Bluetooth: Add set LE scan parameter feature
[platform/kernel/linux-rpi.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123         assert_spin_locked(&inode->i_lock);
124
125         list_move(&inode->i_io_list, head);
126
127         /* dirty_time doesn't count as dirty_io until expiration */
128         if (head != &wb->b_dirty_time)
129                 return wb_io_lists_populated(wb);
130
131         wb_io_lists_depopulated(wb);
132         return false;
133 }
134
135 static void wb_wakeup(struct bdi_writeback *wb)
136 {
137         spin_lock_irq(&wb->work_lock);
138         if (test_bit(WB_registered, &wb->state))
139                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
140         spin_unlock_irq(&wb->work_lock);
141 }
142
143 static void finish_writeback_work(struct bdi_writeback *wb,
144                                   struct wb_writeback_work *work)
145 {
146         struct wb_completion *done = work->done;
147
148         if (work->auto_free)
149                 kfree(work);
150         if (done) {
151                 wait_queue_head_t *waitq = done->waitq;
152
153                 /* @done can't be accessed after the following dec */
154                 if (atomic_dec_and_test(&done->cnt))
155                         wake_up_all(waitq);
156         }
157 }
158
159 static void wb_queue_work(struct bdi_writeback *wb,
160                           struct wb_writeback_work *work)
161 {
162         trace_writeback_queue(wb, work);
163
164         if (work->done)
165                 atomic_inc(&work->done->cnt);
166
167         spin_lock_irq(&wb->work_lock);
168
169         if (test_bit(WB_registered, &wb->state)) {
170                 list_add_tail(&work->list, &wb->work_list);
171                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
172         } else
173                 finish_writeback_work(wb, work);
174
175         spin_unlock_irq(&wb->work_lock);
176 }
177
178 /**
179  * wb_wait_for_completion - wait for completion of bdi_writeback_works
180  * @done: target wb_completion
181  *
182  * Wait for one or more work items issued to @bdi with their ->done field
183  * set to @done, which should have been initialized with
184  * DEFINE_WB_COMPLETION().  This function returns after all such work items
185  * are completed.  Work items which are waited upon aren't freed
186  * automatically on completion.
187  */
188 void wb_wait_for_completion(struct wb_completion *done)
189 {
190         atomic_dec(&done->cnt);         /* put down the initial count */
191         wait_event(*done->waitq, !atomic_read(&done->cnt));
192 }
193
194 #ifdef CONFIG_CGROUP_WRITEBACK
195
196 /*
197  * Parameters for foreign inode detection, see wbc_detach_inode() to see
198  * how they're used.
199  *
200  * These paramters are inherently heuristical as the detection target
201  * itself is fuzzy.  All we want to do is detaching an inode from the
202  * current owner if it's being written to by some other cgroups too much.
203  *
204  * The current cgroup writeback is built on the assumption that multiple
205  * cgroups writing to the same inode concurrently is very rare and a mode
206  * of operation which isn't well supported.  As such, the goal is not
207  * taking too long when a different cgroup takes over an inode while
208  * avoiding too aggressive flip-flops from occasional foreign writes.
209  *
210  * We record, very roughly, 2s worth of IO time history and if more than
211  * half of that is foreign, trigger the switch.  The recording is quantized
212  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
213  * writes smaller than 1/8 of avg size are ignored.
214  */
215 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
216 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
217 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
218 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
219
220 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
221 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
222                                         /* each slot's duration is 2s / 16 */
223 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
224                                         /* if foreign slots >= 8, switch */
225 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
226                                         /* one round can affect upto 5 slots */
227 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
228
229 /*
230  * Maximum inodes per isw.  A specific value has been chosen to make
231  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
232  */
233 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
234                                 / sizeof(struct inode *))
235
236 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
237 static struct workqueue_struct *isw_wq;
238
239 void __inode_attach_wb(struct inode *inode, struct page *page)
240 {
241         struct backing_dev_info *bdi = inode_to_bdi(inode);
242         struct bdi_writeback *wb = NULL;
243
244         if (inode_cgwb_enabled(inode)) {
245                 struct cgroup_subsys_state *memcg_css;
246
247                 if (page) {
248                         memcg_css = mem_cgroup_css_from_page(page);
249                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
250                 } else {
251                         /* must pin memcg_css, see wb_get_create() */
252                         memcg_css = task_get_css(current, memory_cgrp_id);
253                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254                         css_put(memcg_css);
255                 }
256         }
257
258         if (!wb)
259                 wb = &bdi->wb;
260
261         /*
262          * There may be multiple instances of this function racing to
263          * update the same inode.  Use cmpxchg() to tell the winner.
264          */
265         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
266                 wb_put(wb);
267 }
268 EXPORT_SYMBOL_GPL(__inode_attach_wb);
269
270 /**
271  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
272  * @inode: inode of interest with i_lock held
273  * @wb: target bdi_writeback
274  *
275  * Remove the inode from wb's io lists and if necessarily put onto b_attached
276  * list.  Only inodes attached to cgwb's are kept on this list.
277  */
278 static void inode_cgwb_move_to_attached(struct inode *inode,
279                                         struct bdi_writeback *wb)
280 {
281         assert_spin_locked(&wb->list_lock);
282         assert_spin_locked(&inode->i_lock);
283
284         inode->i_state &= ~I_SYNC_QUEUED;
285         if (wb != &wb->bdi->wb)
286                 list_move(&inode->i_io_list, &wb->b_attached);
287         else
288                 list_del_init(&inode->i_io_list);
289         wb_io_lists_depopulated(wb);
290 }
291
292 /**
293  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
294  * @inode: inode of interest with i_lock held
295  *
296  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
297  * held on entry and is released on return.  The returned wb is guaranteed
298  * to stay @inode's associated wb until its list_lock is released.
299  */
300 static struct bdi_writeback *
301 locked_inode_to_wb_and_lock_list(struct inode *inode)
302         __releases(&inode->i_lock)
303         __acquires(&wb->list_lock)
304 {
305         while (true) {
306                 struct bdi_writeback *wb = inode_to_wb(inode);
307
308                 /*
309                  * inode_to_wb() association is protected by both
310                  * @inode->i_lock and @wb->list_lock but list_lock nests
311                  * outside i_lock.  Drop i_lock and verify that the
312                  * association hasn't changed after acquiring list_lock.
313                  */
314                 wb_get(wb);
315                 spin_unlock(&inode->i_lock);
316                 spin_lock(&wb->list_lock);
317
318                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
319                 if (likely(wb == inode->i_wb)) {
320                         wb_put(wb);     /* @inode already has ref */
321                         return wb;
322                 }
323
324                 spin_unlock(&wb->list_lock);
325                 wb_put(wb);
326                 cpu_relax();
327                 spin_lock(&inode->i_lock);
328         }
329 }
330
331 /**
332  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
333  * @inode: inode of interest
334  *
335  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
336  * on entry.
337  */
338 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
339         __acquires(&wb->list_lock)
340 {
341         spin_lock(&inode->i_lock);
342         return locked_inode_to_wb_and_lock_list(inode);
343 }
344
345 struct inode_switch_wbs_context {
346         struct rcu_work         work;
347
348         /*
349          * Multiple inodes can be switched at once.  The switching procedure
350          * consists of two parts, separated by a RCU grace period.  To make
351          * sure that the second part is executed for each inode gone through
352          * the first part, all inode pointers are placed into a NULL-terminated
353          * array embedded into struct inode_switch_wbs_context.  Otherwise
354          * an inode could be left in a non-consistent state.
355          */
356         struct bdi_writeback    *new_wb;
357         struct inode            *inodes[];
358 };
359
360 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
361 {
362         down_write(&bdi->wb_switch_rwsem);
363 }
364
365 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
366 {
367         up_write(&bdi->wb_switch_rwsem);
368 }
369
370 static bool inode_do_switch_wbs(struct inode *inode,
371                                 struct bdi_writeback *old_wb,
372                                 struct bdi_writeback *new_wb)
373 {
374         struct address_space *mapping = inode->i_mapping;
375         XA_STATE(xas, &mapping->i_pages, 0);
376         struct page *page;
377         bool switched = false;
378
379         spin_lock(&inode->i_lock);
380         xa_lock_irq(&mapping->i_pages);
381
382         /*
383          * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
384          * path owns the inode and we shouldn't modify ->i_io_list.
385          */
386         if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
387                 goto skip_switch;
388
389         trace_inode_switch_wbs(inode, old_wb, new_wb);
390
391         /*
392          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
393          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
394          * pages actually under writeback.
395          */
396         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
397                 if (PageDirty(page)) {
398                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
399                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
400                 }
401         }
402
403         xas_set(&xas, 0);
404         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
405                 WARN_ON_ONCE(!PageWriteback(page));
406                 dec_wb_stat(old_wb, WB_WRITEBACK);
407                 inc_wb_stat(new_wb, WB_WRITEBACK);
408         }
409
410         if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
411                 atomic_dec(&old_wb->writeback_inodes);
412                 atomic_inc(&new_wb->writeback_inodes);
413         }
414
415         wb_get(new_wb);
416
417         /*
418          * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
419          * the specific list @inode was on is ignored and the @inode is put on
420          * ->b_dirty which is always correct including from ->b_dirty_time.
421          * The transfer preserves @inode->dirtied_when ordering.  If the @inode
422          * was clean, it means it was on the b_attached list, so move it onto
423          * the b_attached list of @new_wb.
424          */
425         if (!list_empty(&inode->i_io_list)) {
426                 inode->i_wb = new_wb;
427
428                 if (inode->i_state & I_DIRTY_ALL) {
429                         struct inode *pos;
430
431                         list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
432                                 if (time_after_eq(inode->dirtied_when,
433                                                   pos->dirtied_when))
434                                         break;
435                         inode_io_list_move_locked(inode, new_wb,
436                                                   pos->i_io_list.prev);
437                 } else {
438                         inode_cgwb_move_to_attached(inode, new_wb);
439                 }
440         } else {
441                 inode->i_wb = new_wb;
442         }
443
444         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
445         inode->i_wb_frn_winner = 0;
446         inode->i_wb_frn_avg_time = 0;
447         inode->i_wb_frn_history = 0;
448         switched = true;
449 skip_switch:
450         /*
451          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
452          * ensures that the new wb is visible if they see !I_WB_SWITCH.
453          */
454         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
455
456         xa_unlock_irq(&mapping->i_pages);
457         spin_unlock(&inode->i_lock);
458
459         return switched;
460 }
461
462 static void inode_switch_wbs_work_fn(struct work_struct *work)
463 {
464         struct inode_switch_wbs_context *isw =
465                 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
466         struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
467         struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
468         struct bdi_writeback *new_wb = isw->new_wb;
469         unsigned long nr_switched = 0;
470         struct inode **inodep;
471
472         /*
473          * If @inode switches cgwb membership while sync_inodes_sb() is
474          * being issued, sync_inodes_sb() might miss it.  Synchronize.
475          */
476         down_read(&bdi->wb_switch_rwsem);
477
478         /*
479          * By the time control reaches here, RCU grace period has passed
480          * since I_WB_SWITCH assertion and all wb stat update transactions
481          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
482          * synchronizing against the i_pages lock.
483          *
484          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
485          * gives us exclusion against all wb related operations on @inode
486          * including IO list manipulations and stat updates.
487          */
488         if (old_wb < new_wb) {
489                 spin_lock(&old_wb->list_lock);
490                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
491         } else {
492                 spin_lock(&new_wb->list_lock);
493                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
494         }
495
496         for (inodep = isw->inodes; *inodep; inodep++) {
497                 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
498                 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
499                         nr_switched++;
500         }
501
502         spin_unlock(&new_wb->list_lock);
503         spin_unlock(&old_wb->list_lock);
504
505         up_read(&bdi->wb_switch_rwsem);
506
507         if (nr_switched) {
508                 wb_wakeup(new_wb);
509                 wb_put_many(old_wb, nr_switched);
510         }
511
512         for (inodep = isw->inodes; *inodep; inodep++)
513                 iput(*inodep);
514         wb_put(new_wb);
515         kfree(isw);
516         atomic_dec(&isw_nr_in_flight);
517 }
518
519 static bool inode_prepare_wbs_switch(struct inode *inode,
520                                      struct bdi_writeback *new_wb)
521 {
522         /*
523          * Paired with smp_mb() in cgroup_writeback_umount().
524          * isw_nr_in_flight must be increased before checking SB_ACTIVE and
525          * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
526          * in cgroup_writeback_umount() and the isw_wq will be not flushed.
527          */
528         smp_mb();
529
530         if (IS_DAX(inode))
531                 return false;
532
533         /* while holding I_WB_SWITCH, no one else can update the association */
534         spin_lock(&inode->i_lock);
535         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
536             inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
537             inode_to_wb(inode) == new_wb) {
538                 spin_unlock(&inode->i_lock);
539                 return false;
540         }
541         inode->i_state |= I_WB_SWITCH;
542         __iget(inode);
543         spin_unlock(&inode->i_lock);
544
545         return true;
546 }
547
548 /**
549  * inode_switch_wbs - change the wb association of an inode
550  * @inode: target inode
551  * @new_wb_id: ID of the new wb
552  *
553  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
554  * switching is performed asynchronously and may fail silently.
555  */
556 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
557 {
558         struct backing_dev_info *bdi = inode_to_bdi(inode);
559         struct cgroup_subsys_state *memcg_css;
560         struct inode_switch_wbs_context *isw;
561
562         /* noop if seems to be already in progress */
563         if (inode->i_state & I_WB_SWITCH)
564                 return;
565
566         /* avoid queueing a new switch if too many are already in flight */
567         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
568                 return;
569
570         isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC);
571         if (!isw)
572                 return;
573
574         atomic_inc(&isw_nr_in_flight);
575
576         /* find and pin the new wb */
577         rcu_read_lock();
578         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
579         if (memcg_css && !css_tryget(memcg_css))
580                 memcg_css = NULL;
581         rcu_read_unlock();
582         if (!memcg_css)
583                 goto out_free;
584
585         isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
586         css_put(memcg_css);
587         if (!isw->new_wb)
588                 goto out_free;
589
590         if (!inode_prepare_wbs_switch(inode, isw->new_wb))
591                 goto out_free;
592
593         isw->inodes[0] = inode;
594
595         /*
596          * In addition to synchronizing among switchers, I_WB_SWITCH tells
597          * the RCU protected stat update paths to grab the i_page
598          * lock so that stat transfer can synchronize against them.
599          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
600          */
601         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
602         queue_rcu_work(isw_wq, &isw->work);
603         return;
604
605 out_free:
606         atomic_dec(&isw_nr_in_flight);
607         if (isw->new_wb)
608                 wb_put(isw->new_wb);
609         kfree(isw);
610 }
611
612 /**
613  * cleanup_offline_cgwb - detach associated inodes
614  * @wb: target wb
615  *
616  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
617  * to eventually release the dying @wb.  Returns %true if not all inodes were
618  * switched and the function has to be restarted.
619  */
620 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
621 {
622         struct cgroup_subsys_state *memcg_css;
623         struct inode_switch_wbs_context *isw;
624         struct inode *inode;
625         int nr;
626         bool restart = false;
627
628         isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW *
629                       sizeof(struct inode *), GFP_KERNEL);
630         if (!isw)
631                 return restart;
632
633         atomic_inc(&isw_nr_in_flight);
634
635         for (memcg_css = wb->memcg_css->parent; memcg_css;
636              memcg_css = memcg_css->parent) {
637                 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
638                 if (isw->new_wb)
639                         break;
640         }
641         if (unlikely(!isw->new_wb))
642                 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
643
644         nr = 0;
645         spin_lock(&wb->list_lock);
646         list_for_each_entry(inode, &wb->b_attached, i_io_list) {
647                 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
648                         continue;
649
650                 isw->inodes[nr++] = inode;
651
652                 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
653                         restart = true;
654                         break;
655                 }
656         }
657         spin_unlock(&wb->list_lock);
658
659         /* no attached inodes? bail out */
660         if (nr == 0) {
661                 atomic_dec(&isw_nr_in_flight);
662                 wb_put(isw->new_wb);
663                 kfree(isw);
664                 return restart;
665         }
666
667         /*
668          * In addition to synchronizing among switchers, I_WB_SWITCH tells
669          * the RCU protected stat update paths to grab the i_page
670          * lock so that stat transfer can synchronize against them.
671          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
672          */
673         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
674         queue_rcu_work(isw_wq, &isw->work);
675
676         return restart;
677 }
678
679 /**
680  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
681  * @wbc: writeback_control of interest
682  * @inode: target inode
683  *
684  * @inode is locked and about to be written back under the control of @wbc.
685  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
686  * writeback completion, wbc_detach_inode() should be called.  This is used
687  * to track the cgroup writeback context.
688  */
689 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
690                                  struct inode *inode)
691 {
692         if (!inode_cgwb_enabled(inode)) {
693                 spin_unlock(&inode->i_lock);
694                 return;
695         }
696
697         wbc->wb = inode_to_wb(inode);
698         wbc->inode = inode;
699
700         wbc->wb_id = wbc->wb->memcg_css->id;
701         wbc->wb_lcand_id = inode->i_wb_frn_winner;
702         wbc->wb_tcand_id = 0;
703         wbc->wb_bytes = 0;
704         wbc->wb_lcand_bytes = 0;
705         wbc->wb_tcand_bytes = 0;
706
707         wb_get(wbc->wb);
708         spin_unlock(&inode->i_lock);
709
710         /*
711          * A dying wb indicates that either the blkcg associated with the
712          * memcg changed or the associated memcg is dying.  In the first
713          * case, a replacement wb should already be available and we should
714          * refresh the wb immediately.  In the second case, trying to
715          * refresh will keep failing.
716          */
717         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
718                 inode_switch_wbs(inode, wbc->wb_id);
719 }
720 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
721
722 /**
723  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
724  * @wbc: writeback_control of the just finished writeback
725  *
726  * To be called after a writeback attempt of an inode finishes and undoes
727  * wbc_attach_and_unlock_inode().  Can be called under any context.
728  *
729  * As concurrent write sharing of an inode is expected to be very rare and
730  * memcg only tracks page ownership on first-use basis severely confining
731  * the usefulness of such sharing, cgroup writeback tracks ownership
732  * per-inode.  While the support for concurrent write sharing of an inode
733  * is deemed unnecessary, an inode being written to by different cgroups at
734  * different points in time is a lot more common, and, more importantly,
735  * charging only by first-use can too readily lead to grossly incorrect
736  * behaviors (single foreign page can lead to gigabytes of writeback to be
737  * incorrectly attributed).
738  *
739  * To resolve this issue, cgroup writeback detects the majority dirtier of
740  * an inode and transfers the ownership to it.  To avoid unnnecessary
741  * oscillation, the detection mechanism keeps track of history and gives
742  * out the switch verdict only if the foreign usage pattern is stable over
743  * a certain amount of time and/or writeback attempts.
744  *
745  * On each writeback attempt, @wbc tries to detect the majority writer
746  * using Boyer-Moore majority vote algorithm.  In addition to the byte
747  * count from the majority voting, it also counts the bytes written for the
748  * current wb and the last round's winner wb (max of last round's current
749  * wb, the winner from two rounds ago, and the last round's majority
750  * candidate).  Keeping track of the historical winner helps the algorithm
751  * to semi-reliably detect the most active writer even when it's not the
752  * absolute majority.
753  *
754  * Once the winner of the round is determined, whether the winner is
755  * foreign or not and how much IO time the round consumed is recorded in
756  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
757  * over a certain threshold, the switch verdict is given.
758  */
759 void wbc_detach_inode(struct writeback_control *wbc)
760 {
761         struct bdi_writeback *wb = wbc->wb;
762         struct inode *inode = wbc->inode;
763         unsigned long avg_time, max_bytes, max_time;
764         u16 history;
765         int max_id;
766
767         if (!wb)
768                 return;
769
770         history = inode->i_wb_frn_history;
771         avg_time = inode->i_wb_frn_avg_time;
772
773         /* pick the winner of this round */
774         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
775             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
776                 max_id = wbc->wb_id;
777                 max_bytes = wbc->wb_bytes;
778         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
779                 max_id = wbc->wb_lcand_id;
780                 max_bytes = wbc->wb_lcand_bytes;
781         } else {
782                 max_id = wbc->wb_tcand_id;
783                 max_bytes = wbc->wb_tcand_bytes;
784         }
785
786         /*
787          * Calculate the amount of IO time the winner consumed and fold it
788          * into the running average kept per inode.  If the consumed IO
789          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
790          * deciding whether to switch or not.  This is to prevent one-off
791          * small dirtiers from skewing the verdict.
792          */
793         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
794                                 wb->avg_write_bandwidth);
795         if (avg_time)
796                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
797                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
798         else
799                 avg_time = max_time;    /* immediate catch up on first run */
800
801         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
802                 int slots;
803
804                 /*
805                  * The switch verdict is reached if foreign wb's consume
806                  * more than a certain proportion of IO time in a
807                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
808                  * history mask where each bit represents one sixteenth of
809                  * the period.  Determine the number of slots to shift into
810                  * history from @max_time.
811                  */
812                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
813                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
814                 history <<= slots;
815                 if (wbc->wb_id != max_id)
816                         history |= (1U << slots) - 1;
817
818                 if (history)
819                         trace_inode_foreign_history(inode, wbc, history);
820
821                 /*
822                  * Switch if the current wb isn't the consistent winner.
823                  * If there are multiple closely competing dirtiers, the
824                  * inode may switch across them repeatedly over time, which
825                  * is okay.  The main goal is avoiding keeping an inode on
826                  * the wrong wb for an extended period of time.
827                  */
828                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
829                         inode_switch_wbs(inode, max_id);
830         }
831
832         /*
833          * Multiple instances of this function may race to update the
834          * following fields but we don't mind occassional inaccuracies.
835          */
836         inode->i_wb_frn_winner = max_id;
837         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
838         inode->i_wb_frn_history = history;
839
840         wb_put(wbc->wb);
841         wbc->wb = NULL;
842 }
843 EXPORT_SYMBOL_GPL(wbc_detach_inode);
844
845 /**
846  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
847  * @wbc: writeback_control of the writeback in progress
848  * @page: page being written out
849  * @bytes: number of bytes being written out
850  *
851  * @bytes from @page are about to written out during the writeback
852  * controlled by @wbc.  Keep the book for foreign inode detection.  See
853  * wbc_detach_inode().
854  */
855 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
856                               size_t bytes)
857 {
858         struct cgroup_subsys_state *css;
859         int id;
860
861         /*
862          * pageout() path doesn't attach @wbc to the inode being written
863          * out.  This is intentional as we don't want the function to block
864          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
865          * regular writeback instead of writing things out itself.
866          */
867         if (!wbc->wb || wbc->no_cgroup_owner)
868                 return;
869
870         css = mem_cgroup_css_from_page(page);
871         /* dead cgroups shouldn't contribute to inode ownership arbitration */
872         if (!(css->flags & CSS_ONLINE))
873                 return;
874
875         id = css->id;
876
877         if (id == wbc->wb_id) {
878                 wbc->wb_bytes += bytes;
879                 return;
880         }
881
882         if (id == wbc->wb_lcand_id)
883                 wbc->wb_lcand_bytes += bytes;
884
885         /* Boyer-Moore majority vote algorithm */
886         if (!wbc->wb_tcand_bytes)
887                 wbc->wb_tcand_id = id;
888         if (id == wbc->wb_tcand_id)
889                 wbc->wb_tcand_bytes += bytes;
890         else
891                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
892 }
893 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
894
895 /**
896  * inode_congested - test whether an inode is congested
897  * @inode: inode to test for congestion (may be NULL)
898  * @cong_bits: mask of WB_[a]sync_congested bits to test
899  *
900  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
901  * bits to test and the return value is the mask of set bits.
902  *
903  * If cgroup writeback is enabled for @inode, the congestion state is
904  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
905  * associated with @inode is congested; otherwise, the root wb's congestion
906  * state is used.
907  *
908  * @inode is allowed to be NULL as this function is often called on
909  * mapping->host which is NULL for the swapper space.
910  */
911 int inode_congested(struct inode *inode, int cong_bits)
912 {
913         /*
914          * Once set, ->i_wb never becomes NULL while the inode is alive.
915          * Start transaction iff ->i_wb is visible.
916          */
917         if (inode && inode_to_wb_is_valid(inode)) {
918                 struct bdi_writeback *wb;
919                 struct wb_lock_cookie lock_cookie = {};
920                 bool congested;
921
922                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
923                 congested = wb_congested(wb, cong_bits);
924                 unlocked_inode_to_wb_end(inode, &lock_cookie);
925                 return congested;
926         }
927
928         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
929 }
930 EXPORT_SYMBOL_GPL(inode_congested);
931
932 /**
933  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
934  * @wb: target bdi_writeback to split @nr_pages to
935  * @nr_pages: number of pages to write for the whole bdi
936  *
937  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
938  * relation to the total write bandwidth of all wb's w/ dirty inodes on
939  * @wb->bdi.
940  */
941 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
942 {
943         unsigned long this_bw = wb->avg_write_bandwidth;
944         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
945
946         if (nr_pages == LONG_MAX)
947                 return LONG_MAX;
948
949         /*
950          * This may be called on clean wb's and proportional distribution
951          * may not make sense, just use the original @nr_pages in those
952          * cases.  In general, we wanna err on the side of writing more.
953          */
954         if (!tot_bw || this_bw >= tot_bw)
955                 return nr_pages;
956         else
957                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
958 }
959
960 /**
961  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
962  * @bdi: target backing_dev_info
963  * @base_work: wb_writeback_work to issue
964  * @skip_if_busy: skip wb's which already have writeback in progress
965  *
966  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
967  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
968  * distributed to the busy wbs according to each wb's proportion in the
969  * total active write bandwidth of @bdi.
970  */
971 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
972                                   struct wb_writeback_work *base_work,
973                                   bool skip_if_busy)
974 {
975         struct bdi_writeback *last_wb = NULL;
976         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
977                                               struct bdi_writeback, bdi_node);
978
979         might_sleep();
980 restart:
981         rcu_read_lock();
982         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
983                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
984                 struct wb_writeback_work fallback_work;
985                 struct wb_writeback_work *work;
986                 long nr_pages;
987
988                 if (last_wb) {
989                         wb_put(last_wb);
990                         last_wb = NULL;
991                 }
992
993                 /* SYNC_ALL writes out I_DIRTY_TIME too */
994                 if (!wb_has_dirty_io(wb) &&
995                     (base_work->sync_mode == WB_SYNC_NONE ||
996                      list_empty(&wb->b_dirty_time)))
997                         continue;
998                 if (skip_if_busy && writeback_in_progress(wb))
999                         continue;
1000
1001                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1002
1003                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1004                 if (work) {
1005                         *work = *base_work;
1006                         work->nr_pages = nr_pages;
1007                         work->auto_free = 1;
1008                         wb_queue_work(wb, work);
1009                         continue;
1010                 }
1011
1012                 /* alloc failed, execute synchronously using on-stack fallback */
1013                 work = &fallback_work;
1014                 *work = *base_work;
1015                 work->nr_pages = nr_pages;
1016                 work->auto_free = 0;
1017                 work->done = &fallback_work_done;
1018
1019                 wb_queue_work(wb, work);
1020
1021                 /*
1022                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
1023                  * continuing iteration from @wb after dropping and
1024                  * regrabbing rcu read lock.
1025                  */
1026                 wb_get(wb);
1027                 last_wb = wb;
1028
1029                 rcu_read_unlock();
1030                 wb_wait_for_completion(&fallback_work_done);
1031                 goto restart;
1032         }
1033         rcu_read_unlock();
1034
1035         if (last_wb)
1036                 wb_put(last_wb);
1037 }
1038
1039 /**
1040  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1041  * @bdi_id: target bdi id
1042  * @memcg_id: target memcg css id
1043  * @reason: reason why some writeback work initiated
1044  * @done: target wb_completion
1045  *
1046  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1047  * with the specified parameters.
1048  */
1049 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1050                            enum wb_reason reason, struct wb_completion *done)
1051 {
1052         struct backing_dev_info *bdi;
1053         struct cgroup_subsys_state *memcg_css;
1054         struct bdi_writeback *wb;
1055         struct wb_writeback_work *work;
1056         unsigned long dirty;
1057         int ret;
1058
1059         /* lookup bdi and memcg */
1060         bdi = bdi_get_by_id(bdi_id);
1061         if (!bdi)
1062                 return -ENOENT;
1063
1064         rcu_read_lock();
1065         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1066         if (memcg_css && !css_tryget(memcg_css))
1067                 memcg_css = NULL;
1068         rcu_read_unlock();
1069         if (!memcg_css) {
1070                 ret = -ENOENT;
1071                 goto out_bdi_put;
1072         }
1073
1074         /*
1075          * And find the associated wb.  If the wb isn't there already
1076          * there's nothing to flush, don't create one.
1077          */
1078         wb = wb_get_lookup(bdi, memcg_css);
1079         if (!wb) {
1080                 ret = -ENOENT;
1081                 goto out_css_put;
1082         }
1083
1084         /*
1085          * The caller is attempting to write out most of
1086          * the currently dirty pages.  Let's take the current dirty page
1087          * count and inflate it by 25% which should be large enough to
1088          * flush out most dirty pages while avoiding getting livelocked by
1089          * concurrent dirtiers.
1090          *
1091          * BTW the memcg stats are flushed periodically and this is best-effort
1092          * estimation, so some potential error is ok.
1093          */
1094         dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1095         dirty = dirty * 10 / 8;
1096
1097         /* issue the writeback work */
1098         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1099         if (work) {
1100                 work->nr_pages = dirty;
1101                 work->sync_mode = WB_SYNC_NONE;
1102                 work->range_cyclic = 1;
1103                 work->reason = reason;
1104                 work->done = done;
1105                 work->auto_free = 1;
1106                 wb_queue_work(wb, work);
1107                 ret = 0;
1108         } else {
1109                 ret = -ENOMEM;
1110         }
1111
1112         wb_put(wb);
1113 out_css_put:
1114         css_put(memcg_css);
1115 out_bdi_put:
1116         bdi_put(bdi);
1117         return ret;
1118 }
1119
1120 /**
1121  * cgroup_writeback_umount - flush inode wb switches for umount
1122  *
1123  * This function is called when a super_block is about to be destroyed and
1124  * flushes in-flight inode wb switches.  An inode wb switch goes through
1125  * RCU and then workqueue, so the two need to be flushed in order to ensure
1126  * that all previously scheduled switches are finished.  As wb switches are
1127  * rare occurrences and synchronize_rcu() can take a while, perform
1128  * flushing iff wb switches are in flight.
1129  */
1130 void cgroup_writeback_umount(void)
1131 {
1132         /*
1133          * SB_ACTIVE should be reliably cleared before checking
1134          * isw_nr_in_flight, see generic_shutdown_super().
1135          */
1136         smp_mb();
1137
1138         if (atomic_read(&isw_nr_in_flight)) {
1139                 /*
1140                  * Use rcu_barrier() to wait for all pending callbacks to
1141                  * ensure that all in-flight wb switches are in the workqueue.
1142                  */
1143                 rcu_barrier();
1144                 flush_workqueue(isw_wq);
1145         }
1146 }
1147
1148 static int __init cgroup_writeback_init(void)
1149 {
1150         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1151         if (!isw_wq)
1152                 return -ENOMEM;
1153         return 0;
1154 }
1155 fs_initcall(cgroup_writeback_init);
1156
1157 #else   /* CONFIG_CGROUP_WRITEBACK */
1158
1159 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1160 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1161
1162 static void inode_cgwb_move_to_attached(struct inode *inode,
1163                                         struct bdi_writeback *wb)
1164 {
1165         assert_spin_locked(&wb->list_lock);
1166         assert_spin_locked(&inode->i_lock);
1167
1168         inode->i_state &= ~I_SYNC_QUEUED;
1169         list_del_init(&inode->i_io_list);
1170         wb_io_lists_depopulated(wb);
1171 }
1172
1173 static struct bdi_writeback *
1174 locked_inode_to_wb_and_lock_list(struct inode *inode)
1175         __releases(&inode->i_lock)
1176         __acquires(&wb->list_lock)
1177 {
1178         struct bdi_writeback *wb = inode_to_wb(inode);
1179
1180         spin_unlock(&inode->i_lock);
1181         spin_lock(&wb->list_lock);
1182         return wb;
1183 }
1184
1185 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1186         __acquires(&wb->list_lock)
1187 {
1188         struct bdi_writeback *wb = inode_to_wb(inode);
1189
1190         spin_lock(&wb->list_lock);
1191         return wb;
1192 }
1193
1194 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1195 {
1196         return nr_pages;
1197 }
1198
1199 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1200                                   struct wb_writeback_work *base_work,
1201                                   bool skip_if_busy)
1202 {
1203         might_sleep();
1204
1205         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1206                 base_work->auto_free = 0;
1207                 wb_queue_work(&bdi->wb, base_work);
1208         }
1209 }
1210
1211 #endif  /* CONFIG_CGROUP_WRITEBACK */
1212
1213 /*
1214  * Add in the number of potentially dirty inodes, because each inode
1215  * write can dirty pagecache in the underlying blockdev.
1216  */
1217 static unsigned long get_nr_dirty_pages(void)
1218 {
1219         return global_node_page_state(NR_FILE_DIRTY) +
1220                 get_nr_dirty_inodes();
1221 }
1222
1223 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1224 {
1225         if (!wb_has_dirty_io(wb))
1226                 return;
1227
1228         /*
1229          * All callers of this function want to start writeback of all
1230          * dirty pages. Places like vmscan can call this at a very
1231          * high frequency, causing pointless allocations of tons of
1232          * work items and keeping the flusher threads busy retrieving
1233          * that work. Ensure that we only allow one of them pending and
1234          * inflight at the time.
1235          */
1236         if (test_bit(WB_start_all, &wb->state) ||
1237             test_and_set_bit(WB_start_all, &wb->state))
1238                 return;
1239
1240         wb->start_all_reason = reason;
1241         wb_wakeup(wb);
1242 }
1243
1244 /**
1245  * wb_start_background_writeback - start background writeback
1246  * @wb: bdi_writback to write from
1247  *
1248  * Description:
1249  *   This makes sure WB_SYNC_NONE background writeback happens. When
1250  *   this function returns, it is only guaranteed that for given wb
1251  *   some IO is happening if we are over background dirty threshold.
1252  *   Caller need not hold sb s_umount semaphore.
1253  */
1254 void wb_start_background_writeback(struct bdi_writeback *wb)
1255 {
1256         /*
1257          * We just wake up the flusher thread. It will perform background
1258          * writeback as soon as there is no other work to do.
1259          */
1260         trace_writeback_wake_background(wb);
1261         wb_wakeup(wb);
1262 }
1263
1264 /*
1265  * Remove the inode from the writeback list it is on.
1266  */
1267 void inode_io_list_del(struct inode *inode)
1268 {
1269         struct bdi_writeback *wb;
1270
1271         wb = inode_to_wb_and_lock_list(inode);
1272         spin_lock(&inode->i_lock);
1273
1274         inode->i_state &= ~I_SYNC_QUEUED;
1275         list_del_init(&inode->i_io_list);
1276         wb_io_lists_depopulated(wb);
1277
1278         spin_unlock(&inode->i_lock);
1279         spin_unlock(&wb->list_lock);
1280 }
1281 EXPORT_SYMBOL(inode_io_list_del);
1282
1283 /*
1284  * mark an inode as under writeback on the sb
1285  */
1286 void sb_mark_inode_writeback(struct inode *inode)
1287 {
1288         struct super_block *sb = inode->i_sb;
1289         unsigned long flags;
1290
1291         if (list_empty(&inode->i_wb_list)) {
1292                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1293                 if (list_empty(&inode->i_wb_list)) {
1294                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1295                         trace_sb_mark_inode_writeback(inode);
1296                 }
1297                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1298         }
1299 }
1300
1301 /*
1302  * clear an inode as under writeback on the sb
1303  */
1304 void sb_clear_inode_writeback(struct inode *inode)
1305 {
1306         struct super_block *sb = inode->i_sb;
1307         unsigned long flags;
1308
1309         if (!list_empty(&inode->i_wb_list)) {
1310                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1311                 if (!list_empty(&inode->i_wb_list)) {
1312                         list_del_init(&inode->i_wb_list);
1313                         trace_sb_clear_inode_writeback(inode);
1314                 }
1315                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1316         }
1317 }
1318
1319 /*
1320  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1321  * furthest end of its superblock's dirty-inode list.
1322  *
1323  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1324  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1325  * the case then the inode must have been redirtied while it was being written
1326  * out and we don't reset its dirtied_when.
1327  */
1328 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1329 {
1330         assert_spin_locked(&inode->i_lock);
1331
1332         if (!list_empty(&wb->b_dirty)) {
1333                 struct inode *tail;
1334
1335                 tail = wb_inode(wb->b_dirty.next);
1336                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1337                         inode->dirtied_when = jiffies;
1338         }
1339         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1340         inode->i_state &= ~I_SYNC_QUEUED;
1341 }
1342
1343 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1344 {
1345         spin_lock(&inode->i_lock);
1346         redirty_tail_locked(inode, wb);
1347         spin_unlock(&inode->i_lock);
1348 }
1349
1350 /*
1351  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1352  */
1353 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1354 {
1355         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1356 }
1357
1358 static void inode_sync_complete(struct inode *inode)
1359 {
1360         inode->i_state &= ~I_SYNC;
1361         /* If inode is clean an unused, put it into LRU now... */
1362         inode_add_lru(inode);
1363         /* Waiters must see I_SYNC cleared before being woken up */
1364         smp_mb();
1365         wake_up_bit(&inode->i_state, __I_SYNC);
1366 }
1367
1368 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1369 {
1370         bool ret = time_after(inode->dirtied_when, t);
1371 #ifndef CONFIG_64BIT
1372         /*
1373          * For inodes being constantly redirtied, dirtied_when can get stuck.
1374          * It _appears_ to be in the future, but is actually in distant past.
1375          * This test is necessary to prevent such wrapped-around relative times
1376          * from permanently stopping the whole bdi writeback.
1377          */
1378         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1379 #endif
1380         return ret;
1381 }
1382
1383 #define EXPIRE_DIRTY_ATIME 0x0001
1384
1385 /*
1386  * Move expired (dirtied before dirtied_before) dirty inodes from
1387  * @delaying_queue to @dispatch_queue.
1388  */
1389 static int move_expired_inodes(struct list_head *delaying_queue,
1390                                struct list_head *dispatch_queue,
1391                                unsigned long dirtied_before)
1392 {
1393         LIST_HEAD(tmp);
1394         struct list_head *pos, *node;
1395         struct super_block *sb = NULL;
1396         struct inode *inode;
1397         int do_sb_sort = 0;
1398         int moved = 0;
1399
1400         while (!list_empty(delaying_queue)) {
1401                 inode = wb_inode(delaying_queue->prev);
1402                 if (inode_dirtied_after(inode, dirtied_before))
1403                         break;
1404                 spin_lock(&inode->i_lock);
1405                 list_move(&inode->i_io_list, &tmp);
1406                 moved++;
1407                 inode->i_state |= I_SYNC_QUEUED;
1408                 spin_unlock(&inode->i_lock);
1409                 if (sb_is_blkdev_sb(inode->i_sb))
1410                         continue;
1411                 if (sb && sb != inode->i_sb)
1412                         do_sb_sort = 1;
1413                 sb = inode->i_sb;
1414         }
1415
1416         /* just one sb in list, splice to dispatch_queue and we're done */
1417         if (!do_sb_sort) {
1418                 list_splice(&tmp, dispatch_queue);
1419                 goto out;
1420         }
1421
1422         /*
1423          * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1424          * we don't take inode->i_lock here because it is just a pointless overhead.
1425          * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1426          * fully under our control.
1427          */
1428         while (!list_empty(&tmp)) {
1429                 sb = wb_inode(tmp.prev)->i_sb;
1430                 list_for_each_prev_safe(pos, node, &tmp) {
1431                         inode = wb_inode(pos);
1432                         if (inode->i_sb == sb)
1433                                 list_move(&inode->i_io_list, dispatch_queue);
1434                 }
1435         }
1436 out:
1437         return moved;
1438 }
1439
1440 /*
1441  * Queue all expired dirty inodes for io, eldest first.
1442  * Before
1443  *         newly dirtied     b_dirty    b_io    b_more_io
1444  *         =============>    gf         edc     BA
1445  * After
1446  *         newly dirtied     b_dirty    b_io    b_more_io
1447  *         =============>    g          fBAedc
1448  *                                           |
1449  *                                           +--> dequeue for IO
1450  */
1451 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1452                      unsigned long dirtied_before)
1453 {
1454         int moved;
1455         unsigned long time_expire_jif = dirtied_before;
1456
1457         assert_spin_locked(&wb->list_lock);
1458         list_splice_init(&wb->b_more_io, &wb->b_io);
1459         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1460         if (!work->for_sync)
1461                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1462         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1463                                      time_expire_jif);
1464         if (moved)
1465                 wb_io_lists_populated(wb);
1466         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1467 }
1468
1469 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1470 {
1471         int ret;
1472
1473         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1474                 trace_writeback_write_inode_start(inode, wbc);
1475                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1476                 trace_writeback_write_inode(inode, wbc);
1477                 return ret;
1478         }
1479         return 0;
1480 }
1481
1482 /*
1483  * Wait for writeback on an inode to complete. Called with i_lock held.
1484  * Caller must make sure inode cannot go away when we drop i_lock.
1485  */
1486 static void __inode_wait_for_writeback(struct inode *inode)
1487         __releases(inode->i_lock)
1488         __acquires(inode->i_lock)
1489 {
1490         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1491         wait_queue_head_t *wqh;
1492
1493         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1494         while (inode->i_state & I_SYNC) {
1495                 spin_unlock(&inode->i_lock);
1496                 __wait_on_bit(wqh, &wq, bit_wait,
1497                               TASK_UNINTERRUPTIBLE);
1498                 spin_lock(&inode->i_lock);
1499         }
1500 }
1501
1502 /*
1503  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1504  */
1505 void inode_wait_for_writeback(struct inode *inode)
1506 {
1507         spin_lock(&inode->i_lock);
1508         __inode_wait_for_writeback(inode);
1509         spin_unlock(&inode->i_lock);
1510 }
1511
1512 /*
1513  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1514  * held and drops it. It is aimed for callers not holding any inode reference
1515  * so once i_lock is dropped, inode can go away.
1516  */
1517 static void inode_sleep_on_writeback(struct inode *inode)
1518         __releases(inode->i_lock)
1519 {
1520         DEFINE_WAIT(wait);
1521         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1522         int sleep;
1523
1524         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1525         sleep = inode->i_state & I_SYNC;
1526         spin_unlock(&inode->i_lock);
1527         if (sleep)
1528                 schedule();
1529         finish_wait(wqh, &wait);
1530 }
1531
1532 /*
1533  * Find proper writeback list for the inode depending on its current state and
1534  * possibly also change of its state while we were doing writeback.  Here we
1535  * handle things such as livelock prevention or fairness of writeback among
1536  * inodes. This function can be called only by flusher thread - noone else
1537  * processes all inodes in writeback lists and requeueing inodes behind flusher
1538  * thread's back can have unexpected consequences.
1539  */
1540 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1541                           struct writeback_control *wbc)
1542 {
1543         if (inode->i_state & I_FREEING)
1544                 return;
1545
1546         /*
1547          * Sync livelock prevention. Each inode is tagged and synced in one
1548          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1549          * the dirty time to prevent enqueue and sync it again.
1550          */
1551         if ((inode->i_state & I_DIRTY) &&
1552             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1553                 inode->dirtied_when = jiffies;
1554
1555         if (wbc->pages_skipped) {
1556                 /*
1557                  * writeback is not making progress due to locked
1558                  * buffers. Skip this inode for now.
1559                  */
1560                 redirty_tail_locked(inode, wb);
1561                 return;
1562         }
1563
1564         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1565                 /*
1566                  * We didn't write back all the pages.  nfs_writepages()
1567                  * sometimes bales out without doing anything.
1568                  */
1569                 if (wbc->nr_to_write <= 0) {
1570                         /* Slice used up. Queue for next turn. */
1571                         requeue_io(inode, wb);
1572                 } else {
1573                         /*
1574                          * Writeback blocked by something other than
1575                          * congestion. Delay the inode for some time to
1576                          * avoid spinning on the CPU (100% iowait)
1577                          * retrying writeback of the dirty page/inode
1578                          * that cannot be performed immediately.
1579                          */
1580                         redirty_tail_locked(inode, wb);
1581                 }
1582         } else if (inode->i_state & I_DIRTY) {
1583                 /*
1584                  * Filesystems can dirty the inode during writeback operations,
1585                  * such as delayed allocation during submission or metadata
1586                  * updates after data IO completion.
1587                  */
1588                 redirty_tail_locked(inode, wb);
1589         } else if (inode->i_state & I_DIRTY_TIME) {
1590                 inode->dirtied_when = jiffies;
1591                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1592                 inode->i_state &= ~I_SYNC_QUEUED;
1593         } else {
1594                 /* The inode is clean. Remove from writeback lists. */
1595                 inode_cgwb_move_to_attached(inode, wb);
1596         }
1597 }
1598
1599 /*
1600  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1601  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1602  *
1603  * This doesn't remove the inode from the writeback list it is on, except
1604  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1605  * expiration.  The caller is otherwise responsible for writeback list handling.
1606  *
1607  * The caller is also responsible for setting the I_SYNC flag beforehand and
1608  * calling inode_sync_complete() to clear it afterwards.
1609  */
1610 static int
1611 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1612 {
1613         struct address_space *mapping = inode->i_mapping;
1614         long nr_to_write = wbc->nr_to_write;
1615         unsigned dirty;
1616         int ret;
1617
1618         WARN_ON(!(inode->i_state & I_SYNC));
1619
1620         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1621
1622         ret = do_writepages(mapping, wbc);
1623
1624         /*
1625          * Make sure to wait on the data before writing out the metadata.
1626          * This is important for filesystems that modify metadata on data
1627          * I/O completion. We don't do it for sync(2) writeback because it has a
1628          * separate, external IO completion path and ->sync_fs for guaranteeing
1629          * inode metadata is written back correctly.
1630          */
1631         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1632                 int err = filemap_fdatawait(mapping);
1633                 if (ret == 0)
1634                         ret = err;
1635         }
1636
1637         /*
1638          * If the inode has dirty timestamps and we need to write them, call
1639          * mark_inode_dirty_sync() to notify the filesystem about it and to
1640          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1641          */
1642         if ((inode->i_state & I_DIRTY_TIME) &&
1643             (wbc->sync_mode == WB_SYNC_ALL ||
1644              time_after(jiffies, inode->dirtied_time_when +
1645                         dirtytime_expire_interval * HZ))) {
1646                 trace_writeback_lazytime(inode);
1647                 mark_inode_dirty_sync(inode);
1648         }
1649
1650         /*
1651          * Get and clear the dirty flags from i_state.  This needs to be done
1652          * after calling writepages because some filesystems may redirty the
1653          * inode during writepages due to delalloc.  It also needs to be done
1654          * after handling timestamp expiration, as that may dirty the inode too.
1655          */
1656         spin_lock(&inode->i_lock);
1657         dirty = inode->i_state & I_DIRTY;
1658         inode->i_state &= ~dirty;
1659
1660         /*
1661          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1662          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1663          * either they see the I_DIRTY bits cleared or we see the dirtied
1664          * inode.
1665          *
1666          * I_DIRTY_PAGES is always cleared together above even if @mapping
1667          * still has dirty pages.  The flag is reinstated after smp_mb() if
1668          * necessary.  This guarantees that either __mark_inode_dirty()
1669          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1670          */
1671         smp_mb();
1672
1673         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1674                 inode->i_state |= I_DIRTY_PAGES;
1675
1676         spin_unlock(&inode->i_lock);
1677
1678         /* Don't write the inode if only I_DIRTY_PAGES was set */
1679         if (dirty & ~I_DIRTY_PAGES) {
1680                 int err = write_inode(inode, wbc);
1681                 if (ret == 0)
1682                         ret = err;
1683         }
1684         trace_writeback_single_inode(inode, wbc, nr_to_write);
1685         return ret;
1686 }
1687
1688 /*
1689  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1690  * the regular batched writeback done by the flusher threads in
1691  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1692  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1693  *
1694  * To prevent the inode from going away, either the caller must have a reference
1695  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1696  */
1697 static int writeback_single_inode(struct inode *inode,
1698                                   struct writeback_control *wbc)
1699 {
1700         struct bdi_writeback *wb;
1701         int ret = 0;
1702
1703         spin_lock(&inode->i_lock);
1704         if (!atomic_read(&inode->i_count))
1705                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1706         else
1707                 WARN_ON(inode->i_state & I_WILL_FREE);
1708
1709         if (inode->i_state & I_SYNC) {
1710                 /*
1711                  * Writeback is already running on the inode.  For WB_SYNC_NONE,
1712                  * that's enough and we can just return.  For WB_SYNC_ALL, we
1713                  * must wait for the existing writeback to complete, then do
1714                  * writeback again if there's anything left.
1715                  */
1716                 if (wbc->sync_mode != WB_SYNC_ALL)
1717                         goto out;
1718                 __inode_wait_for_writeback(inode);
1719         }
1720         WARN_ON(inode->i_state & I_SYNC);
1721         /*
1722          * If the inode is already fully clean, then there's nothing to do.
1723          *
1724          * For data-integrity syncs we also need to check whether any pages are
1725          * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1726          * there are any such pages, we'll need to wait for them.
1727          */
1728         if (!(inode->i_state & I_DIRTY_ALL) &&
1729             (wbc->sync_mode != WB_SYNC_ALL ||
1730              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1731                 goto out;
1732         inode->i_state |= I_SYNC;
1733         wbc_attach_and_unlock_inode(wbc, inode);
1734
1735         ret = __writeback_single_inode(inode, wbc);
1736
1737         wbc_detach_inode(wbc);
1738
1739         wb = inode_to_wb_and_lock_list(inode);
1740         spin_lock(&inode->i_lock);
1741         /*
1742          * If the inode is freeing, its i_io_list shoudn't be updated
1743          * as it can be finally deleted at this moment.
1744          */
1745         if (!(inode->i_state & I_FREEING)) {
1746                 /*
1747                  * If the inode is now fully clean, then it can be safely
1748                  * removed from its writeback list (if any). Otherwise the
1749                  * flusher threads are responsible for the writeback lists.
1750                  */
1751                 if (!(inode->i_state & I_DIRTY_ALL))
1752                         inode_cgwb_move_to_attached(inode, wb);
1753                 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1754                         if ((inode->i_state & I_DIRTY))
1755                                 redirty_tail_locked(inode, wb);
1756                         else if (inode->i_state & I_DIRTY_TIME) {
1757                                 inode->dirtied_when = jiffies;
1758                                 inode_io_list_move_locked(inode,
1759                                                           wb,
1760                                                           &wb->b_dirty_time);
1761                         }
1762                 }
1763         }
1764
1765         spin_unlock(&wb->list_lock);
1766         inode_sync_complete(inode);
1767 out:
1768         spin_unlock(&inode->i_lock);
1769         return ret;
1770 }
1771
1772 static long writeback_chunk_size(struct bdi_writeback *wb,
1773                                  struct wb_writeback_work *work)
1774 {
1775         long pages;
1776
1777         /*
1778          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1779          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1780          * here avoids calling into writeback_inodes_wb() more than once.
1781          *
1782          * The intended call sequence for WB_SYNC_ALL writeback is:
1783          *
1784          *      wb_writeback()
1785          *          writeback_sb_inodes()       <== called only once
1786          *              write_cache_pages()     <== called once for each inode
1787          *                   (quickly) tag currently dirty pages
1788          *                   (maybe slowly) sync all tagged pages
1789          */
1790         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1791                 pages = LONG_MAX;
1792         else {
1793                 pages = min(wb->avg_write_bandwidth / 2,
1794                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1795                 pages = min(pages, work->nr_pages);
1796                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1797                                    MIN_WRITEBACK_PAGES);
1798         }
1799
1800         return pages;
1801 }
1802
1803 /*
1804  * Write a portion of b_io inodes which belong to @sb.
1805  *
1806  * Return the number of pages and/or inodes written.
1807  *
1808  * NOTE! This is called with wb->list_lock held, and will
1809  * unlock and relock that for each inode it ends up doing
1810  * IO for.
1811  */
1812 static long writeback_sb_inodes(struct super_block *sb,
1813                                 struct bdi_writeback *wb,
1814                                 struct wb_writeback_work *work)
1815 {
1816         struct writeback_control wbc = {
1817                 .sync_mode              = work->sync_mode,
1818                 .tagged_writepages      = work->tagged_writepages,
1819                 .for_kupdate            = work->for_kupdate,
1820                 .for_background         = work->for_background,
1821                 .for_sync               = work->for_sync,
1822                 .range_cyclic           = work->range_cyclic,
1823                 .range_start            = 0,
1824                 .range_end              = LLONG_MAX,
1825         };
1826         unsigned long start_time = jiffies;
1827         long write_chunk;
1828         long total_wrote = 0;  /* count both pages and inodes */
1829
1830         while (!list_empty(&wb->b_io)) {
1831                 struct inode *inode = wb_inode(wb->b_io.prev);
1832                 struct bdi_writeback *tmp_wb;
1833                 long wrote;
1834
1835                 if (inode->i_sb != sb) {
1836                         if (work->sb) {
1837                                 /*
1838                                  * We only want to write back data for this
1839                                  * superblock, move all inodes not belonging
1840                                  * to it back onto the dirty list.
1841                                  */
1842                                 redirty_tail(inode, wb);
1843                                 continue;
1844                         }
1845
1846                         /*
1847                          * The inode belongs to a different superblock.
1848                          * Bounce back to the caller to unpin this and
1849                          * pin the next superblock.
1850                          */
1851                         break;
1852                 }
1853
1854                 /*
1855                  * Don't bother with new inodes or inodes being freed, first
1856                  * kind does not need periodic writeout yet, and for the latter
1857                  * kind writeout is handled by the freer.
1858                  */
1859                 spin_lock(&inode->i_lock);
1860                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1861                         redirty_tail_locked(inode, wb);
1862                         spin_unlock(&inode->i_lock);
1863                         continue;
1864                 }
1865                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1866                         /*
1867                          * If this inode is locked for writeback and we are not
1868                          * doing writeback-for-data-integrity, move it to
1869                          * b_more_io so that writeback can proceed with the
1870                          * other inodes on s_io.
1871                          *
1872                          * We'll have another go at writing back this inode
1873                          * when we completed a full scan of b_io.
1874                          */
1875                         requeue_io(inode, wb);
1876                         spin_unlock(&inode->i_lock);
1877                         trace_writeback_sb_inodes_requeue(inode);
1878                         continue;
1879                 }
1880                 spin_unlock(&wb->list_lock);
1881
1882                 /*
1883                  * We already requeued the inode if it had I_SYNC set and we
1884                  * are doing WB_SYNC_NONE writeback. So this catches only the
1885                  * WB_SYNC_ALL case.
1886                  */
1887                 if (inode->i_state & I_SYNC) {
1888                         /* Wait for I_SYNC. This function drops i_lock... */
1889                         inode_sleep_on_writeback(inode);
1890                         /* Inode may be gone, start again */
1891                         spin_lock(&wb->list_lock);
1892                         continue;
1893                 }
1894                 inode->i_state |= I_SYNC;
1895                 wbc_attach_and_unlock_inode(&wbc, inode);
1896
1897                 write_chunk = writeback_chunk_size(wb, work);
1898                 wbc.nr_to_write = write_chunk;
1899                 wbc.pages_skipped = 0;
1900
1901                 /*
1902                  * We use I_SYNC to pin the inode in memory. While it is set
1903                  * evict_inode() will wait so the inode cannot be freed.
1904                  */
1905                 __writeback_single_inode(inode, &wbc);
1906
1907                 wbc_detach_inode(&wbc);
1908                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1909                 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1910                 wrote = wrote < 0 ? 0 : wrote;
1911                 total_wrote += wrote;
1912
1913                 if (need_resched()) {
1914                         /*
1915                          * We're trying to balance between building up a nice
1916                          * long list of IOs to improve our merge rate, and
1917                          * getting those IOs out quickly for anyone throttling
1918                          * in balance_dirty_pages().  cond_resched() doesn't
1919                          * unplug, so get our IOs out the door before we
1920                          * give up the CPU.
1921                          */
1922                         blk_flush_plug(current);
1923                         cond_resched();
1924                 }
1925
1926                 /*
1927                  * Requeue @inode if still dirty.  Be careful as @inode may
1928                  * have been switched to another wb in the meantime.
1929                  */
1930                 tmp_wb = inode_to_wb_and_lock_list(inode);
1931                 spin_lock(&inode->i_lock);
1932                 if (!(inode->i_state & I_DIRTY_ALL))
1933                         total_wrote++;
1934                 requeue_inode(inode, tmp_wb, &wbc);
1935                 inode_sync_complete(inode);
1936                 spin_unlock(&inode->i_lock);
1937
1938                 if (unlikely(tmp_wb != wb)) {
1939                         spin_unlock(&tmp_wb->list_lock);
1940                         spin_lock(&wb->list_lock);
1941                 }
1942
1943                 /*
1944                  * bail out to wb_writeback() often enough to check
1945                  * background threshold and other termination conditions.
1946                  */
1947                 if (total_wrote) {
1948                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1949                                 break;
1950                         if (work->nr_pages <= 0)
1951                                 break;
1952                 }
1953         }
1954         return total_wrote;
1955 }
1956
1957 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1958                                   struct wb_writeback_work *work)
1959 {
1960         unsigned long start_time = jiffies;
1961         long wrote = 0;
1962
1963         while (!list_empty(&wb->b_io)) {
1964                 struct inode *inode = wb_inode(wb->b_io.prev);
1965                 struct super_block *sb = inode->i_sb;
1966
1967                 if (!trylock_super(sb)) {
1968                         /*
1969                          * trylock_super() may fail consistently due to
1970                          * s_umount being grabbed by someone else. Don't use
1971                          * requeue_io() to avoid busy retrying the inode/sb.
1972                          */
1973                         redirty_tail(inode, wb);
1974                         continue;
1975                 }
1976                 wrote += writeback_sb_inodes(sb, wb, work);
1977                 up_read(&sb->s_umount);
1978
1979                 /* refer to the same tests at the end of writeback_sb_inodes */
1980                 if (wrote) {
1981                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1982                                 break;
1983                         if (work->nr_pages <= 0)
1984                                 break;
1985                 }
1986         }
1987         /* Leave any unwritten inodes on b_io */
1988         return wrote;
1989 }
1990
1991 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1992                                 enum wb_reason reason)
1993 {
1994         struct wb_writeback_work work = {
1995                 .nr_pages       = nr_pages,
1996                 .sync_mode      = WB_SYNC_NONE,
1997                 .range_cyclic   = 1,
1998                 .reason         = reason,
1999         };
2000         struct blk_plug plug;
2001
2002         blk_start_plug(&plug);
2003         spin_lock(&wb->list_lock);
2004         if (list_empty(&wb->b_io))
2005                 queue_io(wb, &work, jiffies);
2006         __writeback_inodes_wb(wb, &work);
2007         spin_unlock(&wb->list_lock);
2008         blk_finish_plug(&plug);
2009
2010         return nr_pages - work.nr_pages;
2011 }
2012
2013 /*
2014  * Explicit flushing or periodic writeback of "old" data.
2015  *
2016  * Define "old": the first time one of an inode's pages is dirtied, we mark the
2017  * dirtying-time in the inode's address_space.  So this periodic writeback code
2018  * just walks the superblock inode list, writing back any inodes which are
2019  * older than a specific point in time.
2020  *
2021  * Try to run once per dirty_writeback_interval.  But if a writeback event
2022  * takes longer than a dirty_writeback_interval interval, then leave a
2023  * one-second gap.
2024  *
2025  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2026  * all dirty pages if they are all attached to "old" mappings.
2027  */
2028 static long wb_writeback(struct bdi_writeback *wb,
2029                          struct wb_writeback_work *work)
2030 {
2031         long nr_pages = work->nr_pages;
2032         unsigned long dirtied_before = jiffies;
2033         struct inode *inode;
2034         long progress;
2035         struct blk_plug plug;
2036
2037         blk_start_plug(&plug);
2038         spin_lock(&wb->list_lock);
2039         for (;;) {
2040                 /*
2041                  * Stop writeback when nr_pages has been consumed
2042                  */
2043                 if (work->nr_pages <= 0)
2044                         break;
2045
2046                 /*
2047                  * Background writeout and kupdate-style writeback may
2048                  * run forever. Stop them if there is other work to do
2049                  * so that e.g. sync can proceed. They'll be restarted
2050                  * after the other works are all done.
2051                  */
2052                 if ((work->for_background || work->for_kupdate) &&
2053                     !list_empty(&wb->work_list))
2054                         break;
2055
2056                 /*
2057                  * For background writeout, stop when we are below the
2058                  * background dirty threshold
2059                  */
2060                 if (work->for_background && !wb_over_bg_thresh(wb))
2061                         break;
2062
2063                 /*
2064                  * Kupdate and background works are special and we want to
2065                  * include all inodes that need writing. Livelock avoidance is
2066                  * handled by these works yielding to any other work so we are
2067                  * safe.
2068                  */
2069                 if (work->for_kupdate) {
2070                         dirtied_before = jiffies -
2071                                 msecs_to_jiffies(dirty_expire_interval * 10);
2072                 } else if (work->for_background)
2073                         dirtied_before = jiffies;
2074
2075                 trace_writeback_start(wb, work);
2076                 if (list_empty(&wb->b_io))
2077                         queue_io(wb, work, dirtied_before);
2078                 if (work->sb)
2079                         progress = writeback_sb_inodes(work->sb, wb, work);
2080                 else
2081                         progress = __writeback_inodes_wb(wb, work);
2082                 trace_writeback_written(wb, work);
2083
2084                 /*
2085                  * Did we write something? Try for more
2086                  *
2087                  * Dirty inodes are moved to b_io for writeback in batches.
2088                  * The completion of the current batch does not necessarily
2089                  * mean the overall work is done. So we keep looping as long
2090                  * as made some progress on cleaning pages or inodes.
2091                  */
2092                 if (progress)
2093                         continue;
2094                 /*
2095                  * No more inodes for IO, bail
2096                  */
2097                 if (list_empty(&wb->b_more_io))
2098                         break;
2099                 /*
2100                  * Nothing written. Wait for some inode to
2101                  * become available for writeback. Otherwise
2102                  * we'll just busyloop.
2103                  */
2104                 trace_writeback_wait(wb, work);
2105                 inode = wb_inode(wb->b_more_io.prev);
2106                 spin_lock(&inode->i_lock);
2107                 spin_unlock(&wb->list_lock);
2108                 /* This function drops i_lock... */
2109                 inode_sleep_on_writeback(inode);
2110                 spin_lock(&wb->list_lock);
2111         }
2112         spin_unlock(&wb->list_lock);
2113         blk_finish_plug(&plug);
2114
2115         return nr_pages - work->nr_pages;
2116 }
2117
2118 /*
2119  * Return the next wb_writeback_work struct that hasn't been processed yet.
2120  */
2121 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2122 {
2123         struct wb_writeback_work *work = NULL;
2124
2125         spin_lock_irq(&wb->work_lock);
2126         if (!list_empty(&wb->work_list)) {
2127                 work = list_entry(wb->work_list.next,
2128                                   struct wb_writeback_work, list);
2129                 list_del_init(&work->list);
2130         }
2131         spin_unlock_irq(&wb->work_lock);
2132         return work;
2133 }
2134
2135 static long wb_check_background_flush(struct bdi_writeback *wb)
2136 {
2137         if (wb_over_bg_thresh(wb)) {
2138
2139                 struct wb_writeback_work work = {
2140                         .nr_pages       = LONG_MAX,
2141                         .sync_mode      = WB_SYNC_NONE,
2142                         .for_background = 1,
2143                         .range_cyclic   = 1,
2144                         .reason         = WB_REASON_BACKGROUND,
2145                 };
2146
2147                 return wb_writeback(wb, &work);
2148         }
2149
2150         return 0;
2151 }
2152
2153 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2154 {
2155         unsigned long expired;
2156         long nr_pages;
2157
2158         /*
2159          * When set to zero, disable periodic writeback
2160          */
2161         if (!dirty_writeback_interval)
2162                 return 0;
2163
2164         expired = wb->last_old_flush +
2165                         msecs_to_jiffies(dirty_writeback_interval * 10);
2166         if (time_before(jiffies, expired))
2167                 return 0;
2168
2169         wb->last_old_flush = jiffies;
2170         nr_pages = get_nr_dirty_pages();
2171
2172         if (nr_pages) {
2173                 struct wb_writeback_work work = {
2174                         .nr_pages       = nr_pages,
2175                         .sync_mode      = WB_SYNC_NONE,
2176                         .for_kupdate    = 1,
2177                         .range_cyclic   = 1,
2178                         .reason         = WB_REASON_PERIODIC,
2179                 };
2180
2181                 return wb_writeback(wb, &work);
2182         }
2183
2184         return 0;
2185 }
2186
2187 static long wb_check_start_all(struct bdi_writeback *wb)
2188 {
2189         long nr_pages;
2190
2191         if (!test_bit(WB_start_all, &wb->state))
2192                 return 0;
2193
2194         nr_pages = get_nr_dirty_pages();
2195         if (nr_pages) {
2196                 struct wb_writeback_work work = {
2197                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2198                         .sync_mode      = WB_SYNC_NONE,
2199                         .range_cyclic   = 1,
2200                         .reason         = wb->start_all_reason,
2201                 };
2202
2203                 nr_pages = wb_writeback(wb, &work);
2204         }
2205
2206         clear_bit(WB_start_all, &wb->state);
2207         return nr_pages;
2208 }
2209
2210
2211 /*
2212  * Retrieve work items and do the writeback they describe
2213  */
2214 static long wb_do_writeback(struct bdi_writeback *wb)
2215 {
2216         struct wb_writeback_work *work;
2217         long wrote = 0;
2218
2219         set_bit(WB_writeback_running, &wb->state);
2220         while ((work = get_next_work_item(wb)) != NULL) {
2221                 trace_writeback_exec(wb, work);
2222                 wrote += wb_writeback(wb, work);
2223                 finish_writeback_work(wb, work);
2224         }
2225
2226         /*
2227          * Check for a flush-everything request
2228          */
2229         wrote += wb_check_start_all(wb);
2230
2231         /*
2232          * Check for periodic writeback, kupdated() style
2233          */
2234         wrote += wb_check_old_data_flush(wb);
2235         wrote += wb_check_background_flush(wb);
2236         clear_bit(WB_writeback_running, &wb->state);
2237
2238         return wrote;
2239 }
2240
2241 /*
2242  * Handle writeback of dirty data for the device backed by this bdi. Also
2243  * reschedules periodically and does kupdated style flushing.
2244  */
2245 void wb_workfn(struct work_struct *work)
2246 {
2247         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2248                                                 struct bdi_writeback, dwork);
2249         long pages_written;
2250
2251         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2252         current->flags |= PF_SWAPWRITE;
2253
2254         if (likely(!current_is_workqueue_rescuer() ||
2255                    !test_bit(WB_registered, &wb->state))) {
2256                 /*
2257                  * The normal path.  Keep writing back @wb until its
2258                  * work_list is empty.  Note that this path is also taken
2259                  * if @wb is shutting down even when we're running off the
2260                  * rescuer as work_list needs to be drained.
2261                  */
2262                 do {
2263                         pages_written = wb_do_writeback(wb);
2264                         trace_writeback_pages_written(pages_written);
2265                 } while (!list_empty(&wb->work_list));
2266         } else {
2267                 /*
2268                  * bdi_wq can't get enough workers and we're running off
2269                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2270                  * enough for efficient IO.
2271                  */
2272                 pages_written = writeback_inodes_wb(wb, 1024,
2273                                                     WB_REASON_FORKER_THREAD);
2274                 trace_writeback_pages_written(pages_written);
2275         }
2276
2277         if (!list_empty(&wb->work_list))
2278                 wb_wakeup(wb);
2279         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2280                 wb_wakeup_delayed(wb);
2281
2282         current->flags &= ~PF_SWAPWRITE;
2283 }
2284
2285 /*
2286  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2287  * write back the whole world.
2288  */
2289 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2290                                          enum wb_reason reason)
2291 {
2292         struct bdi_writeback *wb;
2293
2294         if (!bdi_has_dirty_io(bdi))
2295                 return;
2296
2297         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2298                 wb_start_writeback(wb, reason);
2299 }
2300
2301 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2302                                 enum wb_reason reason)
2303 {
2304         rcu_read_lock();
2305         __wakeup_flusher_threads_bdi(bdi, reason);
2306         rcu_read_unlock();
2307 }
2308
2309 /*
2310  * Wakeup the flusher threads to start writeback of all currently dirty pages
2311  */
2312 void wakeup_flusher_threads(enum wb_reason reason)
2313 {
2314         struct backing_dev_info *bdi;
2315
2316         /*
2317          * If we are expecting writeback progress we must submit plugged IO.
2318          */
2319         if (blk_needs_flush_plug(current))
2320                 blk_schedule_flush_plug(current);
2321
2322         rcu_read_lock();
2323         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2324                 __wakeup_flusher_threads_bdi(bdi, reason);
2325         rcu_read_unlock();
2326 }
2327
2328 /*
2329  * Wake up bdi's periodically to make sure dirtytime inodes gets
2330  * written back periodically.  We deliberately do *not* check the
2331  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2332  * kernel to be constantly waking up once there are any dirtytime
2333  * inodes on the system.  So instead we define a separate delayed work
2334  * function which gets called much more rarely.  (By default, only
2335  * once every 12 hours.)
2336  *
2337  * If there is any other write activity going on in the file system,
2338  * this function won't be necessary.  But if the only thing that has
2339  * happened on the file system is a dirtytime inode caused by an atime
2340  * update, we need this infrastructure below to make sure that inode
2341  * eventually gets pushed out to disk.
2342  */
2343 static void wakeup_dirtytime_writeback(struct work_struct *w);
2344 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2345
2346 static void wakeup_dirtytime_writeback(struct work_struct *w)
2347 {
2348         struct backing_dev_info *bdi;
2349
2350         rcu_read_lock();
2351         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2352                 struct bdi_writeback *wb;
2353
2354                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2355                         if (!list_empty(&wb->b_dirty_time))
2356                                 wb_wakeup(wb);
2357         }
2358         rcu_read_unlock();
2359         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2360 }
2361
2362 static int __init start_dirtytime_writeback(void)
2363 {
2364         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2365         return 0;
2366 }
2367 __initcall(start_dirtytime_writeback);
2368
2369 int dirtytime_interval_handler(struct ctl_table *table, int write,
2370                                void *buffer, size_t *lenp, loff_t *ppos)
2371 {
2372         int ret;
2373
2374         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2375         if (ret == 0 && write)
2376                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2377         return ret;
2378 }
2379
2380 /**
2381  * __mark_inode_dirty - internal function to mark an inode dirty
2382  *
2383  * @inode: inode to mark
2384  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2385  *         multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2386  *         with I_DIRTY_PAGES.
2387  *
2388  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2389  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2390  *
2391  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2392  * instead of calling this directly.
2393  *
2394  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2395  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2396  * even if they are later hashed, as they will have been marked dirty already.
2397  *
2398  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2399  *
2400  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2401  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2402  * the kernel-internal blockdev inode represents the dirtying time of the
2403  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2404  * page->mapping->host, so the page-dirtying time is recorded in the internal
2405  * blockdev inode.
2406  */
2407 void __mark_inode_dirty(struct inode *inode, int flags)
2408 {
2409         struct super_block *sb = inode->i_sb;
2410         int dirtytime = 0;
2411         struct bdi_writeback *wb = NULL;
2412
2413         trace_writeback_mark_inode_dirty(inode, flags);
2414
2415         if (flags & I_DIRTY_INODE) {
2416                 /*
2417                  * Inode timestamp update will piggback on this dirtying.
2418                  * We tell ->dirty_inode callback that timestamps need to
2419                  * be updated by setting I_DIRTY_TIME in flags.
2420                  */
2421                 if (inode->i_state & I_DIRTY_TIME) {
2422                         spin_lock(&inode->i_lock);
2423                         if (inode->i_state & I_DIRTY_TIME) {
2424                                 inode->i_state &= ~I_DIRTY_TIME;
2425                                 flags |= I_DIRTY_TIME;
2426                         }
2427                         spin_unlock(&inode->i_lock);
2428                 }
2429
2430                 /*
2431                  * Notify the filesystem about the inode being dirtied, so that
2432                  * (if needed) it can update on-disk fields and journal the
2433                  * inode.  This is only needed when the inode itself is being
2434                  * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2435                  * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2436                  */
2437                 trace_writeback_dirty_inode_start(inode, flags);
2438                 if (sb->s_op->dirty_inode)
2439                         sb->s_op->dirty_inode(inode,
2440                                 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2441                 trace_writeback_dirty_inode(inode, flags);
2442
2443                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2444                 flags &= ~I_DIRTY_TIME;
2445         } else {
2446                 /*
2447                  * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2448                  * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2449                  * in one call to __mark_inode_dirty().)
2450                  */
2451                 dirtytime = flags & I_DIRTY_TIME;
2452                 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2453         }
2454
2455         /*
2456          * Paired with smp_mb() in __writeback_single_inode() for the
2457          * following lockless i_state test.  See there for details.
2458          */
2459         smp_mb();
2460
2461         if ((inode->i_state & flags) == flags)
2462                 return;
2463
2464         spin_lock(&inode->i_lock);
2465         if ((inode->i_state & flags) != flags) {
2466                 const int was_dirty = inode->i_state & I_DIRTY;
2467
2468                 inode_attach_wb(inode, NULL);
2469
2470                 inode->i_state |= flags;
2471
2472                 /*
2473                  * Grab inode's wb early because it requires dropping i_lock and we
2474                  * need to make sure following checks happen atomically with dirty
2475                  * list handling so that we don't move inodes under flush worker's
2476                  * hands.
2477                  */
2478                 if (!was_dirty) {
2479                         wb = locked_inode_to_wb_and_lock_list(inode);
2480                         spin_lock(&inode->i_lock);
2481                 }
2482
2483                 /*
2484                  * If the inode is queued for writeback by flush worker, just
2485                  * update its dirty state. Once the flush worker is done with
2486                  * the inode it will place it on the appropriate superblock
2487                  * list, based upon its state.
2488                  */
2489                 if (inode->i_state & I_SYNC_QUEUED)
2490                         goto out_unlock;
2491
2492                 /*
2493                  * Only add valid (hashed) inodes to the superblock's
2494                  * dirty list.  Add blockdev inodes as well.
2495                  */
2496                 if (!S_ISBLK(inode->i_mode)) {
2497                         if (inode_unhashed(inode))
2498                                 goto out_unlock;
2499                 }
2500                 if (inode->i_state & I_FREEING)
2501                         goto out_unlock;
2502
2503                 /*
2504                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2505                  * reposition it (that would break b_dirty time-ordering).
2506                  */
2507                 if (!was_dirty) {
2508                         struct list_head *dirty_list;
2509                         bool wakeup_bdi = false;
2510
2511                         inode->dirtied_when = jiffies;
2512                         if (dirtytime)
2513                                 inode->dirtied_time_when = jiffies;
2514
2515                         if (inode->i_state & I_DIRTY)
2516                                 dirty_list = &wb->b_dirty;
2517                         else
2518                                 dirty_list = &wb->b_dirty_time;
2519
2520                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2521                                                                dirty_list);
2522
2523                         spin_unlock(&wb->list_lock);
2524                         spin_unlock(&inode->i_lock);
2525                         trace_writeback_dirty_inode_enqueue(inode);
2526
2527                         /*
2528                          * If this is the first dirty inode for this bdi,
2529                          * we have to wake-up the corresponding bdi thread
2530                          * to make sure background write-back happens
2531                          * later.
2532                          */
2533                         if (wakeup_bdi &&
2534                             (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2535                                 wb_wakeup_delayed(wb);
2536                         return;
2537                 }
2538         }
2539 out_unlock:
2540         if (wb)
2541                 spin_unlock(&wb->list_lock);
2542         spin_unlock(&inode->i_lock);
2543 }
2544 EXPORT_SYMBOL(__mark_inode_dirty);
2545
2546 /*
2547  * The @s_sync_lock is used to serialise concurrent sync operations
2548  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2549  * Concurrent callers will block on the s_sync_lock rather than doing contending
2550  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2551  * has been issued up to the time this function is enter is guaranteed to be
2552  * completed by the time we have gained the lock and waited for all IO that is
2553  * in progress regardless of the order callers are granted the lock.
2554  */
2555 static void wait_sb_inodes(struct super_block *sb)
2556 {
2557         LIST_HEAD(sync_list);
2558
2559         /*
2560          * We need to be protected against the filesystem going from
2561          * r/o to r/w or vice versa.
2562          */
2563         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2564
2565         mutex_lock(&sb->s_sync_lock);
2566
2567         /*
2568          * Splice the writeback list onto a temporary list to avoid waiting on
2569          * inodes that have started writeback after this point.
2570          *
2571          * Use rcu_read_lock() to keep the inodes around until we have a
2572          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2573          * the local list because inodes can be dropped from either by writeback
2574          * completion.
2575          */
2576         rcu_read_lock();
2577         spin_lock_irq(&sb->s_inode_wblist_lock);
2578         list_splice_init(&sb->s_inodes_wb, &sync_list);
2579
2580         /*
2581          * Data integrity sync. Must wait for all pages under writeback, because
2582          * there may have been pages dirtied before our sync call, but which had
2583          * writeout started before we write it out.  In which case, the inode
2584          * may not be on the dirty list, but we still have to wait for that
2585          * writeout.
2586          */
2587         while (!list_empty(&sync_list)) {
2588                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2589                                                        i_wb_list);
2590                 struct address_space *mapping = inode->i_mapping;
2591
2592                 /*
2593                  * Move each inode back to the wb list before we drop the lock
2594                  * to preserve consistency between i_wb_list and the mapping
2595                  * writeback tag. Writeback completion is responsible to remove
2596                  * the inode from either list once the writeback tag is cleared.
2597                  */
2598                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2599
2600                 /*
2601                  * The mapping can appear untagged while still on-list since we
2602                  * do not have the mapping lock. Skip it here, wb completion
2603                  * will remove it.
2604                  */
2605                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2606                         continue;
2607
2608                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2609
2610                 spin_lock(&inode->i_lock);
2611                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2612                         spin_unlock(&inode->i_lock);
2613
2614                         spin_lock_irq(&sb->s_inode_wblist_lock);
2615                         continue;
2616                 }
2617                 __iget(inode);
2618                 spin_unlock(&inode->i_lock);
2619                 rcu_read_unlock();
2620
2621                 /*
2622                  * We keep the error status of individual mapping so that
2623                  * applications can catch the writeback error using fsync(2).
2624                  * See filemap_fdatawait_keep_errors() for details.
2625                  */
2626                 filemap_fdatawait_keep_errors(mapping);
2627
2628                 cond_resched();
2629
2630                 iput(inode);
2631
2632                 rcu_read_lock();
2633                 spin_lock_irq(&sb->s_inode_wblist_lock);
2634         }
2635         spin_unlock_irq(&sb->s_inode_wblist_lock);
2636         rcu_read_unlock();
2637         mutex_unlock(&sb->s_sync_lock);
2638 }
2639
2640 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2641                                      enum wb_reason reason, bool skip_if_busy)
2642 {
2643         struct backing_dev_info *bdi = sb->s_bdi;
2644         DEFINE_WB_COMPLETION(done, bdi);
2645         struct wb_writeback_work work = {
2646                 .sb                     = sb,
2647                 .sync_mode              = WB_SYNC_NONE,
2648                 .tagged_writepages      = 1,
2649                 .done                   = &done,
2650                 .nr_pages               = nr,
2651                 .reason                 = reason,
2652         };
2653
2654         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2655                 return;
2656         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2657
2658         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2659         wb_wait_for_completion(&done);
2660 }
2661
2662 /**
2663  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2664  * @sb: the superblock
2665  * @nr: the number of pages to write
2666  * @reason: reason why some writeback work initiated
2667  *
2668  * Start writeback on some inodes on this super_block. No guarantees are made
2669  * on how many (if any) will be written, and this function does not wait
2670  * for IO completion of submitted IO.
2671  */
2672 void writeback_inodes_sb_nr(struct super_block *sb,
2673                             unsigned long nr,
2674                             enum wb_reason reason)
2675 {
2676         __writeback_inodes_sb_nr(sb, nr, reason, false);
2677 }
2678 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2679
2680 /**
2681  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2682  * @sb: the superblock
2683  * @reason: reason why some writeback work was initiated
2684  *
2685  * Start writeback on some inodes on this super_block. No guarantees are made
2686  * on how many (if any) will be written, and this function does not wait
2687  * for IO completion of submitted IO.
2688  */
2689 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2690 {
2691         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2692 }
2693 EXPORT_SYMBOL(writeback_inodes_sb);
2694
2695 /**
2696  * try_to_writeback_inodes_sb - try to start writeback if none underway
2697  * @sb: the superblock
2698  * @reason: reason why some writeback work was initiated
2699  *
2700  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2701  */
2702 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2703 {
2704         if (!down_read_trylock(&sb->s_umount))
2705                 return;
2706
2707         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2708         up_read(&sb->s_umount);
2709 }
2710 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2711
2712 /**
2713  * sync_inodes_sb       -       sync sb inode pages
2714  * @sb: the superblock
2715  *
2716  * This function writes and waits on any dirty inode belonging to this
2717  * super_block.
2718  */
2719 void sync_inodes_sb(struct super_block *sb)
2720 {
2721         struct backing_dev_info *bdi = sb->s_bdi;
2722         DEFINE_WB_COMPLETION(done, bdi);
2723         struct wb_writeback_work work = {
2724                 .sb             = sb,
2725                 .sync_mode      = WB_SYNC_ALL,
2726                 .nr_pages       = LONG_MAX,
2727                 .range_cyclic   = 0,
2728                 .done           = &done,
2729                 .reason         = WB_REASON_SYNC,
2730                 .for_sync       = 1,
2731         };
2732
2733         /*
2734          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2735          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2736          * bdi_has_dirty() need to be written out too.
2737          */
2738         if (bdi == &noop_backing_dev_info)
2739                 return;
2740         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2741
2742         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2743         bdi_down_write_wb_switch_rwsem(bdi);
2744         bdi_split_work_to_wbs(bdi, &work, false);
2745         wb_wait_for_completion(&done);
2746         bdi_up_write_wb_switch_rwsem(bdi);
2747
2748         wait_sb_inodes(sb);
2749 }
2750 EXPORT_SYMBOL(sync_inodes_sb);
2751
2752 /**
2753  * write_inode_now      -       write an inode to disk
2754  * @inode: inode to write to disk
2755  * @sync: whether the write should be synchronous or not
2756  *
2757  * This function commits an inode to disk immediately if it is dirty. This is
2758  * primarily needed by knfsd.
2759  *
2760  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2761  */
2762 int write_inode_now(struct inode *inode, int sync)
2763 {
2764         struct writeback_control wbc = {
2765                 .nr_to_write = LONG_MAX,
2766                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2767                 .range_start = 0,
2768                 .range_end = LLONG_MAX,
2769         };
2770
2771         if (!mapping_can_writeback(inode->i_mapping))
2772                 wbc.nr_to_write = 0;
2773
2774         might_sleep();
2775         return writeback_single_inode(inode, &wbc);
2776 }
2777 EXPORT_SYMBOL(write_inode_now);
2778
2779 /**
2780  * sync_inode_metadata - write an inode to disk
2781  * @inode: the inode to sync
2782  * @wait: wait for I/O to complete.
2783  *
2784  * Write an inode to disk and adjust its dirty state after completion.
2785  *
2786  * Note: only writes the actual inode, no associated data or other metadata.
2787  */
2788 int sync_inode_metadata(struct inode *inode, int wait)
2789 {
2790         struct writeback_control wbc = {
2791                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2792                 .nr_to_write = 0, /* metadata-only */
2793         };
2794
2795         return writeback_single_inode(inode, &wbc);
2796 }
2797 EXPORT_SYMBOL(sync_inode_metadata);