /**
2403  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2404  * @sb: the superblock
2405  * @reason: reason why some writeback work was initiated
2406  *
2407  * Start writeback on some inodes on this super_block. No guarantees are made
2408  * on how many (if any) will be written, and this function does not wait
2409  * for IO completion of submitted IO.
2410  */
2411 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2412 {
2413         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2414 }
2415 EXPORT_SYMBOL(writeback_inodes_sb);
2416
2417 /**
2418  * try_to_writeback_inodes_sb - try to start writeback if none underway
2419  * @sb: the superblock
2420  * @reason: reason why some writeback work was initiated
2421  *
2422  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2423  */
2424 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2425 {
2426         if (!down_read_trylock(&sb->s_umount))
2427                 return;
2428
2429         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2430         up_read(&sb->s_umount);
2431 }
2432 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2433
2434 /**
2435  * sync_inodes_sb       -       sync sb inode pages
2436  * @sb: the superblock
2437  *
2438  * This function writes and waits on any dirty inode belonging to this
2439  * super_block.
2440  */
2441 void sync_inodes_sb(struct super_block *sb)
2442 {
2443         DEFINE_WB_COMPLETION_ONSTACK(done);
2444         struct wb_writeback_work work = {
2445                 .sb             = sb,
2446                 .sync_mode      = WB_SYNC_ALL,
2447                 .nr_pages       = LONG_MAX,
2448                 .range_cyclic   = 0,
2449                 .done           = &done,
2450                 .reason         = WB_REASON_SYNC,
2451                 .for_sync       = 1,
2452         };
2453         struct backing_dev_info *bdi = sb->s_bdi;
2454
2455         /*
2456          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2457          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2458          * bdi_has_dirty() need to be written out too.
2459          */
2460         if (bdi == &noop_backing_dev_info)
2461                 return;
2462         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2463
2464         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2465         bdi_down_write_wb_switch_rwsem(bdi);
2466         bdi_split_work_to_wbs(bdi, &work, false);
2467         wb_wait_for_completion(bdi, &done);
2468         bdi_up_write_wb_switch_rwsem(bdi);
2469
2470         wait_sb_inodes(sb);
2471 }
2472 EXPORT_SYMBOL(sync_inodes_sb);
2473
2474 /**
2475  * write_inode_now      -       write an inode to disk
2476  * @inode: inode to write to disk
2477  * @sync: whether the write should be synchronous or not
2478  *
2479  * This function commits an inode to disk immediately if it is dirty. This is
2480  * primarily needed by knfsd.
2481  *
2482  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2483  */
2484 int write_inode_now(struct inode *inode, int sync)
2485 {
2486         struct writeback_control wbc = {
2487                 .nr_to_write = LONG_MAX,
2488                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2489                 .range_start = 0,
2490                 .range_end = LLONG_MAX,
2491         };
2492
2493         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2494                 wbc.nr_to_write = 0;
2495
2496         might_sleep();
2497         return writeback_single_inode(inode, &wbc);
2498 }
2499 EXPORT_SYMBOL(write_inode_now);
2500
2501 /**
2502  * sync_inode - write an inode and its pages to disk.
2503  * @inode: the inode to sync
2504  * @wbc: controls the writeback mode
2505  *
2506  * sync_inode() will write an inode and its pages to disk.  It will also
2507  * correctly update the inode on its superblock's dirty inode lists and will
2508  * update inode->i_state.
2509  *
2510  * The caller must have a ref on the inode.
2511  */
2512 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2513 {
2514         return writeback_single_inode(inode, wbc);
2515 }
2516 EXPORT_SYMBOL(sync_inode);
2517
2518 /**
2519  * sync_inode_metadata - write an inode to disk
2520  * @inode: the inode to sync
2521  * @wait: wait for I/O to complete.
2522  *
2523  * Write an inode to disk and adjust its dirty state after completion.
2524  *
2525  * Note: only writes the actual inode, no associated data or other metadata.
2526  */
2527 int sync_inode_metadata(struct inode *inode, int wait)
2528 {
2529         struct writeback_control wbc = {
2530                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2531                 .nr_to_write = 0, /* metadata-only */
2532         };
2533
2534         return sync_inode(inode, &wbc);
2535 }
2536 EXPORT_SYMBOL(sync_inode_metadata);