4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
33 * 4MB minimal write chunk size
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
38 * Passed into wb_writeback(), essentially a subset of writeback_control
40 struct wb_writeback_work {
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 enum wb_reason reason; /* why was writeback initiated? */
51 struct list_head list; /* pending work list */
52 struct completion *done; /* set if the caller waits */
56 * We don't actually have pdflush, but this one is exported though /proc...
58 int nr_pdflush_threads;
61 * writeback_in_progress - determine whether there is writeback in progress
62 * @bdi: the device's backing_dev_info structure.
64 * Determine whether there is writeback waiting to be handled against a
67 int writeback_in_progress(struct backing_dev_info *bdi)
69 return test_bit(BDI_writeback_running, &bdi->state);
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
74 struct super_block *sb = inode->i_sb;
76 if (strcmp(sb->s_type->name, "bdev") == 0)
77 return inode->i_mapping->backing_dev_info;
82 static inline struct inode *wb_inode(struct list_head *head)
84 return list_entry(head, struct inode, i_wb_list);
88 * Include the creation of the trace points after defining the
89 * wb_writeback_work structure and inline functions so that the definition
90 * remains local to this file.
92 #define CREATE_TRACE_POINTS
93 #include <trace/events/writeback.h>
95 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
96 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
99 wake_up_process(bdi->wb.task);
102 * The bdi thread isn't there, wake up the forker thread which
103 * will create and run it.
105 wake_up_process(default_backing_dev_info.wb.task);
109 static void bdi_queue_work(struct backing_dev_info *bdi,
110 struct wb_writeback_work *work)
112 trace_writeback_queue(bdi, work);
114 spin_lock_bh(&bdi->wb_lock);
115 list_add_tail(&work->list, &bdi->work_list);
117 trace_writeback_nothread(bdi, work);
118 bdi_wakeup_flusher(bdi);
119 spin_unlock_bh(&bdi->wb_lock);
123 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
124 bool range_cyclic, enum wb_reason reason)
126 struct wb_writeback_work *work;
129 * This is WB_SYNC_NONE writeback, so if allocation fails just
130 * wakeup the thread for old dirty data writeback
132 work = kzalloc(sizeof(*work), GFP_ATOMIC);
135 trace_writeback_nowork(bdi);
136 wake_up_process(bdi->wb.task);
141 work->sync_mode = WB_SYNC_NONE;
142 work->nr_pages = nr_pages;
143 work->range_cyclic = range_cyclic;
144 work->reason = reason;
146 bdi_queue_work(bdi, work);
150 * bdi_start_writeback - start writeback
151 * @bdi: the backing device to write from
152 * @nr_pages: the number of pages to write
153 * @reason: reason why some writeback work was initiated
156 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
157 * started when this function returns, we make no guarantees on
158 * completion. Caller need not hold sb s_umount semaphore.
161 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
162 enum wb_reason reason)
164 __bdi_start_writeback(bdi, nr_pages, true, reason);
168 * bdi_start_background_writeback - start background writeback
169 * @bdi: the backing device to write from
172 * This makes sure WB_SYNC_NONE background writeback happens. When
173 * this function returns, it is only guaranteed that for given BDI
174 * some IO is happening if we are over background dirty threshold.
175 * Caller need not hold sb s_umount semaphore.
177 void bdi_start_background_writeback(struct backing_dev_info *bdi)
180 * We just wake up the flusher thread. It will perform background
181 * writeback as soon as there is no other work to do.
183 trace_writeback_wake_background(bdi);
184 spin_lock_bh(&bdi->wb_lock);
185 bdi_wakeup_flusher(bdi);
186 spin_unlock_bh(&bdi->wb_lock);
190 * Remove the inode from the writeback list it is on.
192 void inode_wb_list_del(struct inode *inode)
194 struct backing_dev_info *bdi = inode_to_bdi(inode);
196 spin_lock(&bdi->wb.list_lock);
197 list_del_init(&inode->i_wb_list);
198 spin_unlock(&bdi->wb.list_lock);
202 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
203 * furthest end of its superblock's dirty-inode list.
205 * Before stamping the inode's ->dirtied_when, we check to see whether it is
206 * already the most-recently-dirtied inode on the b_dirty list. If that is
207 * the case then the inode must have been redirtied while it was being written
208 * out and we don't reset its dirtied_when.
210 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
212 assert_spin_locked(&wb->list_lock);
213 if (!list_empty(&wb->b_dirty)) {
216 tail = wb_inode(wb->b_dirty.next);
217 if (time_before(inode->dirtied_when, tail->dirtied_when))
218 inode->dirtied_when = jiffies;
220 list_move(&inode->i_wb_list, &wb->b_dirty);
224 * requeue inode for re-scanning after bdi->b_io list is exhausted.
226 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
228 assert_spin_locked(&wb->list_lock);
229 list_move(&inode->i_wb_list, &wb->b_more_io);
232 static void inode_sync_complete(struct inode *inode)
234 inode->i_state &= ~I_SYNC;
235 /* Waiters must see I_SYNC cleared before being woken up */
237 wake_up_bit(&inode->i_state, __I_SYNC);
240 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
242 bool ret = time_after(inode->dirtied_when, t);
245 * For inodes being constantly redirtied, dirtied_when can get stuck.
246 * It _appears_ to be in the future, but is actually in distant past.
247 * This test is necessary to prevent such wrapped-around relative times
248 * from permanently stopping the whole bdi writeback.
250 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
256 * Move expired (dirtied after work->older_than_this) dirty inodes from
257 * @delaying_queue to @dispatch_queue.
259 static int move_expired_inodes(struct list_head *delaying_queue,
260 struct list_head *dispatch_queue,
261 struct wb_writeback_work *work)
264 struct list_head *pos, *node;
265 struct super_block *sb = NULL;
270 while (!list_empty(delaying_queue)) {
271 inode = wb_inode(delaying_queue->prev);
272 if (work->older_than_this &&
273 inode_dirtied_after(inode, *work->older_than_this))
275 if (sb && sb != inode->i_sb)
278 list_move(&inode->i_wb_list, &tmp);
282 /* just one sb in list, splice to dispatch_queue and we're done */
284 list_splice(&tmp, dispatch_queue);
288 /* Move inodes from one superblock together */
289 while (!list_empty(&tmp)) {
290 sb = wb_inode(tmp.prev)->i_sb;
291 list_for_each_prev_safe(pos, node, &tmp) {
292 inode = wb_inode(pos);
293 if (inode->i_sb == sb)
294 list_move(&inode->i_wb_list, dispatch_queue);
302 * Queue all expired dirty inodes for io, eldest first.
304 * newly dirtied b_dirty b_io b_more_io
305 * =============> gf edc BA
307 * newly dirtied b_dirty b_io b_more_io
308 * =============> g fBAedc
310 * +--> dequeue for IO
312 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
315 assert_spin_locked(&wb->list_lock);
316 list_splice_init(&wb->b_more_io, &wb->b_io);
317 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
318 trace_writeback_queue_io(wb, work, moved);
321 static int write_inode(struct inode *inode, struct writeback_control *wbc)
323 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
324 return inode->i_sb->s_op->write_inode(inode, wbc);
329 * Wait for writeback on an inode to complete. Called with i_lock held.
330 * Caller must make sure inode cannot go away when we drop i_lock.
332 static void __inode_wait_for_writeback(struct inode *inode)
333 __releases(inode->i_lock)
334 __acquires(inode->i_lock)
336 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
337 wait_queue_head_t *wqh;
339 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
340 while (inode->i_state & I_SYNC) {
341 spin_unlock(&inode->i_lock);
342 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
343 spin_lock(&inode->i_lock);
348 * Wait for writeback on an inode to complete. Caller must have inode pinned.
350 void inode_wait_for_writeback(struct inode *inode)
352 spin_lock(&inode->i_lock);
353 __inode_wait_for_writeback(inode);
354 spin_unlock(&inode->i_lock);
358 * Sleep until I_SYNC is cleared. This function must be called with i_lock
359 * held and drops it. It is aimed for callers not holding any inode reference
360 * so once i_lock is dropped, inode can go away.
362 static void inode_sleep_on_writeback(struct inode *inode)
363 __releases(inode->i_lock)
366 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
369 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
370 sleep = inode->i_state & I_SYNC;
371 spin_unlock(&inode->i_lock);
374 finish_wait(wqh, &wait);
378 * Find proper writeback list for the inode depending on its current state and
379 * possibly also change of its state while we were doing writeback. Here we
380 * handle things such as livelock prevention or fairness of writeback among
381 * inodes. This function can be called only by flusher thread - noone else
382 * processes all inodes in writeback lists and requeueing inodes behind flusher
383 * thread's back can have unexpected consequences.
385 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
386 struct writeback_control *wbc)
388 if (inode->i_state & I_FREEING)
392 * Sync livelock prevention. Each inode is tagged and synced in one
393 * shot. If still dirty, it will be redirty_tail()'ed below. Update
394 * the dirty time to prevent enqueue and sync it again.
396 if ((inode->i_state & I_DIRTY) &&
397 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
398 inode->dirtied_when = jiffies;
400 if (wbc->pages_skipped) {
402 * writeback is not making progress due to locked
403 * buffers. Skip this inode for now.
405 redirty_tail(inode, wb);
409 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
411 * We didn't write back all the pages. nfs_writepages()
412 * sometimes bales out without doing anything.
414 if (wbc->nr_to_write <= 0) {
415 /* Slice used up. Queue for next turn. */
416 requeue_io(inode, wb);
419 * Writeback blocked by something other than
420 * congestion. Delay the inode for some time to
421 * avoid spinning on the CPU (100% iowait)
422 * retrying writeback of the dirty page/inode
423 * that cannot be performed immediately.
425 redirty_tail(inode, wb);
427 } else if (inode->i_state & I_DIRTY) {
429 * Filesystems can dirty the inode during writeback operations,
430 * such as delayed allocation during submission or metadata
431 * updates after data IO completion.
433 redirty_tail(inode, wb);
435 /* The inode is clean. Remove from writeback lists. */
436 list_del_init(&inode->i_wb_list);
441 * Write out an inode and its dirty pages. Do not update the writeback list
442 * linkage. That is left to the caller. The caller is also responsible for
443 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
446 __writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
447 struct writeback_control *wbc)
449 struct address_space *mapping = inode->i_mapping;
450 long nr_to_write = wbc->nr_to_write;
454 WARN_ON(!(inode->i_state & I_SYNC));
456 ret = do_writepages(mapping, wbc);
459 * Make sure to wait on the data before writing out the metadata.
460 * This is important for filesystems that modify metadata on data
463 if (wbc->sync_mode == WB_SYNC_ALL) {
464 int err = filemap_fdatawait(mapping);
470 * Some filesystems may redirty the inode during the writeback
471 * due to delalloc, clear dirty metadata flags right before
474 spin_lock(&inode->i_lock);
475 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
476 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
477 inode->i_state &= ~I_DIRTY_PAGES;
478 dirty = inode->i_state & I_DIRTY;
479 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
480 spin_unlock(&inode->i_lock);
481 /* Don't write the inode if only I_DIRTY_PAGES was set */
482 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
483 int err = write_inode(inode, wbc);
487 trace_writeback_single_inode(inode, wbc, nr_to_write);
492 * Write out an inode's dirty pages. Either the caller has an active reference
493 * on the inode or the inode has I_WILL_FREE set.
495 * This function is designed to be called for writing back one inode which
496 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
497 * and does more profound writeback list handling in writeback_sb_inodes().
500 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
501 struct writeback_control *wbc)
505 spin_lock(&inode->i_lock);
506 if (!atomic_read(&inode->i_count))
507 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
509 WARN_ON(inode->i_state & I_WILL_FREE);
511 if (inode->i_state & I_SYNC) {
512 if (wbc->sync_mode != WB_SYNC_ALL)
515 * It's a data-integrity sync. We must wait. Since callers hold
516 * inode reference or inode has I_WILL_FREE set, it cannot go
519 __inode_wait_for_writeback(inode);
521 WARN_ON(inode->i_state & I_SYNC);
523 * Skip inode if it is clean. We don't want to mess with writeback
524 * lists in this function since flusher thread may be doing for example
525 * sync in parallel and if we move the inode, it could get skipped. So
526 * here we make sure inode is on some writeback list and leave it there
527 * unless we have completely cleaned the inode.
529 if (!(inode->i_state & I_DIRTY))
531 inode->i_state |= I_SYNC;
532 spin_unlock(&inode->i_lock);
534 ret = __writeback_single_inode(inode, wb, wbc);
536 spin_lock(&wb->list_lock);
537 spin_lock(&inode->i_lock);
539 * If inode is clean, remove it from writeback lists. Otherwise don't
540 * touch it. See comment above for explanation.
542 if (!(inode->i_state & I_DIRTY))
543 list_del_init(&inode->i_wb_list);
544 spin_unlock(&wb->list_lock);
545 inode_sync_complete(inode);
547 spin_unlock(&inode->i_lock);
551 static long writeback_chunk_size(struct backing_dev_info *bdi,
552 struct wb_writeback_work *work)
557 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
558 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
559 * here avoids calling into writeback_inodes_wb() more than once.
561 * The intended call sequence for WB_SYNC_ALL writeback is:
564 * writeback_sb_inodes() <== called only once
565 * write_cache_pages() <== called once for each inode
566 * (quickly) tag currently dirty pages
567 * (maybe slowly) sync all tagged pages
569 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
572 pages = min(bdi->avg_write_bandwidth / 2,
573 global_dirty_limit / DIRTY_SCOPE);
574 pages = min(pages, work->nr_pages);
575 pages = round_down(pages + MIN_WRITEBACK_PAGES,
576 MIN_WRITEBACK_PAGES);
583 * Write a portion of b_io inodes which belong to @sb.
585 * If @only_this_sb is true, then find and write all such
586 * inodes. Otherwise write only ones which go sequentially
589 * Return the number of pages and/or inodes written.
591 static long writeback_sb_inodes(struct super_block *sb,
592 struct bdi_writeback *wb,
593 struct wb_writeback_work *work)
595 struct writeback_control wbc = {
596 .sync_mode = work->sync_mode,
597 .tagged_writepages = work->tagged_writepages,
598 .for_kupdate = work->for_kupdate,
599 .for_background = work->for_background,
600 .range_cyclic = work->range_cyclic,
602 .range_end = LLONG_MAX,
604 unsigned long start_time = jiffies;
606 long wrote = 0; /* count both pages and inodes */
608 while (!list_empty(&wb->b_io)) {
609 struct inode *inode = wb_inode(wb->b_io.prev);
611 if (inode->i_sb != sb) {
614 * We only want to write back data for this
615 * superblock, move all inodes not belonging
616 * to it back onto the dirty list.
618 redirty_tail(inode, wb);
623 * The inode belongs to a different superblock.
624 * Bounce back to the caller to unpin this and
625 * pin the next superblock.
631 * Don't bother with new inodes or inodes being freed, first
632 * kind does not need periodic writeout yet, and for the latter
633 * kind writeout is handled by the freer.
635 spin_lock(&inode->i_lock);
636 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
637 spin_unlock(&inode->i_lock);
638 redirty_tail(inode, wb);
641 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
643 * If this inode is locked for writeback and we are not
644 * doing writeback-for-data-integrity, move it to
645 * b_more_io so that writeback can proceed with the
646 * other inodes on s_io.
648 * We'll have another go at writing back this inode
649 * when we completed a full scan of b_io.
651 spin_unlock(&inode->i_lock);
652 requeue_io(inode, wb);
653 trace_writeback_sb_inodes_requeue(inode);
656 spin_unlock(&wb->list_lock);
659 * We already requeued the inode if it had I_SYNC set and we
660 * are doing WB_SYNC_NONE writeback. So this catches only the
663 if (inode->i_state & I_SYNC) {
664 /* Wait for I_SYNC. This function drops i_lock... */
665 inode_sleep_on_writeback(inode);
666 /* Inode may be gone, start again */
667 spin_lock(&wb->list_lock);
670 inode->i_state |= I_SYNC;
671 spin_unlock(&inode->i_lock);
673 write_chunk = writeback_chunk_size(wb->bdi, work);
674 wbc.nr_to_write = write_chunk;
675 wbc.pages_skipped = 0;
678 * We use I_SYNC to pin the inode in memory. While it is set
679 * evict_inode() will wait so the inode cannot be freed.
681 __writeback_single_inode(inode, wb, &wbc);
683 work->nr_pages -= write_chunk - wbc.nr_to_write;
684 wrote += write_chunk - wbc.nr_to_write;
685 spin_lock(&wb->list_lock);
686 spin_lock(&inode->i_lock);
687 if (!(inode->i_state & I_DIRTY))
689 requeue_inode(inode, wb, &wbc);
690 inode_sync_complete(inode);
691 spin_unlock(&inode->i_lock);
692 cond_resched_lock(&wb->list_lock);
694 * bail out to wb_writeback() often enough to check
695 * background threshold and other termination conditions.
698 if (time_is_before_jiffies(start_time + HZ / 10UL))
700 if (work->nr_pages <= 0)
707 static long __writeback_inodes_wb(struct bdi_writeback *wb,
708 struct wb_writeback_work *work)
710 unsigned long start_time = jiffies;
713 while (!list_empty(&wb->b_io)) {
714 struct inode *inode = wb_inode(wb->b_io.prev);
715 struct super_block *sb = inode->i_sb;
717 if (!grab_super_passive(sb)) {
719 * grab_super_passive() may fail consistently due to
720 * s_umount being grabbed by someone else. Don't use
721 * requeue_io() to avoid busy retrying the inode/sb.
723 redirty_tail(inode, wb);
726 wrote += writeback_sb_inodes(sb, wb, work);
729 /* refer to the same tests at the end of writeback_sb_inodes */
731 if (time_is_before_jiffies(start_time + HZ / 10UL))
733 if (work->nr_pages <= 0)
737 /* Leave any unwritten inodes on b_io */
741 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
742 enum wb_reason reason)
744 struct wb_writeback_work work = {
745 .nr_pages = nr_pages,
746 .sync_mode = WB_SYNC_NONE,
751 spin_lock(&wb->list_lock);
752 if (list_empty(&wb->b_io))
754 __writeback_inodes_wb(wb, &work);
755 spin_unlock(&wb->list_lock);
757 return nr_pages - work.nr_pages;
760 static bool over_bground_thresh(struct backing_dev_info *bdi)
762 unsigned long background_thresh, dirty_thresh;
764 global_dirty_limits(&background_thresh, &dirty_thresh);
766 if (global_page_state(NR_FILE_DIRTY) +
767 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
770 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
771 bdi_dirty_limit(bdi, background_thresh))
778 * Called under wb->list_lock. If there are multiple wb per bdi,
779 * only the flusher working on the first wb should do it.
781 static void wb_update_bandwidth(struct bdi_writeback *wb,
782 unsigned long start_time)
784 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
788 * Explicit flushing or periodic writeback of "old" data.
790 * Define "old": the first time one of an inode's pages is dirtied, we mark the
791 * dirtying-time in the inode's address_space. So this periodic writeback code
792 * just walks the superblock inode list, writing back any inodes which are
793 * older than a specific point in time.
795 * Try to run once per dirty_writeback_interval. But if a writeback event
796 * takes longer than a dirty_writeback_interval interval, then leave a
799 * older_than_this takes precedence over nr_to_write. So we'll only write back
800 * all dirty pages if they are all attached to "old" mappings.
802 static long wb_writeback(struct bdi_writeback *wb,
803 struct wb_writeback_work *work)
805 unsigned long wb_start = jiffies;
806 long nr_pages = work->nr_pages;
807 unsigned long oldest_jif;
811 oldest_jif = jiffies;
812 work->older_than_this = &oldest_jif;
814 spin_lock(&wb->list_lock);
817 * Stop writeback when nr_pages has been consumed
819 if (work->nr_pages <= 0)
823 * Background writeout and kupdate-style writeback may
824 * run forever. Stop them if there is other work to do
825 * so that e.g. sync can proceed. They'll be restarted
826 * after the other works are all done.
828 if ((work->for_background || work->for_kupdate) &&
829 !list_empty(&wb->bdi->work_list))
833 * For background writeout, stop when we are below the
834 * background dirty threshold
836 if (work->for_background && !over_bground_thresh(wb->bdi))
840 * Kupdate and background works are special and we want to
841 * include all inodes that need writing. Livelock avoidance is
842 * handled by these works yielding to any other work so we are
845 if (work->for_kupdate) {
846 oldest_jif = jiffies -
847 msecs_to_jiffies(dirty_expire_interval * 10);
848 } else if (work->for_background)
849 oldest_jif = jiffies;
851 trace_writeback_start(wb->bdi, work);
852 if (list_empty(&wb->b_io))
855 progress = writeback_sb_inodes(work->sb, wb, work);
857 progress = __writeback_inodes_wb(wb, work);
858 trace_writeback_written(wb->bdi, work);
860 wb_update_bandwidth(wb, wb_start);
863 * Did we write something? Try for more
865 * Dirty inodes are moved to b_io for writeback in batches.
866 * The completion of the current batch does not necessarily
867 * mean the overall work is done. So we keep looping as long
868 * as made some progress on cleaning pages or inodes.
873 * No more inodes for IO, bail
875 if (list_empty(&wb->b_more_io))
878 * Nothing written. Wait for some inode to
879 * become available for writeback. Otherwise
880 * we'll just busyloop.
882 if (!list_empty(&wb->b_more_io)) {
883 trace_writeback_wait(wb->bdi, work);
884 inode = wb_inode(wb->b_more_io.prev);
885 spin_lock(&inode->i_lock);
886 spin_unlock(&wb->list_lock);
887 /* This function drops i_lock... */
888 inode_sleep_on_writeback(inode);
889 spin_lock(&wb->list_lock);
892 spin_unlock(&wb->list_lock);
894 return nr_pages - work->nr_pages;
898 * Return the next wb_writeback_work struct that hasn't been processed yet.
900 static struct wb_writeback_work *
901 get_next_work_item(struct backing_dev_info *bdi)
903 struct wb_writeback_work *work = NULL;
905 spin_lock_bh(&bdi->wb_lock);
906 if (!list_empty(&bdi->work_list)) {
907 work = list_entry(bdi->work_list.next,
908 struct wb_writeback_work, list);
909 list_del_init(&work->list);
911 spin_unlock_bh(&bdi->wb_lock);
916 * Add in the number of potentially dirty inodes, because each inode
917 * write can dirty pagecache in the underlying blockdev.
919 static unsigned long get_nr_dirty_pages(void)
921 return global_page_state(NR_FILE_DIRTY) +
922 global_page_state(NR_UNSTABLE_NFS) +
923 get_nr_dirty_inodes();
926 static long wb_check_background_flush(struct bdi_writeback *wb)
928 if (over_bground_thresh(wb->bdi)) {
930 struct wb_writeback_work work = {
931 .nr_pages = LONG_MAX,
932 .sync_mode = WB_SYNC_NONE,
935 .reason = WB_REASON_BACKGROUND,
938 return wb_writeback(wb, &work);
944 static long wb_check_old_data_flush(struct bdi_writeback *wb)
946 unsigned long expired;
950 * When set to zero, disable periodic writeback
952 if (!dirty_writeback_interval)
955 expired = wb->last_old_flush +
956 msecs_to_jiffies(dirty_writeback_interval * 10);
957 if (time_before(jiffies, expired))
960 wb->last_old_flush = jiffies;
961 nr_pages = get_nr_dirty_pages();
964 struct wb_writeback_work work = {
965 .nr_pages = nr_pages,
966 .sync_mode = WB_SYNC_NONE,
969 .reason = WB_REASON_PERIODIC,
972 return wb_writeback(wb, &work);
979 * Retrieve work items and do the writeback they describe
981 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
983 struct backing_dev_info *bdi = wb->bdi;
984 struct wb_writeback_work *work;
987 set_bit(BDI_writeback_running, &wb->bdi->state);
988 while ((work = get_next_work_item(bdi)) != NULL) {
990 * Override sync mode, in case we must wait for completion
991 * because this thread is exiting now.
994 work->sync_mode = WB_SYNC_ALL;
996 trace_writeback_exec(bdi, work);
998 wrote += wb_writeback(wb, work);
1001 * Notify the caller of completion if this is a synchronous
1002 * work item, otherwise just free it.
1005 complete(work->done);
1011 * Check for periodic writeback, kupdated() style
1013 wrote += wb_check_old_data_flush(wb);
1014 wrote += wb_check_background_flush(wb);
1015 clear_bit(BDI_writeback_running, &wb->bdi->state);
1021 * Handle writeback of dirty data for the device backed by this bdi. Also
1022 * wakes up periodically and does kupdated style flushing.
1024 int bdi_writeback_thread(void *data)
1026 struct bdi_writeback *wb = data;
1027 struct backing_dev_info *bdi = wb->bdi;
1030 current->flags |= PF_SWAPWRITE;
1032 wb->last_active = jiffies;
1035 * Our parent may run at a different priority, just set us to normal
1037 set_user_nice(current, 0);
1039 trace_writeback_thread_start(bdi);
1041 while (!kthread_freezable_should_stop(NULL)) {
1043 * Remove own delayed wake-up timer, since we are already awake
1044 * and we'll take care of the preriodic write-back.
1046 del_timer(&wb->wakeup_timer);
1048 pages_written = wb_do_writeback(wb, 0);
1050 trace_writeback_pages_written(pages_written);
1053 wb->last_active = jiffies;
1055 set_current_state(TASK_INTERRUPTIBLE);
1056 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
1057 __set_current_state(TASK_RUNNING);
1061 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1062 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
1065 * We have nothing to do, so can go sleep without any
1066 * timeout and save power. When a work is queued or
1067 * something is made dirty - we will be woken up.
1073 /* Flush any work that raced with us exiting */
1074 if (!list_empty(&bdi->work_list))
1075 wb_do_writeback(wb, 1);
1077 trace_writeback_thread_stop(bdi);
1083 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1086 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1088 struct backing_dev_info *bdi;
1091 nr_pages = global_page_state(NR_FILE_DIRTY) +
1092 global_page_state(NR_UNSTABLE_NFS);
1096 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1097 if (!bdi_has_dirty_io(bdi))
1099 __bdi_start_writeback(bdi, nr_pages, false, reason);
1104 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1106 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1107 struct dentry *dentry;
1108 const char *name = "?";
1110 dentry = d_find_alias(inode);
1112 spin_lock(&dentry->d_lock);
1113 name = (const char *) dentry->d_name.name;
1116 "%s(%d): dirtied inode %lu (%s) on %s\n",
1117 current->comm, task_pid_nr(current), inode->i_ino,
1118 name, inode->i_sb->s_id);
1120 spin_unlock(&dentry->d_lock);
1127 * __mark_inode_dirty - internal function
1128 * @inode: inode to mark
1129 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1130 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1131 * mark_inode_dirty_sync.
1133 * Put the inode on the super block's dirty list.
1135 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1136 * dirty list only if it is hashed or if it refers to a blockdev.
1137 * If it was not hashed, it will never be added to the dirty list
1138 * even if it is later hashed, as it will have been marked dirty already.
1140 * In short, make sure you hash any inodes _before_ you start marking
1143 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1144 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1145 * the kernel-internal blockdev inode represents the dirtying time of the
1146 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1147 * page->mapping->host, so the page-dirtying time is recorded in the internal
1150 void __mark_inode_dirty(struct inode *inode, int flags)
1152 struct super_block *sb = inode->i_sb;
1153 struct backing_dev_info *bdi = NULL;
1156 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1157 * dirty the inode itself
1159 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1160 if (sb->s_op->dirty_inode)
1161 sb->s_op->dirty_inode(inode, flags);
1165 * make sure that changes are seen by all cpus before we test i_state
1170 /* avoid the locking if we can */
1171 if ((inode->i_state & flags) == flags)
1174 if (unlikely(block_dump))
1175 block_dump___mark_inode_dirty(inode);
1177 spin_lock(&inode->i_lock);
1178 if ((inode->i_state & flags) != flags) {
1179 const int was_dirty = inode->i_state & I_DIRTY;
1181 inode->i_state |= flags;
1184 * If the inode is being synced, just update its dirty state.
1185 * The unlocker will place the inode on the appropriate
1186 * superblock list, based upon its state.
1188 if (inode->i_state & I_SYNC)
1189 goto out_unlock_inode;
1192 * Only add valid (hashed) inodes to the superblock's
1193 * dirty list. Add blockdev inodes as well.
1195 if (!S_ISBLK(inode->i_mode)) {
1196 if (inode_unhashed(inode))
1197 goto out_unlock_inode;
1199 if (inode->i_state & I_FREEING)
1200 goto out_unlock_inode;
1203 * If the inode was already on b_dirty/b_io/b_more_io, don't
1204 * reposition it (that would break b_dirty time-ordering).
1207 bool wakeup_bdi = false;
1208 bdi = inode_to_bdi(inode);
1210 if (bdi_cap_writeback_dirty(bdi)) {
1211 WARN(!test_bit(BDI_registered, &bdi->state),
1212 "bdi-%s not registered\n", bdi->name);
1215 * If this is the first dirty inode for this
1216 * bdi, we have to wake-up the corresponding
1217 * bdi thread to make sure background
1218 * write-back happens later.
1220 if (!wb_has_dirty_io(&bdi->wb))
1224 spin_unlock(&inode->i_lock);
1225 spin_lock(&bdi->wb.list_lock);
1226 inode->dirtied_when = jiffies;
1227 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1228 spin_unlock(&bdi->wb.list_lock);
1231 bdi_wakeup_thread_delayed(bdi);
1236 spin_unlock(&inode->i_lock);
1239 EXPORT_SYMBOL(__mark_inode_dirty);
1241 static void wait_sb_inodes(struct super_block *sb)
1243 struct inode *inode, *old_inode = NULL;
1246 * We need to be protected against the filesystem going from
1247 * r/o to r/w or vice versa.
1249 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1251 spin_lock(&inode_sb_list_lock);
1254 * Data integrity sync. Must wait for all pages under writeback,
1255 * because there may have been pages dirtied before our sync
1256 * call, but which had writeout started before we write it out.
1257 * In which case, the inode may not be on the dirty list, but
1258 * we still have to wait for that writeout.
1260 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1261 struct address_space *mapping = inode->i_mapping;
1263 spin_lock(&inode->i_lock);
1264 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1265 (mapping->nrpages == 0)) {
1266 spin_unlock(&inode->i_lock);
1270 spin_unlock(&inode->i_lock);
1271 spin_unlock(&inode_sb_list_lock);
1274 * We hold a reference to 'inode' so it couldn't have been
1275 * removed from s_inodes list while we dropped the
1276 * inode_sb_list_lock. We cannot iput the inode now as we can
1277 * be holding the last reference and we cannot iput it under
1278 * inode_sb_list_lock. So we keep the reference and iput it
1284 filemap_fdatawait(mapping);
1288 spin_lock(&inode_sb_list_lock);
1290 spin_unlock(&inode_sb_list_lock);
1295 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1296 * @sb: the superblock
1297 * @nr: the number of pages to write
1298 * @reason: reason why some writeback work initiated
1300 * Start writeback on some inodes on this super_block. No guarantees are made
1301 * on how many (if any) will be written, and this function does not wait
1302 * for IO completion of submitted IO.
1304 void writeback_inodes_sb_nr(struct super_block *sb,
1306 enum wb_reason reason)
1308 DECLARE_COMPLETION_ONSTACK(done);
1309 struct wb_writeback_work work = {
1311 .sync_mode = WB_SYNC_NONE,
1312 .tagged_writepages = 1,
1318 if (sb->s_bdi == &noop_backing_dev_info)
1320 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1321 bdi_queue_work(sb->s_bdi, &work);
1322 wait_for_completion(&done);
1324 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1327 * writeback_inodes_sb - writeback dirty inodes from given super_block
1328 * @sb: the superblock
1329 * @reason: reason why some writeback work was initiated
1331 * Start writeback on some inodes on this super_block. No guarantees are made
1332 * on how many (if any) will be written, and this function does not wait
1333 * for IO completion of submitted IO.
1335 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1337 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1339 EXPORT_SYMBOL(writeback_inodes_sb);
1342 * writeback_inodes_sb_if_idle - start writeback if none underway
1343 * @sb: the superblock
1344 * @reason: reason why some writeback work was initiated
1346 * Invoke writeback_inodes_sb if no writeback is currently underway.
1347 * Returns 1 if writeback was started, 0 if not.
1349 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1351 if (!writeback_in_progress(sb->s_bdi)) {
1352 down_read(&sb->s_umount);
1353 writeback_inodes_sb(sb, reason);
1354 up_read(&sb->s_umount);
1359 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1362 * writeback_inodes_sb_nr_if_idle - start writeback if none underway
1363 * @sb: the superblock
1364 * @nr: the number of pages to write
1365 * @reason: reason why some writeback work was initiated
1367 * Invoke writeback_inodes_sb if no writeback is currently underway.
1368 * Returns 1 if writeback was started, 0 if not.
1370 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1372 enum wb_reason reason)
1374 if (!writeback_in_progress(sb->s_bdi)) {
1375 down_read(&sb->s_umount);
1376 writeback_inodes_sb_nr(sb, nr, reason);
1377 up_read(&sb->s_umount);
1382 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1385 * sync_inodes_sb - sync sb inode pages
1386 * @sb: the superblock
1388 * This function writes and waits on any dirty inode belonging to this
1391 void sync_inodes_sb(struct super_block *sb)
1393 DECLARE_COMPLETION_ONSTACK(done);
1394 struct wb_writeback_work work = {
1396 .sync_mode = WB_SYNC_ALL,
1397 .nr_pages = LONG_MAX,
1400 .reason = WB_REASON_SYNC,
1403 /* Nothing to do? */
1404 if (sb->s_bdi == &noop_backing_dev_info)
1406 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1408 bdi_queue_work(sb->s_bdi, &work);
1409 wait_for_completion(&done);
1413 EXPORT_SYMBOL(sync_inodes_sb);
1416 * write_inode_now - write an inode to disk
1417 * @inode: inode to write to disk
1418 * @sync: whether the write should be synchronous or not
1420 * This function commits an inode to disk immediately if it is dirty. This is
1421 * primarily needed by knfsd.
1423 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1425 int write_inode_now(struct inode *inode, int sync)
1427 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1428 struct writeback_control wbc = {
1429 .nr_to_write = LONG_MAX,
1430 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1432 .range_end = LLONG_MAX,
1435 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1436 wbc.nr_to_write = 0;
1439 return writeback_single_inode(inode, wb, &wbc);
1441 EXPORT_SYMBOL(write_inode_now);
1444 * sync_inode - write an inode and its pages to disk.
1445 * @inode: the inode to sync
1446 * @wbc: controls the writeback mode
1448 * sync_inode() will write an inode and its pages to disk. It will also
1449 * correctly update the inode on its superblock's dirty inode lists and will
1450 * update inode->i_state.
1452 * The caller must have a ref on the inode.
1454 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1456 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1458 EXPORT_SYMBOL(sync_inode);
1461 * sync_inode_metadata - write an inode to disk
1462 * @inode: the inode to sync
1463 * @wait: wait for I/O to complete.
1465 * Write an inode to disk and adjust its dirty state after completion.
1467 * Note: only writes the actual inode, no associated data or other metadata.
1469 int sync_inode_metadata(struct inode *inode, int wait)
1471 struct writeback_control wbc = {
1472 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1473 .nr_to_write = 0, /* metadata-only */
1476 return sync_inode(inode, &wbc);
1478 EXPORT_SYMBOL(sync_inode_metadata);