1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2002, Linus Torvalds.
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
35 * 4MB minimal write chunk size
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
40 * Passed into wb_writeback(), essentially a subset of writeback_control
42 struct wb_writeback_work {
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
46 unsigned int tagged_writepages:1;
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
51 unsigned int auto_free:1; /* free on completion */
52 enum wb_reason reason; /* why was writeback initiated? */
54 struct list_head list; /* pending work list */
55 struct wb_completion *done; /* set if the caller waits */
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
70 static inline struct inode *wb_inode(struct list_head *head)
72 return list_entry(head, struct inode, i_io_list);
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
87 if (wb_has_dirty_io(wb)) {
90 set_bit(WB_has_dirty_io, &wb->state);
91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 clear_bit(WB_has_dirty_io, &wb->state);
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
118 static bool inode_io_list_move_locked(struct inode *inode,
119 struct bdi_writeback *wb,
120 struct list_head *head)
122 assert_spin_locked(&wb->list_lock);
124 list_move(&inode->i_io_list, head);
126 /* dirty_time doesn't count as dirty_io until expiration */
127 if (head != &wb->b_dirty_time)
128 return wb_io_lists_populated(wb);
130 wb_io_lists_depopulated(wb);
134 static void wb_wakeup(struct bdi_writeback *wb)
136 spin_lock_bh(&wb->work_lock);
137 if (test_bit(WB_registered, &wb->state))
138 mod_delayed_work(bdi_wq, &wb->dwork, 0);
139 spin_unlock_bh(&wb->work_lock);
142 static void finish_writeback_work(struct bdi_writeback *wb,
143 struct wb_writeback_work *work)
145 struct wb_completion *done = work->done;
150 wait_queue_head_t *waitq = done->waitq;
152 /* @done can't be accessed after the following dec */
153 if (atomic_dec_and_test(&done->cnt))
158 static void wb_queue_work(struct bdi_writeback *wb,
159 struct wb_writeback_work *work)
161 trace_writeback_queue(wb, work);
164 atomic_inc(&work->done->cnt);
166 spin_lock_bh(&wb->work_lock);
168 if (test_bit(WB_registered, &wb->state)) {
169 list_add_tail(&work->list, &wb->work_list);
170 mod_delayed_work(bdi_wq, &wb->dwork, 0);
172 finish_writeback_work(wb, work);
174 spin_unlock_bh(&wb->work_lock);
178 * wb_wait_for_completion - wait for completion of bdi_writeback_works
179 * @done: target wb_completion
181 * Wait for one or more work items issued to @bdi with their ->done field
182 * set to @done, which should have been initialized with
183 * DEFINE_WB_COMPLETION(). This function returns after all such work items
184 * are completed. Work items which are waited upon aren't freed
185 * automatically on completion.
187 void wb_wait_for_completion(struct wb_completion *done)
189 atomic_dec(&done->cnt); /* put down the initial count */
190 wait_event(*done->waitq, !atomic_read(&done->cnt));
193 #ifdef CONFIG_CGROUP_WRITEBACK
196 * Parameters for foreign inode detection, see wbc_detach_inode() to see
199 * These paramters are inherently heuristical as the detection target
200 * itself is fuzzy. All we want to do is detaching an inode from the
201 * current owner if it's being written to by some other cgroups too much.
203 * The current cgroup writeback is built on the assumption that multiple
204 * cgroups writing to the same inode concurrently is very rare and a mode
205 * of operation which isn't well supported. As such, the goal is not
206 * taking too long when a different cgroup takes over an inode while
207 * avoiding too aggressive flip-flops from occasional foreign writes.
209 * We record, very roughly, 2s worth of IO time history and if more than
210 * half of that is foreign, trigger the switch. The recording is quantized
211 * to 16 slots. To avoid tiny writes from swinging the decision too much,
212 * writes smaller than 1/8 of avg size are ignored.
214 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
215 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
216 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
217 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
219 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
220 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
221 /* each slot's duration is 2s / 16 */
222 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
223 /* if foreign slots >= 8, switch */
224 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
225 /* one round can affect upto 5 slots */
226 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
229 * Maximum inodes per isw. A specific value has been chosen to make
230 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
232 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
233 / sizeof(struct inode *))
235 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
236 static struct workqueue_struct *isw_wq;
238 void __inode_attach_wb(struct inode *inode, struct page *page)
240 struct backing_dev_info *bdi = inode_to_bdi(inode);
241 struct bdi_writeback *wb = NULL;
243 if (inode_cgwb_enabled(inode)) {
244 struct cgroup_subsys_state *memcg_css;
247 memcg_css = mem_cgroup_css_from_page(page);
248 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
250 /* must pin memcg_css, see wb_get_create() */
251 memcg_css = task_get_css(current, memory_cgrp_id);
252 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
261 * There may be multiple instances of this function racing to
262 * update the same inode. Use cmpxchg() to tell the winner.
264 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
267 EXPORT_SYMBOL_GPL(__inode_attach_wb);
270 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
271 * @inode: inode of interest with i_lock held
272 * @wb: target bdi_writeback
274 * Remove the inode from wb's io lists and if necessarily put onto b_attached
275 * list. Only inodes attached to cgwb's are kept on this list.
277 static void inode_cgwb_move_to_attached(struct inode *inode,
278 struct bdi_writeback *wb)
280 assert_spin_locked(&wb->list_lock);
281 assert_spin_locked(&inode->i_lock);
283 inode->i_state &= ~I_SYNC_QUEUED;
284 if (wb != &wb->bdi->wb)
285 list_move(&inode->i_io_list, &wb->b_attached);
287 list_del_init(&inode->i_io_list);
288 wb_io_lists_depopulated(wb);
292 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
293 * @inode: inode of interest with i_lock held
295 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
296 * held on entry and is released on return. The returned wb is guaranteed
297 * to stay @inode's associated wb until its list_lock is released.
299 static struct bdi_writeback *
300 locked_inode_to_wb_and_lock_list(struct inode *inode)
301 __releases(&inode->i_lock)
302 __acquires(&wb->list_lock)
305 struct bdi_writeback *wb = inode_to_wb(inode);
308 * inode_to_wb() association is protected by both
309 * @inode->i_lock and @wb->list_lock but list_lock nests
310 * outside i_lock. Drop i_lock and verify that the
311 * association hasn't changed after acquiring list_lock.
314 spin_unlock(&inode->i_lock);
315 spin_lock(&wb->list_lock);
317 /* i_wb may have changed inbetween, can't use inode_to_wb() */
318 if (likely(wb == inode->i_wb)) {
319 wb_put(wb); /* @inode already has ref */
323 spin_unlock(&wb->list_lock);
326 spin_lock(&inode->i_lock);
331 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
332 * @inode: inode of interest
334 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
337 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
338 __acquires(&wb->list_lock)
340 spin_lock(&inode->i_lock);
341 return locked_inode_to_wb_and_lock_list(inode);
344 struct inode_switch_wbs_context {
345 struct rcu_work work;
348 * Multiple inodes can be switched at once. The switching procedure
349 * consists of two parts, separated by a RCU grace period. To make
350 * sure that the second part is executed for each inode gone through
351 * the first part, all inode pointers are placed into a NULL-terminated
352 * array embedded into struct inode_switch_wbs_context. Otherwise
353 * an inode could be left in a non-consistent state.
355 struct bdi_writeback *new_wb;
356 struct inode *inodes[];
359 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
361 down_write(&bdi->wb_switch_rwsem);
364 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
366 up_write(&bdi->wb_switch_rwsem);
369 static bool inode_do_switch_wbs(struct inode *inode,
370 struct bdi_writeback *old_wb,
371 struct bdi_writeback *new_wb)
373 struct address_space *mapping = inode->i_mapping;
374 XA_STATE(xas, &mapping->i_pages, 0);
376 bool switched = false;
378 spin_lock(&inode->i_lock);
379 xa_lock_irq(&mapping->i_pages);
382 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
383 * path owns the inode and we shouldn't modify ->i_io_list.
385 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
388 trace_inode_switch_wbs(inode, old_wb, new_wb);
391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
392 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
393 * folios actually under writeback.
395 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396 if (folio_test_dirty(folio)) {
397 long nr = folio_nr_pages(folio);
398 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
399 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
404 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
405 long nr = folio_nr_pages(folio);
406 WARN_ON_ONCE(!folio_test_writeback(folio));
407 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
408 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
411 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
412 atomic_dec(&old_wb->writeback_inodes);
413 atomic_inc(&new_wb->writeback_inodes);
419 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
420 * the specific list @inode was on is ignored and the @inode is put on
421 * ->b_dirty which is always correct including from ->b_dirty_time.
422 * The transfer preserves @inode->dirtied_when ordering. If the @inode
423 * was clean, it means it was on the b_attached list, so move it onto
424 * the b_attached list of @new_wb.
426 if (!list_empty(&inode->i_io_list)) {
427 inode->i_wb = new_wb;
429 if (inode->i_state & I_DIRTY_ALL) {
432 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
433 if (time_after_eq(inode->dirtied_when,
436 inode_io_list_move_locked(inode, new_wb,
437 pos->i_io_list.prev);
439 inode_cgwb_move_to_attached(inode, new_wb);
442 inode->i_wb = new_wb;
445 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
446 inode->i_wb_frn_winner = 0;
447 inode->i_wb_frn_avg_time = 0;
448 inode->i_wb_frn_history = 0;
452 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
453 * ensures that the new wb is visible if they see !I_WB_SWITCH.
455 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
457 xa_unlock_irq(&mapping->i_pages);
458 spin_unlock(&inode->i_lock);
463 static void inode_switch_wbs_work_fn(struct work_struct *work)
465 struct inode_switch_wbs_context *isw =
466 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
467 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
468 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
469 struct bdi_writeback *new_wb = isw->new_wb;
470 unsigned long nr_switched = 0;
471 struct inode **inodep;
474 * If @inode switches cgwb membership while sync_inodes_sb() is
475 * being issued, sync_inodes_sb() might miss it. Synchronize.
477 down_read(&bdi->wb_switch_rwsem);
480 * By the time control reaches here, RCU grace period has passed
481 * since I_WB_SWITCH assertion and all wb stat update transactions
482 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
483 * synchronizing against the i_pages lock.
485 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
486 * gives us exclusion against all wb related operations on @inode
487 * including IO list manipulations and stat updates.
489 if (old_wb < new_wb) {
490 spin_lock(&old_wb->list_lock);
491 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
493 spin_lock(&new_wb->list_lock);
494 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
497 for (inodep = isw->inodes; *inodep; inodep++) {
498 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
499 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
503 spin_unlock(&new_wb->list_lock);
504 spin_unlock(&old_wb->list_lock);
506 up_read(&bdi->wb_switch_rwsem);
510 wb_put_many(old_wb, nr_switched);
513 for (inodep = isw->inodes; *inodep; inodep++)
517 atomic_dec(&isw_nr_in_flight);
520 static bool inode_prepare_wbs_switch(struct inode *inode,
521 struct bdi_writeback *new_wb)
524 * Paired with smp_mb() in cgroup_writeback_umount().
525 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
526 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
527 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
534 /* while holding I_WB_SWITCH, no one else can update the association */
535 spin_lock(&inode->i_lock);
536 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
537 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
538 inode_to_wb(inode) == new_wb) {
539 spin_unlock(&inode->i_lock);
542 inode->i_state |= I_WB_SWITCH;
544 spin_unlock(&inode->i_lock);
550 * inode_switch_wbs - change the wb association of an inode
551 * @inode: target inode
552 * @new_wb_id: ID of the new wb
554 * Switch @inode's wb association to the wb identified by @new_wb_id. The
555 * switching is performed asynchronously and may fail silently.
557 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
559 struct backing_dev_info *bdi = inode_to_bdi(inode);
560 struct cgroup_subsys_state *memcg_css;
561 struct inode_switch_wbs_context *isw;
563 /* noop if seems to be already in progress */
564 if (inode->i_state & I_WB_SWITCH)
567 /* avoid queueing a new switch if too many are already in flight */
568 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
571 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
575 atomic_inc(&isw_nr_in_flight);
577 /* find and pin the new wb */
579 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
580 if (memcg_css && !css_tryget(memcg_css))
586 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
591 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
594 isw->inodes[0] = inode;
597 * In addition to synchronizing among switchers, I_WB_SWITCH tells
598 * the RCU protected stat update paths to grab the i_page
599 * lock so that stat transfer can synchronize against them.
600 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
602 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
603 queue_rcu_work(isw_wq, &isw->work);
607 atomic_dec(&isw_nr_in_flight);
614 * cleanup_offline_cgwb - detach associated inodes
617 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
618 * to eventually release the dying @wb. Returns %true if not all inodes were
619 * switched and the function has to be restarted.
621 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
623 struct cgroup_subsys_state *memcg_css;
624 struct inode_switch_wbs_context *isw;
627 bool restart = false;
629 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
634 atomic_inc(&isw_nr_in_flight);
636 for (memcg_css = wb->memcg_css->parent; memcg_css;
637 memcg_css = memcg_css->parent) {
638 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
642 if (unlikely(!isw->new_wb))
643 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
646 spin_lock(&wb->list_lock);
647 list_for_each_entry(inode, &wb->b_attached, i_io_list) {
648 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
651 isw->inodes[nr++] = inode;
653 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
658 spin_unlock(&wb->list_lock);
660 /* no attached inodes? bail out */
662 atomic_dec(&isw_nr_in_flight);
669 * In addition to synchronizing among switchers, I_WB_SWITCH tells
670 * the RCU protected stat update paths to grab the i_page
671 * lock so that stat transfer can synchronize against them.
672 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
674 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
675 queue_rcu_work(isw_wq, &isw->work);
681 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
682 * @wbc: writeback_control of interest
683 * @inode: target inode
685 * @inode is locked and about to be written back under the control of @wbc.
686 * Record @inode's writeback context into @wbc and unlock the i_lock. On
687 * writeback completion, wbc_detach_inode() should be called. This is used
688 * to track the cgroup writeback context.
690 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
693 if (!inode_cgwb_enabled(inode)) {
694 spin_unlock(&inode->i_lock);
698 wbc->wb = inode_to_wb(inode);
701 wbc->wb_id = wbc->wb->memcg_css->id;
702 wbc->wb_lcand_id = inode->i_wb_frn_winner;
703 wbc->wb_tcand_id = 0;
705 wbc->wb_lcand_bytes = 0;
706 wbc->wb_tcand_bytes = 0;
709 spin_unlock(&inode->i_lock);
712 * A dying wb indicates that either the blkcg associated with the
713 * memcg changed or the associated memcg is dying. In the first
714 * case, a replacement wb should already be available and we should
715 * refresh the wb immediately. In the second case, trying to
716 * refresh will keep failing.
718 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
719 inode_switch_wbs(inode, wbc->wb_id);
721 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
724 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
725 * @wbc: writeback_control of the just finished writeback
727 * To be called after a writeback attempt of an inode finishes and undoes
728 * wbc_attach_and_unlock_inode(). Can be called under any context.
730 * As concurrent write sharing of an inode is expected to be very rare and
731 * memcg only tracks page ownership on first-use basis severely confining
732 * the usefulness of such sharing, cgroup writeback tracks ownership
733 * per-inode. While the support for concurrent write sharing of an inode
734 * is deemed unnecessary, an inode being written to by different cgroups at
735 * different points in time is a lot more common, and, more importantly,
736 * charging only by first-use can too readily lead to grossly incorrect
737 * behaviors (single foreign page can lead to gigabytes of writeback to be
738 * incorrectly attributed).
740 * To resolve this issue, cgroup writeback detects the majority dirtier of
741 * an inode and transfers the ownership to it. To avoid unnnecessary
742 * oscillation, the detection mechanism keeps track of history and gives
743 * out the switch verdict only if the foreign usage pattern is stable over
744 * a certain amount of time and/or writeback attempts.
746 * On each writeback attempt, @wbc tries to detect the majority writer
747 * using Boyer-Moore majority vote algorithm. In addition to the byte
748 * count from the majority voting, it also counts the bytes written for the
749 * current wb and the last round's winner wb (max of last round's current
750 * wb, the winner from two rounds ago, and the last round's majority
751 * candidate). Keeping track of the historical winner helps the algorithm
752 * to semi-reliably detect the most active writer even when it's not the
755 * Once the winner of the round is determined, whether the winner is
756 * foreign or not and how much IO time the round consumed is recorded in
757 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
758 * over a certain threshold, the switch verdict is given.
760 void wbc_detach_inode(struct writeback_control *wbc)
762 struct bdi_writeback *wb = wbc->wb;
763 struct inode *inode = wbc->inode;
764 unsigned long avg_time, max_bytes, max_time;
771 history = inode->i_wb_frn_history;
772 avg_time = inode->i_wb_frn_avg_time;
774 /* pick the winner of this round */
775 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
776 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
778 max_bytes = wbc->wb_bytes;
779 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
780 max_id = wbc->wb_lcand_id;
781 max_bytes = wbc->wb_lcand_bytes;
783 max_id = wbc->wb_tcand_id;
784 max_bytes = wbc->wb_tcand_bytes;
788 * Calculate the amount of IO time the winner consumed and fold it
789 * into the running average kept per inode. If the consumed IO
790 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
791 * deciding whether to switch or not. This is to prevent one-off
792 * small dirtiers from skewing the verdict.
794 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
795 wb->avg_write_bandwidth);
797 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
798 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
800 avg_time = max_time; /* immediate catch up on first run */
802 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
806 * The switch verdict is reached if foreign wb's consume
807 * more than a certain proportion of IO time in a
808 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
809 * history mask where each bit represents one sixteenth of
810 * the period. Determine the number of slots to shift into
811 * history from @max_time.
813 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
814 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
816 if (wbc->wb_id != max_id)
817 history |= (1U << slots) - 1;
820 trace_inode_foreign_history(inode, wbc, history);
823 * Switch if the current wb isn't the consistent winner.
824 * If there are multiple closely competing dirtiers, the
825 * inode may switch across them repeatedly over time, which
826 * is okay. The main goal is avoiding keeping an inode on
827 * the wrong wb for an extended period of time.
829 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
830 inode_switch_wbs(inode, max_id);
834 * Multiple instances of this function may race to update the
835 * following fields but we don't mind occassional inaccuracies.
837 inode->i_wb_frn_winner = max_id;
838 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
839 inode->i_wb_frn_history = history;
844 EXPORT_SYMBOL_GPL(wbc_detach_inode);
847 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
848 * @wbc: writeback_control of the writeback in progress
849 * @page: page being written out
850 * @bytes: number of bytes being written out
852 * @bytes from @page are about to written out during the writeback
853 * controlled by @wbc. Keep the book for foreign inode detection. See
854 * wbc_detach_inode().
856 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
859 struct cgroup_subsys_state *css;
863 * pageout() path doesn't attach @wbc to the inode being written
864 * out. This is intentional as we don't want the function to block
865 * behind a slow cgroup. Ultimately, we want pageout() to kick off
866 * regular writeback instead of writing things out itself.
868 if (!wbc->wb || wbc->no_cgroup_owner)
871 css = mem_cgroup_css_from_page(page);
872 /* dead cgroups shouldn't contribute to inode ownership arbitration */
873 if (!(css->flags & CSS_ONLINE))
878 if (id == wbc->wb_id) {
879 wbc->wb_bytes += bytes;
883 if (id == wbc->wb_lcand_id)
884 wbc->wb_lcand_bytes += bytes;
886 /* Boyer-Moore majority vote algorithm */
887 if (!wbc->wb_tcand_bytes)
888 wbc->wb_tcand_id = id;
889 if (id == wbc->wb_tcand_id)
890 wbc->wb_tcand_bytes += bytes;
892 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
894 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
897 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
898 * @wb: target bdi_writeback to split @nr_pages to
899 * @nr_pages: number of pages to write for the whole bdi
901 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
902 * relation to the total write bandwidth of all wb's w/ dirty inodes on
905 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
907 unsigned long this_bw = wb->avg_write_bandwidth;
908 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
910 if (nr_pages == LONG_MAX)
914 * This may be called on clean wb's and proportional distribution
915 * may not make sense, just use the original @nr_pages in those
916 * cases. In general, we wanna err on the side of writing more.
918 if (!tot_bw || this_bw >= tot_bw)
921 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
925 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
926 * @bdi: target backing_dev_info
927 * @base_work: wb_writeback_work to issue
928 * @skip_if_busy: skip wb's which already have writeback in progress
930 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
931 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
932 * distributed to the busy wbs according to each wb's proportion in the
933 * total active write bandwidth of @bdi.
935 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
936 struct wb_writeback_work *base_work,
939 struct bdi_writeback *last_wb = NULL;
940 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
941 struct bdi_writeback, bdi_node);
946 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
947 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
948 struct wb_writeback_work fallback_work;
949 struct wb_writeback_work *work;
957 /* SYNC_ALL writes out I_DIRTY_TIME too */
958 if (!wb_has_dirty_io(wb) &&
959 (base_work->sync_mode == WB_SYNC_NONE ||
960 list_empty(&wb->b_dirty_time)))
962 if (skip_if_busy && writeback_in_progress(wb))
965 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
967 work = kmalloc(sizeof(*work), GFP_ATOMIC);
970 work->nr_pages = nr_pages;
972 wb_queue_work(wb, work);
976 /* alloc failed, execute synchronously using on-stack fallback */
977 work = &fallback_work;
979 work->nr_pages = nr_pages;
981 work->done = &fallback_work_done;
983 wb_queue_work(wb, work);
986 * Pin @wb so that it stays on @bdi->wb_list. This allows
987 * continuing iteration from @wb after dropping and
988 * regrabbing rcu read lock.
994 wb_wait_for_completion(&fallback_work_done);
1004 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1005 * @bdi_id: target bdi id
1006 * @memcg_id: target memcg css id
1007 * @reason: reason why some writeback work initiated
1008 * @done: target wb_completion
1010 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1011 * with the specified parameters.
1013 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1014 enum wb_reason reason, struct wb_completion *done)
1016 struct backing_dev_info *bdi;
1017 struct cgroup_subsys_state *memcg_css;
1018 struct bdi_writeback *wb;
1019 struct wb_writeback_work *work;
1020 unsigned long dirty;
1023 /* lookup bdi and memcg */
1024 bdi = bdi_get_by_id(bdi_id);
1029 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1030 if (memcg_css && !css_tryget(memcg_css))
1039 * And find the associated wb. If the wb isn't there already
1040 * there's nothing to flush, don't create one.
1042 wb = wb_get_lookup(bdi, memcg_css);
1049 * The caller is attempting to write out most of
1050 * the currently dirty pages. Let's take the current dirty page
1051 * count and inflate it by 25% which should be large enough to
1052 * flush out most dirty pages while avoiding getting livelocked by
1053 * concurrent dirtiers.
1055 * BTW the memcg stats are flushed periodically and this is best-effort
1056 * estimation, so some potential error is ok.
1058 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1059 dirty = dirty * 10 / 8;
1061 /* issue the writeback work */
1062 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1064 work->nr_pages = dirty;
1065 work->sync_mode = WB_SYNC_NONE;
1066 work->range_cyclic = 1;
1067 work->reason = reason;
1069 work->auto_free = 1;
1070 wb_queue_work(wb, work);
1085 * cgroup_writeback_umount - flush inode wb switches for umount
1087 * This function is called when a super_block is about to be destroyed and
1088 * flushes in-flight inode wb switches. An inode wb switch goes through
1089 * RCU and then workqueue, so the two need to be flushed in order to ensure
1090 * that all previously scheduled switches are finished. As wb switches are
1091 * rare occurrences and synchronize_rcu() can take a while, perform
1092 * flushing iff wb switches are in flight.
1094 void cgroup_writeback_umount(void)
1097 * SB_ACTIVE should be reliably cleared before checking
1098 * isw_nr_in_flight, see generic_shutdown_super().
1102 if (atomic_read(&isw_nr_in_flight)) {
1104 * Use rcu_barrier() to wait for all pending callbacks to
1105 * ensure that all in-flight wb switches are in the workqueue.
1108 flush_workqueue(isw_wq);
1112 static int __init cgroup_writeback_init(void)
1114 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1119 fs_initcall(cgroup_writeback_init);
1121 #else /* CONFIG_CGROUP_WRITEBACK */
1123 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1124 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1126 static void inode_cgwb_move_to_attached(struct inode *inode,
1127 struct bdi_writeback *wb)
1129 assert_spin_locked(&wb->list_lock);
1130 assert_spin_locked(&inode->i_lock);
1132 inode->i_state &= ~I_SYNC_QUEUED;
1133 list_del_init(&inode->i_io_list);
1134 wb_io_lists_depopulated(wb);
1137 static struct bdi_writeback *
1138 locked_inode_to_wb_and_lock_list(struct inode *inode)
1139 __releases(&inode->i_lock)
1140 __acquires(&wb->list_lock)
1142 struct bdi_writeback *wb = inode_to_wb(inode);
1144 spin_unlock(&inode->i_lock);
1145 spin_lock(&wb->list_lock);
1149 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1150 __acquires(&wb->list_lock)
1152 struct bdi_writeback *wb = inode_to_wb(inode);
1154 spin_lock(&wb->list_lock);
1158 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1163 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1164 struct wb_writeback_work *base_work,
1169 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1170 base_work->auto_free = 0;
1171 wb_queue_work(&bdi->wb, base_work);
1175 #endif /* CONFIG_CGROUP_WRITEBACK */
1178 * Add in the number of potentially dirty inodes, because each inode
1179 * write can dirty pagecache in the underlying blockdev.
1181 static unsigned long get_nr_dirty_pages(void)
1183 return global_node_page_state(NR_FILE_DIRTY) +
1184 get_nr_dirty_inodes();
1187 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1189 if (!wb_has_dirty_io(wb))
1193 * All callers of this function want to start writeback of all
1194 * dirty pages. Places like vmscan can call this at a very
1195 * high frequency, causing pointless allocations of tons of
1196 * work items and keeping the flusher threads busy retrieving
1197 * that work. Ensure that we only allow one of them pending and
1198 * inflight at the time.
1200 if (test_bit(WB_start_all, &wb->state) ||
1201 test_and_set_bit(WB_start_all, &wb->state))
1204 wb->start_all_reason = reason;
1209 * wb_start_background_writeback - start background writeback
1210 * @wb: bdi_writback to write from
1213 * This makes sure WB_SYNC_NONE background writeback happens. When
1214 * this function returns, it is only guaranteed that for given wb
1215 * some IO is happening if we are over background dirty threshold.
1216 * Caller need not hold sb s_umount semaphore.
1218 void wb_start_background_writeback(struct bdi_writeback *wb)
1221 * We just wake up the flusher thread. It will perform background
1222 * writeback as soon as there is no other work to do.
1224 trace_writeback_wake_background(wb);
1229 * Remove the inode from the writeback list it is on.
1231 void inode_io_list_del(struct inode *inode)
1233 struct bdi_writeback *wb;
1235 wb = inode_to_wb_and_lock_list(inode);
1236 spin_lock(&inode->i_lock);
1238 inode->i_state &= ~I_SYNC_QUEUED;
1239 list_del_init(&inode->i_io_list);
1240 wb_io_lists_depopulated(wb);
1242 spin_unlock(&inode->i_lock);
1243 spin_unlock(&wb->list_lock);
1245 EXPORT_SYMBOL(inode_io_list_del);
1248 * mark an inode as under writeback on the sb
1250 void sb_mark_inode_writeback(struct inode *inode)
1252 struct super_block *sb = inode->i_sb;
1253 unsigned long flags;
1255 if (list_empty(&inode->i_wb_list)) {
1256 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1257 if (list_empty(&inode->i_wb_list)) {
1258 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1259 trace_sb_mark_inode_writeback(inode);
1261 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1266 * clear an inode as under writeback on the sb
1268 void sb_clear_inode_writeback(struct inode *inode)
1270 struct super_block *sb = inode->i_sb;
1271 unsigned long flags;
1273 if (!list_empty(&inode->i_wb_list)) {
1274 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1275 if (!list_empty(&inode->i_wb_list)) {
1276 list_del_init(&inode->i_wb_list);
1277 trace_sb_clear_inode_writeback(inode);
1279 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1284 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1285 * furthest end of its superblock's dirty-inode list.
1287 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1288 * already the most-recently-dirtied inode on the b_dirty list. If that is
1289 * the case then the inode must have been redirtied while it was being written
1290 * out and we don't reset its dirtied_when.
1292 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1294 assert_spin_locked(&inode->i_lock);
1296 if (!list_empty(&wb->b_dirty)) {
1299 tail = wb_inode(wb->b_dirty.next);
1300 if (time_before(inode->dirtied_when, tail->dirtied_when))
1301 inode->dirtied_when = jiffies;
1303 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1304 inode->i_state &= ~I_SYNC_QUEUED;
1307 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1309 spin_lock(&inode->i_lock);
1310 redirty_tail_locked(inode, wb);
1311 spin_unlock(&inode->i_lock);
1315 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1317 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1319 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1322 static void inode_sync_complete(struct inode *inode)
1324 inode->i_state &= ~I_SYNC;
1325 /* If inode is clean an unused, put it into LRU now... */
1326 inode_add_lru(inode);
1327 /* Waiters must see I_SYNC cleared before being woken up */
1329 wake_up_bit(&inode->i_state, __I_SYNC);
1332 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1334 bool ret = time_after(inode->dirtied_when, t);
1335 #ifndef CONFIG_64BIT
1337 * For inodes being constantly redirtied, dirtied_when can get stuck.
1338 * It _appears_ to be in the future, but is actually in distant past.
1339 * This test is necessary to prevent such wrapped-around relative times
1340 * from permanently stopping the whole bdi writeback.
1342 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1347 #define EXPIRE_DIRTY_ATIME 0x0001
1350 * Move expired (dirtied before dirtied_before) dirty inodes from
1351 * @delaying_queue to @dispatch_queue.
1353 static int move_expired_inodes(struct list_head *delaying_queue,
1354 struct list_head *dispatch_queue,
1355 unsigned long dirtied_before)
1358 struct list_head *pos, *node;
1359 struct super_block *sb = NULL;
1360 struct inode *inode;
1364 while (!list_empty(delaying_queue)) {
1365 inode = wb_inode(delaying_queue->prev);
1366 if (inode_dirtied_after(inode, dirtied_before))
1368 list_move(&inode->i_io_list, &tmp);
1370 spin_lock(&inode->i_lock);
1371 inode->i_state |= I_SYNC_QUEUED;
1372 spin_unlock(&inode->i_lock);
1373 if (sb_is_blkdev_sb(inode->i_sb))
1375 if (sb && sb != inode->i_sb)
1380 /* just one sb in list, splice to dispatch_queue and we're done */
1382 list_splice(&tmp, dispatch_queue);
1386 /* Move inodes from one superblock together */
1387 while (!list_empty(&tmp)) {
1388 sb = wb_inode(tmp.prev)->i_sb;
1389 list_for_each_prev_safe(pos, node, &tmp) {
1390 inode = wb_inode(pos);
1391 if (inode->i_sb == sb)
1392 list_move(&inode->i_io_list, dispatch_queue);
1400 * Queue all expired dirty inodes for io, eldest first.
1402 * newly dirtied b_dirty b_io b_more_io
1403 * =============> gf edc BA
1405 * newly dirtied b_dirty b_io b_more_io
1406 * =============> g fBAedc
1408 * +--> dequeue for IO
1410 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1411 unsigned long dirtied_before)
1414 unsigned long time_expire_jif = dirtied_before;
1416 assert_spin_locked(&wb->list_lock);
1417 list_splice_init(&wb->b_more_io, &wb->b_io);
1418 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1419 if (!work->for_sync)
1420 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1421 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1424 wb_io_lists_populated(wb);
1425 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1428 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1432 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1433 trace_writeback_write_inode_start(inode, wbc);
1434 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1435 trace_writeback_write_inode(inode, wbc);
1442 * Wait for writeback on an inode to complete. Called with i_lock held.
1443 * Caller must make sure inode cannot go away when we drop i_lock.
1445 static void __inode_wait_for_writeback(struct inode *inode)
1446 __releases(inode->i_lock)
1447 __acquires(inode->i_lock)
1449 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1450 wait_queue_head_t *wqh;
1452 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1453 while (inode->i_state & I_SYNC) {
1454 spin_unlock(&inode->i_lock);
1455 __wait_on_bit(wqh, &wq, bit_wait,
1456 TASK_UNINTERRUPTIBLE);
1457 spin_lock(&inode->i_lock);
1462 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1464 void inode_wait_for_writeback(struct inode *inode)
1466 spin_lock(&inode->i_lock);
1467 __inode_wait_for_writeback(inode);
1468 spin_unlock(&inode->i_lock);
1472 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1473 * held and drops it. It is aimed for callers not holding any inode reference
1474 * so once i_lock is dropped, inode can go away.
1476 static void inode_sleep_on_writeback(struct inode *inode)
1477 __releases(inode->i_lock)
1480 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1483 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1484 sleep = inode->i_state & I_SYNC;
1485 spin_unlock(&inode->i_lock);
1488 finish_wait(wqh, &wait);
1492 * Find proper writeback list for the inode depending on its current state and
1493 * possibly also change of its state while we were doing writeback. Here we
1494 * handle things such as livelock prevention or fairness of writeback among
1495 * inodes. This function can be called only by flusher thread - noone else
1496 * processes all inodes in writeback lists and requeueing inodes behind flusher
1497 * thread's back can have unexpected consequences.
1499 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1500 struct writeback_control *wbc)
1502 if (inode->i_state & I_FREEING)
1506 * Sync livelock prevention. Each inode is tagged and synced in one
1507 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1508 * the dirty time to prevent enqueue and sync it again.
1510 if ((inode->i_state & I_DIRTY) &&
1511 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1512 inode->dirtied_when = jiffies;
1514 if (wbc->pages_skipped) {
1516 * writeback is not making progress due to locked
1517 * buffers. Skip this inode for now.
1519 redirty_tail_locked(inode, wb);
1523 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1525 * We didn't write back all the pages. nfs_writepages()
1526 * sometimes bales out without doing anything.
1528 if (wbc->nr_to_write <= 0) {
1529 /* Slice used up. Queue for next turn. */
1530 requeue_io(inode, wb);
1533 * Writeback blocked by something other than
1534 * congestion. Delay the inode for some time to
1535 * avoid spinning on the CPU (100% iowait)
1536 * retrying writeback of the dirty page/inode
1537 * that cannot be performed immediately.
1539 redirty_tail_locked(inode, wb);
1541 } else if (inode->i_state & I_DIRTY) {
1543 * Filesystems can dirty the inode during writeback operations,
1544 * such as delayed allocation during submission or metadata
1545 * updates after data IO completion.
1547 redirty_tail_locked(inode, wb);
1548 } else if (inode->i_state & I_DIRTY_TIME) {
1549 inode->dirtied_when = jiffies;
1550 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1551 inode->i_state &= ~I_SYNC_QUEUED;
1553 /* The inode is clean. Remove from writeback lists. */
1554 inode_cgwb_move_to_attached(inode, wb);
1559 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1560 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1562 * This doesn't remove the inode from the writeback list it is on, except
1563 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1564 * expiration. The caller is otherwise responsible for writeback list handling.
1566 * The caller is also responsible for setting the I_SYNC flag beforehand and
1567 * calling inode_sync_complete() to clear it afterwards.
1570 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1572 struct address_space *mapping = inode->i_mapping;
1573 long nr_to_write = wbc->nr_to_write;
1577 WARN_ON(!(inode->i_state & I_SYNC));
1579 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1581 ret = do_writepages(mapping, wbc);
1584 * Make sure to wait on the data before writing out the metadata.
1585 * This is important for filesystems that modify metadata on data
1586 * I/O completion. We don't do it for sync(2) writeback because it has a
1587 * separate, external IO completion path and ->sync_fs for guaranteeing
1588 * inode metadata is written back correctly.
1590 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1591 int err = filemap_fdatawait(mapping);
1597 * If the inode has dirty timestamps and we need to write them, call
1598 * mark_inode_dirty_sync() to notify the filesystem about it and to
1599 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1601 if ((inode->i_state & I_DIRTY_TIME) &&
1602 (wbc->sync_mode == WB_SYNC_ALL ||
1603 time_after(jiffies, inode->dirtied_time_when +
1604 dirtytime_expire_interval * HZ))) {
1605 trace_writeback_lazytime(inode);
1606 mark_inode_dirty_sync(inode);
1610 * Get and clear the dirty flags from i_state. This needs to be done
1611 * after calling writepages because some filesystems may redirty the
1612 * inode during writepages due to delalloc. It also needs to be done
1613 * after handling timestamp expiration, as that may dirty the inode too.
1615 spin_lock(&inode->i_lock);
1616 dirty = inode->i_state & I_DIRTY;
1617 inode->i_state &= ~dirty;
1620 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1621 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1622 * either they see the I_DIRTY bits cleared or we see the dirtied
1625 * I_DIRTY_PAGES is always cleared together above even if @mapping
1626 * still has dirty pages. The flag is reinstated after smp_mb() if
1627 * necessary. This guarantees that either __mark_inode_dirty()
1628 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1632 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1633 inode->i_state |= I_DIRTY_PAGES;
1634 else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1635 if (!(inode->i_state & I_DIRTY_PAGES)) {
1636 inode->i_state &= ~I_PINNING_FSCACHE_WB;
1637 wbc->unpinned_fscache_wb = true;
1638 dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1642 spin_unlock(&inode->i_lock);
1644 /* Don't write the inode if only I_DIRTY_PAGES was set */
1645 if (dirty & ~I_DIRTY_PAGES) {
1646 int err = write_inode(inode, wbc);
1650 wbc->unpinned_fscache_wb = false;
1651 trace_writeback_single_inode(inode, wbc, nr_to_write);
1656 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1657 * the regular batched writeback done by the flusher threads in
1658 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1659 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1661 * To prevent the inode from going away, either the caller must have a reference
1662 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1664 static int writeback_single_inode(struct inode *inode,
1665 struct writeback_control *wbc)
1667 struct bdi_writeback *wb;
1670 spin_lock(&inode->i_lock);
1671 if (!atomic_read(&inode->i_count))
1672 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1674 WARN_ON(inode->i_state & I_WILL_FREE);
1676 if (inode->i_state & I_SYNC) {
1678 * Writeback is already running on the inode. For WB_SYNC_NONE,
1679 * that's enough and we can just return. For WB_SYNC_ALL, we
1680 * must wait for the existing writeback to complete, then do
1681 * writeback again if there's anything left.
1683 if (wbc->sync_mode != WB_SYNC_ALL)
1685 __inode_wait_for_writeback(inode);
1687 WARN_ON(inode->i_state & I_SYNC);
1689 * If the inode is already fully clean, then there's nothing to do.
1691 * For data-integrity syncs we also need to check whether any pages are
1692 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1693 * there are any such pages, we'll need to wait for them.
1695 if (!(inode->i_state & I_DIRTY_ALL) &&
1696 (wbc->sync_mode != WB_SYNC_ALL ||
1697 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1699 inode->i_state |= I_SYNC;
1700 wbc_attach_and_unlock_inode(wbc, inode);
1702 ret = __writeback_single_inode(inode, wbc);
1704 wbc_detach_inode(wbc);
1706 wb = inode_to_wb_and_lock_list(inode);
1707 spin_lock(&inode->i_lock);
1709 * If the inode is now fully clean, then it can be safely removed from
1710 * its writeback list (if any). Otherwise the flusher threads are
1711 * responsible for the writeback lists.
1713 if (!(inode->i_state & I_DIRTY_ALL))
1714 inode_cgwb_move_to_attached(inode, wb);
1715 else if (!(inode->i_state & I_SYNC_QUEUED) &&
1716 (inode->i_state & I_DIRTY))
1717 redirty_tail_locked(inode, wb);
1719 spin_unlock(&wb->list_lock);
1720 inode_sync_complete(inode);
1722 spin_unlock(&inode->i_lock);
1726 static long writeback_chunk_size(struct bdi_writeback *wb,
1727 struct wb_writeback_work *work)
1732 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1733 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1734 * here avoids calling into writeback_inodes_wb() more than once.
1736 * The intended call sequence for WB_SYNC_ALL writeback is:
1739 * writeback_sb_inodes() <== called only once
1740 * write_cache_pages() <== called once for each inode
1741 * (quickly) tag currently dirty pages
1742 * (maybe slowly) sync all tagged pages
1744 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1747 pages = min(wb->avg_write_bandwidth / 2,
1748 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1749 pages = min(pages, work->nr_pages);
1750 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1751 MIN_WRITEBACK_PAGES);
1758 * Write a portion of b_io inodes which belong to @sb.
1760 * Return the number of pages and/or inodes written.
1762 * NOTE! This is called with wb->list_lock held, and will
1763 * unlock and relock that for each inode it ends up doing
1766 static long writeback_sb_inodes(struct super_block *sb,
1767 struct bdi_writeback *wb,
1768 struct wb_writeback_work *work)
1770 struct writeback_control wbc = {
1771 .sync_mode = work->sync_mode,
1772 .tagged_writepages = work->tagged_writepages,
1773 .for_kupdate = work->for_kupdate,
1774 .for_background = work->for_background,
1775 .for_sync = work->for_sync,
1776 .range_cyclic = work->range_cyclic,
1778 .range_end = LLONG_MAX,
1780 unsigned long start_time = jiffies;
1782 long wrote = 0; /* count both pages and inodes */
1784 while (!list_empty(&wb->b_io)) {
1785 struct inode *inode = wb_inode(wb->b_io.prev);
1786 struct bdi_writeback *tmp_wb;
1788 if (inode->i_sb != sb) {
1791 * We only want to write back data for this
1792 * superblock, move all inodes not belonging
1793 * to it back onto the dirty list.
1795 redirty_tail(inode, wb);
1800 * The inode belongs to a different superblock.
1801 * Bounce back to the caller to unpin this and
1802 * pin the next superblock.
1808 * Don't bother with new inodes or inodes being freed, first
1809 * kind does not need periodic writeout yet, and for the latter
1810 * kind writeout is handled by the freer.
1812 spin_lock(&inode->i_lock);
1813 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1814 redirty_tail_locked(inode, wb);
1815 spin_unlock(&inode->i_lock);
1818 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1820 * If this inode is locked for writeback and we are not
1821 * doing writeback-for-data-integrity, move it to
1822 * b_more_io so that writeback can proceed with the
1823 * other inodes on s_io.
1825 * We'll have another go at writing back this inode
1826 * when we completed a full scan of b_io.
1828 spin_unlock(&inode->i_lock);
1829 requeue_io(inode, wb);
1830 trace_writeback_sb_inodes_requeue(inode);
1833 spin_unlock(&wb->list_lock);
1836 * We already requeued the inode if it had I_SYNC set and we
1837 * are doing WB_SYNC_NONE writeback. So this catches only the
1840 if (inode->i_state & I_SYNC) {
1841 /* Wait for I_SYNC. This function drops i_lock... */
1842 inode_sleep_on_writeback(inode);
1843 /* Inode may be gone, start again */
1844 spin_lock(&wb->list_lock);
1847 inode->i_state |= I_SYNC;
1848 wbc_attach_and_unlock_inode(&wbc, inode);
1850 write_chunk = writeback_chunk_size(wb, work);
1851 wbc.nr_to_write = write_chunk;
1852 wbc.pages_skipped = 0;
1855 * We use I_SYNC to pin the inode in memory. While it is set
1856 * evict_inode() will wait so the inode cannot be freed.
1858 __writeback_single_inode(inode, &wbc);
1860 wbc_detach_inode(&wbc);
1861 work->nr_pages -= write_chunk - wbc.nr_to_write;
1862 wrote += write_chunk - wbc.nr_to_write;
1864 if (need_resched()) {
1866 * We're trying to balance between building up a nice
1867 * long list of IOs to improve our merge rate, and
1868 * getting those IOs out quickly for anyone throttling
1869 * in balance_dirty_pages(). cond_resched() doesn't
1870 * unplug, so get our IOs out the door before we
1873 blk_flush_plug(current->plug, false);
1878 * Requeue @inode if still dirty. Be careful as @inode may
1879 * have been switched to another wb in the meantime.
1881 tmp_wb = inode_to_wb_and_lock_list(inode);
1882 spin_lock(&inode->i_lock);
1883 if (!(inode->i_state & I_DIRTY_ALL))
1885 requeue_inode(inode, tmp_wb, &wbc);
1886 inode_sync_complete(inode);
1887 spin_unlock(&inode->i_lock);
1889 if (unlikely(tmp_wb != wb)) {
1890 spin_unlock(&tmp_wb->list_lock);
1891 spin_lock(&wb->list_lock);
1895 * bail out to wb_writeback() often enough to check
1896 * background threshold and other termination conditions.
1899 if (time_is_before_jiffies(start_time + HZ / 10UL))
1901 if (work->nr_pages <= 0)
1908 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1909 struct wb_writeback_work *work)
1911 unsigned long start_time = jiffies;
1914 while (!list_empty(&wb->b_io)) {
1915 struct inode *inode = wb_inode(wb->b_io.prev);
1916 struct super_block *sb = inode->i_sb;
1918 if (!trylock_super(sb)) {
1920 * trylock_super() may fail consistently due to
1921 * s_umount being grabbed by someone else. Don't use
1922 * requeue_io() to avoid busy retrying the inode/sb.
1924 redirty_tail(inode, wb);
1927 wrote += writeback_sb_inodes(sb, wb, work);
1928 up_read(&sb->s_umount);
1930 /* refer to the same tests at the end of writeback_sb_inodes */
1932 if (time_is_before_jiffies(start_time + HZ / 10UL))
1934 if (work->nr_pages <= 0)
1938 /* Leave any unwritten inodes on b_io */
1942 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1943 enum wb_reason reason)
1945 struct wb_writeback_work work = {
1946 .nr_pages = nr_pages,
1947 .sync_mode = WB_SYNC_NONE,
1951 struct blk_plug plug;
1953 blk_start_plug(&plug);
1954 spin_lock(&wb->list_lock);
1955 if (list_empty(&wb->b_io))
1956 queue_io(wb, &work, jiffies);
1957 __writeback_inodes_wb(wb, &work);
1958 spin_unlock(&wb->list_lock);
1959 blk_finish_plug(&plug);
1961 return nr_pages - work.nr_pages;
1965 * Explicit flushing or periodic writeback of "old" data.
1967 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1968 * dirtying-time in the inode's address_space. So this periodic writeback code
1969 * just walks the superblock inode list, writing back any inodes which are
1970 * older than a specific point in time.
1972 * Try to run once per dirty_writeback_interval. But if a writeback event
1973 * takes longer than a dirty_writeback_interval interval, then leave a
1976 * dirtied_before takes precedence over nr_to_write. So we'll only write back
1977 * all dirty pages if they are all attached to "old" mappings.
1979 static long wb_writeback(struct bdi_writeback *wb,
1980 struct wb_writeback_work *work)
1982 long nr_pages = work->nr_pages;
1983 unsigned long dirtied_before = jiffies;
1984 struct inode *inode;
1986 struct blk_plug plug;
1988 blk_start_plug(&plug);
1989 spin_lock(&wb->list_lock);
1992 * Stop writeback when nr_pages has been consumed
1994 if (work->nr_pages <= 0)
1998 * Background writeout and kupdate-style writeback may
1999 * run forever. Stop them if there is other work to do
2000 * so that e.g. sync can proceed. They'll be restarted
2001 * after the other works are all done.
2003 if ((work->for_background || work->for_kupdate) &&
2004 !list_empty(&wb->work_list))
2008 * For background writeout, stop when we are below the
2009 * background dirty threshold
2011 if (work->for_background && !wb_over_bg_thresh(wb))
2015 * Kupdate and background works are special and we want to
2016 * include all inodes that need writing. Livelock avoidance is
2017 * handled by these works yielding to any other work so we are
2020 if (work->for_kupdate) {
2021 dirtied_before = jiffies -
2022 msecs_to_jiffies(dirty_expire_interval * 10);
2023 } else if (work->for_background)
2024 dirtied_before = jiffies;
2026 trace_writeback_start(wb, work);
2027 if (list_empty(&wb->b_io))
2028 queue_io(wb, work, dirtied_before);
2030 progress = writeback_sb_inodes(work->sb, wb, work);
2032 progress = __writeback_inodes_wb(wb, work);
2033 trace_writeback_written(wb, work);
2036 * Did we write something? Try for more
2038 * Dirty inodes are moved to b_io for writeback in batches.
2039 * The completion of the current batch does not necessarily
2040 * mean the overall work is done. So we keep looping as long
2041 * as made some progress on cleaning pages or inodes.
2046 * No more inodes for IO, bail
2048 if (list_empty(&wb->b_more_io))
2051 * Nothing written. Wait for some inode to
2052 * become available for writeback. Otherwise
2053 * we'll just busyloop.
2055 trace_writeback_wait(wb, work);
2056 inode = wb_inode(wb->b_more_io.prev);
2057 spin_lock(&inode->i_lock);
2058 spin_unlock(&wb->list_lock);
2059 /* This function drops i_lock... */
2060 inode_sleep_on_writeback(inode);
2061 spin_lock(&wb->list_lock);
2063 spin_unlock(&wb->list_lock);
2064 blk_finish_plug(&plug);
2066 return nr_pages - work->nr_pages;
2070 * Return the next wb_writeback_work struct that hasn't been processed yet.
2072 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2074 struct wb_writeback_work *work = NULL;
2076 spin_lock_bh(&wb->work_lock);
2077 if (!list_empty(&wb->work_list)) {
2078 work = list_entry(wb->work_list.next,
2079 struct wb_writeback_work, list);
2080 list_del_init(&work->list);
2082 spin_unlock_bh(&wb->work_lock);
2086 static long wb_check_background_flush(struct bdi_writeback *wb)
2088 if (wb_over_bg_thresh(wb)) {
2090 struct wb_writeback_work work = {
2091 .nr_pages = LONG_MAX,
2092 .sync_mode = WB_SYNC_NONE,
2093 .for_background = 1,
2095 .reason = WB_REASON_BACKGROUND,
2098 return wb_writeback(wb, &work);
2104 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2106 unsigned long expired;
2110 * When set to zero, disable periodic writeback
2112 if (!dirty_writeback_interval)
2115 expired = wb->last_old_flush +
2116 msecs_to_jiffies(dirty_writeback_interval * 10);
2117 if (time_before(jiffies, expired))
2120 wb->last_old_flush = jiffies;
2121 nr_pages = get_nr_dirty_pages();
2124 struct wb_writeback_work work = {
2125 .nr_pages = nr_pages,
2126 .sync_mode = WB_SYNC_NONE,
2129 .reason = WB_REASON_PERIODIC,
2132 return wb_writeback(wb, &work);
2138 static long wb_check_start_all(struct bdi_writeback *wb)
2142 if (!test_bit(WB_start_all, &wb->state))
2145 nr_pages = get_nr_dirty_pages();
2147 struct wb_writeback_work work = {
2148 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2149 .sync_mode = WB_SYNC_NONE,
2151 .reason = wb->start_all_reason,
2154 nr_pages = wb_writeback(wb, &work);
2157 clear_bit(WB_start_all, &wb->state);
2163 * Retrieve work items and do the writeback they describe
2165 static long wb_do_writeback(struct bdi_writeback *wb)
2167 struct wb_writeback_work *work;
2170 set_bit(WB_writeback_running, &wb->state);
2171 while ((work = get_next_work_item(wb)) != NULL) {
2172 trace_writeback_exec(wb, work);
2173 wrote += wb_writeback(wb, work);
2174 finish_writeback_work(wb, work);
2178 * Check for a flush-everything request
2180 wrote += wb_check_start_all(wb);
2183 * Check for periodic writeback, kupdated() style
2185 wrote += wb_check_old_data_flush(wb);
2186 wrote += wb_check_background_flush(wb);
2187 clear_bit(WB_writeback_running, &wb->state);
2193 * Handle writeback of dirty data for the device backed by this bdi. Also
2194 * reschedules periodically and does kupdated style flushing.
2196 void wb_workfn(struct work_struct *work)
2198 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2199 struct bdi_writeback, dwork);
2202 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2204 if (likely(!current_is_workqueue_rescuer() ||
2205 !test_bit(WB_registered, &wb->state))) {
2207 * The normal path. Keep writing back @wb until its
2208 * work_list is empty. Note that this path is also taken
2209 * if @wb is shutting down even when we're running off the
2210 * rescuer as work_list needs to be drained.
2213 pages_written = wb_do_writeback(wb);
2214 trace_writeback_pages_written(pages_written);
2215 } while (!list_empty(&wb->work_list));
2218 * bdi_wq can't get enough workers and we're running off
2219 * the emergency worker. Don't hog it. Hopefully, 1024 is
2220 * enough for efficient IO.
2222 pages_written = writeback_inodes_wb(wb, 1024,
2223 WB_REASON_FORKER_THREAD);
2224 trace_writeback_pages_written(pages_written);
2227 if (!list_empty(&wb->work_list))
2229 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2230 wb_wakeup_delayed(wb);
2234 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2235 * write back the whole world.
2237 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2238 enum wb_reason reason)
2240 struct bdi_writeback *wb;
2242 if (!bdi_has_dirty_io(bdi))
2245 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2246 wb_start_writeback(wb, reason);
2249 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2250 enum wb_reason reason)
2253 __wakeup_flusher_threads_bdi(bdi, reason);
2258 * Wakeup the flusher threads to start writeback of all currently dirty pages
2260 void wakeup_flusher_threads(enum wb_reason reason)
2262 struct backing_dev_info *bdi;
2265 * If we are expecting writeback progress we must submit plugged IO.
2267 blk_flush_plug(current->plug, true);
2270 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2271 __wakeup_flusher_threads_bdi(bdi, reason);
2276 * Wake up bdi's periodically to make sure dirtytime inodes gets
2277 * written back periodically. We deliberately do *not* check the
2278 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2279 * kernel to be constantly waking up once there are any dirtytime
2280 * inodes on the system. So instead we define a separate delayed work
2281 * function which gets called much more rarely. (By default, only
2282 * once every 12 hours.)
2284 * If there is any other write activity going on in the file system,
2285 * this function won't be necessary. But if the only thing that has
2286 * happened on the file system is a dirtytime inode caused by an atime
2287 * update, we need this infrastructure below to make sure that inode
2288 * eventually gets pushed out to disk.
2290 static void wakeup_dirtytime_writeback(struct work_struct *w);
2291 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2293 static void wakeup_dirtytime_writeback(struct work_struct *w)
2295 struct backing_dev_info *bdi;
2298 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2299 struct bdi_writeback *wb;
2301 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2302 if (!list_empty(&wb->b_dirty_time))
2306 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2309 static int __init start_dirtytime_writeback(void)
2311 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2314 __initcall(start_dirtytime_writeback);
2316 int dirtytime_interval_handler(struct ctl_table *table, int write,
2317 void *buffer, size_t *lenp, loff_t *ppos)
2321 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2322 if (ret == 0 && write)
2323 mod_delayed_work(system_wq, &dirtytime_work, 0);
2328 * __mark_inode_dirty - internal function to mark an inode dirty
2330 * @inode: inode to mark
2331 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2332 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2333 * with I_DIRTY_PAGES.
2335 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2336 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
2338 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2339 * instead of calling this directly.
2341 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2342 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2343 * even if they are later hashed, as they will have been marked dirty already.
2345 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2347 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2348 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2349 * the kernel-internal blockdev inode represents the dirtying time of the
2350 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2351 * page->mapping->host, so the page-dirtying time is recorded in the internal
2354 void __mark_inode_dirty(struct inode *inode, int flags)
2356 struct super_block *sb = inode->i_sb;
2359 trace_writeback_mark_inode_dirty(inode, flags);
2361 if (flags & I_DIRTY_INODE) {
2363 * Notify the filesystem about the inode being dirtied, so that
2364 * (if needed) it can update on-disk fields and journal the
2365 * inode. This is only needed when the inode itself is being
2366 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2367 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2369 trace_writeback_dirty_inode_start(inode, flags);
2370 if (sb->s_op->dirty_inode)
2371 sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2372 trace_writeback_dirty_inode(inode, flags);
2374 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2375 flags &= ~I_DIRTY_TIME;
2378 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2379 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2380 * in one call to __mark_inode_dirty().)
2382 dirtytime = flags & I_DIRTY_TIME;
2383 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2387 * Paired with smp_mb() in __writeback_single_inode() for the
2388 * following lockless i_state test. See there for details.
2392 if (((inode->i_state & flags) == flags) ||
2393 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2396 spin_lock(&inode->i_lock);
2397 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2398 goto out_unlock_inode;
2399 if ((inode->i_state & flags) != flags) {
2400 const int was_dirty = inode->i_state & I_DIRTY;
2402 inode_attach_wb(inode, NULL);
2404 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2405 if (flags & I_DIRTY_INODE)
2406 inode->i_state &= ~I_DIRTY_TIME;
2407 inode->i_state |= flags;
2410 * If the inode is queued for writeback by flush worker, just
2411 * update its dirty state. Once the flush worker is done with
2412 * the inode it will place it on the appropriate superblock
2413 * list, based upon its state.
2415 if (inode->i_state & I_SYNC_QUEUED)
2416 goto out_unlock_inode;
2419 * Only add valid (hashed) inodes to the superblock's
2420 * dirty list. Add blockdev inodes as well.
2422 if (!S_ISBLK(inode->i_mode)) {
2423 if (inode_unhashed(inode))
2424 goto out_unlock_inode;
2426 if (inode->i_state & I_FREEING)
2427 goto out_unlock_inode;
2430 * If the inode was already on b_dirty/b_io/b_more_io, don't
2431 * reposition it (that would break b_dirty time-ordering).
2434 struct bdi_writeback *wb;
2435 struct list_head *dirty_list;
2436 bool wakeup_bdi = false;
2438 wb = locked_inode_to_wb_and_lock_list(inode);
2440 inode->dirtied_when = jiffies;
2442 inode->dirtied_time_when = jiffies;
2444 if (inode->i_state & I_DIRTY)
2445 dirty_list = &wb->b_dirty;
2447 dirty_list = &wb->b_dirty_time;
2449 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2452 spin_unlock(&wb->list_lock);
2453 trace_writeback_dirty_inode_enqueue(inode);
2456 * If this is the first dirty inode for this bdi,
2457 * we have to wake-up the corresponding bdi thread
2458 * to make sure background write-back happens
2462 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2463 wb_wakeup_delayed(wb);
2468 spin_unlock(&inode->i_lock);
2470 EXPORT_SYMBOL(__mark_inode_dirty);
2473 * The @s_sync_lock is used to serialise concurrent sync operations
2474 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2475 * Concurrent callers will block on the s_sync_lock rather than doing contending
2476 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2477 * has been issued up to the time this function is enter is guaranteed to be
2478 * completed by the time we have gained the lock and waited for all IO that is
2479 * in progress regardless of the order callers are granted the lock.
2481 static void wait_sb_inodes(struct super_block *sb)
2483 LIST_HEAD(sync_list);
2486 * We need to be protected against the filesystem going from
2487 * r/o to r/w or vice versa.
2489 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2491 mutex_lock(&sb->s_sync_lock);
2494 * Splice the writeback list onto a temporary list to avoid waiting on
2495 * inodes that have started writeback after this point.
2497 * Use rcu_read_lock() to keep the inodes around until we have a
2498 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2499 * the local list because inodes can be dropped from either by writeback
2503 spin_lock_irq(&sb->s_inode_wblist_lock);
2504 list_splice_init(&sb->s_inodes_wb, &sync_list);
2507 * Data integrity sync. Must wait for all pages under writeback, because
2508 * there may have been pages dirtied before our sync call, but which had
2509 * writeout started before we write it out. In which case, the inode
2510 * may not be on the dirty list, but we still have to wait for that
2513 while (!list_empty(&sync_list)) {
2514 struct inode *inode = list_first_entry(&sync_list, struct inode,
2516 struct address_space *mapping = inode->i_mapping;
2519 * Move each inode back to the wb list before we drop the lock
2520 * to preserve consistency between i_wb_list and the mapping
2521 * writeback tag. Writeback completion is responsible to remove
2522 * the inode from either list once the writeback tag is cleared.
2524 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2527 * The mapping can appear untagged while still on-list since we
2528 * do not have the mapping lock. Skip it here, wb completion
2531 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2534 spin_unlock_irq(&sb->s_inode_wblist_lock);
2536 spin_lock(&inode->i_lock);
2537 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2538 spin_unlock(&inode->i_lock);
2540 spin_lock_irq(&sb->s_inode_wblist_lock);
2544 spin_unlock(&inode->i_lock);
2548 * We keep the error status of individual mapping so that
2549 * applications can catch the writeback error using fsync(2).
2550 * See filemap_fdatawait_keep_errors() for details.
2552 filemap_fdatawait_keep_errors(mapping);
2559 spin_lock_irq(&sb->s_inode_wblist_lock);
2561 spin_unlock_irq(&sb->s_inode_wblist_lock);
2563 mutex_unlock(&sb->s_sync_lock);
2566 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2567 enum wb_reason reason, bool skip_if_busy)
2569 struct backing_dev_info *bdi = sb->s_bdi;
2570 DEFINE_WB_COMPLETION(done, bdi);
2571 struct wb_writeback_work work = {
2573 .sync_mode = WB_SYNC_NONE,
2574 .tagged_writepages = 1,
2580 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2582 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2584 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2585 wb_wait_for_completion(&done);
2589 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2590 * @sb: the superblock
2591 * @nr: the number of pages to write
2592 * @reason: reason why some writeback work initiated
2594 * Start writeback on some inodes on this super_block. No guarantees are made
2595 * on how many (if any) will be written, and this function does not wait
2596 * for IO completion of submitted IO.
2598 void writeback_inodes_sb_nr(struct super_block *sb,
2600 enum wb_reason reason)
2602 __writeback_inodes_sb_nr(sb, nr, reason, false);
2604 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2607 * writeback_inodes_sb - writeback dirty inodes from given super_block
2608 * @sb: the superblock
2609 * @reason: reason why some writeback work was initiated
2611 * Start writeback on some inodes on this super_block. No guarantees are made
2612 * on how many (if any) will be written, and this function does not wait
2613 * for IO completion of submitted IO.
2615 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2617 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2619 EXPORT_SYMBOL(writeback_inodes_sb);
2622 * try_to_writeback_inodes_sb - try to start writeback if none underway
2623 * @sb: the superblock
2624 * @reason: reason why some writeback work was initiated
2626 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2628 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2630 if (!down_read_trylock(&sb->s_umount))
2633 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2634 up_read(&sb->s_umount);
2636 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2639 * sync_inodes_sb - sync sb inode pages
2640 * @sb: the superblock
2642 * This function writes and waits on any dirty inode belonging to this
2645 void sync_inodes_sb(struct super_block *sb)
2647 struct backing_dev_info *bdi = sb->s_bdi;
2648 DEFINE_WB_COMPLETION(done, bdi);
2649 struct wb_writeback_work work = {
2651 .sync_mode = WB_SYNC_ALL,
2652 .nr_pages = LONG_MAX,
2655 .reason = WB_REASON_SYNC,
2660 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2661 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2662 * bdi_has_dirty() need to be written out too.
2664 if (bdi == &noop_backing_dev_info)
2666 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2668 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2669 bdi_down_write_wb_switch_rwsem(bdi);
2670 bdi_split_work_to_wbs(bdi, &work, false);
2671 wb_wait_for_completion(&done);
2672 bdi_up_write_wb_switch_rwsem(bdi);
2676 EXPORT_SYMBOL(sync_inodes_sb);
2679 * write_inode_now - write an inode to disk
2680 * @inode: inode to write to disk
2681 * @sync: whether the write should be synchronous or not
2683 * This function commits an inode to disk immediately if it is dirty. This is
2684 * primarily needed by knfsd.
2686 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2688 int write_inode_now(struct inode *inode, int sync)
2690 struct writeback_control wbc = {
2691 .nr_to_write = LONG_MAX,
2692 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2694 .range_end = LLONG_MAX,
2697 if (!mapping_can_writeback(inode->i_mapping))
2698 wbc.nr_to_write = 0;
2701 return writeback_single_inode(inode, &wbc);
2703 EXPORT_SYMBOL(write_inode_now);
2706 * sync_inode_metadata - write an inode to disk
2707 * @inode: the inode to sync
2708 * @wait: wait for I/O to complete.
2710 * Write an inode to disk and adjust its dirty state after completion.
2712 * Note: only writes the actual inode, no associated data or other metadata.
2714 int sync_inode_metadata(struct inode *inode, int wait)
2716 struct writeback_control wbc = {
2717 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2718 .nr_to_write = 0, /* metadata-only */
2721 return writeback_single_inode(inode, &wbc);
2723 EXPORT_SYMBOL(sync_inode_metadata);