Merge branch 'for-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[platform/kernel/linux-starfive.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123
124         list_move(&inode->i_io_list, head);
125
126         /* dirty_time doesn't count as dirty_io until expiration */
127         if (head != &wb->b_dirty_time)
128                 return wb_io_lists_populated(wb);
129
130         wb_io_lists_depopulated(wb);
131         return false;
132 }
133
134 static void wb_wakeup(struct bdi_writeback *wb)
135 {
136         spin_lock_bh(&wb->work_lock);
137         if (test_bit(WB_registered, &wb->state))
138                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
139         spin_unlock_bh(&wb->work_lock);
140 }
141
142 static void finish_writeback_work(struct bdi_writeback *wb,
143                                   struct wb_writeback_work *work)
144 {
145         struct wb_completion *done = work->done;
146
147         if (work->auto_free)
148                 kfree(work);
149         if (done) {
150                 wait_queue_head_t *waitq = done->waitq;
151
152                 /* @done can't be accessed after the following dec */
153                 if (atomic_dec_and_test(&done->cnt))
154                         wake_up_all(waitq);
155         }
156 }
157
158 static void wb_queue_work(struct bdi_writeback *wb,
159                           struct wb_writeback_work *work)
160 {
161         trace_writeback_queue(wb, work);
162
163         if (work->done)
164                 atomic_inc(&work->done->cnt);
165
166         spin_lock_bh(&wb->work_lock);
167
168         if (test_bit(WB_registered, &wb->state)) {
169                 list_add_tail(&work->list, &wb->work_list);
170                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
171         } else
172                 finish_writeback_work(wb, work);
173
174         spin_unlock_bh(&wb->work_lock);
175 }
176
177 /**
178  * wb_wait_for_completion - wait for completion of bdi_writeback_works
179  * @done: target wb_completion
180  *
181  * Wait for one or more work items issued to @bdi with their ->done field
182  * set to @done, which should have been initialized with
183  * DEFINE_WB_COMPLETION().  This function returns after all such work items
184  * are completed.  Work items which are waited upon aren't freed
185  * automatically on completion.
186  */
187 void wb_wait_for_completion(struct wb_completion *done)
188 {
189         atomic_dec(&done->cnt);         /* put down the initial count */
190         wait_event(*done->waitq, !atomic_read(&done->cnt));
191 }
192
193 #ifdef CONFIG_CGROUP_WRITEBACK
194
195 /*
196  * Parameters for foreign inode detection, see wbc_detach_inode() to see
197  * how they're used.
198  *
199  * These paramters are inherently heuristical as the detection target
200  * itself is fuzzy.  All we want to do is detaching an inode from the
201  * current owner if it's being written to by some other cgroups too much.
202  *
203  * The current cgroup writeback is built on the assumption that multiple
204  * cgroups writing to the same inode concurrently is very rare and a mode
205  * of operation which isn't well supported.  As such, the goal is not
206  * taking too long when a different cgroup takes over an inode while
207  * avoiding too aggressive flip-flops from occasional foreign writes.
208  *
209  * We record, very roughly, 2s worth of IO time history and if more than
210  * half of that is foreign, trigger the switch.  The recording is quantized
211  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
212  * writes smaller than 1/8 of avg size are ignored.
213  */
214 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
215 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
216 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
217 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
218
219 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
220 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
221                                         /* each slot's duration is 2s / 16 */
222 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
223                                         /* if foreign slots >= 8, switch */
224 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
225                                         /* one round can affect upto 5 slots */
226 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
227
228 /*
229  * Maximum inodes per isw.  A specific value has been chosen to make
230  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
231  */
232 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
233                                 / sizeof(struct inode *))
234
235 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
236 static struct workqueue_struct *isw_wq;
237
238 void __inode_attach_wb(struct inode *inode, struct page *page)
239 {
240         struct backing_dev_info *bdi = inode_to_bdi(inode);
241         struct bdi_writeback *wb = NULL;
242
243         if (inode_cgwb_enabled(inode)) {
244                 struct cgroup_subsys_state *memcg_css;
245
246                 if (page) {
247                         memcg_css = mem_cgroup_css_from_page(page);
248                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
249                 } else {
250                         /* must pin memcg_css, see wb_get_create() */
251                         memcg_css = task_get_css(current, memory_cgrp_id);
252                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
253                         css_put(memcg_css);
254                 }
255         }
256
257         if (!wb)
258                 wb = &bdi->wb;
259
260         /*
261          * There may be multiple instances of this function racing to
262          * update the same inode.  Use cmpxchg() to tell the winner.
263          */
264         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
265                 wb_put(wb);
266 }
267 EXPORT_SYMBOL_GPL(__inode_attach_wb);
268
269 /**
270  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
271  * @inode: inode of interest with i_lock held
272  * @wb: target bdi_writeback
273  *
274  * Remove the inode from wb's io lists and if necessarily put onto b_attached
275  * list.  Only inodes attached to cgwb's are kept on this list.
276  */
277 static void inode_cgwb_move_to_attached(struct inode *inode,
278                                         struct bdi_writeback *wb)
279 {
280         assert_spin_locked(&wb->list_lock);
281         assert_spin_locked(&inode->i_lock);
282
283         inode->i_state &= ~I_SYNC_QUEUED;
284         if (wb != &wb->bdi->wb)
285                 list_move(&inode->i_io_list, &wb->b_attached);
286         else
287                 list_del_init(&inode->i_io_list);
288         wb_io_lists_depopulated(wb);
289 }
290
291 /**
292  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
293  * @inode: inode of interest with i_lock held
294  *
295  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
296  * held on entry and is released on return.  The returned wb is guaranteed
297  * to stay @inode's associated wb until its list_lock is released.
298  */
299 static struct bdi_writeback *
300 locked_inode_to_wb_and_lock_list(struct inode *inode)
301         __releases(&inode->i_lock)
302         __acquires(&wb->list_lock)
303 {
304         while (true) {
305                 struct bdi_writeback *wb = inode_to_wb(inode);
306
307                 /*
308                  * inode_to_wb() association is protected by both
309                  * @inode->i_lock and @wb->list_lock but list_lock nests
310                  * outside i_lock.  Drop i_lock and verify that the
311                  * association hasn't changed after acquiring list_lock.
312                  */
313                 wb_get(wb);
314                 spin_unlock(&inode->i_lock);
315                 spin_lock(&wb->list_lock);
316
317                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
318                 if (likely(wb == inode->i_wb)) {
319                         wb_put(wb);     /* @inode already has ref */
320                         return wb;
321                 }
322
323                 spin_unlock(&wb->list_lock);
324                 wb_put(wb);
325                 cpu_relax();
326                 spin_lock(&inode->i_lock);
327         }
328 }
329
330 /**
331  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
332  * @inode: inode of interest
333  *
334  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
335  * on entry.
336  */
337 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
338         __acquires(&wb->list_lock)
339 {
340         spin_lock(&inode->i_lock);
341         return locked_inode_to_wb_and_lock_list(inode);
342 }
343
344 struct inode_switch_wbs_context {
345         struct rcu_work         work;
346
347         /*
348          * Multiple inodes can be switched at once.  The switching procedure
349          * consists of two parts, separated by a RCU grace period.  To make
350          * sure that the second part is executed for each inode gone through
351          * the first part, all inode pointers are placed into a NULL-terminated
352          * array embedded into struct inode_switch_wbs_context.  Otherwise
353          * an inode could be left in a non-consistent state.
354          */
355         struct bdi_writeback    *new_wb;
356         struct inode            *inodes[];
357 };
358
359 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
360 {
361         down_write(&bdi->wb_switch_rwsem);
362 }
363
364 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
365 {
366         up_write(&bdi->wb_switch_rwsem);
367 }
368
369 static bool inode_do_switch_wbs(struct inode *inode,
370                                 struct bdi_writeback *old_wb,
371                                 struct bdi_writeback *new_wb)
372 {
373         struct address_space *mapping = inode->i_mapping;
374         XA_STATE(xas, &mapping->i_pages, 0);
375         struct folio *folio;
376         bool switched = false;
377
378         spin_lock(&inode->i_lock);
379         xa_lock_irq(&mapping->i_pages);
380
381         /*
382          * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
383          * path owns the inode and we shouldn't modify ->i_io_list.
384          */
385         if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
386                 goto skip_switch;
387
388         trace_inode_switch_wbs(inode, old_wb, new_wb);
389
390         /*
391          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392          * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
393          * folios actually under writeback.
394          */
395         xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396                 if (folio_test_dirty(folio)) {
397                         long nr = folio_nr_pages(folio);
398                         wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
399                         wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
400                 }
401         }
402
403         xas_set(&xas, 0);
404         xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
405                 long nr = folio_nr_pages(folio);
406                 WARN_ON_ONCE(!folio_test_writeback(folio));
407                 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
408                 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
409         }
410
411         if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
412                 atomic_dec(&old_wb->writeback_inodes);
413                 atomic_inc(&new_wb->writeback_inodes);
414         }
415
416         wb_get(new_wb);
417
418         /*
419          * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
420          * the specific list @inode was on is ignored and the @inode is put on
421          * ->b_dirty which is always correct including from ->b_dirty_time.
422          * The transfer preserves @inode->dirtied_when ordering.  If the @inode
423          * was clean, it means it was on the b_attached list, so move it onto
424          * the b_attached list of @new_wb.
425          */
426         if (!list_empty(&inode->i_io_list)) {
427                 inode->i_wb = new_wb;
428
429                 if (inode->i_state & I_DIRTY_ALL) {
430                         struct inode *pos;
431
432                         list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
433                                 if (time_after_eq(inode->dirtied_when,
434                                                   pos->dirtied_when))
435                                         break;
436                         inode_io_list_move_locked(inode, new_wb,
437                                                   pos->i_io_list.prev);
438                 } else {
439                         inode_cgwb_move_to_attached(inode, new_wb);
440                 }
441         } else {
442                 inode->i_wb = new_wb;
443         }
444
445         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
446         inode->i_wb_frn_winner = 0;
447         inode->i_wb_frn_avg_time = 0;
448         inode->i_wb_frn_history = 0;
449         switched = true;
450 skip_switch:
451         /*
452          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
453          * ensures that the new wb is visible if they see !I_WB_SWITCH.
454          */
455         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
456
457         xa_unlock_irq(&mapping->i_pages);
458         spin_unlock(&inode->i_lock);
459
460         return switched;
461 }
462
463 static void inode_switch_wbs_work_fn(struct work_struct *work)
464 {
465         struct inode_switch_wbs_context *isw =
466                 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
467         struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
468         struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
469         struct bdi_writeback *new_wb = isw->new_wb;
470         unsigned long nr_switched = 0;
471         struct inode **inodep;
472
473         /*
474          * If @inode switches cgwb membership while sync_inodes_sb() is
475          * being issued, sync_inodes_sb() might miss it.  Synchronize.
476          */
477         down_read(&bdi->wb_switch_rwsem);
478
479         /*
480          * By the time control reaches here, RCU grace period has passed
481          * since I_WB_SWITCH assertion and all wb stat update transactions
482          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
483          * synchronizing against the i_pages lock.
484          *
485          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
486          * gives us exclusion against all wb related operations on @inode
487          * including IO list manipulations and stat updates.
488          */
489         if (old_wb < new_wb) {
490                 spin_lock(&old_wb->list_lock);
491                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
492         } else {
493                 spin_lock(&new_wb->list_lock);
494                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
495         }
496
497         for (inodep = isw->inodes; *inodep; inodep++) {
498                 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
499                 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
500                         nr_switched++;
501         }
502
503         spin_unlock(&new_wb->list_lock);
504         spin_unlock(&old_wb->list_lock);
505
506         up_read(&bdi->wb_switch_rwsem);
507
508         if (nr_switched) {
509                 wb_wakeup(new_wb);
510                 wb_put_many(old_wb, nr_switched);
511         }
512
513         for (inodep = isw->inodes; *inodep; inodep++)
514                 iput(*inodep);
515         wb_put(new_wb);
516         kfree(isw);
517         atomic_dec(&isw_nr_in_flight);
518 }
519
520 static bool inode_prepare_wbs_switch(struct inode *inode,
521                                      struct bdi_writeback *new_wb)
522 {
523         /*
524          * Paired with smp_mb() in cgroup_writeback_umount().
525          * isw_nr_in_flight must be increased before checking SB_ACTIVE and
526          * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
527          * in cgroup_writeback_umount() and the isw_wq will be not flushed.
528          */
529         smp_mb();
530
531         if (IS_DAX(inode))
532                 return false;
533
534         /* while holding I_WB_SWITCH, no one else can update the association */
535         spin_lock(&inode->i_lock);
536         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
537             inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
538             inode_to_wb(inode) == new_wb) {
539                 spin_unlock(&inode->i_lock);
540                 return false;
541         }
542         inode->i_state |= I_WB_SWITCH;
543         __iget(inode);
544         spin_unlock(&inode->i_lock);
545
546         return true;
547 }
548
549 /**
550  * inode_switch_wbs - change the wb association of an inode
551  * @inode: target inode
552  * @new_wb_id: ID of the new wb
553  *
554  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
555  * switching is performed asynchronously and may fail silently.
556  */
557 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
558 {
559         struct backing_dev_info *bdi = inode_to_bdi(inode);
560         struct cgroup_subsys_state *memcg_css;
561         struct inode_switch_wbs_context *isw;
562
563         /* noop if seems to be already in progress */
564         if (inode->i_state & I_WB_SWITCH)
565                 return;
566
567         /* avoid queueing a new switch if too many are already in flight */
568         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
569                 return;
570
571         isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
572         if (!isw)
573                 return;
574
575         atomic_inc(&isw_nr_in_flight);
576
577         /* find and pin the new wb */
578         rcu_read_lock();
579         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
580         if (memcg_css && !css_tryget(memcg_css))
581                 memcg_css = NULL;
582         rcu_read_unlock();
583         if (!memcg_css)
584                 goto out_free;
585
586         isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
587         css_put(memcg_css);
588         if (!isw->new_wb)
589                 goto out_free;
590
591         if (!inode_prepare_wbs_switch(inode, isw->new_wb))
592                 goto out_free;
593
594         isw->inodes[0] = inode;
595
596         /*
597          * In addition to synchronizing among switchers, I_WB_SWITCH tells
598          * the RCU protected stat update paths to grab the i_page
599          * lock so that stat transfer can synchronize against them.
600          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
601          */
602         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
603         queue_rcu_work(isw_wq, &isw->work);
604         return;
605
606 out_free:
607         atomic_dec(&isw_nr_in_flight);
608         if (isw->new_wb)
609                 wb_put(isw->new_wb);
610         kfree(isw);
611 }
612
613 /**
614  * cleanup_offline_cgwb - detach associated inodes
615  * @wb: target wb
616  *
617  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
618  * to eventually release the dying @wb.  Returns %true if not all inodes were
619  * switched and the function has to be restarted.
620  */
621 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
622 {
623         struct cgroup_subsys_state *memcg_css;
624         struct inode_switch_wbs_context *isw;
625         struct inode *inode;
626         int nr;
627         bool restart = false;
628
629         isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
630                       GFP_KERNEL);
631         if (!isw)
632                 return restart;
633
634         atomic_inc(&isw_nr_in_flight);
635
636         for (memcg_css = wb->memcg_css->parent; memcg_css;
637              memcg_css = memcg_css->parent) {
638                 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
639                 if (isw->new_wb)
640                         break;
641         }
642         if (unlikely(!isw->new_wb))
643                 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
644
645         nr = 0;
646         spin_lock(&wb->list_lock);
647         list_for_each_entry(inode, &wb->b_attached, i_io_list) {
648                 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
649                         continue;
650
651                 isw->inodes[nr++] = inode;
652
653                 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
654                         restart = true;
655                         break;
656                 }
657         }
658         spin_unlock(&wb->list_lock);
659
660         /* no attached inodes? bail out */
661         if (nr == 0) {
662                 atomic_dec(&isw_nr_in_flight);
663                 wb_put(isw->new_wb);
664                 kfree(isw);
665                 return restart;
666         }
667
668         /*
669          * In addition to synchronizing among switchers, I_WB_SWITCH tells
670          * the RCU protected stat update paths to grab the i_page
671          * lock so that stat transfer can synchronize against them.
672          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
673          */
674         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
675         queue_rcu_work(isw_wq, &isw->work);
676
677         return restart;
678 }
679
680 /**
681  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
682  * @wbc: writeback_control of interest
683  * @inode: target inode
684  *
685  * @inode is locked and about to be written back under the control of @wbc.
686  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
687  * writeback completion, wbc_detach_inode() should be called.  This is used
688  * to track the cgroup writeback context.
689  */
690 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
691                                  struct inode *inode)
692 {
693         if (!inode_cgwb_enabled(inode)) {
694                 spin_unlock(&inode->i_lock);
695                 return;
696         }
697
698         wbc->wb = inode_to_wb(inode);
699         wbc->inode = inode;
700
701         wbc->wb_id = wbc->wb->memcg_css->id;
702         wbc->wb_lcand_id = inode->i_wb_frn_winner;
703         wbc->wb_tcand_id = 0;
704         wbc->wb_bytes = 0;
705         wbc->wb_lcand_bytes = 0;
706         wbc->wb_tcand_bytes = 0;
707
708         wb_get(wbc->wb);
709         spin_unlock(&inode->i_lock);
710
711         /*
712          * A dying wb indicates that either the blkcg associated with the
713          * memcg changed or the associated memcg is dying.  In the first
714          * case, a replacement wb should already be available and we should
715          * refresh the wb immediately.  In the second case, trying to
716          * refresh will keep failing.
717          */
718         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
719                 inode_switch_wbs(inode, wbc->wb_id);
720 }
721 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
722
723 /**
724  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
725  * @wbc: writeback_control of the just finished writeback
726  *
727  * To be called after a writeback attempt of an inode finishes and undoes
728  * wbc_attach_and_unlock_inode().  Can be called under any context.
729  *
730  * As concurrent write sharing of an inode is expected to be very rare and
731  * memcg only tracks page ownership on first-use basis severely confining
732  * the usefulness of such sharing, cgroup writeback tracks ownership
733  * per-inode.  While the support for concurrent write sharing of an inode
734  * is deemed unnecessary, an inode being written to by different cgroups at
735  * different points in time is a lot more common, and, more importantly,
736  * charging only by first-use can too readily lead to grossly incorrect
737  * behaviors (single foreign page can lead to gigabytes of writeback to be
738  * incorrectly attributed).
739  *
740  * To resolve this issue, cgroup writeback detects the majority dirtier of
741  * an inode and transfers the ownership to it.  To avoid unnnecessary
742  * oscillation, the detection mechanism keeps track of history and gives
743  * out the switch verdict only if the foreign usage pattern is stable over
744  * a certain amount of time and/or writeback attempts.
745  *
746  * On each writeback attempt, @wbc tries to detect the majority writer
747  * using Boyer-Moore majority vote algorithm.  In addition to the byte
748  * count from the majority voting, it also counts the bytes written for the
749  * current wb and the last round's winner wb (max of last round's current
750  * wb, the winner from two rounds ago, and the last round's majority
751  * candidate).  Keeping track of the historical winner helps the algorithm
752  * to semi-reliably detect the most active writer even when it's not the
753  * absolute majority.
754  *
755  * Once the winner of the round is determined, whether the winner is
756  * foreign or not and how much IO time the round consumed is recorded in
757  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
758  * over a certain threshold, the switch verdict is given.
759  */
760 void wbc_detach_inode(struct writeback_control *wbc)
761 {
762         struct bdi_writeback *wb = wbc->wb;
763         struct inode *inode = wbc->inode;
764         unsigned long avg_time, max_bytes, max_time;
765         u16 history;
766         int max_id;
767
768         if (!wb)
769                 return;
770
771         history = inode->i_wb_frn_history;
772         avg_time = inode->i_wb_frn_avg_time;
773
774         /* pick the winner of this round */
775         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
776             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
777                 max_id = wbc->wb_id;
778                 max_bytes = wbc->wb_bytes;
779         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
780                 max_id = wbc->wb_lcand_id;
781                 max_bytes = wbc->wb_lcand_bytes;
782         } else {
783                 max_id = wbc->wb_tcand_id;
784                 max_bytes = wbc->wb_tcand_bytes;
785         }
786
787         /*
788          * Calculate the amount of IO time the winner consumed and fold it
789          * into the running average kept per inode.  If the consumed IO
790          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
791          * deciding whether to switch or not.  This is to prevent one-off
792          * small dirtiers from skewing the verdict.
793          */
794         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
795                                 wb->avg_write_bandwidth);
796         if (avg_time)
797                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
798                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
799         else
800                 avg_time = max_time;    /* immediate catch up on first run */
801
802         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
803                 int slots;
804
805                 /*
806                  * The switch verdict is reached if foreign wb's consume
807                  * more than a certain proportion of IO time in a
808                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
809                  * history mask where each bit represents one sixteenth of
810                  * the period.  Determine the number of slots to shift into
811                  * history from @max_time.
812                  */
813                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
814                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
815                 history <<= slots;
816                 if (wbc->wb_id != max_id)
817                         history |= (1U << slots) - 1;
818
819                 if (history)
820                         trace_inode_foreign_history(inode, wbc, history);
821
822                 /*
823                  * Switch if the current wb isn't the consistent winner.
824                  * If there are multiple closely competing dirtiers, the
825                  * inode may switch across them repeatedly over time, which
826                  * is okay.  The main goal is avoiding keeping an inode on
827                  * the wrong wb for an extended period of time.
828                  */
829                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
830                         inode_switch_wbs(inode, max_id);
831         }
832
833         /*
834          * Multiple instances of this function may race to update the
835          * following fields but we don't mind occassional inaccuracies.
836          */
837         inode->i_wb_frn_winner = max_id;
838         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
839         inode->i_wb_frn_history = history;
840
841         wb_put(wbc->wb);
842         wbc->wb = NULL;
843 }
844 EXPORT_SYMBOL_GPL(wbc_detach_inode);
845
846 /**
847  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
848  * @wbc: writeback_control of the writeback in progress
849  * @page: page being written out
850  * @bytes: number of bytes being written out
851  *
852  * @bytes from @page are about to written out during the writeback
853  * controlled by @wbc.  Keep the book for foreign inode detection.  See
854  * wbc_detach_inode().
855  */
856 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
857                               size_t bytes)
858 {
859         struct cgroup_subsys_state *css;
860         int id;
861
862         /*
863          * pageout() path doesn't attach @wbc to the inode being written
864          * out.  This is intentional as we don't want the function to block
865          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
866          * regular writeback instead of writing things out itself.
867          */
868         if (!wbc->wb || wbc->no_cgroup_owner)
869                 return;
870
871         css = mem_cgroup_css_from_page(page);
872         /* dead cgroups shouldn't contribute to inode ownership arbitration */
873         if (!(css->flags & CSS_ONLINE))
874                 return;
875
876         id = css->id;
877
878         if (id == wbc->wb_id) {
879                 wbc->wb_bytes += bytes;
880                 return;
881         }
882
883         if (id == wbc->wb_lcand_id)
884                 wbc->wb_lcand_bytes += bytes;
885
886         /* Boyer-Moore majority vote algorithm */
887         if (!wbc->wb_tcand_bytes)
888                 wbc->wb_tcand_id = id;
889         if (id == wbc->wb_tcand_id)
890                 wbc->wb_tcand_bytes += bytes;
891         else
892                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
893 }
894 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
895
896 /**
897  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
898  * @wb: target bdi_writeback to split @nr_pages to
899  * @nr_pages: number of pages to write for the whole bdi
900  *
901  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
902  * relation to the total write bandwidth of all wb's w/ dirty inodes on
903  * @wb->bdi.
904  */
905 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
906 {
907         unsigned long this_bw = wb->avg_write_bandwidth;
908         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
909
910         if (nr_pages == LONG_MAX)
911                 return LONG_MAX;
912
913         /*
914          * This may be called on clean wb's and proportional distribution
915          * may not make sense, just use the original @nr_pages in those
916          * cases.  In general, we wanna err on the side of writing more.
917          */
918         if (!tot_bw || this_bw >= tot_bw)
919                 return nr_pages;
920         else
921                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
922 }
923
924 /**
925  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
926  * @bdi: target backing_dev_info
927  * @base_work: wb_writeback_work to issue
928  * @skip_if_busy: skip wb's which already have writeback in progress
929  *
930  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
931  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
932  * distributed to the busy wbs according to each wb's proportion in the
933  * total active write bandwidth of @bdi.
934  */
935 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
936                                   struct wb_writeback_work *base_work,
937                                   bool skip_if_busy)
938 {
939         struct bdi_writeback *last_wb = NULL;
940         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
941                                               struct bdi_writeback, bdi_node);
942
943         might_sleep();
944 restart:
945         rcu_read_lock();
946         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
947                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
948                 struct wb_writeback_work fallback_work;
949                 struct wb_writeback_work *work;
950                 long nr_pages;
951
952                 if (last_wb) {
953                         wb_put(last_wb);
954                         last_wb = NULL;
955                 }
956
957                 /* SYNC_ALL writes out I_DIRTY_TIME too */
958                 if (!wb_has_dirty_io(wb) &&
959                     (base_work->sync_mode == WB_SYNC_NONE ||
960                      list_empty(&wb->b_dirty_time)))
961                         continue;
962                 if (skip_if_busy && writeback_in_progress(wb))
963                         continue;
964
965                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
966
967                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
968                 if (work) {
969                         *work = *base_work;
970                         work->nr_pages = nr_pages;
971                         work->auto_free = 1;
972                         wb_queue_work(wb, work);
973                         continue;
974                 }
975
976                 /* alloc failed, execute synchronously using on-stack fallback */
977                 work = &fallback_work;
978                 *work = *base_work;
979                 work->nr_pages = nr_pages;
980                 work->auto_free = 0;
981                 work->done = &fallback_work_done;
982
983                 wb_queue_work(wb, work);
984
985                 /*
986                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
987                  * continuing iteration from @wb after dropping and
988                  * regrabbing rcu read lock.
989                  */
990                 wb_get(wb);
991                 last_wb = wb;
992
993                 rcu_read_unlock();
994                 wb_wait_for_completion(&fallback_work_done);
995                 goto restart;
996         }
997         rcu_read_unlock();
998
999         if (last_wb)
1000                 wb_put(last_wb);
1001 }
1002
1003 /**
1004  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1005  * @bdi_id: target bdi id
1006  * @memcg_id: target memcg css id
1007  * @reason: reason why some writeback work initiated
1008  * @done: target wb_completion
1009  *
1010  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1011  * with the specified parameters.
1012  */
1013 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1014                            enum wb_reason reason, struct wb_completion *done)
1015 {
1016         struct backing_dev_info *bdi;
1017         struct cgroup_subsys_state *memcg_css;
1018         struct bdi_writeback *wb;
1019         struct wb_writeback_work *work;
1020         unsigned long dirty;
1021         int ret;
1022
1023         /* lookup bdi and memcg */
1024         bdi = bdi_get_by_id(bdi_id);
1025         if (!bdi)
1026                 return -ENOENT;
1027
1028         rcu_read_lock();
1029         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1030         if (memcg_css && !css_tryget(memcg_css))
1031                 memcg_css = NULL;
1032         rcu_read_unlock();
1033         if (!memcg_css) {
1034                 ret = -ENOENT;
1035                 goto out_bdi_put;
1036         }
1037
1038         /*
1039          * And find the associated wb.  If the wb isn't there already
1040          * there's nothing to flush, don't create one.
1041          */
1042         wb = wb_get_lookup(bdi, memcg_css);
1043         if (!wb) {
1044                 ret = -ENOENT;
1045                 goto out_css_put;
1046         }
1047
1048         /*
1049          * The caller is attempting to write out most of
1050          * the currently dirty pages.  Let's take the current dirty page
1051          * count and inflate it by 25% which should be large enough to
1052          * flush out most dirty pages while avoiding getting livelocked by
1053          * concurrent dirtiers.
1054          *
1055          * BTW the memcg stats are flushed periodically and this is best-effort
1056          * estimation, so some potential error is ok.
1057          */
1058         dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1059         dirty = dirty * 10 / 8;
1060
1061         /* issue the writeback work */
1062         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1063         if (work) {
1064                 work->nr_pages = dirty;
1065                 work->sync_mode = WB_SYNC_NONE;
1066                 work->range_cyclic = 1;
1067                 work->reason = reason;
1068                 work->done = done;
1069                 work->auto_free = 1;
1070                 wb_queue_work(wb, work);
1071                 ret = 0;
1072         } else {
1073                 ret = -ENOMEM;
1074         }
1075
1076         wb_put(wb);
1077 out_css_put:
1078         css_put(memcg_css);
1079 out_bdi_put:
1080         bdi_put(bdi);
1081         return ret;
1082 }
1083
1084 /**
1085  * cgroup_writeback_umount - flush inode wb switches for umount
1086  *
1087  * This function is called when a super_block is about to be destroyed and
1088  * flushes in-flight inode wb switches.  An inode wb switch goes through
1089  * RCU and then workqueue, so the two need to be flushed in order to ensure
1090  * that all previously scheduled switches are finished.  As wb switches are
1091  * rare occurrences and synchronize_rcu() can take a while, perform
1092  * flushing iff wb switches are in flight.
1093  */
1094 void cgroup_writeback_umount(void)
1095 {
1096         /*
1097          * SB_ACTIVE should be reliably cleared before checking
1098          * isw_nr_in_flight, see generic_shutdown_super().
1099          */
1100         smp_mb();
1101
1102         if (atomic_read(&isw_nr_in_flight)) {
1103                 /*
1104                  * Use rcu_barrier() to wait for all pending callbacks to
1105                  * ensure that all in-flight wb switches are in the workqueue.
1106                  */
1107                 rcu_barrier();
1108                 flush_workqueue(isw_wq);
1109         }
1110 }
1111
1112 static int __init cgroup_writeback_init(void)
1113 {
1114         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1115         if (!isw_wq)
1116                 return -ENOMEM;
1117         return 0;
1118 }
1119 fs_initcall(cgroup_writeback_init);
1120
1121 #else   /* CONFIG_CGROUP_WRITEBACK */
1122
1123 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1124 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1125
1126 static void inode_cgwb_move_to_attached(struct inode *inode,
1127                                         struct bdi_writeback *wb)
1128 {
1129         assert_spin_locked(&wb->list_lock);
1130         assert_spin_locked(&inode->i_lock);
1131
1132         inode->i_state &= ~I_SYNC_QUEUED;
1133         list_del_init(&inode->i_io_list);
1134         wb_io_lists_depopulated(wb);
1135 }
1136
1137 static struct bdi_writeback *
1138 locked_inode_to_wb_and_lock_list(struct inode *inode)
1139         __releases(&inode->i_lock)
1140         __acquires(&wb->list_lock)
1141 {
1142         struct bdi_writeback *wb = inode_to_wb(inode);
1143
1144         spin_unlock(&inode->i_lock);
1145         spin_lock(&wb->list_lock);
1146         return wb;
1147 }
1148
1149 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1150         __acquires(&wb->list_lock)
1151 {
1152         struct bdi_writeback *wb = inode_to_wb(inode);
1153
1154         spin_lock(&wb->list_lock);
1155         return wb;
1156 }
1157
1158 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1159 {
1160         return nr_pages;
1161 }
1162
1163 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1164                                   struct wb_writeback_work *base_work,
1165                                   bool skip_if_busy)
1166 {
1167         might_sleep();
1168
1169         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1170                 base_work->auto_free = 0;
1171                 wb_queue_work(&bdi->wb, base_work);
1172         }
1173 }
1174
1175 #endif  /* CONFIG_CGROUP_WRITEBACK */
1176
1177 /*
1178  * Add in the number of potentially dirty inodes, because each inode
1179  * write can dirty pagecache in the underlying blockdev.
1180  */
1181 static unsigned long get_nr_dirty_pages(void)
1182 {
1183         return global_node_page_state(NR_FILE_DIRTY) +
1184                 get_nr_dirty_inodes();
1185 }
1186
1187 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1188 {
1189         if (!wb_has_dirty_io(wb))
1190                 return;
1191
1192         /*
1193          * All callers of this function want to start writeback of all
1194          * dirty pages. Places like vmscan can call this at a very
1195          * high frequency, causing pointless allocations of tons of
1196          * work items and keeping the flusher threads busy retrieving
1197          * that work. Ensure that we only allow one of them pending and
1198          * inflight at the time.
1199          */
1200         if (test_bit(WB_start_all, &wb->state) ||
1201             test_and_set_bit(WB_start_all, &wb->state))
1202                 return;
1203
1204         wb->start_all_reason = reason;
1205         wb_wakeup(wb);
1206 }
1207
1208 /**
1209  * wb_start_background_writeback - start background writeback
1210  * @wb: bdi_writback to write from
1211  *
1212  * Description:
1213  *   This makes sure WB_SYNC_NONE background writeback happens. When
1214  *   this function returns, it is only guaranteed that for given wb
1215  *   some IO is happening if we are over background dirty threshold.
1216  *   Caller need not hold sb s_umount semaphore.
1217  */
1218 void wb_start_background_writeback(struct bdi_writeback *wb)
1219 {
1220         /*
1221          * We just wake up the flusher thread. It will perform background
1222          * writeback as soon as there is no other work to do.
1223          */
1224         trace_writeback_wake_background(wb);
1225         wb_wakeup(wb);
1226 }
1227
1228 /*
1229  * Remove the inode from the writeback list it is on.
1230  */
1231 void inode_io_list_del(struct inode *inode)
1232 {
1233         struct bdi_writeback *wb;
1234
1235         wb = inode_to_wb_and_lock_list(inode);
1236         spin_lock(&inode->i_lock);
1237
1238         inode->i_state &= ~I_SYNC_QUEUED;
1239         list_del_init(&inode->i_io_list);
1240         wb_io_lists_depopulated(wb);
1241
1242         spin_unlock(&inode->i_lock);
1243         spin_unlock(&wb->list_lock);
1244 }
1245 EXPORT_SYMBOL(inode_io_list_del);
1246
1247 /*
1248  * mark an inode as under writeback on the sb
1249  */
1250 void sb_mark_inode_writeback(struct inode *inode)
1251 {
1252         struct super_block *sb = inode->i_sb;
1253         unsigned long flags;
1254
1255         if (list_empty(&inode->i_wb_list)) {
1256                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1257                 if (list_empty(&inode->i_wb_list)) {
1258                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1259                         trace_sb_mark_inode_writeback(inode);
1260                 }
1261                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1262         }
1263 }
1264
1265 /*
1266  * clear an inode as under writeback on the sb
1267  */
1268 void sb_clear_inode_writeback(struct inode *inode)
1269 {
1270         struct super_block *sb = inode->i_sb;
1271         unsigned long flags;
1272
1273         if (!list_empty(&inode->i_wb_list)) {
1274                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1275                 if (!list_empty(&inode->i_wb_list)) {
1276                         list_del_init(&inode->i_wb_list);
1277                         trace_sb_clear_inode_writeback(inode);
1278                 }
1279                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1280         }
1281 }
1282
1283 /*
1284  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1285  * furthest end of its superblock's dirty-inode list.
1286  *
1287  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1288  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1289  * the case then the inode must have been redirtied while it was being written
1290  * out and we don't reset its dirtied_when.
1291  */
1292 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1293 {
1294         assert_spin_locked(&inode->i_lock);
1295
1296         if (!list_empty(&wb->b_dirty)) {
1297                 struct inode *tail;
1298
1299                 tail = wb_inode(wb->b_dirty.next);
1300                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1301                         inode->dirtied_when = jiffies;
1302         }
1303         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1304         inode->i_state &= ~I_SYNC_QUEUED;
1305 }
1306
1307 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1308 {
1309         spin_lock(&inode->i_lock);
1310         redirty_tail_locked(inode, wb);
1311         spin_unlock(&inode->i_lock);
1312 }
1313
1314 /*
1315  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1316  */
1317 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1318 {
1319         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1320 }
1321
1322 static void inode_sync_complete(struct inode *inode)
1323 {
1324         inode->i_state &= ~I_SYNC;
1325         /* If inode is clean an unused, put it into LRU now... */
1326         inode_add_lru(inode);
1327         /* Waiters must see I_SYNC cleared before being woken up */
1328         smp_mb();
1329         wake_up_bit(&inode->i_state, __I_SYNC);
1330 }
1331
1332 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1333 {
1334         bool ret = time_after(inode->dirtied_when, t);
1335 #ifndef CONFIG_64BIT
1336         /*
1337          * For inodes being constantly redirtied, dirtied_when can get stuck.
1338          * It _appears_ to be in the future, but is actually in distant past.
1339          * This test is necessary to prevent such wrapped-around relative times
1340          * from permanently stopping the whole bdi writeback.
1341          */
1342         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1343 #endif
1344         return ret;
1345 }
1346
1347 #define EXPIRE_DIRTY_ATIME 0x0001
1348
1349 /*
1350  * Move expired (dirtied before dirtied_before) dirty inodes from
1351  * @delaying_queue to @dispatch_queue.
1352  */
1353 static int move_expired_inodes(struct list_head *delaying_queue,
1354                                struct list_head *dispatch_queue,
1355                                unsigned long dirtied_before)
1356 {
1357         LIST_HEAD(tmp);
1358         struct list_head *pos, *node;
1359         struct super_block *sb = NULL;
1360         struct inode *inode;
1361         int do_sb_sort = 0;
1362         int moved = 0;
1363
1364         while (!list_empty(delaying_queue)) {
1365                 inode = wb_inode(delaying_queue->prev);
1366                 if (inode_dirtied_after(inode, dirtied_before))
1367                         break;
1368                 list_move(&inode->i_io_list, &tmp);
1369                 moved++;
1370                 spin_lock(&inode->i_lock);
1371                 inode->i_state |= I_SYNC_QUEUED;
1372                 spin_unlock(&inode->i_lock);
1373                 if (sb_is_blkdev_sb(inode->i_sb))
1374                         continue;
1375                 if (sb && sb != inode->i_sb)
1376                         do_sb_sort = 1;
1377                 sb = inode->i_sb;
1378         }
1379
1380         /* just one sb in list, splice to dispatch_queue and we're done */
1381         if (!do_sb_sort) {
1382                 list_splice(&tmp, dispatch_queue);
1383                 goto out;
1384         }
1385
1386         /* Move inodes from one superblock together */
1387         while (!list_empty(&tmp)) {
1388                 sb = wb_inode(tmp.prev)->i_sb;
1389                 list_for_each_prev_safe(pos, node, &tmp) {
1390                         inode = wb_inode(pos);
1391                         if (inode->i_sb == sb)
1392                                 list_move(&inode->i_io_list, dispatch_queue);
1393                 }
1394         }
1395 out:
1396         return moved;
1397 }
1398
1399 /*
1400  * Queue all expired dirty inodes for io, eldest first.
1401  * Before
1402  *         newly dirtied     b_dirty    b_io    b_more_io
1403  *         =============>    gf         edc     BA
1404  * After
1405  *         newly dirtied     b_dirty    b_io    b_more_io
1406  *         =============>    g          fBAedc
1407  *                                           |
1408  *                                           +--> dequeue for IO
1409  */
1410 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1411                      unsigned long dirtied_before)
1412 {
1413         int moved;
1414         unsigned long time_expire_jif = dirtied_before;
1415
1416         assert_spin_locked(&wb->list_lock);
1417         list_splice_init(&wb->b_more_io, &wb->b_io);
1418         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1419         if (!work->for_sync)
1420                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1421         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1422                                      time_expire_jif);
1423         if (moved)
1424                 wb_io_lists_populated(wb);
1425         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1426 }
1427
1428 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1429 {
1430         int ret;
1431
1432         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1433                 trace_writeback_write_inode_start(inode, wbc);
1434                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1435                 trace_writeback_write_inode(inode, wbc);
1436                 return ret;
1437         }
1438         return 0;
1439 }
1440
1441 /*
1442  * Wait for writeback on an inode to complete. Called with i_lock held.
1443  * Caller must make sure inode cannot go away when we drop i_lock.
1444  */
1445 static void __inode_wait_for_writeback(struct inode *inode)
1446         __releases(inode->i_lock)
1447         __acquires(inode->i_lock)
1448 {
1449         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1450         wait_queue_head_t *wqh;
1451
1452         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1453         while (inode->i_state & I_SYNC) {
1454                 spin_unlock(&inode->i_lock);
1455                 __wait_on_bit(wqh, &wq, bit_wait,
1456                               TASK_UNINTERRUPTIBLE);
1457                 spin_lock(&inode->i_lock);
1458         }
1459 }
1460
1461 /*
1462  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1463  */
1464 void inode_wait_for_writeback(struct inode *inode)
1465 {
1466         spin_lock(&inode->i_lock);
1467         __inode_wait_for_writeback(inode);
1468         spin_unlock(&inode->i_lock);
1469 }
1470
1471 /*
1472  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1473  * held and drops it. It is aimed for callers not holding any inode reference
1474  * so once i_lock is dropped, inode can go away.
1475  */
1476 static void inode_sleep_on_writeback(struct inode *inode)
1477         __releases(inode->i_lock)
1478 {
1479         DEFINE_WAIT(wait);
1480         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1481         int sleep;
1482
1483         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1484         sleep = inode->i_state & I_SYNC;
1485         spin_unlock(&inode->i_lock);
1486         if (sleep)
1487                 schedule();
1488         finish_wait(wqh, &wait);
1489 }
1490
1491 /*
1492  * Find proper writeback list for the inode depending on its current state and
1493  * possibly also change of its state while we were doing writeback.  Here we
1494  * handle things such as livelock prevention or fairness of writeback among
1495  * inodes. This function can be called only by flusher thread - noone else
1496  * processes all inodes in writeback lists and requeueing inodes behind flusher
1497  * thread's back can have unexpected consequences.
1498  */
1499 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1500                           struct writeback_control *wbc)
1501 {
1502         if (inode->i_state & I_FREEING)
1503                 return;
1504
1505         /*
1506          * Sync livelock prevention. Each inode is tagged and synced in one
1507          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1508          * the dirty time to prevent enqueue and sync it again.
1509          */
1510         if ((inode->i_state & I_DIRTY) &&
1511             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1512                 inode->dirtied_when = jiffies;
1513
1514         if (wbc->pages_skipped) {
1515                 /*
1516                  * writeback is not making progress due to locked
1517                  * buffers. Skip this inode for now.
1518                  */
1519                 redirty_tail_locked(inode, wb);
1520                 return;
1521         }
1522
1523         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1524                 /*
1525                  * We didn't write back all the pages.  nfs_writepages()
1526                  * sometimes bales out without doing anything.
1527                  */
1528                 if (wbc->nr_to_write <= 0) {
1529                         /* Slice used up. Queue for next turn. */
1530                         requeue_io(inode, wb);
1531                 } else {
1532                         /*
1533                          * Writeback blocked by something other than
1534                          * congestion. Delay the inode for some time to
1535                          * avoid spinning on the CPU (100% iowait)
1536                          * retrying writeback of the dirty page/inode
1537                          * that cannot be performed immediately.
1538                          */
1539                         redirty_tail_locked(inode, wb);
1540                 }
1541         } else if (inode->i_state & I_DIRTY) {
1542                 /*
1543                  * Filesystems can dirty the inode during writeback operations,
1544                  * such as delayed allocation during submission or metadata
1545                  * updates after data IO completion.
1546                  */
1547                 redirty_tail_locked(inode, wb);
1548         } else if (inode->i_state & I_DIRTY_TIME) {
1549                 inode->dirtied_when = jiffies;
1550                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1551                 inode->i_state &= ~I_SYNC_QUEUED;
1552         } else {
1553                 /* The inode is clean. Remove from writeback lists. */
1554                 inode_cgwb_move_to_attached(inode, wb);
1555         }
1556 }
1557
1558 /*
1559  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1560  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1561  *
1562  * This doesn't remove the inode from the writeback list it is on, except
1563  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1564  * expiration.  The caller is otherwise responsible for writeback list handling.
1565  *
1566  * The caller is also responsible for setting the I_SYNC flag beforehand and
1567  * calling inode_sync_complete() to clear it afterwards.
1568  */
1569 static int
1570 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1571 {
1572         struct address_space *mapping = inode->i_mapping;
1573         long nr_to_write = wbc->nr_to_write;
1574         unsigned dirty;
1575         int ret;
1576
1577         WARN_ON(!(inode->i_state & I_SYNC));
1578
1579         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1580
1581         ret = do_writepages(mapping, wbc);
1582
1583         /*
1584          * Make sure to wait on the data before writing out the metadata.
1585          * This is important for filesystems that modify metadata on data
1586          * I/O completion. We don't do it for sync(2) writeback because it has a
1587          * separate, external IO completion path and ->sync_fs for guaranteeing
1588          * inode metadata is written back correctly.
1589          */
1590         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1591                 int err = filemap_fdatawait(mapping);
1592                 if (ret == 0)
1593                         ret = err;
1594         }
1595
1596         /*
1597          * If the inode has dirty timestamps and we need to write them, call
1598          * mark_inode_dirty_sync() to notify the filesystem about it and to
1599          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1600          */
1601         if ((inode->i_state & I_DIRTY_TIME) &&
1602             (wbc->sync_mode == WB_SYNC_ALL ||
1603              time_after(jiffies, inode->dirtied_time_when +
1604                         dirtytime_expire_interval * HZ))) {
1605                 trace_writeback_lazytime(inode);
1606                 mark_inode_dirty_sync(inode);
1607         }
1608
1609         /*
1610          * Get and clear the dirty flags from i_state.  This needs to be done
1611          * after calling writepages because some filesystems may redirty the
1612          * inode during writepages due to delalloc.  It also needs to be done
1613          * after handling timestamp expiration, as that may dirty the inode too.
1614          */
1615         spin_lock(&inode->i_lock);
1616         dirty = inode->i_state & I_DIRTY;
1617         inode->i_state &= ~dirty;
1618
1619         /*
1620          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1621          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1622          * either they see the I_DIRTY bits cleared or we see the dirtied
1623          * inode.
1624          *
1625          * I_DIRTY_PAGES is always cleared together above even if @mapping
1626          * still has dirty pages.  The flag is reinstated after smp_mb() if
1627          * necessary.  This guarantees that either __mark_inode_dirty()
1628          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1629          */
1630         smp_mb();
1631
1632         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1633                 inode->i_state |= I_DIRTY_PAGES;
1634         else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1635                 if (!(inode->i_state & I_DIRTY_PAGES)) {
1636                         inode->i_state &= ~I_PINNING_FSCACHE_WB;
1637                         wbc->unpinned_fscache_wb = true;
1638                         dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1639                 }
1640         }
1641
1642         spin_unlock(&inode->i_lock);
1643
1644         /* Don't write the inode if only I_DIRTY_PAGES was set */
1645         if (dirty & ~I_DIRTY_PAGES) {
1646                 int err = write_inode(inode, wbc);
1647                 if (ret == 0)
1648                         ret = err;
1649         }
1650         wbc->unpinned_fscache_wb = false;
1651         trace_writeback_single_inode(inode, wbc, nr_to_write);
1652         return ret;
1653 }
1654
1655 /*
1656  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1657  * the regular batched writeback done by the flusher threads in
1658  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1659  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1660  *
1661  * To prevent the inode from going away, either the caller must have a reference
1662  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1663  */
1664 static int writeback_single_inode(struct inode *inode,
1665                                   struct writeback_control *wbc)
1666 {
1667         struct bdi_writeback *wb;
1668         int ret = 0;
1669
1670         spin_lock(&inode->i_lock);
1671         if (!atomic_read(&inode->i_count))
1672                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1673         else
1674                 WARN_ON(inode->i_state & I_WILL_FREE);
1675
1676         if (inode->i_state & I_SYNC) {
1677                 /*
1678                  * Writeback is already running on the inode.  For WB_SYNC_NONE,
1679                  * that's enough and we can just return.  For WB_SYNC_ALL, we
1680                  * must wait for the existing writeback to complete, then do
1681                  * writeback again if there's anything left.
1682                  */
1683                 if (wbc->sync_mode != WB_SYNC_ALL)
1684                         goto out;
1685                 __inode_wait_for_writeback(inode);
1686         }
1687         WARN_ON(inode->i_state & I_SYNC);
1688         /*
1689          * If the inode is already fully clean, then there's nothing to do.
1690          *
1691          * For data-integrity syncs we also need to check whether any pages are
1692          * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1693          * there are any such pages, we'll need to wait for them.
1694          */
1695         if (!(inode->i_state & I_DIRTY_ALL) &&
1696             (wbc->sync_mode != WB_SYNC_ALL ||
1697              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1698                 goto out;
1699         inode->i_state |= I_SYNC;
1700         wbc_attach_and_unlock_inode(wbc, inode);
1701
1702         ret = __writeback_single_inode(inode, wbc);
1703
1704         wbc_detach_inode(wbc);
1705
1706         wb = inode_to_wb_and_lock_list(inode);
1707         spin_lock(&inode->i_lock);
1708         /*
1709          * If the inode is now fully clean, then it can be safely removed from
1710          * its writeback list (if any).  Otherwise the flusher threads are
1711          * responsible for the writeback lists.
1712          */
1713         if (!(inode->i_state & I_DIRTY_ALL))
1714                 inode_cgwb_move_to_attached(inode, wb);
1715         else if (!(inode->i_state & I_SYNC_QUEUED) &&
1716                  (inode->i_state & I_DIRTY))
1717                 redirty_tail_locked(inode, wb);
1718
1719         spin_unlock(&wb->list_lock);
1720         inode_sync_complete(inode);
1721 out:
1722         spin_unlock(&inode->i_lock);
1723         return ret;
1724 }
1725
1726 static long writeback_chunk_size(struct bdi_writeback *wb,
1727                                  struct wb_writeback_work *work)
1728 {
1729         long pages;
1730
1731         /*
1732          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1733          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1734          * here avoids calling into writeback_inodes_wb() more than once.
1735          *
1736          * The intended call sequence for WB_SYNC_ALL writeback is:
1737          *
1738          *      wb_writeback()
1739          *          writeback_sb_inodes()       <== called only once
1740          *              write_cache_pages()     <== called once for each inode
1741          *                   (quickly) tag currently dirty pages
1742          *                   (maybe slowly) sync all tagged pages
1743          */
1744         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1745                 pages = LONG_MAX;
1746         else {
1747                 pages = min(wb->avg_write_bandwidth / 2,
1748                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1749                 pages = min(pages, work->nr_pages);
1750                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1751                                    MIN_WRITEBACK_PAGES);
1752         }
1753
1754         return pages;
1755 }
1756
1757 /*
1758  * Write a portion of b_io inodes which belong to @sb.
1759  *
1760  * Return the number of pages and/or inodes written.
1761  *
1762  * NOTE! This is called with wb->list_lock held, and will
1763  * unlock and relock that for each inode it ends up doing
1764  * IO for.
1765  */
1766 static long writeback_sb_inodes(struct super_block *sb,
1767                                 struct bdi_writeback *wb,
1768                                 struct wb_writeback_work *work)
1769 {
1770         struct writeback_control wbc = {
1771                 .sync_mode              = work->sync_mode,
1772                 .tagged_writepages      = work->tagged_writepages,
1773                 .for_kupdate            = work->for_kupdate,
1774                 .for_background         = work->for_background,
1775                 .for_sync               = work->for_sync,
1776                 .range_cyclic           = work->range_cyclic,
1777                 .range_start            = 0,
1778                 .range_end              = LLONG_MAX,
1779         };
1780         unsigned long start_time = jiffies;
1781         long write_chunk;
1782         long total_wrote = 0;  /* count both pages and inodes */
1783
1784         while (!list_empty(&wb->b_io)) {
1785                 struct inode *inode = wb_inode(wb->b_io.prev);
1786                 struct bdi_writeback *tmp_wb;
1787                 long wrote;
1788
1789                 if (inode->i_sb != sb) {
1790                         if (work->sb) {
1791                                 /*
1792                                  * We only want to write back data for this
1793                                  * superblock, move all inodes not belonging
1794                                  * to it back onto the dirty list.
1795                                  */
1796                                 redirty_tail(inode, wb);
1797                                 continue;
1798                         }
1799
1800                         /*
1801                          * The inode belongs to a different superblock.
1802                          * Bounce back to the caller to unpin this and
1803                          * pin the next superblock.
1804                          */
1805                         break;
1806                 }
1807
1808                 /*
1809                  * Don't bother with new inodes or inodes being freed, first
1810                  * kind does not need periodic writeout yet, and for the latter
1811                  * kind writeout is handled by the freer.
1812                  */
1813                 spin_lock(&inode->i_lock);
1814                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1815                         redirty_tail_locked(inode, wb);
1816                         spin_unlock(&inode->i_lock);
1817                         continue;
1818                 }
1819                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1820                         /*
1821                          * If this inode is locked for writeback and we are not
1822                          * doing writeback-for-data-integrity, move it to
1823                          * b_more_io so that writeback can proceed with the
1824                          * other inodes on s_io.
1825                          *
1826                          * We'll have another go at writing back this inode
1827                          * when we completed a full scan of b_io.
1828                          */
1829                         spin_unlock(&inode->i_lock);
1830                         requeue_io(inode, wb);
1831                         trace_writeback_sb_inodes_requeue(inode);
1832                         continue;
1833                 }
1834                 spin_unlock(&wb->list_lock);
1835
1836                 /*
1837                  * We already requeued the inode if it had I_SYNC set and we
1838                  * are doing WB_SYNC_NONE writeback. So this catches only the
1839                  * WB_SYNC_ALL case.
1840                  */
1841                 if (inode->i_state & I_SYNC) {
1842                         /* Wait for I_SYNC. This function drops i_lock... */
1843                         inode_sleep_on_writeback(inode);
1844                         /* Inode may be gone, start again */
1845                         spin_lock(&wb->list_lock);
1846                         continue;
1847                 }
1848                 inode->i_state |= I_SYNC;
1849                 wbc_attach_and_unlock_inode(&wbc, inode);
1850
1851                 write_chunk = writeback_chunk_size(wb, work);
1852                 wbc.nr_to_write = write_chunk;
1853                 wbc.pages_skipped = 0;
1854
1855                 /*
1856                  * We use I_SYNC to pin the inode in memory. While it is set
1857                  * evict_inode() will wait so the inode cannot be freed.
1858                  */
1859                 __writeback_single_inode(inode, &wbc);
1860
1861                 wbc_detach_inode(&wbc);
1862                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1863                 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1864                 wrote = wrote < 0 ? 0 : wrote;
1865                 total_wrote += wrote;
1866
1867                 if (need_resched()) {
1868                         /*
1869                          * We're trying to balance between building up a nice
1870                          * long list of IOs to improve our merge rate, and
1871                          * getting those IOs out quickly for anyone throttling
1872                          * in balance_dirty_pages().  cond_resched() doesn't
1873                          * unplug, so get our IOs out the door before we
1874                          * give up the CPU.
1875                          */
1876                         blk_flush_plug(current->plug, false);
1877                         cond_resched();
1878                 }
1879
1880                 /*
1881                  * Requeue @inode if still dirty.  Be careful as @inode may
1882                  * have been switched to another wb in the meantime.
1883                  */
1884                 tmp_wb = inode_to_wb_and_lock_list(inode);
1885                 spin_lock(&inode->i_lock);
1886                 if (!(inode->i_state & I_DIRTY_ALL))
1887                         total_wrote++;
1888                 requeue_inode(inode, tmp_wb, &wbc);
1889                 inode_sync_complete(inode);
1890                 spin_unlock(&inode->i_lock);
1891
1892                 if (unlikely(tmp_wb != wb)) {
1893                         spin_unlock(&tmp_wb->list_lock);
1894                         spin_lock(&wb->list_lock);
1895                 }
1896
1897                 /*
1898                  * bail out to wb_writeback() often enough to check
1899                  * background threshold and other termination conditions.
1900                  */
1901                 if (total_wrote) {
1902                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1903                                 break;
1904                         if (work->nr_pages <= 0)
1905                                 break;
1906                 }
1907         }
1908         return total_wrote;
1909 }
1910
1911 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1912                                   struct wb_writeback_work *work)
1913 {
1914         unsigned long start_time = jiffies;
1915         long wrote = 0;
1916
1917         while (!list_empty(&wb->b_io)) {
1918                 struct inode *inode = wb_inode(wb->b_io.prev);
1919                 struct super_block *sb = inode->i_sb;
1920
1921                 if (!trylock_super(sb)) {
1922                         /*
1923                          * trylock_super() may fail consistently due to
1924                          * s_umount being grabbed by someone else. Don't use
1925                          * requeue_io() to avoid busy retrying the inode/sb.
1926                          */
1927                         redirty_tail(inode, wb);
1928                         continue;
1929                 }
1930                 wrote += writeback_sb_inodes(sb, wb, work);
1931                 up_read(&sb->s_umount);
1932
1933                 /* refer to the same tests at the end of writeback_sb_inodes */
1934                 if (wrote) {
1935                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1936                                 break;
1937                         if (work->nr_pages <= 0)
1938                                 break;
1939                 }
1940         }
1941         /* Leave any unwritten inodes on b_io */
1942         return wrote;
1943 }
1944
1945 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1946                                 enum wb_reason reason)
1947 {
1948         struct wb_writeback_work work = {
1949                 .nr_pages       = nr_pages,
1950                 .sync_mode      = WB_SYNC_NONE,
1951                 .range_cyclic   = 1,
1952                 .reason         = reason,
1953         };
1954         struct blk_plug plug;
1955
1956         blk_start_plug(&plug);
1957         spin_lock(&wb->list_lock);
1958         if (list_empty(&wb->b_io))
1959                 queue_io(wb, &work, jiffies);
1960         __writeback_inodes_wb(wb, &work);
1961         spin_unlock(&wb->list_lock);
1962         blk_finish_plug(&plug);
1963
1964         return nr_pages - work.nr_pages;
1965 }
1966
1967 /*
1968  * Explicit flushing or periodic writeback of "old" data.
1969  *
1970  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1971  * dirtying-time in the inode's address_space.  So this periodic writeback code
1972  * just walks the superblock inode list, writing back any inodes which are
1973  * older than a specific point in time.
1974  *
1975  * Try to run once per dirty_writeback_interval.  But if a writeback event
1976  * takes longer than a dirty_writeback_interval interval, then leave a
1977  * one-second gap.
1978  *
1979  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1980  * all dirty pages if they are all attached to "old" mappings.
1981  */
1982 static long wb_writeback(struct bdi_writeback *wb,
1983                          struct wb_writeback_work *work)
1984 {
1985         long nr_pages = work->nr_pages;
1986         unsigned long dirtied_before = jiffies;
1987         struct inode *inode;
1988         long progress;
1989         struct blk_plug plug;
1990
1991         blk_start_plug(&plug);
1992         spin_lock(&wb->list_lock);
1993         for (;;) {
1994                 /*
1995                  * Stop writeback when nr_pages has been consumed
1996                  */
1997                 if (work->nr_pages <= 0)
1998                         break;
1999
2000                 /*
2001                  * Background writeout and kupdate-style writeback may
2002                  * run forever. Stop them if there is other work to do
2003                  * so that e.g. sync can proceed. They'll be restarted
2004                  * after the other works are all done.
2005                  */
2006                 if ((work->for_background || work->for_kupdate) &&
2007                     !list_empty(&wb->work_list))
2008                         break;
2009
2010                 /*
2011                  * For background writeout, stop when we are below the
2012                  * background dirty threshold
2013                  */
2014                 if (work->for_background && !wb_over_bg_thresh(wb))
2015                         break;
2016
2017                 /*
2018                  * Kupdate and background works are special and we want to
2019                  * include all inodes that need writing. Livelock avoidance is
2020                  * handled by these works yielding to any other work so we are
2021                  * safe.
2022                  */
2023                 if (work->for_kupdate) {
2024                         dirtied_before = jiffies -
2025                                 msecs_to_jiffies(dirty_expire_interval * 10);
2026                 } else if (work->for_background)
2027                         dirtied_before = jiffies;
2028
2029                 trace_writeback_start(wb, work);
2030                 if (list_empty(&wb->b_io))
2031                         queue_io(wb, work, dirtied_before);
2032                 if (work->sb)
2033                         progress = writeback_sb_inodes(work->sb, wb, work);
2034                 else
2035                         progress = __writeback_inodes_wb(wb, work);
2036                 trace_writeback_written(wb, work);
2037
2038                 /*
2039                  * Did we write something? Try for more
2040                  *
2041                  * Dirty inodes are moved to b_io for writeback in batches.
2042                  * The completion of the current batch does not necessarily
2043                  * mean the overall work is done. So we keep looping as long
2044                  * as made some progress on cleaning pages or inodes.
2045                  */
2046                 if (progress)
2047                         continue;
2048                 /*
2049                  * No more inodes for IO, bail
2050                  */
2051                 if (list_empty(&wb->b_more_io))
2052                         break;
2053                 /*
2054                  * Nothing written. Wait for some inode to
2055                  * become available for writeback. Otherwise
2056                  * we'll just busyloop.
2057                  */
2058                 trace_writeback_wait(wb, work);
2059                 inode = wb_inode(wb->b_more_io.prev);
2060                 spin_lock(&inode->i_lock);
2061                 spin_unlock(&wb->list_lock);
2062                 /* This function drops i_lock... */
2063                 inode_sleep_on_writeback(inode);
2064                 spin_lock(&wb->list_lock);
2065         }
2066         spin_unlock(&wb->list_lock);
2067         blk_finish_plug(&plug);
2068
2069         return nr_pages - work->nr_pages;
2070 }
2071
2072 /*
2073  * Return the next wb_writeback_work struct that hasn't been processed yet.
2074  */
2075 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2076 {
2077         struct wb_writeback_work *work = NULL;
2078
2079         spin_lock_bh(&wb->work_lock);
2080         if (!list_empty(&wb->work_list)) {
2081                 work = list_entry(wb->work_list.next,
2082                                   struct wb_writeback_work, list);
2083                 list_del_init(&work->list);
2084         }
2085         spin_unlock_bh(&wb->work_lock);
2086         return work;
2087 }
2088
2089 static long wb_check_background_flush(struct bdi_writeback *wb)
2090 {
2091         if (wb_over_bg_thresh(wb)) {
2092
2093                 struct wb_writeback_work work = {
2094                         .nr_pages       = LONG_MAX,
2095                         .sync_mode      = WB_SYNC_NONE,
2096                         .for_background = 1,
2097                         .range_cyclic   = 1,
2098                         .reason         = WB_REASON_BACKGROUND,
2099                 };
2100
2101                 return wb_writeback(wb, &work);
2102         }
2103
2104         return 0;
2105 }
2106
2107 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2108 {
2109         unsigned long expired;
2110         long nr_pages;
2111
2112         /*
2113          * When set to zero, disable periodic writeback
2114          */
2115         if (!dirty_writeback_interval)
2116                 return 0;
2117
2118         expired = wb->last_old_flush +
2119                         msecs_to_jiffies(dirty_writeback_interval * 10);
2120         if (time_before(jiffies, expired))
2121                 return 0;
2122
2123         wb->last_old_flush = jiffies;
2124         nr_pages = get_nr_dirty_pages();
2125
2126         if (nr_pages) {
2127                 struct wb_writeback_work work = {
2128                         .nr_pages       = nr_pages,
2129                         .sync_mode      = WB_SYNC_NONE,
2130                         .for_kupdate    = 1,
2131                         .range_cyclic   = 1,
2132                         .reason         = WB_REASON_PERIODIC,
2133                 };
2134
2135                 return wb_writeback(wb, &work);
2136         }
2137
2138         return 0;
2139 }
2140
2141 static long wb_check_start_all(struct bdi_writeback *wb)
2142 {
2143         long nr_pages;
2144
2145         if (!test_bit(WB_start_all, &wb->state))
2146                 return 0;
2147
2148         nr_pages = get_nr_dirty_pages();
2149         if (nr_pages) {
2150                 struct wb_writeback_work work = {
2151                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2152                         .sync_mode      = WB_SYNC_NONE,
2153                         .range_cyclic   = 1,
2154                         .reason         = wb->start_all_reason,
2155                 };
2156
2157                 nr_pages = wb_writeback(wb, &work);
2158         }
2159
2160         clear_bit(WB_start_all, &wb->state);
2161         return nr_pages;
2162 }
2163
2164
2165 /*
2166  * Retrieve work items and do the writeback they describe
2167  */
2168 static long wb_do_writeback(struct bdi_writeback *wb)
2169 {
2170         struct wb_writeback_work *work;
2171         long wrote = 0;
2172
2173         set_bit(WB_writeback_running, &wb->state);
2174         while ((work = get_next_work_item(wb)) != NULL) {
2175                 trace_writeback_exec(wb, work);
2176                 wrote += wb_writeback(wb, work);
2177                 finish_writeback_work(wb, work);
2178         }
2179
2180         /*
2181          * Check for a flush-everything request
2182          */
2183         wrote += wb_check_start_all(wb);
2184
2185         /*
2186          * Check for periodic writeback, kupdated() style
2187          */
2188         wrote += wb_check_old_data_flush(wb);
2189         wrote += wb_check_background_flush(wb);
2190         clear_bit(WB_writeback_running, &wb->state);
2191
2192         return wrote;
2193 }
2194
2195 /*
2196  * Handle writeback of dirty data for the device backed by this bdi. Also
2197  * reschedules periodically and does kupdated style flushing.
2198  */
2199 void wb_workfn(struct work_struct *work)
2200 {
2201         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2202                                                 struct bdi_writeback, dwork);
2203         long pages_written;
2204
2205         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2206
2207         if (likely(!current_is_workqueue_rescuer() ||
2208                    !test_bit(WB_registered, &wb->state))) {
2209                 /*
2210                  * The normal path.  Keep writing back @wb until its
2211                  * work_list is empty.  Note that this path is also taken
2212                  * if @wb is shutting down even when we're running off the
2213                  * rescuer as work_list needs to be drained.
2214                  */
2215                 do {
2216                         pages_written = wb_do_writeback(wb);
2217                         trace_writeback_pages_written(pages_written);
2218                 } while (!list_empty(&wb->work_list));
2219         } else {
2220                 /*
2221                  * bdi_wq can't get enough workers and we're running off
2222                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2223                  * enough for efficient IO.
2224                  */
2225                 pages_written = writeback_inodes_wb(wb, 1024,
2226                                                     WB_REASON_FORKER_THREAD);
2227                 trace_writeback_pages_written(pages_written);
2228         }
2229
2230         if (!list_empty(&wb->work_list))
2231                 wb_wakeup(wb);
2232         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2233                 wb_wakeup_delayed(wb);
2234 }
2235
2236 /*
2237  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2238  * write back the whole world.
2239  */
2240 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2241                                          enum wb_reason reason)
2242 {
2243         struct bdi_writeback *wb;
2244
2245         if (!bdi_has_dirty_io(bdi))
2246                 return;
2247
2248         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2249                 wb_start_writeback(wb, reason);
2250 }
2251
2252 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2253                                 enum wb_reason reason)
2254 {
2255         rcu_read_lock();
2256         __wakeup_flusher_threads_bdi(bdi, reason);
2257         rcu_read_unlock();
2258 }
2259
2260 /*
2261  * Wakeup the flusher threads to start writeback of all currently dirty pages
2262  */
2263 void wakeup_flusher_threads(enum wb_reason reason)
2264 {
2265         struct backing_dev_info *bdi;
2266
2267         /*
2268          * If we are expecting writeback progress we must submit plugged IO.
2269          */
2270         blk_flush_plug(current->plug, true);
2271
2272         rcu_read_lock();
2273         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2274                 __wakeup_flusher_threads_bdi(bdi, reason);
2275         rcu_read_unlock();
2276 }
2277
2278 /*
2279  * Wake up bdi's periodically to make sure dirtytime inodes gets
2280  * written back periodically.  We deliberately do *not* check the
2281  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2282  * kernel to be constantly waking up once there are any dirtytime
2283  * inodes on the system.  So instead we define a separate delayed work
2284  * function which gets called much more rarely.  (By default, only
2285  * once every 12 hours.)
2286  *
2287  * If there is any other write activity going on in the file system,
2288  * this function won't be necessary.  But if the only thing that has
2289  * happened on the file system is a dirtytime inode caused by an atime
2290  * update, we need this infrastructure below to make sure that inode
2291  * eventually gets pushed out to disk.
2292  */
2293 static void wakeup_dirtytime_writeback(struct work_struct *w);
2294 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2295
2296 static void wakeup_dirtytime_writeback(struct work_struct *w)
2297 {
2298         struct backing_dev_info *bdi;
2299
2300         rcu_read_lock();
2301         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2302                 struct bdi_writeback *wb;
2303
2304                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2305                         if (!list_empty(&wb->b_dirty_time))
2306                                 wb_wakeup(wb);
2307         }
2308         rcu_read_unlock();
2309         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2310 }
2311
2312 static int __init start_dirtytime_writeback(void)
2313 {
2314         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2315         return 0;
2316 }
2317 __initcall(start_dirtytime_writeback);
2318
2319 int dirtytime_interval_handler(struct ctl_table *table, int write,
2320                                void *buffer, size_t *lenp, loff_t *ppos)
2321 {
2322         int ret;
2323
2324         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2325         if (ret == 0 && write)
2326                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2327         return ret;
2328 }
2329
2330 /**
2331  * __mark_inode_dirty - internal function to mark an inode dirty
2332  *
2333  * @inode: inode to mark
2334  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2335  *         multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2336  *         with I_DIRTY_PAGES.
2337  *
2338  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2339  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2340  *
2341  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2342  * instead of calling this directly.
2343  *
2344  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2345  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2346  * even if they are later hashed, as they will have been marked dirty already.
2347  *
2348  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2349  *
2350  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2351  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2352  * the kernel-internal blockdev inode represents the dirtying time of the
2353  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2354  * page->mapping->host, so the page-dirtying time is recorded in the internal
2355  * blockdev inode.
2356  */
2357 void __mark_inode_dirty(struct inode *inode, int flags)
2358 {
2359         struct super_block *sb = inode->i_sb;
2360         int dirtytime = 0;
2361
2362         trace_writeback_mark_inode_dirty(inode, flags);
2363
2364         if (flags & I_DIRTY_INODE) {
2365                 /*
2366                  * Notify the filesystem about the inode being dirtied, so that
2367                  * (if needed) it can update on-disk fields and journal the
2368                  * inode.  This is only needed when the inode itself is being
2369                  * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2370                  * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2371                  */
2372                 trace_writeback_dirty_inode_start(inode, flags);
2373                 if (sb->s_op->dirty_inode)
2374                         sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2375                 trace_writeback_dirty_inode(inode, flags);
2376
2377                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2378                 flags &= ~I_DIRTY_TIME;
2379         } else {
2380                 /*
2381                  * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2382                  * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2383                  * in one call to __mark_inode_dirty().)
2384                  */
2385                 dirtytime = flags & I_DIRTY_TIME;
2386                 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2387         }
2388
2389         /*
2390          * Paired with smp_mb() in __writeback_single_inode() for the
2391          * following lockless i_state test.  See there for details.
2392          */
2393         smp_mb();
2394
2395         if (((inode->i_state & flags) == flags) ||
2396             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2397                 return;
2398
2399         spin_lock(&inode->i_lock);
2400         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2401                 goto out_unlock_inode;
2402         if ((inode->i_state & flags) != flags) {
2403                 const int was_dirty = inode->i_state & I_DIRTY;
2404
2405                 inode_attach_wb(inode, NULL);
2406
2407                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2408                 if (flags & I_DIRTY_INODE)
2409                         inode->i_state &= ~I_DIRTY_TIME;
2410                 inode->i_state |= flags;
2411
2412                 /*
2413                  * If the inode is queued for writeback by flush worker, just
2414                  * update its dirty state. Once the flush worker is done with
2415                  * the inode it will place it on the appropriate superblock
2416                  * list, based upon its state.
2417                  */
2418                 if (inode->i_state & I_SYNC_QUEUED)
2419                         goto out_unlock_inode;
2420
2421                 /*
2422                  * Only add valid (hashed) inodes to the superblock's
2423                  * dirty list.  Add blockdev inodes as well.
2424                  */
2425                 if (!S_ISBLK(inode->i_mode)) {
2426                         if (inode_unhashed(inode))
2427                                 goto out_unlock_inode;
2428                 }
2429                 if (inode->i_state & I_FREEING)
2430                         goto out_unlock_inode;
2431
2432                 /*
2433                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2434                  * reposition it (that would break b_dirty time-ordering).
2435                  */
2436                 if (!was_dirty) {
2437                         struct bdi_writeback *wb;
2438                         struct list_head *dirty_list;
2439                         bool wakeup_bdi = false;
2440
2441                         wb = locked_inode_to_wb_and_lock_list(inode);
2442
2443                         inode->dirtied_when = jiffies;
2444                         if (dirtytime)
2445                                 inode->dirtied_time_when = jiffies;
2446
2447                         if (inode->i_state & I_DIRTY)
2448                                 dirty_list = &wb->b_dirty;
2449                         else
2450                                 dirty_list = &wb->b_dirty_time;
2451
2452                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2453                                                                dirty_list);
2454
2455                         spin_unlock(&wb->list_lock);
2456                         trace_writeback_dirty_inode_enqueue(inode);
2457
2458                         /*
2459                          * If this is the first dirty inode for this bdi,
2460                          * we have to wake-up the corresponding bdi thread
2461                          * to make sure background write-back happens
2462                          * later.
2463                          */
2464                         if (wakeup_bdi &&
2465                             (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2466                                 wb_wakeup_delayed(wb);
2467                         return;
2468                 }
2469         }
2470 out_unlock_inode:
2471         spin_unlock(&inode->i_lock);
2472 }
2473 EXPORT_SYMBOL(__mark_inode_dirty);
2474
2475 /*
2476  * The @s_sync_lock is used to serialise concurrent sync operations
2477  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2478  * Concurrent callers will block on the s_sync_lock rather than doing contending
2479  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2480  * has been issued up to the time this function is enter is guaranteed to be
2481  * completed by the time we have gained the lock and waited for all IO that is
2482  * in progress regardless of the order callers are granted the lock.
2483  */
2484 static void wait_sb_inodes(struct super_block *sb)
2485 {
2486         LIST_HEAD(sync_list);
2487
2488         /*
2489          * We need to be protected against the filesystem going from
2490          * r/o to r/w or vice versa.
2491          */
2492         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2493
2494         mutex_lock(&sb->s_sync_lock);
2495
2496         /*
2497          * Splice the writeback list onto a temporary list to avoid waiting on
2498          * inodes that have started writeback after this point.
2499          *
2500          * Use rcu_read_lock() to keep the inodes around until we have a
2501          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2502          * the local list because inodes can be dropped from either by writeback
2503          * completion.
2504          */
2505         rcu_read_lock();
2506         spin_lock_irq(&sb->s_inode_wblist_lock);
2507         list_splice_init(&sb->s_inodes_wb, &sync_list);
2508
2509         /*
2510          * Data integrity sync. Must wait for all pages under writeback, because
2511          * there may have been pages dirtied before our sync call, but which had
2512          * writeout started before we write it out.  In which case, the inode
2513          * may not be on the dirty list, but we still have to wait for that
2514          * writeout.
2515          */
2516         while (!list_empty(&sync_list)) {
2517                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2518                                                        i_wb_list);
2519                 struct address_space *mapping = inode->i_mapping;
2520
2521                 /*
2522                  * Move each inode back to the wb list before we drop the lock
2523                  * to preserve consistency between i_wb_list and the mapping
2524                  * writeback tag. Writeback completion is responsible to remove
2525                  * the inode from either list once the writeback tag is cleared.
2526                  */
2527                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2528
2529                 /*
2530                  * The mapping can appear untagged while still on-list since we
2531                  * do not have the mapping lock. Skip it here, wb completion
2532                  * will remove it.
2533                  */
2534                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2535                         continue;
2536
2537                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2538
2539                 spin_lock(&inode->i_lock);
2540                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2541                         spin_unlock(&inode->i_lock);
2542
2543                         spin_lock_irq(&sb->s_inode_wblist_lock);
2544                         continue;
2545                 }
2546                 __iget(inode);
2547                 spin_unlock(&inode->i_lock);
2548                 rcu_read_unlock();
2549
2550                 /*
2551                  * We keep the error status of individual mapping so that
2552                  * applications can catch the writeback error using fsync(2).
2553                  * See filemap_fdatawait_keep_errors() for details.
2554                  */
2555                 filemap_fdatawait_keep_errors(mapping);
2556
2557                 cond_resched();
2558
2559                 iput(inode);
2560
2561                 rcu_read_lock();
2562                 spin_lock_irq(&sb->s_inode_wblist_lock);
2563         }
2564         spin_unlock_irq(&sb->s_inode_wblist_lock);
2565         rcu_read_unlock();
2566         mutex_unlock(&sb->s_sync_lock);
2567 }
2568
2569 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2570                                      enum wb_reason reason, bool skip_if_busy)
2571 {
2572         struct backing_dev_info *bdi = sb->s_bdi;
2573         DEFINE_WB_COMPLETION(done, bdi);
2574         struct wb_writeback_work work = {
2575                 .sb                     = sb,
2576                 .sync_mode              = WB_SYNC_NONE,
2577                 .tagged_writepages      = 1,
2578                 .done                   = &done,
2579                 .nr_pages               = nr,
2580                 .reason                 = reason,
2581         };
2582
2583         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2584                 return;
2585         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2586
2587         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2588         wb_wait_for_completion(&done);
2589 }
2590
2591 /**
2592  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2593  * @sb: the superblock
2594  * @nr: the number of pages to write
2595  * @reason: reason why some writeback work initiated
2596  *
2597  * Start writeback on some inodes on this super_block. No guarantees are made
2598  * on how many (if any) will be written, and this function does not wait
2599  * for IO completion of submitted IO.
2600  */
2601 void writeback_inodes_sb_nr(struct super_block *sb,
2602                             unsigned long nr,
2603                             enum wb_reason reason)
2604 {
2605         __writeback_inodes_sb_nr(sb, nr, reason, false);
2606 }
2607 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2608
2609 /**
2610  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2611  * @sb: the superblock
2612  * @reason: reason why some writeback work was initiated
2613  *
2614  * Start writeback on some inodes on this super_block. No guarantees are made
2615  * on how many (if any) will be written, and this function does not wait
2616  * for IO completion of submitted IO.
2617  */
2618 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2619 {
2620         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2621 }
2622 EXPORT_SYMBOL(writeback_inodes_sb);
2623
2624 /**
2625  * try_to_writeback_inodes_sb - try to start writeback if none underway
2626  * @sb: the superblock
2627  * @reason: reason why some writeback work was initiated
2628  *
2629  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2630  */
2631 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2632 {
2633         if (!down_read_trylock(&sb->s_umount))
2634                 return;
2635
2636         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2637         up_read(&sb->s_umount);
2638 }
2639 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2640
2641 /**
2642  * sync_inodes_sb       -       sync sb inode pages
2643  * @sb: the superblock
2644  *
2645  * This function writes and waits on any dirty inode belonging to this
2646  * super_block.
2647  */
2648 void sync_inodes_sb(struct super_block *sb)
2649 {
2650         struct backing_dev_info *bdi = sb->s_bdi;
2651         DEFINE_WB_COMPLETION(done, bdi);
2652         struct wb_writeback_work work = {
2653                 .sb             = sb,
2654                 .sync_mode      = WB_SYNC_ALL,
2655                 .nr_pages       = LONG_MAX,
2656                 .range_cyclic   = 0,
2657                 .done           = &done,
2658                 .reason         = WB_REASON_SYNC,
2659                 .for_sync       = 1,
2660         };
2661
2662         /*
2663          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2664          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2665          * bdi_has_dirty() need to be written out too.
2666          */
2667         if (bdi == &noop_backing_dev_info)
2668                 return;
2669         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2670
2671         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2672         bdi_down_write_wb_switch_rwsem(bdi);
2673         bdi_split_work_to_wbs(bdi, &work, false);
2674         wb_wait_for_completion(&done);
2675         bdi_up_write_wb_switch_rwsem(bdi);
2676
2677         wait_sb_inodes(sb);
2678 }
2679 EXPORT_SYMBOL(sync_inodes_sb);
2680
2681 /**
2682  * write_inode_now      -       write an inode to disk
2683  * @inode: inode to write to disk
2684  * @sync: whether the write should be synchronous or not
2685  *
2686  * This function commits an inode to disk immediately if it is dirty. This is
2687  * primarily needed by knfsd.
2688  *
2689  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2690  */
2691 int write_inode_now(struct inode *inode, int sync)
2692 {
2693         struct writeback_control wbc = {
2694                 .nr_to_write = LONG_MAX,
2695                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2696                 .range_start = 0,
2697                 .range_end = LLONG_MAX,
2698         };
2699
2700         if (!mapping_can_writeback(inode->i_mapping))
2701                 wbc.nr_to_write = 0;
2702
2703         might_sleep();
2704         return writeback_single_inode(inode, &wbc);
2705 }
2706 EXPORT_SYMBOL(write_inode_now);
2707
2708 /**
2709  * sync_inode_metadata - write an inode to disk
2710  * @inode: the inode to sync
2711  * @wait: wait for I/O to complete.
2712  *
2713  * Write an inode to disk and adjust its dirty state after completion.
2714  *
2715  * Note: only writes the actual inode, no associated data or other metadata.
2716  */
2717 int sync_inode_metadata(struct inode *inode, int wait)
2718 {
2719         struct writeback_control wbc = {
2720                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2721                 .nr_to_write = 0, /* metadata-only */
2722         };
2723
2724         return writeback_single_inode(inode, &wbc);
2725 }
2726 EXPORT_SYMBOL(sync_inode_metadata);