4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
33 * 4MB minimal write chunk size
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
38 * Passed into wb_writeback(), essentially a subset of writeback_control
40 struct wb_writeback_work {
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 enum wb_reason reason; /* why was writeback initiated? */
51 struct list_head list; /* pending work list */
52 struct completion *done; /* set if the caller waits */
56 * writeback_in_progress - determine whether there is writeback in progress
57 * @bdi: the device's backing_dev_info structure.
59 * Determine whether there is writeback waiting to be handled against a
62 int writeback_in_progress(struct backing_dev_info *bdi)
64 return test_bit(BDI_writeback_running, &bdi->state);
66 EXPORT_SYMBOL(writeback_in_progress);
68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
70 struct super_block *sb = inode->i_sb;
72 if (strcmp(sb->s_type->name, "bdev") == 0)
73 return inode->i_mapping->backing_dev_info;
78 static inline struct inode *wb_inode(struct list_head *head)
80 return list_entry(head, struct inode, i_wb_list);
84 * Include the creation of the trace points after defining the
85 * wb_writeback_work structure and inline functions so that the definition
86 * remains local to this file.
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/writeback.h>
91 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
92 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
95 wake_up_process(bdi->wb.task);
98 * The bdi thread isn't there, wake up the forker thread which
99 * will create and run it.
101 wake_up_process(default_backing_dev_info.wb.task);
105 static void bdi_queue_work(struct backing_dev_info *bdi,
106 struct wb_writeback_work *work)
108 trace_writeback_queue(bdi, work);
110 spin_lock_bh(&bdi->wb_lock);
111 list_add_tail(&work->list, &bdi->work_list);
113 trace_writeback_nothread(bdi, work);
114 bdi_wakeup_flusher(bdi);
115 spin_unlock_bh(&bdi->wb_lock);
119 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
120 bool range_cyclic, enum wb_reason reason)
122 struct wb_writeback_work *work;
125 * This is WB_SYNC_NONE writeback, so if allocation fails just
126 * wakeup the thread for old dirty data writeback
128 work = kzalloc(sizeof(*work), GFP_ATOMIC);
131 trace_writeback_nowork(bdi);
132 wake_up_process(bdi->wb.task);
137 work->sync_mode = WB_SYNC_NONE;
138 work->nr_pages = nr_pages;
139 work->range_cyclic = range_cyclic;
140 work->reason = reason;
142 bdi_queue_work(bdi, work);
146 * bdi_start_writeback - start writeback
147 * @bdi: the backing device to write from
148 * @nr_pages: the number of pages to write
149 * @reason: reason why some writeback work was initiated
152 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
153 * started when this function returns, we make no guarantees on
154 * completion. Caller need not hold sb s_umount semaphore.
157 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
158 enum wb_reason reason)
160 __bdi_start_writeback(bdi, nr_pages, true, reason);
164 * bdi_start_background_writeback - start background writeback
165 * @bdi: the backing device to write from
168 * This makes sure WB_SYNC_NONE background writeback happens. When
169 * this function returns, it is only guaranteed that for given BDI
170 * some IO is happening if we are over background dirty threshold.
171 * Caller need not hold sb s_umount semaphore.
173 void bdi_start_background_writeback(struct backing_dev_info *bdi)
176 * We just wake up the flusher thread. It will perform background
177 * writeback as soon as there is no other work to do.
179 trace_writeback_wake_background(bdi);
180 spin_lock_bh(&bdi->wb_lock);
181 bdi_wakeup_flusher(bdi);
182 spin_unlock_bh(&bdi->wb_lock);
186 * Remove the inode from the writeback list it is on.
188 void inode_wb_list_del(struct inode *inode)
190 struct backing_dev_info *bdi = inode_to_bdi(inode);
192 spin_lock(&bdi->wb.list_lock);
193 list_del_init(&inode->i_wb_list);
194 spin_unlock(&bdi->wb.list_lock);
198 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
199 * furthest end of its superblock's dirty-inode list.
201 * Before stamping the inode's ->dirtied_when, we check to see whether it is
202 * already the most-recently-dirtied inode on the b_dirty list. If that is
203 * the case then the inode must have been redirtied while it was being written
204 * out and we don't reset its dirtied_when.
206 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
208 assert_spin_locked(&wb->list_lock);
209 if (!list_empty(&wb->b_dirty)) {
212 tail = wb_inode(wb->b_dirty.next);
213 if (time_before(inode->dirtied_when, tail->dirtied_when))
214 inode->dirtied_when = jiffies;
216 list_move(&inode->i_wb_list, &wb->b_dirty);
220 * requeue inode for re-scanning after bdi->b_io list is exhausted.
222 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
224 assert_spin_locked(&wb->list_lock);
225 list_move(&inode->i_wb_list, &wb->b_more_io);
228 static void inode_sync_complete(struct inode *inode)
230 inode->i_state &= ~I_SYNC;
231 /* If inode is clean an unused, put it into LRU now... */
232 inode_add_lru(inode);
233 /* Waiters must see I_SYNC cleared before being woken up */
235 wake_up_bit(&inode->i_state, __I_SYNC);
238 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
240 bool ret = time_after(inode->dirtied_when, t);
243 * For inodes being constantly redirtied, dirtied_when can get stuck.
244 * It _appears_ to be in the future, but is actually in distant past.
245 * This test is necessary to prevent such wrapped-around relative times
246 * from permanently stopping the whole bdi writeback.
248 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
254 * Move expired (dirtied before work->older_than_this) dirty inodes from
255 * @delaying_queue to @dispatch_queue.
257 static int move_expired_inodes(struct list_head *delaying_queue,
258 struct list_head *dispatch_queue,
259 struct wb_writeback_work *work)
262 struct list_head *pos, *node;
263 struct super_block *sb = NULL;
268 while (!list_empty(delaying_queue)) {
269 inode = wb_inode(delaying_queue->prev);
270 if (work->older_than_this &&
271 inode_dirtied_after(inode, *work->older_than_this))
273 if (sb && sb != inode->i_sb)
276 list_move(&inode->i_wb_list, &tmp);
280 /* just one sb in list, splice to dispatch_queue and we're done */
282 list_splice(&tmp, dispatch_queue);
286 /* Move inodes from one superblock together */
287 while (!list_empty(&tmp)) {
288 sb = wb_inode(tmp.prev)->i_sb;
289 list_for_each_prev_safe(pos, node, &tmp) {
290 inode = wb_inode(pos);
291 if (inode->i_sb == sb)
292 list_move(&inode->i_wb_list, dispatch_queue);
300 * Queue all expired dirty inodes for io, eldest first.
302 * newly dirtied b_dirty b_io b_more_io
303 * =============> gf edc BA
305 * newly dirtied b_dirty b_io b_more_io
306 * =============> g fBAedc
308 * +--> dequeue for IO
310 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
313 assert_spin_locked(&wb->list_lock);
314 list_splice_init(&wb->b_more_io, &wb->b_io);
315 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
316 trace_writeback_queue_io(wb, work, moved);
319 static int write_inode(struct inode *inode, struct writeback_control *wbc)
323 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
324 trace_writeback_write_inode_start(inode, wbc);
325 ret = inode->i_sb->s_op->write_inode(inode, wbc);
326 trace_writeback_write_inode(inode, wbc);
333 * Wait for writeback on an inode to complete. Called with i_lock held.
334 * Caller must make sure inode cannot go away when we drop i_lock.
336 static void __inode_wait_for_writeback(struct inode *inode)
337 __releases(inode->i_lock)
338 __acquires(inode->i_lock)
340 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
341 wait_queue_head_t *wqh;
343 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
344 while (inode->i_state & I_SYNC) {
345 spin_unlock(&inode->i_lock);
346 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
347 spin_lock(&inode->i_lock);
352 * Wait for writeback on an inode to complete. Caller must have inode pinned.
354 void inode_wait_for_writeback(struct inode *inode)
356 spin_lock(&inode->i_lock);
357 __inode_wait_for_writeback(inode);
358 spin_unlock(&inode->i_lock);
362 * Sleep until I_SYNC is cleared. This function must be called with i_lock
363 * held and drops it. It is aimed for callers not holding any inode reference
364 * so once i_lock is dropped, inode can go away.
366 static void inode_sleep_on_writeback(struct inode *inode)
367 __releases(inode->i_lock)
370 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
373 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
374 sleep = inode->i_state & I_SYNC;
375 spin_unlock(&inode->i_lock);
378 finish_wait(wqh, &wait);
382 * Find proper writeback list for the inode depending on its current state and
383 * possibly also change of its state while we were doing writeback. Here we
384 * handle things such as livelock prevention or fairness of writeback among
385 * inodes. This function can be called only by flusher thread - noone else
386 * processes all inodes in writeback lists and requeueing inodes behind flusher
387 * thread's back can have unexpected consequences.
389 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
390 struct writeback_control *wbc)
392 if (inode->i_state & I_FREEING)
396 * Sync livelock prevention. Each inode is tagged and synced in one
397 * shot. If still dirty, it will be redirty_tail()'ed below. Update
398 * the dirty time to prevent enqueue and sync it again.
400 if ((inode->i_state & I_DIRTY) &&
401 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
402 inode->dirtied_when = jiffies;
404 if (wbc->pages_skipped) {
406 * writeback is not making progress due to locked
407 * buffers. Skip this inode for now.
409 redirty_tail(inode, wb);
413 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
415 * We didn't write back all the pages. nfs_writepages()
416 * sometimes bales out without doing anything.
418 if (wbc->nr_to_write <= 0) {
419 /* Slice used up. Queue for next turn. */
420 requeue_io(inode, wb);
423 * Writeback blocked by something other than
424 * congestion. Delay the inode for some time to
425 * avoid spinning on the CPU (100% iowait)
426 * retrying writeback of the dirty page/inode
427 * that cannot be performed immediately.
429 redirty_tail(inode, wb);
431 } else if (inode->i_state & I_DIRTY) {
433 * Filesystems can dirty the inode during writeback operations,
434 * such as delayed allocation during submission or metadata
435 * updates after data IO completion.
437 redirty_tail(inode, wb);
439 /* The inode is clean. Remove from writeback lists. */
440 list_del_init(&inode->i_wb_list);
445 * Write out an inode and its dirty pages. Do not update the writeback list
446 * linkage. That is left to the caller. The caller is also responsible for
447 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
450 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
452 struct address_space *mapping = inode->i_mapping;
453 long nr_to_write = wbc->nr_to_write;
457 WARN_ON(!(inode->i_state & I_SYNC));
459 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
461 ret = do_writepages(mapping, wbc);
464 * Make sure to wait on the data before writing out the metadata.
465 * This is important for filesystems that modify metadata on data
468 if (wbc->sync_mode == WB_SYNC_ALL) {
469 int err = filemap_fdatawait(mapping);
475 * Some filesystems may redirty the inode during the writeback
476 * due to delalloc, clear dirty metadata flags right before
479 spin_lock(&inode->i_lock);
480 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
481 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
482 inode->i_state &= ~I_DIRTY_PAGES;
483 dirty = inode->i_state & I_DIRTY;
484 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
485 spin_unlock(&inode->i_lock);
486 /* Don't write the inode if only I_DIRTY_PAGES was set */
487 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
488 int err = write_inode(inode, wbc);
492 trace_writeback_single_inode(inode, wbc, nr_to_write);
497 * Write out an inode's dirty pages. Either the caller has an active reference
498 * on the inode or the inode has I_WILL_FREE set.
500 * This function is designed to be called for writing back one inode which
501 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
502 * and does more profound writeback list handling in writeback_sb_inodes().
505 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
506 struct writeback_control *wbc)
510 spin_lock(&inode->i_lock);
511 if (!atomic_read(&inode->i_count))
512 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
514 WARN_ON(inode->i_state & I_WILL_FREE);
516 if (inode->i_state & I_SYNC) {
517 if (wbc->sync_mode != WB_SYNC_ALL)
520 * It's a data-integrity sync. We must wait. Since callers hold
521 * inode reference or inode has I_WILL_FREE set, it cannot go
524 __inode_wait_for_writeback(inode);
526 WARN_ON(inode->i_state & I_SYNC);
528 * Skip inode if it is clean. We don't want to mess with writeback
529 * lists in this function since flusher thread may be doing for example
530 * sync in parallel and if we move the inode, it could get skipped. So
531 * here we make sure inode is on some writeback list and leave it there
532 * unless we have completely cleaned the inode.
534 if (!(inode->i_state & I_DIRTY))
536 inode->i_state |= I_SYNC;
537 spin_unlock(&inode->i_lock);
539 ret = __writeback_single_inode(inode, wbc);
541 spin_lock(&wb->list_lock);
542 spin_lock(&inode->i_lock);
544 * If inode is clean, remove it from writeback lists. Otherwise don't
545 * touch it. See comment above for explanation.
547 if (!(inode->i_state & I_DIRTY))
548 list_del_init(&inode->i_wb_list);
549 spin_unlock(&wb->list_lock);
550 inode_sync_complete(inode);
552 spin_unlock(&inode->i_lock);
556 static long writeback_chunk_size(struct backing_dev_info *bdi,
557 struct wb_writeback_work *work)
562 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
563 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
564 * here avoids calling into writeback_inodes_wb() more than once.
566 * The intended call sequence for WB_SYNC_ALL writeback is:
569 * writeback_sb_inodes() <== called only once
570 * write_cache_pages() <== called once for each inode
571 * (quickly) tag currently dirty pages
572 * (maybe slowly) sync all tagged pages
574 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
577 pages = min(bdi->avg_write_bandwidth / 2,
578 global_dirty_limit / DIRTY_SCOPE);
579 pages = min(pages, work->nr_pages);
580 pages = round_down(pages + MIN_WRITEBACK_PAGES,
581 MIN_WRITEBACK_PAGES);
588 * Write a portion of b_io inodes which belong to @sb.
590 * Return the number of pages and/or inodes written.
592 static long writeback_sb_inodes(struct super_block *sb,
593 struct bdi_writeback *wb,
594 struct wb_writeback_work *work)
596 struct writeback_control wbc = {
597 .sync_mode = work->sync_mode,
598 .tagged_writepages = work->tagged_writepages,
599 .for_kupdate = work->for_kupdate,
600 .for_background = work->for_background,
601 .range_cyclic = work->range_cyclic,
603 .range_end = LLONG_MAX,
605 unsigned long start_time = jiffies;
607 long wrote = 0; /* count both pages and inodes */
609 while (!list_empty(&wb->b_io)) {
610 struct inode *inode = wb_inode(wb->b_io.prev);
612 if (inode->i_sb != sb) {
615 * We only want to write back data for this
616 * superblock, move all inodes not belonging
617 * to it back onto the dirty list.
619 redirty_tail(inode, wb);
624 * The inode belongs to a different superblock.
625 * Bounce back to the caller to unpin this and
626 * pin the next superblock.
632 * Don't bother with new inodes or inodes being freed, first
633 * kind does not need periodic writeout yet, and for the latter
634 * kind writeout is handled by the freer.
636 spin_lock(&inode->i_lock);
637 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
638 spin_unlock(&inode->i_lock);
639 redirty_tail(inode, wb);
642 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
644 * If this inode is locked for writeback and we are not
645 * doing writeback-for-data-integrity, move it to
646 * b_more_io so that writeback can proceed with the
647 * other inodes on s_io.
649 * We'll have another go at writing back this inode
650 * when we completed a full scan of b_io.
652 spin_unlock(&inode->i_lock);
653 requeue_io(inode, wb);
654 trace_writeback_sb_inodes_requeue(inode);
657 spin_unlock(&wb->list_lock);
660 * We already requeued the inode if it had I_SYNC set and we
661 * are doing WB_SYNC_NONE writeback. So this catches only the
664 if (inode->i_state & I_SYNC) {
665 /* Wait for I_SYNC. This function drops i_lock... */
666 inode_sleep_on_writeback(inode);
667 /* Inode may be gone, start again */
668 spin_lock(&wb->list_lock);
671 inode->i_state |= I_SYNC;
672 spin_unlock(&inode->i_lock);
674 write_chunk = writeback_chunk_size(wb->bdi, work);
675 wbc.nr_to_write = write_chunk;
676 wbc.pages_skipped = 0;
679 * We use I_SYNC to pin the inode in memory. While it is set
680 * evict_inode() will wait so the inode cannot be freed.
682 __writeback_single_inode(inode, &wbc);
684 work->nr_pages -= write_chunk - wbc.nr_to_write;
685 wrote += write_chunk - wbc.nr_to_write;
686 spin_lock(&wb->list_lock);
687 spin_lock(&inode->i_lock);
688 if (!(inode->i_state & I_DIRTY))
690 requeue_inode(inode, wb, &wbc);
691 inode_sync_complete(inode);
692 spin_unlock(&inode->i_lock);
693 cond_resched_lock(&wb->list_lock);
695 * bail out to wb_writeback() often enough to check
696 * background threshold and other termination conditions.
699 if (time_is_before_jiffies(start_time + HZ / 10UL))
701 if (work->nr_pages <= 0)
708 static long __writeback_inodes_wb(struct bdi_writeback *wb,
709 struct wb_writeback_work *work)
711 unsigned long start_time = jiffies;
714 while (!list_empty(&wb->b_io)) {
715 struct inode *inode = wb_inode(wb->b_io.prev);
716 struct super_block *sb = inode->i_sb;
718 if (!grab_super_passive(sb)) {
720 * grab_super_passive() may fail consistently due to
721 * s_umount being grabbed by someone else. Don't use
722 * requeue_io() to avoid busy retrying the inode/sb.
724 redirty_tail(inode, wb);
727 wrote += writeback_sb_inodes(sb, wb, work);
730 /* refer to the same tests at the end of writeback_sb_inodes */
732 if (time_is_before_jiffies(start_time + HZ / 10UL))
734 if (work->nr_pages <= 0)
738 /* Leave any unwritten inodes on b_io */
742 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
743 enum wb_reason reason)
745 struct wb_writeback_work work = {
746 .nr_pages = nr_pages,
747 .sync_mode = WB_SYNC_NONE,
752 spin_lock(&wb->list_lock);
753 if (list_empty(&wb->b_io))
755 __writeback_inodes_wb(wb, &work);
756 spin_unlock(&wb->list_lock);
758 return nr_pages - work.nr_pages;
761 static bool over_bground_thresh(struct backing_dev_info *bdi)
763 unsigned long background_thresh, dirty_thresh;
765 global_dirty_limits(&background_thresh, &dirty_thresh);
767 if (global_page_state(NR_FILE_DIRTY) +
768 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
771 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
772 bdi_dirty_limit(bdi, background_thresh))
779 * Called under wb->list_lock. If there are multiple wb per bdi,
780 * only the flusher working on the first wb should do it.
782 static void wb_update_bandwidth(struct bdi_writeback *wb,
783 unsigned long start_time)
785 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
789 * Explicit flushing or periodic writeback of "old" data.
791 * Define "old": the first time one of an inode's pages is dirtied, we mark the
792 * dirtying-time in the inode's address_space. So this periodic writeback code
793 * just walks the superblock inode list, writing back any inodes which are
794 * older than a specific point in time.
796 * Try to run once per dirty_writeback_interval. But if a writeback event
797 * takes longer than a dirty_writeback_interval interval, then leave a
800 * older_than_this takes precedence over nr_to_write. So we'll only write back
801 * all dirty pages if they are all attached to "old" mappings.
803 static long wb_writeback(struct bdi_writeback *wb,
804 struct wb_writeback_work *work)
806 unsigned long wb_start = jiffies;
807 long nr_pages = work->nr_pages;
808 unsigned long oldest_jif;
812 oldest_jif = jiffies;
813 work->older_than_this = &oldest_jif;
815 spin_lock(&wb->list_lock);
818 * Stop writeback when nr_pages has been consumed
820 if (work->nr_pages <= 0)
824 * Background writeout and kupdate-style writeback may
825 * run forever. Stop them if there is other work to do
826 * so that e.g. sync can proceed. They'll be restarted
827 * after the other works are all done.
829 if ((work->for_background || work->for_kupdate) &&
830 !list_empty(&wb->bdi->work_list))
834 * For background writeout, stop when we are below the
835 * background dirty threshold
837 if (work->for_background && !over_bground_thresh(wb->bdi))
841 * Kupdate and background works are special and we want to
842 * include all inodes that need writing. Livelock avoidance is
843 * handled by these works yielding to any other work so we are
846 if (work->for_kupdate) {
847 oldest_jif = jiffies -
848 msecs_to_jiffies(dirty_expire_interval * 10);
849 } else if (work->for_background)
850 oldest_jif = jiffies;
852 trace_writeback_start(wb->bdi, work);
853 if (list_empty(&wb->b_io))
856 progress = writeback_sb_inodes(work->sb, wb, work);
858 progress = __writeback_inodes_wb(wb, work);
859 trace_writeback_written(wb->bdi, work);
861 wb_update_bandwidth(wb, wb_start);
864 * Did we write something? Try for more
866 * Dirty inodes are moved to b_io for writeback in batches.
867 * The completion of the current batch does not necessarily
868 * mean the overall work is done. So we keep looping as long
869 * as made some progress on cleaning pages or inodes.
874 * No more inodes for IO, bail
876 if (list_empty(&wb->b_more_io))
879 * Nothing written. Wait for some inode to
880 * become available for writeback. Otherwise
881 * we'll just busyloop.
883 if (!list_empty(&wb->b_more_io)) {
884 trace_writeback_wait(wb->bdi, work);
885 inode = wb_inode(wb->b_more_io.prev);
886 spin_lock(&inode->i_lock);
887 spin_unlock(&wb->list_lock);
888 /* This function drops i_lock... */
889 inode_sleep_on_writeback(inode);
890 spin_lock(&wb->list_lock);
893 spin_unlock(&wb->list_lock);
895 return nr_pages - work->nr_pages;
899 * Return the next wb_writeback_work struct that hasn't been processed yet.
901 static struct wb_writeback_work *
902 get_next_work_item(struct backing_dev_info *bdi)
904 struct wb_writeback_work *work = NULL;
906 spin_lock_bh(&bdi->wb_lock);
907 if (!list_empty(&bdi->work_list)) {
908 work = list_entry(bdi->work_list.next,
909 struct wb_writeback_work, list);
910 list_del_init(&work->list);
912 spin_unlock_bh(&bdi->wb_lock);
917 * Add in the number of potentially dirty inodes, because each inode
918 * write can dirty pagecache in the underlying blockdev.
920 static unsigned long get_nr_dirty_pages(void)
922 return global_page_state(NR_FILE_DIRTY) +
923 global_page_state(NR_UNSTABLE_NFS) +
924 get_nr_dirty_inodes();
927 static long wb_check_background_flush(struct bdi_writeback *wb)
929 if (over_bground_thresh(wb->bdi)) {
931 struct wb_writeback_work work = {
932 .nr_pages = LONG_MAX,
933 .sync_mode = WB_SYNC_NONE,
936 .reason = WB_REASON_BACKGROUND,
939 return wb_writeback(wb, &work);
945 static long wb_check_old_data_flush(struct bdi_writeback *wb)
947 unsigned long expired;
951 * When set to zero, disable periodic writeback
953 if (!dirty_writeback_interval)
956 expired = wb->last_old_flush +
957 msecs_to_jiffies(dirty_writeback_interval * 10);
958 if (time_before(jiffies, expired))
961 wb->last_old_flush = jiffies;
962 nr_pages = get_nr_dirty_pages();
965 struct wb_writeback_work work = {
966 .nr_pages = nr_pages,
967 .sync_mode = WB_SYNC_NONE,
970 .reason = WB_REASON_PERIODIC,
973 return wb_writeback(wb, &work);
980 * Retrieve work items and do the writeback they describe
982 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
984 struct backing_dev_info *bdi = wb->bdi;
985 struct wb_writeback_work *work;
988 set_bit(BDI_writeback_running, &wb->bdi->state);
989 while ((work = get_next_work_item(bdi)) != NULL) {
991 * Override sync mode, in case we must wait for completion
992 * because this thread is exiting now.
995 work->sync_mode = WB_SYNC_ALL;
997 trace_writeback_exec(bdi, work);
999 wrote += wb_writeback(wb, work);
1002 * Notify the caller of completion if this is a synchronous
1003 * work item, otherwise just free it.
1006 complete(work->done);
1012 * Check for periodic writeback, kupdated() style
1014 wrote += wb_check_old_data_flush(wb);
1015 wrote += wb_check_background_flush(wb);
1016 clear_bit(BDI_writeback_running, &wb->bdi->state);
1022 * Handle writeback of dirty data for the device backed by this bdi. Also
1023 * wakes up periodically and does kupdated style flushing.
1025 int bdi_writeback_thread(void *data)
1027 struct bdi_writeback *wb = data;
1028 struct backing_dev_info *bdi = wb->bdi;
1031 set_worker_desc("flush-%s", dev_name(bdi->dev));
1032 current->flags |= PF_SWAPWRITE;
1034 wb->last_active = jiffies;
1037 * Our parent may run at a different priority, just set us to normal
1039 set_user_nice(current, 0);
1041 trace_writeback_thread_start(bdi);
1043 while (!kthread_freezable_should_stop(NULL)) {
1045 * Remove own delayed wake-up timer, since we are already awake
1046 * and we'll take care of the periodic write-back.
1048 del_timer(&wb->wakeup_timer);
1050 pages_written = wb_do_writeback(wb, 0);
1052 trace_writeback_pages_written(pages_written);
1055 wb->last_active = jiffies;
1057 set_current_state(TASK_INTERRUPTIBLE);
1058 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
1059 __set_current_state(TASK_RUNNING);
1063 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1064 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
1067 * We have nothing to do, so can go sleep without any
1068 * timeout and save power. When a work is queued or
1069 * something is made dirty - we will be woken up.
1075 /* Flush any work that raced with us exiting */
1076 if (!list_empty(&bdi->work_list))
1077 wb_do_writeback(wb, 1);
1079 trace_writeback_thread_stop(bdi);
1085 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1088 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1090 struct backing_dev_info *bdi;
1093 nr_pages = global_page_state(NR_FILE_DIRTY) +
1094 global_page_state(NR_UNSTABLE_NFS);
1098 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1099 if (!bdi_has_dirty_io(bdi))
1101 __bdi_start_writeback(bdi, nr_pages, false, reason);
1106 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1108 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1109 struct dentry *dentry;
1110 const char *name = "?";
1112 dentry = d_find_alias(inode);
1114 spin_lock(&dentry->d_lock);
1115 name = (const char *) dentry->d_name.name;
1118 "%s(%d): dirtied inode %lu (%s) on %s\n",
1119 current->comm, task_pid_nr(current), inode->i_ino,
1120 name, inode->i_sb->s_id);
1122 spin_unlock(&dentry->d_lock);
1129 * __mark_inode_dirty - internal function
1130 * @inode: inode to mark
1131 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1132 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1133 * mark_inode_dirty_sync.
1135 * Put the inode on the super block's dirty list.
1137 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1138 * dirty list only if it is hashed or if it refers to a blockdev.
1139 * If it was not hashed, it will never be added to the dirty list
1140 * even if it is later hashed, as it will have been marked dirty already.
1142 * In short, make sure you hash any inodes _before_ you start marking
1145 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1146 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1147 * the kernel-internal blockdev inode represents the dirtying time of the
1148 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1149 * page->mapping->host, so the page-dirtying time is recorded in the internal
1152 void __mark_inode_dirty(struct inode *inode, int flags)
1154 struct super_block *sb = inode->i_sb;
1155 struct backing_dev_info *bdi = NULL;
1158 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1159 * dirty the inode itself
1161 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1162 trace_writeback_dirty_inode_start(inode, flags);
1164 if (sb->s_op->dirty_inode)
1165 sb->s_op->dirty_inode(inode, flags);
1167 trace_writeback_dirty_inode(inode, flags);
1171 * make sure that changes are seen by all cpus before we test i_state
1176 /* avoid the locking if we can */
1177 if ((inode->i_state & flags) == flags)
1180 if (unlikely(block_dump))
1181 block_dump___mark_inode_dirty(inode);
1183 spin_lock(&inode->i_lock);
1184 if ((inode->i_state & flags) != flags) {
1185 const int was_dirty = inode->i_state & I_DIRTY;
1187 inode->i_state |= flags;
1190 * If the inode is being synced, just update its dirty state.
1191 * The unlocker will place the inode on the appropriate
1192 * superblock list, based upon its state.
1194 if (inode->i_state & I_SYNC)
1195 goto out_unlock_inode;
1198 * Only add valid (hashed) inodes to the superblock's
1199 * dirty list. Add blockdev inodes as well.
1201 if (!S_ISBLK(inode->i_mode)) {
1202 if (inode_unhashed(inode))
1203 goto out_unlock_inode;
1205 if (inode->i_state & I_FREEING)
1206 goto out_unlock_inode;
1209 * If the inode was already on b_dirty/b_io/b_more_io, don't
1210 * reposition it (that would break b_dirty time-ordering).
1213 bool wakeup_bdi = false;
1214 bdi = inode_to_bdi(inode);
1216 if (bdi_cap_writeback_dirty(bdi)) {
1217 WARN(!test_bit(BDI_registered, &bdi->state),
1218 "bdi-%s not registered\n", bdi->name);
1221 * If this is the first dirty inode for this
1222 * bdi, we have to wake-up the corresponding
1223 * bdi thread to make sure background
1224 * write-back happens later.
1226 if (!wb_has_dirty_io(&bdi->wb))
1230 spin_unlock(&inode->i_lock);
1231 spin_lock(&bdi->wb.list_lock);
1232 inode->dirtied_when = jiffies;
1233 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1234 spin_unlock(&bdi->wb.list_lock);
1237 bdi_wakeup_thread_delayed(bdi);
1242 spin_unlock(&inode->i_lock);
1245 EXPORT_SYMBOL(__mark_inode_dirty);
1247 static void wait_sb_inodes(struct super_block *sb)
1249 struct inode *inode, *old_inode = NULL;
1252 * We need to be protected against the filesystem going from
1253 * r/o to r/w or vice versa.
1255 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1257 spin_lock(&inode_sb_list_lock);
1260 * Data integrity sync. Must wait for all pages under writeback,
1261 * because there may have been pages dirtied before our sync
1262 * call, but which had writeout started before we write it out.
1263 * In which case, the inode may not be on the dirty list, but
1264 * we still have to wait for that writeout.
1266 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1267 struct address_space *mapping = inode->i_mapping;
1269 spin_lock(&inode->i_lock);
1270 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1271 (mapping->nrpages == 0)) {
1272 spin_unlock(&inode->i_lock);
1276 spin_unlock(&inode->i_lock);
1277 spin_unlock(&inode_sb_list_lock);
1280 * We hold a reference to 'inode' so it couldn't have been
1281 * removed from s_inodes list while we dropped the
1282 * inode_sb_list_lock. We cannot iput the inode now as we can
1283 * be holding the last reference and we cannot iput it under
1284 * inode_sb_list_lock. So we keep the reference and iput it
1290 filemap_fdatawait(mapping);
1294 spin_lock(&inode_sb_list_lock);
1296 spin_unlock(&inode_sb_list_lock);
1301 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1302 * @sb: the superblock
1303 * @nr: the number of pages to write
1304 * @reason: reason why some writeback work initiated
1306 * Start writeback on some inodes on this super_block. No guarantees are made
1307 * on how many (if any) will be written, and this function does not wait
1308 * for IO completion of submitted IO.
1310 void writeback_inodes_sb_nr(struct super_block *sb,
1312 enum wb_reason reason)
1314 DECLARE_COMPLETION_ONSTACK(done);
1315 struct wb_writeback_work work = {
1317 .sync_mode = WB_SYNC_NONE,
1318 .tagged_writepages = 1,
1324 if (sb->s_bdi == &noop_backing_dev_info)
1326 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1327 bdi_queue_work(sb->s_bdi, &work);
1328 wait_for_completion(&done);
1330 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1333 * writeback_inodes_sb - writeback dirty inodes from given super_block
1334 * @sb: the superblock
1335 * @reason: reason why some writeback work was initiated
1337 * Start writeback on some inodes on this super_block. No guarantees are made
1338 * on how many (if any) will be written, and this function does not wait
1339 * for IO completion of submitted IO.
1341 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1343 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1345 EXPORT_SYMBOL(writeback_inodes_sb);
1348 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1349 * @sb: the superblock
1350 * @nr: the number of pages to write
1351 * @reason: the reason of writeback
1353 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1354 * Returns 1 if writeback was started, 0 if not.
1356 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1358 enum wb_reason reason)
1360 if (writeback_in_progress(sb->s_bdi))
1363 if (!down_read_trylock(&sb->s_umount))
1366 writeback_inodes_sb_nr(sb, nr, reason);
1367 up_read(&sb->s_umount);
1370 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1373 * try_to_writeback_inodes_sb - try to start writeback if none underway
1374 * @sb: the superblock
1375 * @reason: reason why some writeback work was initiated
1377 * Implement by try_to_writeback_inodes_sb_nr()
1378 * Returns 1 if writeback was started, 0 if not.
1380 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1382 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1384 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1387 * sync_inodes_sb - sync sb inode pages
1388 * @sb: the superblock
1390 * This function writes and waits on any dirty inode belonging to this
1393 void sync_inodes_sb(struct super_block *sb)
1395 DECLARE_COMPLETION_ONSTACK(done);
1396 struct wb_writeback_work work = {
1398 .sync_mode = WB_SYNC_ALL,
1399 .nr_pages = LONG_MAX,
1402 .reason = WB_REASON_SYNC,
1405 /* Nothing to do? */
1406 if (sb->s_bdi == &noop_backing_dev_info)
1408 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1410 bdi_queue_work(sb->s_bdi, &work);
1411 wait_for_completion(&done);
1415 EXPORT_SYMBOL(sync_inodes_sb);
1418 * write_inode_now - write an inode to disk
1419 * @inode: inode to write to disk
1420 * @sync: whether the write should be synchronous or not
1422 * This function commits an inode to disk immediately if it is dirty. This is
1423 * primarily needed by knfsd.
1425 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1427 int write_inode_now(struct inode *inode, int sync)
1429 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1430 struct writeback_control wbc = {
1431 .nr_to_write = LONG_MAX,
1432 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1434 .range_end = LLONG_MAX,
1437 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1438 wbc.nr_to_write = 0;
1441 return writeback_single_inode(inode, wb, &wbc);
1443 EXPORT_SYMBOL(write_inode_now);
1446 * sync_inode - write an inode and its pages to disk.
1447 * @inode: the inode to sync
1448 * @wbc: controls the writeback mode
1450 * sync_inode() will write an inode and its pages to disk. It will also
1451 * correctly update the inode on its superblock's dirty inode lists and will
1452 * update inode->i_state.
1454 * The caller must have a ref on the inode.
1456 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1458 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1460 EXPORT_SYMBOL(sync_inode);
1463 * sync_inode_metadata - write an inode to disk
1464 * @inode: the inode to sync
1465 * @wait: wait for I/O to complete.
1467 * Write an inode to disk and adjust its dirty state after completion.
1469 * Note: only writes the actual inode, no associated data or other metadata.
1471 int sync_inode_metadata(struct inode *inode, int wait)
1473 struct writeback_control wbc = {
1474 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1475 .nr_to_write = 0, /* metadata-only */
1478 return sync_inode(inode, &wbc);
1480 EXPORT_SYMBOL(sync_inode_metadata);