1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2002, Linus Torvalds.
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
35 * 4MB minimal write chunk size
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
40 * Passed into wb_writeback(), essentially a subset of writeback_control
42 struct wb_writeback_work {
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
46 unsigned int tagged_writepages:1;
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
51 unsigned int auto_free:1; /* free on completion */
52 enum wb_reason reason; /* why was writeback initiated? */
54 struct list_head list; /* pending work list */
55 struct wb_completion *done; /* set if the caller waits */
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
70 static inline struct inode *wb_inode(struct list_head *head)
72 return list_entry(head, struct inode, i_io_list);
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
87 if (wb_has_dirty_io(wb)) {
90 set_bit(WB_has_dirty_io, &wb->state);
91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 clear_bit(WB_has_dirty_io, &wb->state);
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
118 static bool inode_io_list_move_locked(struct inode *inode,
119 struct bdi_writeback *wb,
120 struct list_head *head)
122 assert_spin_locked(&wb->list_lock);
124 list_move(&inode->i_io_list, head);
126 /* dirty_time doesn't count as dirty_io until expiration */
127 if (head != &wb->b_dirty_time)
128 return wb_io_lists_populated(wb);
130 wb_io_lists_depopulated(wb);
135 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
136 * @inode: inode to be removed
137 * @wb: bdi_writeback @inode is being removed from
139 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
140 * clear %WB_has_dirty_io if all are empty afterwards.
142 static void inode_io_list_del_locked(struct inode *inode,
143 struct bdi_writeback *wb)
145 assert_spin_locked(&wb->list_lock);
146 assert_spin_locked(&inode->i_lock);
148 inode->i_state &= ~I_SYNC_QUEUED;
149 list_del_init(&inode->i_io_list);
150 wb_io_lists_depopulated(wb);
153 static void wb_wakeup(struct bdi_writeback *wb)
155 spin_lock_bh(&wb->work_lock);
156 if (test_bit(WB_registered, &wb->state))
157 mod_delayed_work(bdi_wq, &wb->dwork, 0);
158 spin_unlock_bh(&wb->work_lock);
161 static void finish_writeback_work(struct bdi_writeback *wb,
162 struct wb_writeback_work *work)
164 struct wb_completion *done = work->done;
169 wait_queue_head_t *waitq = done->waitq;
171 /* @done can't be accessed after the following dec */
172 if (atomic_dec_and_test(&done->cnt))
177 static void wb_queue_work(struct bdi_writeback *wb,
178 struct wb_writeback_work *work)
180 trace_writeback_queue(wb, work);
183 atomic_inc(&work->done->cnt);
185 spin_lock_bh(&wb->work_lock);
187 if (test_bit(WB_registered, &wb->state)) {
188 list_add_tail(&work->list, &wb->work_list);
189 mod_delayed_work(bdi_wq, &wb->dwork, 0);
191 finish_writeback_work(wb, work);
193 spin_unlock_bh(&wb->work_lock);
197 * wb_wait_for_completion - wait for completion of bdi_writeback_works
198 * @done: target wb_completion
200 * Wait for one or more work items issued to @bdi with their ->done field
201 * set to @done, which should have been initialized with
202 * DEFINE_WB_COMPLETION(). This function returns after all such work items
203 * are completed. Work items which are waited upon aren't freed
204 * automatically on completion.
206 void wb_wait_for_completion(struct wb_completion *done)
208 atomic_dec(&done->cnt); /* put down the initial count */
209 wait_event(*done->waitq, !atomic_read(&done->cnt));
212 #ifdef CONFIG_CGROUP_WRITEBACK
215 * Parameters for foreign inode detection, see wbc_detach_inode() to see
218 * These paramters are inherently heuristical as the detection target
219 * itself is fuzzy. All we want to do is detaching an inode from the
220 * current owner if it's being written to by some other cgroups too much.
222 * The current cgroup writeback is built on the assumption that multiple
223 * cgroups writing to the same inode concurrently is very rare and a mode
224 * of operation which isn't well supported. As such, the goal is not
225 * taking too long when a different cgroup takes over an inode while
226 * avoiding too aggressive flip-flops from occasional foreign writes.
228 * We record, very roughly, 2s worth of IO time history and if more than
229 * half of that is foreign, trigger the switch. The recording is quantized
230 * to 16 slots. To avoid tiny writes from swinging the decision too much,
231 * writes smaller than 1/8 of avg size are ignored.
233 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
234 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
235 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
236 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
238 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
239 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
240 /* each slot's duration is 2s / 16 */
241 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
242 /* if foreign slots >= 8, switch */
243 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
244 /* one round can affect upto 5 slots */
245 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
247 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
248 static struct workqueue_struct *isw_wq;
250 void __inode_attach_wb(struct inode *inode, struct page *page)
252 struct backing_dev_info *bdi = inode_to_bdi(inode);
253 struct bdi_writeback *wb = NULL;
255 if (inode_cgwb_enabled(inode)) {
256 struct cgroup_subsys_state *memcg_css;
259 memcg_css = mem_cgroup_css_from_page(page);
260 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
262 /* must pin memcg_css, see wb_get_create() */
263 memcg_css = task_get_css(current, memory_cgrp_id);
264 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
273 * There may be multiple instances of this function racing to
274 * update the same inode. Use cmpxchg() to tell the winner.
276 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
279 EXPORT_SYMBOL_GPL(__inode_attach_wb);
282 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
283 * @inode: inode of interest with i_lock held
285 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
286 * held on entry and is released on return. The returned wb is guaranteed
287 * to stay @inode's associated wb until its list_lock is released.
289 static struct bdi_writeback *
290 locked_inode_to_wb_and_lock_list(struct inode *inode)
291 __releases(&inode->i_lock)
292 __acquires(&wb->list_lock)
295 struct bdi_writeback *wb = inode_to_wb(inode);
298 * inode_to_wb() association is protected by both
299 * @inode->i_lock and @wb->list_lock but list_lock nests
300 * outside i_lock. Drop i_lock and verify that the
301 * association hasn't changed after acquiring list_lock.
304 spin_unlock(&inode->i_lock);
305 spin_lock(&wb->list_lock);
307 /* i_wb may have changed inbetween, can't use inode_to_wb() */
308 if (likely(wb == inode->i_wb)) {
309 wb_put(wb); /* @inode already has ref */
313 spin_unlock(&wb->list_lock);
316 spin_lock(&inode->i_lock);
321 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
322 * @inode: inode of interest
324 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
327 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
328 __acquires(&wb->list_lock)
330 spin_lock(&inode->i_lock);
331 return locked_inode_to_wb_and_lock_list(inode);
334 struct inode_switch_wbs_context {
336 struct bdi_writeback *new_wb;
338 struct rcu_head rcu_head;
339 struct work_struct work;
342 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
344 down_write(&bdi->wb_switch_rwsem);
347 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
349 up_write(&bdi->wb_switch_rwsem);
352 static void inode_switch_wbs_work_fn(struct work_struct *work)
354 struct inode_switch_wbs_context *isw =
355 container_of(work, struct inode_switch_wbs_context, work);
356 struct inode *inode = isw->inode;
357 struct backing_dev_info *bdi = inode_to_bdi(inode);
358 struct address_space *mapping = inode->i_mapping;
359 struct bdi_writeback *old_wb = inode->i_wb;
360 struct bdi_writeback *new_wb = isw->new_wb;
361 XA_STATE(xas, &mapping->i_pages, 0);
363 bool switched = false;
366 * If @inode switches cgwb membership while sync_inodes_sb() is
367 * being issued, sync_inodes_sb() might miss it. Synchronize.
369 down_read(&bdi->wb_switch_rwsem);
372 * By the time control reaches here, RCU grace period has passed
373 * since I_WB_SWITCH assertion and all wb stat update transactions
374 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
375 * synchronizing against the i_pages lock.
377 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
378 * gives us exclusion against all wb related operations on @inode
379 * including IO list manipulations and stat updates.
381 if (old_wb < new_wb) {
382 spin_lock(&old_wb->list_lock);
383 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
385 spin_lock(&new_wb->list_lock);
386 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
388 spin_lock(&inode->i_lock);
389 xa_lock_irq(&mapping->i_pages);
392 * Once I_FREEING is visible under i_lock, the eviction path owns
393 * the inode and we shouldn't modify ->i_io_list.
395 if (unlikely(inode->i_state & I_FREEING))
398 trace_inode_switch_wbs(inode, old_wb, new_wb);
401 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
402 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
403 * pages actually under writeback.
405 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
406 if (PageDirty(page)) {
407 dec_wb_stat(old_wb, WB_RECLAIMABLE);
408 inc_wb_stat(new_wb, WB_RECLAIMABLE);
413 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
414 WARN_ON_ONCE(!PageWriteback(page));
415 dec_wb_stat(old_wb, WB_WRITEBACK);
416 inc_wb_stat(new_wb, WB_WRITEBACK);
422 * Transfer to @new_wb's IO list if necessary. The specific list
423 * @inode was on is ignored and the inode is put on ->b_dirty which
424 * is always correct including from ->b_dirty_time. The transfer
425 * preserves @inode->dirtied_when ordering.
427 if (!list_empty(&inode->i_io_list)) {
430 inode_io_list_del_locked(inode, old_wb);
431 inode->i_wb = new_wb;
432 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
433 if (time_after_eq(inode->dirtied_when,
436 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
438 inode->i_wb = new_wb;
441 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
442 inode->i_wb_frn_winner = 0;
443 inode->i_wb_frn_avg_time = 0;
444 inode->i_wb_frn_history = 0;
448 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
449 * ensures that the new wb is visible if they see !I_WB_SWITCH.
451 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
453 xa_unlock_irq(&mapping->i_pages);
454 spin_unlock(&inode->i_lock);
455 spin_unlock(&new_wb->list_lock);
456 spin_unlock(&old_wb->list_lock);
458 up_read(&bdi->wb_switch_rwsem);
469 atomic_dec(&isw_nr_in_flight);
472 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
474 struct inode_switch_wbs_context *isw = container_of(rcu_head,
475 struct inode_switch_wbs_context, rcu_head);
477 /* needs to grab bh-unsafe locks, bounce to work item */
478 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
479 queue_work(isw_wq, &isw->work);
483 * inode_switch_wbs - change the wb association of an inode
484 * @inode: target inode
485 * @new_wb_id: ID of the new wb
487 * Switch @inode's wb association to the wb identified by @new_wb_id. The
488 * switching is performed asynchronously and may fail silently.
490 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
492 struct backing_dev_info *bdi = inode_to_bdi(inode);
493 struct cgroup_subsys_state *memcg_css;
494 struct inode_switch_wbs_context *isw;
496 /* noop if seems to be already in progress */
497 if (inode->i_state & I_WB_SWITCH)
500 /* avoid queueing a new switch if too many are already in flight */
501 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
504 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
508 /* find and pin the new wb */
510 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
512 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
517 /* while holding I_WB_SWITCH, no one else can update the association */
518 spin_lock(&inode->i_lock);
519 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
520 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
521 inode_to_wb(inode) == isw->new_wb) {
522 spin_unlock(&inode->i_lock);
525 inode->i_state |= I_WB_SWITCH;
527 spin_unlock(&inode->i_lock);
532 * In addition to synchronizing among switchers, I_WB_SWITCH tells
533 * the RCU protected stat update paths to grab the i_page
534 * lock so that stat transfer can synchronize against them.
535 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
537 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
539 atomic_inc(&isw_nr_in_flight);
549 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
550 * @wbc: writeback_control of interest
551 * @inode: target inode
553 * @inode is locked and about to be written back under the control of @wbc.
554 * Record @inode's writeback context into @wbc and unlock the i_lock. On
555 * writeback completion, wbc_detach_inode() should be called. This is used
556 * to track the cgroup writeback context.
558 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
561 if (!inode_cgwb_enabled(inode)) {
562 spin_unlock(&inode->i_lock);
566 wbc->wb = inode_to_wb(inode);
569 wbc->wb_id = wbc->wb->memcg_css->id;
570 wbc->wb_lcand_id = inode->i_wb_frn_winner;
571 wbc->wb_tcand_id = 0;
573 wbc->wb_lcand_bytes = 0;
574 wbc->wb_tcand_bytes = 0;
577 spin_unlock(&inode->i_lock);
580 * A dying wb indicates that either the blkcg associated with the
581 * memcg changed or the associated memcg is dying. In the first
582 * case, a replacement wb should already be available and we should
583 * refresh the wb immediately. In the second case, trying to
584 * refresh will keep failing.
586 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
587 inode_switch_wbs(inode, wbc->wb_id);
589 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
592 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
593 * @wbc: writeback_control of the just finished writeback
595 * To be called after a writeback attempt of an inode finishes and undoes
596 * wbc_attach_and_unlock_inode(). Can be called under any context.
598 * As concurrent write sharing of an inode is expected to be very rare and
599 * memcg only tracks page ownership on first-use basis severely confining
600 * the usefulness of such sharing, cgroup writeback tracks ownership
601 * per-inode. While the support for concurrent write sharing of an inode
602 * is deemed unnecessary, an inode being written to by different cgroups at
603 * different points in time is a lot more common, and, more importantly,
604 * charging only by first-use can too readily lead to grossly incorrect
605 * behaviors (single foreign page can lead to gigabytes of writeback to be
606 * incorrectly attributed).
608 * To resolve this issue, cgroup writeback detects the majority dirtier of
609 * an inode and transfers the ownership to it. To avoid unnnecessary
610 * oscillation, the detection mechanism keeps track of history and gives
611 * out the switch verdict only if the foreign usage pattern is stable over
612 * a certain amount of time and/or writeback attempts.
614 * On each writeback attempt, @wbc tries to detect the majority writer
615 * using Boyer-Moore majority vote algorithm. In addition to the byte
616 * count from the majority voting, it also counts the bytes written for the
617 * current wb and the last round's winner wb (max of last round's current
618 * wb, the winner from two rounds ago, and the last round's majority
619 * candidate). Keeping track of the historical winner helps the algorithm
620 * to semi-reliably detect the most active writer even when it's not the
623 * Once the winner of the round is determined, whether the winner is
624 * foreign or not and how much IO time the round consumed is recorded in
625 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
626 * over a certain threshold, the switch verdict is given.
628 void wbc_detach_inode(struct writeback_control *wbc)
630 struct bdi_writeback *wb = wbc->wb;
631 struct inode *inode = wbc->inode;
632 unsigned long avg_time, max_bytes, max_time;
639 history = inode->i_wb_frn_history;
640 avg_time = inode->i_wb_frn_avg_time;
642 /* pick the winner of this round */
643 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
644 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
646 max_bytes = wbc->wb_bytes;
647 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
648 max_id = wbc->wb_lcand_id;
649 max_bytes = wbc->wb_lcand_bytes;
651 max_id = wbc->wb_tcand_id;
652 max_bytes = wbc->wb_tcand_bytes;
656 * Calculate the amount of IO time the winner consumed and fold it
657 * into the running average kept per inode. If the consumed IO
658 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
659 * deciding whether to switch or not. This is to prevent one-off
660 * small dirtiers from skewing the verdict.
662 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
663 wb->avg_write_bandwidth);
665 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
666 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
668 avg_time = max_time; /* immediate catch up on first run */
670 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
674 * The switch verdict is reached if foreign wb's consume
675 * more than a certain proportion of IO time in a
676 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
677 * history mask where each bit represents one sixteenth of
678 * the period. Determine the number of slots to shift into
679 * history from @max_time.
681 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
682 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
684 if (wbc->wb_id != max_id)
685 history |= (1U << slots) - 1;
688 trace_inode_foreign_history(inode, wbc, history);
691 * Switch if the current wb isn't the consistent winner.
692 * If there are multiple closely competing dirtiers, the
693 * inode may switch across them repeatedly over time, which
694 * is okay. The main goal is avoiding keeping an inode on
695 * the wrong wb for an extended period of time.
697 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
698 inode_switch_wbs(inode, max_id);
702 * Multiple instances of this function may race to update the
703 * following fields but we don't mind occassional inaccuracies.
705 inode->i_wb_frn_winner = max_id;
706 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
707 inode->i_wb_frn_history = history;
712 EXPORT_SYMBOL_GPL(wbc_detach_inode);
715 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
716 * @wbc: writeback_control of the writeback in progress
717 * @page: page being written out
718 * @bytes: number of bytes being written out
720 * @bytes from @page are about to written out during the writeback
721 * controlled by @wbc. Keep the book for foreign inode detection. See
722 * wbc_detach_inode().
724 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
727 struct cgroup_subsys_state *css;
731 * pageout() path doesn't attach @wbc to the inode being written
732 * out. This is intentional as we don't want the function to block
733 * behind a slow cgroup. Ultimately, we want pageout() to kick off
734 * regular writeback instead of writing things out itself.
736 if (!wbc->wb || wbc->no_cgroup_owner)
739 css = mem_cgroup_css_from_page(page);
740 /* dead cgroups shouldn't contribute to inode ownership arbitration */
741 if (!(css->flags & CSS_ONLINE))
746 if (id == wbc->wb_id) {
747 wbc->wb_bytes += bytes;
751 if (id == wbc->wb_lcand_id)
752 wbc->wb_lcand_bytes += bytes;
754 /* Boyer-Moore majority vote algorithm */
755 if (!wbc->wb_tcand_bytes)
756 wbc->wb_tcand_id = id;
757 if (id == wbc->wb_tcand_id)
758 wbc->wb_tcand_bytes += bytes;
760 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
762 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
765 * inode_congested - test whether an inode is congested
766 * @inode: inode to test for congestion (may be NULL)
767 * @cong_bits: mask of WB_[a]sync_congested bits to test
769 * Tests whether @inode is congested. @cong_bits is the mask of congestion
770 * bits to test and the return value is the mask of set bits.
772 * If cgroup writeback is enabled for @inode, the congestion state is
773 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
774 * associated with @inode is congested; otherwise, the root wb's congestion
777 * @inode is allowed to be NULL as this function is often called on
778 * mapping->host which is NULL for the swapper space.
780 int inode_congested(struct inode *inode, int cong_bits)
783 * Once set, ->i_wb never becomes NULL while the inode is alive.
784 * Start transaction iff ->i_wb is visible.
786 if (inode && inode_to_wb_is_valid(inode)) {
787 struct bdi_writeback *wb;
788 struct wb_lock_cookie lock_cookie = {};
791 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
792 congested = wb_congested(wb, cong_bits);
793 unlocked_inode_to_wb_end(inode, &lock_cookie);
797 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
799 EXPORT_SYMBOL_GPL(inode_congested);
802 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
803 * @wb: target bdi_writeback to split @nr_pages to
804 * @nr_pages: number of pages to write for the whole bdi
806 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
807 * relation to the total write bandwidth of all wb's w/ dirty inodes on
810 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
812 unsigned long this_bw = wb->avg_write_bandwidth;
813 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
815 if (nr_pages == LONG_MAX)
819 * This may be called on clean wb's and proportional distribution
820 * may not make sense, just use the original @nr_pages in those
821 * cases. In general, we wanna err on the side of writing more.
823 if (!tot_bw || this_bw >= tot_bw)
826 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
830 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
831 * @bdi: target backing_dev_info
832 * @base_work: wb_writeback_work to issue
833 * @skip_if_busy: skip wb's which already have writeback in progress
835 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
836 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
837 * distributed to the busy wbs according to each wb's proportion in the
838 * total active write bandwidth of @bdi.
840 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
841 struct wb_writeback_work *base_work,
844 struct bdi_writeback *last_wb = NULL;
845 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
846 struct bdi_writeback, bdi_node);
851 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
852 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
853 struct wb_writeback_work fallback_work;
854 struct wb_writeback_work *work;
862 /* SYNC_ALL writes out I_DIRTY_TIME too */
863 if (!wb_has_dirty_io(wb) &&
864 (base_work->sync_mode == WB_SYNC_NONE ||
865 list_empty(&wb->b_dirty_time)))
867 if (skip_if_busy && writeback_in_progress(wb))
870 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
872 work = kmalloc(sizeof(*work), GFP_ATOMIC);
875 work->nr_pages = nr_pages;
877 wb_queue_work(wb, work);
881 /* alloc failed, execute synchronously using on-stack fallback */
882 work = &fallback_work;
884 work->nr_pages = nr_pages;
886 work->done = &fallback_work_done;
888 wb_queue_work(wb, work);
891 * Pin @wb so that it stays on @bdi->wb_list. This allows
892 * continuing iteration from @wb after dropping and
893 * regrabbing rcu read lock.
899 wb_wait_for_completion(&fallback_work_done);
909 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
910 * @bdi_id: target bdi id
911 * @memcg_id: target memcg css id
912 * @nr: number of pages to write, 0 for best-effort dirty flushing
913 * @reason: reason why some writeback work initiated
914 * @done: target wb_completion
916 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
917 * with the specified parameters.
919 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
920 enum wb_reason reason, struct wb_completion *done)
922 struct backing_dev_info *bdi;
923 struct cgroup_subsys_state *memcg_css;
924 struct bdi_writeback *wb;
925 struct wb_writeback_work *work;
928 /* lookup bdi and memcg */
929 bdi = bdi_get_by_id(bdi_id);
934 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
935 if (memcg_css && !css_tryget(memcg_css))
944 * And find the associated wb. If the wb isn't there already
945 * there's nothing to flush, don't create one.
947 wb = wb_get_lookup(bdi, memcg_css);
954 * If @nr is zero, the caller is attempting to write out most of
955 * the currently dirty pages. Let's take the current dirty page
956 * count and inflate it by 25% which should be large enough to
957 * flush out most dirty pages while avoiding getting livelocked by
958 * concurrent dirtiers.
961 unsigned long filepages, headroom, dirty, writeback;
963 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
968 /* issue the writeback work */
969 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
972 work->sync_mode = WB_SYNC_NONE;
973 work->range_cyclic = 1;
974 work->reason = reason;
977 wb_queue_work(wb, work);
992 * cgroup_writeback_umount - flush inode wb switches for umount
994 * This function is called when a super_block is about to be destroyed and
995 * flushes in-flight inode wb switches. An inode wb switch goes through
996 * RCU and then workqueue, so the two need to be flushed in order to ensure
997 * that all previously scheduled switches are finished. As wb switches are
998 * rare occurrences and synchronize_rcu() can take a while, perform
999 * flushing iff wb switches are in flight.
1001 void cgroup_writeback_umount(void)
1003 if (atomic_read(&isw_nr_in_flight)) {
1005 * Use rcu_barrier() to wait for all pending callbacks to
1006 * ensure that all in-flight wb switches are in the workqueue.
1009 flush_workqueue(isw_wq);
1013 static int __init cgroup_writeback_init(void)
1015 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1020 fs_initcall(cgroup_writeback_init);
1022 #else /* CONFIG_CGROUP_WRITEBACK */
1024 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1025 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1027 static struct bdi_writeback *
1028 locked_inode_to_wb_and_lock_list(struct inode *inode)
1029 __releases(&inode->i_lock)
1030 __acquires(&wb->list_lock)
1032 struct bdi_writeback *wb = inode_to_wb(inode);
1034 spin_unlock(&inode->i_lock);
1035 spin_lock(&wb->list_lock);
1039 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1040 __acquires(&wb->list_lock)
1042 struct bdi_writeback *wb = inode_to_wb(inode);
1044 spin_lock(&wb->list_lock);
1048 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1053 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1054 struct wb_writeback_work *base_work,
1059 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1060 base_work->auto_free = 0;
1061 wb_queue_work(&bdi->wb, base_work);
1065 #endif /* CONFIG_CGROUP_WRITEBACK */
1068 * Add in the number of potentially dirty inodes, because each inode
1069 * write can dirty pagecache in the underlying blockdev.
1071 static unsigned long get_nr_dirty_pages(void)
1073 return global_node_page_state(NR_FILE_DIRTY) +
1074 get_nr_dirty_inodes();
1077 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1079 if (!wb_has_dirty_io(wb))
1083 * All callers of this function want to start writeback of all
1084 * dirty pages. Places like vmscan can call this at a very
1085 * high frequency, causing pointless allocations of tons of
1086 * work items and keeping the flusher threads busy retrieving
1087 * that work. Ensure that we only allow one of them pending and
1088 * inflight at the time.
1090 if (test_bit(WB_start_all, &wb->state) ||
1091 test_and_set_bit(WB_start_all, &wb->state))
1094 wb->start_all_reason = reason;
1099 * wb_start_background_writeback - start background writeback
1100 * @wb: bdi_writback to write from
1103 * This makes sure WB_SYNC_NONE background writeback happens. When
1104 * this function returns, it is only guaranteed that for given wb
1105 * some IO is happening if we are over background dirty threshold.
1106 * Caller need not hold sb s_umount semaphore.
1108 void wb_start_background_writeback(struct bdi_writeback *wb)
1111 * We just wake up the flusher thread. It will perform background
1112 * writeback as soon as there is no other work to do.
1114 trace_writeback_wake_background(wb);
1119 * Remove the inode from the writeback list it is on.
1121 void inode_io_list_del(struct inode *inode)
1123 struct bdi_writeback *wb;
1125 wb = inode_to_wb_and_lock_list(inode);
1126 spin_lock(&inode->i_lock);
1127 inode_io_list_del_locked(inode, wb);
1128 spin_unlock(&inode->i_lock);
1129 spin_unlock(&wb->list_lock);
1131 EXPORT_SYMBOL(inode_io_list_del);
1134 * mark an inode as under writeback on the sb
1136 void sb_mark_inode_writeback(struct inode *inode)
1138 struct super_block *sb = inode->i_sb;
1139 unsigned long flags;
1141 if (list_empty(&inode->i_wb_list)) {
1142 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1143 if (list_empty(&inode->i_wb_list)) {
1144 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1145 trace_sb_mark_inode_writeback(inode);
1147 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1152 * clear an inode as under writeback on the sb
1154 void sb_clear_inode_writeback(struct inode *inode)
1156 struct super_block *sb = inode->i_sb;
1157 unsigned long flags;
1159 if (!list_empty(&inode->i_wb_list)) {
1160 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1161 if (!list_empty(&inode->i_wb_list)) {
1162 list_del_init(&inode->i_wb_list);
1163 trace_sb_clear_inode_writeback(inode);
1165 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1170 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1171 * furthest end of its superblock's dirty-inode list.
1173 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1174 * already the most-recently-dirtied inode on the b_dirty list. If that is
1175 * the case then the inode must have been redirtied while it was being written
1176 * out and we don't reset its dirtied_when.
1178 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1180 assert_spin_locked(&inode->i_lock);
1182 if (!list_empty(&wb->b_dirty)) {
1185 tail = wb_inode(wb->b_dirty.next);
1186 if (time_before(inode->dirtied_when, tail->dirtied_when))
1187 inode->dirtied_when = jiffies;
1189 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1190 inode->i_state &= ~I_SYNC_QUEUED;
1193 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1195 spin_lock(&inode->i_lock);
1196 redirty_tail_locked(inode, wb);
1197 spin_unlock(&inode->i_lock);
1201 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1203 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1205 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1208 static void inode_sync_complete(struct inode *inode)
1210 inode->i_state &= ~I_SYNC;
1211 /* If inode is clean an unused, put it into LRU now... */
1212 inode_add_lru(inode);
1213 /* Waiters must see I_SYNC cleared before being woken up */
1215 wake_up_bit(&inode->i_state, __I_SYNC);
1218 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1220 bool ret = time_after(inode->dirtied_when, t);
1221 #ifndef CONFIG_64BIT
1223 * For inodes being constantly redirtied, dirtied_when can get stuck.
1224 * It _appears_ to be in the future, but is actually in distant past.
1225 * This test is necessary to prevent such wrapped-around relative times
1226 * from permanently stopping the whole bdi writeback.
1228 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1233 #define EXPIRE_DIRTY_ATIME 0x0001
1236 * Move expired (dirtied before dirtied_before) dirty inodes from
1237 * @delaying_queue to @dispatch_queue.
1239 static int move_expired_inodes(struct list_head *delaying_queue,
1240 struct list_head *dispatch_queue,
1241 unsigned long dirtied_before)
1244 struct list_head *pos, *node;
1245 struct super_block *sb = NULL;
1246 struct inode *inode;
1250 while (!list_empty(delaying_queue)) {
1251 inode = wb_inode(delaying_queue->prev);
1252 if (inode_dirtied_after(inode, dirtied_before))
1254 list_move(&inode->i_io_list, &tmp);
1256 spin_lock(&inode->i_lock);
1257 inode->i_state |= I_SYNC_QUEUED;
1258 spin_unlock(&inode->i_lock);
1259 if (sb_is_blkdev_sb(inode->i_sb))
1261 if (sb && sb != inode->i_sb)
1266 /* just one sb in list, splice to dispatch_queue and we're done */
1268 list_splice(&tmp, dispatch_queue);
1272 /* Move inodes from one superblock together */
1273 while (!list_empty(&tmp)) {
1274 sb = wb_inode(tmp.prev)->i_sb;
1275 list_for_each_prev_safe(pos, node, &tmp) {
1276 inode = wb_inode(pos);
1277 if (inode->i_sb == sb)
1278 list_move(&inode->i_io_list, dispatch_queue);
1286 * Queue all expired dirty inodes for io, eldest first.
1288 * newly dirtied b_dirty b_io b_more_io
1289 * =============> gf edc BA
1291 * newly dirtied b_dirty b_io b_more_io
1292 * =============> g fBAedc
1294 * +--> dequeue for IO
1296 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1297 unsigned long dirtied_before)
1300 unsigned long time_expire_jif = dirtied_before;
1302 assert_spin_locked(&wb->list_lock);
1303 list_splice_init(&wb->b_more_io, &wb->b_io);
1304 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1305 if (!work->for_sync)
1306 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1307 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1310 wb_io_lists_populated(wb);
1311 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1314 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1318 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1319 trace_writeback_write_inode_start(inode, wbc);
1320 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1321 trace_writeback_write_inode(inode, wbc);
1328 * Wait for writeback on an inode to complete. Called with i_lock held.
1329 * Caller must make sure inode cannot go away when we drop i_lock.
1331 static void __inode_wait_for_writeback(struct inode *inode)
1332 __releases(inode->i_lock)
1333 __acquires(inode->i_lock)
1335 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1336 wait_queue_head_t *wqh;
1338 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1339 while (inode->i_state & I_SYNC) {
1340 spin_unlock(&inode->i_lock);
1341 __wait_on_bit(wqh, &wq, bit_wait,
1342 TASK_UNINTERRUPTIBLE);
1343 spin_lock(&inode->i_lock);
1348 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1350 void inode_wait_for_writeback(struct inode *inode)
1352 spin_lock(&inode->i_lock);
1353 __inode_wait_for_writeback(inode);
1354 spin_unlock(&inode->i_lock);
1358 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1359 * held and drops it. It is aimed for callers not holding any inode reference
1360 * so once i_lock is dropped, inode can go away.
1362 static void inode_sleep_on_writeback(struct inode *inode)
1363 __releases(inode->i_lock)
1366 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1369 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1370 sleep = inode->i_state & I_SYNC;
1371 spin_unlock(&inode->i_lock);
1374 finish_wait(wqh, &wait);
1378 * Find proper writeback list for the inode depending on its current state and
1379 * possibly also change of its state while we were doing writeback. Here we
1380 * handle things such as livelock prevention or fairness of writeback among
1381 * inodes. This function can be called only by flusher thread - noone else
1382 * processes all inodes in writeback lists and requeueing inodes behind flusher
1383 * thread's back can have unexpected consequences.
1385 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1386 struct writeback_control *wbc)
1388 if (inode->i_state & I_FREEING)
1392 * Sync livelock prevention. Each inode is tagged and synced in one
1393 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1394 * the dirty time to prevent enqueue and sync it again.
1396 if ((inode->i_state & I_DIRTY) &&
1397 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1398 inode->dirtied_when = jiffies;
1400 if (wbc->pages_skipped) {
1402 * writeback is not making progress due to locked
1403 * buffers. Skip this inode for now.
1405 redirty_tail_locked(inode, wb);
1409 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1411 * We didn't write back all the pages. nfs_writepages()
1412 * sometimes bales out without doing anything.
1414 if (wbc->nr_to_write <= 0) {
1415 /* Slice used up. Queue for next turn. */
1416 requeue_io(inode, wb);
1419 * Writeback blocked by something other than
1420 * congestion. Delay the inode for some time to
1421 * avoid spinning on the CPU (100% iowait)
1422 * retrying writeback of the dirty page/inode
1423 * that cannot be performed immediately.
1425 redirty_tail_locked(inode, wb);
1427 } else if (inode->i_state & I_DIRTY) {
1429 * Filesystems can dirty the inode during writeback operations,
1430 * such as delayed allocation during submission or metadata
1431 * updates after data IO completion.
1433 redirty_tail_locked(inode, wb);
1434 } else if (inode->i_state & I_DIRTY_TIME) {
1435 inode->dirtied_when = jiffies;
1436 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1437 inode->i_state &= ~I_SYNC_QUEUED;
1439 /* The inode is clean. Remove from writeback lists. */
1440 inode_io_list_del_locked(inode, wb);
1445 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1446 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1448 * This doesn't remove the inode from the writeback list it is on, except
1449 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1450 * expiration. The caller is otherwise responsible for writeback list handling.
1452 * The caller is also responsible for setting the I_SYNC flag beforehand and
1453 * calling inode_sync_complete() to clear it afterwards.
1456 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1458 struct address_space *mapping = inode->i_mapping;
1459 long nr_to_write = wbc->nr_to_write;
1463 WARN_ON(!(inode->i_state & I_SYNC));
1465 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1467 ret = do_writepages(mapping, wbc);
1470 * Make sure to wait on the data before writing out the metadata.
1471 * This is important for filesystems that modify metadata on data
1472 * I/O completion. We don't do it for sync(2) writeback because it has a
1473 * separate, external IO completion path and ->sync_fs for guaranteeing
1474 * inode metadata is written back correctly.
1476 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1477 int err = filemap_fdatawait(mapping);
1483 * If the inode has dirty timestamps and we need to write them, call
1484 * mark_inode_dirty_sync() to notify the filesystem about it and to
1485 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1487 if ((inode->i_state & I_DIRTY_TIME) &&
1488 (wbc->sync_mode == WB_SYNC_ALL ||
1489 time_after(jiffies, inode->dirtied_time_when +
1490 dirtytime_expire_interval * HZ))) {
1491 trace_writeback_lazytime(inode);
1492 mark_inode_dirty_sync(inode);
1496 * Get and clear the dirty flags from i_state. This needs to be done
1497 * after calling writepages because some filesystems may redirty the
1498 * inode during writepages due to delalloc. It also needs to be done
1499 * after handling timestamp expiration, as that may dirty the inode too.
1501 spin_lock(&inode->i_lock);
1502 dirty = inode->i_state & I_DIRTY;
1503 inode->i_state &= ~dirty;
1506 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1507 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1508 * either they see the I_DIRTY bits cleared or we see the dirtied
1511 * I_DIRTY_PAGES is always cleared together above even if @mapping
1512 * still has dirty pages. The flag is reinstated after smp_mb() if
1513 * necessary. This guarantees that either __mark_inode_dirty()
1514 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1518 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1519 inode->i_state |= I_DIRTY_PAGES;
1521 spin_unlock(&inode->i_lock);
1523 /* Don't write the inode if only I_DIRTY_PAGES was set */
1524 if (dirty & ~I_DIRTY_PAGES) {
1525 int err = write_inode(inode, wbc);
1529 trace_writeback_single_inode(inode, wbc, nr_to_write);
1534 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1535 * the regular batched writeback done by the flusher threads in
1536 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1537 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1539 * To prevent the inode from going away, either the caller must have a reference
1540 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1542 static int writeback_single_inode(struct inode *inode,
1543 struct writeback_control *wbc)
1545 struct bdi_writeback *wb;
1548 spin_lock(&inode->i_lock);
1549 if (!atomic_read(&inode->i_count))
1550 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1552 WARN_ON(inode->i_state & I_WILL_FREE);
1554 if (inode->i_state & I_SYNC) {
1556 * Writeback is already running on the inode. For WB_SYNC_NONE,
1557 * that's enough and we can just return. For WB_SYNC_ALL, we
1558 * must wait for the existing writeback to complete, then do
1559 * writeback again if there's anything left.
1561 if (wbc->sync_mode != WB_SYNC_ALL)
1563 __inode_wait_for_writeback(inode);
1565 WARN_ON(inode->i_state & I_SYNC);
1567 * If the inode is already fully clean, then there's nothing to do.
1569 * For data-integrity syncs we also need to check whether any pages are
1570 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1571 * there are any such pages, we'll need to wait for them.
1573 if (!(inode->i_state & I_DIRTY_ALL) &&
1574 (wbc->sync_mode != WB_SYNC_ALL ||
1575 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1577 inode->i_state |= I_SYNC;
1578 wbc_attach_and_unlock_inode(wbc, inode);
1580 ret = __writeback_single_inode(inode, wbc);
1582 wbc_detach_inode(wbc);
1584 wb = inode_to_wb_and_lock_list(inode);
1585 spin_lock(&inode->i_lock);
1587 * If the inode is now fully clean, then it can be safely removed from
1588 * its writeback list (if any). Otherwise the flusher threads are
1589 * responsible for the writeback lists.
1591 if (!(inode->i_state & I_DIRTY_ALL))
1592 inode_io_list_del_locked(inode, wb);
1593 spin_unlock(&wb->list_lock);
1594 inode_sync_complete(inode);
1596 spin_unlock(&inode->i_lock);
1600 static long writeback_chunk_size(struct bdi_writeback *wb,
1601 struct wb_writeback_work *work)
1606 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1607 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1608 * here avoids calling into writeback_inodes_wb() more than once.
1610 * The intended call sequence for WB_SYNC_ALL writeback is:
1613 * writeback_sb_inodes() <== called only once
1614 * write_cache_pages() <== called once for each inode
1615 * (quickly) tag currently dirty pages
1616 * (maybe slowly) sync all tagged pages
1618 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1621 pages = min(wb->avg_write_bandwidth / 2,
1622 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1623 pages = min(pages, work->nr_pages);
1624 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1625 MIN_WRITEBACK_PAGES);
1632 * Write a portion of b_io inodes which belong to @sb.
1634 * Return the number of pages and/or inodes written.
1636 * NOTE! This is called with wb->list_lock held, and will
1637 * unlock and relock that for each inode it ends up doing
1640 static long writeback_sb_inodes(struct super_block *sb,
1641 struct bdi_writeback *wb,
1642 struct wb_writeback_work *work)
1644 struct writeback_control wbc = {
1645 .sync_mode = work->sync_mode,
1646 .tagged_writepages = work->tagged_writepages,
1647 .for_kupdate = work->for_kupdate,
1648 .for_background = work->for_background,
1649 .for_sync = work->for_sync,
1650 .range_cyclic = work->range_cyclic,
1652 .range_end = LLONG_MAX,
1654 unsigned long start_time = jiffies;
1656 long wrote = 0; /* count both pages and inodes */
1658 while (!list_empty(&wb->b_io)) {
1659 struct inode *inode = wb_inode(wb->b_io.prev);
1660 struct bdi_writeback *tmp_wb;
1662 if (inode->i_sb != sb) {
1665 * We only want to write back data for this
1666 * superblock, move all inodes not belonging
1667 * to it back onto the dirty list.
1669 redirty_tail(inode, wb);
1674 * The inode belongs to a different superblock.
1675 * Bounce back to the caller to unpin this and
1676 * pin the next superblock.
1682 * Don't bother with new inodes or inodes being freed, first
1683 * kind does not need periodic writeout yet, and for the latter
1684 * kind writeout is handled by the freer.
1686 spin_lock(&inode->i_lock);
1687 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1688 redirty_tail_locked(inode, wb);
1689 spin_unlock(&inode->i_lock);
1692 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1694 * If this inode is locked for writeback and we are not
1695 * doing writeback-for-data-integrity, move it to
1696 * b_more_io so that writeback can proceed with the
1697 * other inodes on s_io.
1699 * We'll have another go at writing back this inode
1700 * when we completed a full scan of b_io.
1702 spin_unlock(&inode->i_lock);
1703 requeue_io(inode, wb);
1704 trace_writeback_sb_inodes_requeue(inode);
1707 spin_unlock(&wb->list_lock);
1710 * We already requeued the inode if it had I_SYNC set and we
1711 * are doing WB_SYNC_NONE writeback. So this catches only the
1714 if (inode->i_state & I_SYNC) {
1715 /* Wait for I_SYNC. This function drops i_lock... */
1716 inode_sleep_on_writeback(inode);
1717 /* Inode may be gone, start again */
1718 spin_lock(&wb->list_lock);
1721 inode->i_state |= I_SYNC;
1722 wbc_attach_and_unlock_inode(&wbc, inode);
1724 write_chunk = writeback_chunk_size(wb, work);
1725 wbc.nr_to_write = write_chunk;
1726 wbc.pages_skipped = 0;
1729 * We use I_SYNC to pin the inode in memory. While it is set
1730 * evict_inode() will wait so the inode cannot be freed.
1732 __writeback_single_inode(inode, &wbc);
1734 wbc_detach_inode(&wbc);
1735 work->nr_pages -= write_chunk - wbc.nr_to_write;
1736 wrote += write_chunk - wbc.nr_to_write;
1738 if (need_resched()) {
1740 * We're trying to balance between building up a nice
1741 * long list of IOs to improve our merge rate, and
1742 * getting those IOs out quickly for anyone throttling
1743 * in balance_dirty_pages(). cond_resched() doesn't
1744 * unplug, so get our IOs out the door before we
1747 blk_flush_plug(current);
1752 * Requeue @inode if still dirty. Be careful as @inode may
1753 * have been switched to another wb in the meantime.
1755 tmp_wb = inode_to_wb_and_lock_list(inode);
1756 spin_lock(&inode->i_lock);
1757 if (!(inode->i_state & I_DIRTY_ALL))
1759 requeue_inode(inode, tmp_wb, &wbc);
1760 inode_sync_complete(inode);
1761 spin_unlock(&inode->i_lock);
1763 if (unlikely(tmp_wb != wb)) {
1764 spin_unlock(&tmp_wb->list_lock);
1765 spin_lock(&wb->list_lock);
1769 * bail out to wb_writeback() often enough to check
1770 * background threshold and other termination conditions.
1773 if (time_is_before_jiffies(start_time + HZ / 10UL))
1775 if (work->nr_pages <= 0)
1782 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1783 struct wb_writeback_work *work)
1785 unsigned long start_time = jiffies;
1788 while (!list_empty(&wb->b_io)) {
1789 struct inode *inode = wb_inode(wb->b_io.prev);
1790 struct super_block *sb = inode->i_sb;
1792 if (!trylock_super(sb)) {
1794 * trylock_super() may fail consistently due to
1795 * s_umount being grabbed by someone else. Don't use
1796 * requeue_io() to avoid busy retrying the inode/sb.
1798 redirty_tail(inode, wb);
1801 wrote += writeback_sb_inodes(sb, wb, work);
1802 up_read(&sb->s_umount);
1804 /* refer to the same tests at the end of writeback_sb_inodes */
1806 if (time_is_before_jiffies(start_time + HZ / 10UL))
1808 if (work->nr_pages <= 0)
1812 /* Leave any unwritten inodes on b_io */
1816 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1817 enum wb_reason reason)
1819 struct wb_writeback_work work = {
1820 .nr_pages = nr_pages,
1821 .sync_mode = WB_SYNC_NONE,
1825 struct blk_plug plug;
1827 blk_start_plug(&plug);
1828 spin_lock(&wb->list_lock);
1829 if (list_empty(&wb->b_io))
1830 queue_io(wb, &work, jiffies);
1831 __writeback_inodes_wb(wb, &work);
1832 spin_unlock(&wb->list_lock);
1833 blk_finish_plug(&plug);
1835 return nr_pages - work.nr_pages;
1839 * Explicit flushing or periodic writeback of "old" data.
1841 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1842 * dirtying-time in the inode's address_space. So this periodic writeback code
1843 * just walks the superblock inode list, writing back any inodes which are
1844 * older than a specific point in time.
1846 * Try to run once per dirty_writeback_interval. But if a writeback event
1847 * takes longer than a dirty_writeback_interval interval, then leave a
1850 * dirtied_before takes precedence over nr_to_write. So we'll only write back
1851 * all dirty pages if they are all attached to "old" mappings.
1853 static long wb_writeback(struct bdi_writeback *wb,
1854 struct wb_writeback_work *work)
1856 unsigned long wb_start = jiffies;
1857 long nr_pages = work->nr_pages;
1858 unsigned long dirtied_before = jiffies;
1859 struct inode *inode;
1861 struct blk_plug plug;
1863 blk_start_plug(&plug);
1864 spin_lock(&wb->list_lock);
1867 * Stop writeback when nr_pages has been consumed
1869 if (work->nr_pages <= 0)
1873 * Background writeout and kupdate-style writeback may
1874 * run forever. Stop them if there is other work to do
1875 * so that e.g. sync can proceed. They'll be restarted
1876 * after the other works are all done.
1878 if ((work->for_background || work->for_kupdate) &&
1879 !list_empty(&wb->work_list))
1883 * For background writeout, stop when we are below the
1884 * background dirty threshold
1886 if (work->for_background && !wb_over_bg_thresh(wb))
1890 * Kupdate and background works are special and we want to
1891 * include all inodes that need writing. Livelock avoidance is
1892 * handled by these works yielding to any other work so we are
1895 if (work->for_kupdate) {
1896 dirtied_before = jiffies -
1897 msecs_to_jiffies(dirty_expire_interval * 10);
1898 } else if (work->for_background)
1899 dirtied_before = jiffies;
1901 trace_writeback_start(wb, work);
1902 if (list_empty(&wb->b_io))
1903 queue_io(wb, work, dirtied_before);
1905 progress = writeback_sb_inodes(work->sb, wb, work);
1907 progress = __writeback_inodes_wb(wb, work);
1908 trace_writeback_written(wb, work);
1910 wb_update_bandwidth(wb, wb_start);
1913 * Did we write something? Try for more
1915 * Dirty inodes are moved to b_io for writeback in batches.
1916 * The completion of the current batch does not necessarily
1917 * mean the overall work is done. So we keep looping as long
1918 * as made some progress on cleaning pages or inodes.
1923 * No more inodes for IO, bail
1925 if (list_empty(&wb->b_more_io))
1928 * Nothing written. Wait for some inode to
1929 * become available for writeback. Otherwise
1930 * we'll just busyloop.
1932 trace_writeback_wait(wb, work);
1933 inode = wb_inode(wb->b_more_io.prev);
1934 spin_lock(&inode->i_lock);
1935 spin_unlock(&wb->list_lock);
1936 /* This function drops i_lock... */
1937 inode_sleep_on_writeback(inode);
1938 spin_lock(&wb->list_lock);
1940 spin_unlock(&wb->list_lock);
1941 blk_finish_plug(&plug);
1943 return nr_pages - work->nr_pages;
1947 * Return the next wb_writeback_work struct that hasn't been processed yet.
1949 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1951 struct wb_writeback_work *work = NULL;
1953 spin_lock_bh(&wb->work_lock);
1954 if (!list_empty(&wb->work_list)) {
1955 work = list_entry(wb->work_list.next,
1956 struct wb_writeback_work, list);
1957 list_del_init(&work->list);
1959 spin_unlock_bh(&wb->work_lock);
1963 static long wb_check_background_flush(struct bdi_writeback *wb)
1965 if (wb_over_bg_thresh(wb)) {
1967 struct wb_writeback_work work = {
1968 .nr_pages = LONG_MAX,
1969 .sync_mode = WB_SYNC_NONE,
1970 .for_background = 1,
1972 .reason = WB_REASON_BACKGROUND,
1975 return wb_writeback(wb, &work);
1981 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1983 unsigned long expired;
1987 * When set to zero, disable periodic writeback
1989 if (!dirty_writeback_interval)
1992 expired = wb->last_old_flush +
1993 msecs_to_jiffies(dirty_writeback_interval * 10);
1994 if (time_before(jiffies, expired))
1997 wb->last_old_flush = jiffies;
1998 nr_pages = get_nr_dirty_pages();
2001 struct wb_writeback_work work = {
2002 .nr_pages = nr_pages,
2003 .sync_mode = WB_SYNC_NONE,
2006 .reason = WB_REASON_PERIODIC,
2009 return wb_writeback(wb, &work);
2015 static long wb_check_start_all(struct bdi_writeback *wb)
2019 if (!test_bit(WB_start_all, &wb->state))
2022 nr_pages = get_nr_dirty_pages();
2024 struct wb_writeback_work work = {
2025 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2026 .sync_mode = WB_SYNC_NONE,
2028 .reason = wb->start_all_reason,
2031 nr_pages = wb_writeback(wb, &work);
2034 clear_bit(WB_start_all, &wb->state);
2040 * Retrieve work items and do the writeback they describe
2042 static long wb_do_writeback(struct bdi_writeback *wb)
2044 struct wb_writeback_work *work;
2047 set_bit(WB_writeback_running, &wb->state);
2048 while ((work = get_next_work_item(wb)) != NULL) {
2049 trace_writeback_exec(wb, work);
2050 wrote += wb_writeback(wb, work);
2051 finish_writeback_work(wb, work);
2055 * Check for a flush-everything request
2057 wrote += wb_check_start_all(wb);
2060 * Check for periodic writeback, kupdated() style
2062 wrote += wb_check_old_data_flush(wb);
2063 wrote += wb_check_background_flush(wb);
2064 clear_bit(WB_writeback_running, &wb->state);
2070 * Handle writeback of dirty data for the device backed by this bdi. Also
2071 * reschedules periodically and does kupdated style flushing.
2073 void wb_workfn(struct work_struct *work)
2075 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2076 struct bdi_writeback, dwork);
2079 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2080 current->flags |= PF_SWAPWRITE;
2082 if (likely(!current_is_workqueue_rescuer() ||
2083 !test_bit(WB_registered, &wb->state))) {
2085 * The normal path. Keep writing back @wb until its
2086 * work_list is empty. Note that this path is also taken
2087 * if @wb is shutting down even when we're running off the
2088 * rescuer as work_list needs to be drained.
2091 pages_written = wb_do_writeback(wb);
2092 trace_writeback_pages_written(pages_written);
2093 } while (!list_empty(&wb->work_list));
2096 * bdi_wq can't get enough workers and we're running off
2097 * the emergency worker. Don't hog it. Hopefully, 1024 is
2098 * enough for efficient IO.
2100 pages_written = writeback_inodes_wb(wb, 1024,
2101 WB_REASON_FORKER_THREAD);
2102 trace_writeback_pages_written(pages_written);
2105 if (!list_empty(&wb->work_list))
2107 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2108 wb_wakeup_delayed(wb);
2110 current->flags &= ~PF_SWAPWRITE;
2114 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2115 * write back the whole world.
2117 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2118 enum wb_reason reason)
2120 struct bdi_writeback *wb;
2122 if (!bdi_has_dirty_io(bdi))
2125 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2126 wb_start_writeback(wb, reason);
2129 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2130 enum wb_reason reason)
2133 __wakeup_flusher_threads_bdi(bdi, reason);
2138 * Wakeup the flusher threads to start writeback of all currently dirty pages
2140 void wakeup_flusher_threads(enum wb_reason reason)
2142 struct backing_dev_info *bdi;
2145 * If we are expecting writeback progress we must submit plugged IO.
2147 if (blk_needs_flush_plug(current))
2148 blk_schedule_flush_plug(current);
2151 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2152 __wakeup_flusher_threads_bdi(bdi, reason);
2157 * Wake up bdi's periodically to make sure dirtytime inodes gets
2158 * written back periodically. We deliberately do *not* check the
2159 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2160 * kernel to be constantly waking up once there are any dirtytime
2161 * inodes on the system. So instead we define a separate delayed work
2162 * function which gets called much more rarely. (By default, only
2163 * once every 12 hours.)
2165 * If there is any other write activity going on in the file system,
2166 * this function won't be necessary. But if the only thing that has
2167 * happened on the file system is a dirtytime inode caused by an atime
2168 * update, we need this infrastructure below to make sure that inode
2169 * eventually gets pushed out to disk.
2171 static void wakeup_dirtytime_writeback(struct work_struct *w);
2172 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2174 static void wakeup_dirtytime_writeback(struct work_struct *w)
2176 struct backing_dev_info *bdi;
2179 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2180 struct bdi_writeback *wb;
2182 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2183 if (!list_empty(&wb->b_dirty_time))
2187 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2190 static int __init start_dirtytime_writeback(void)
2192 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2195 __initcall(start_dirtytime_writeback);
2197 int dirtytime_interval_handler(struct ctl_table *table, int write,
2198 void *buffer, size_t *lenp, loff_t *ppos)
2202 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2203 if (ret == 0 && write)
2204 mod_delayed_work(system_wq, &dirtytime_work, 0);
2208 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2210 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2211 struct dentry *dentry;
2212 const char *name = "?";
2214 dentry = d_find_alias(inode);
2216 spin_lock(&dentry->d_lock);
2217 name = (const char *) dentry->d_name.name;
2220 "%s(%d): dirtied inode %lu (%s) on %s\n",
2221 current->comm, task_pid_nr(current), inode->i_ino,
2222 name, inode->i_sb->s_id);
2224 spin_unlock(&dentry->d_lock);
2231 * __mark_inode_dirty - internal function to mark an inode dirty
2233 * @inode: inode to mark
2234 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2235 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2236 * with I_DIRTY_PAGES.
2238 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2239 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
2241 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2242 * instead of calling this directly.
2244 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2245 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2246 * even if they are later hashed, as they will have been marked dirty already.
2248 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2250 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2251 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2252 * the kernel-internal blockdev inode represents the dirtying time of the
2253 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2254 * page->mapping->host, so the page-dirtying time is recorded in the internal
2257 void __mark_inode_dirty(struct inode *inode, int flags)
2259 struct super_block *sb = inode->i_sb;
2262 trace_writeback_mark_inode_dirty(inode, flags);
2264 if (flags & I_DIRTY_INODE) {
2266 * Notify the filesystem about the inode being dirtied, so that
2267 * (if needed) it can update on-disk fields and journal the
2268 * inode. This is only needed when the inode itself is being
2269 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2270 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2272 trace_writeback_dirty_inode_start(inode, flags);
2273 if (sb->s_op->dirty_inode)
2274 sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2275 trace_writeback_dirty_inode(inode, flags);
2277 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2278 flags &= ~I_DIRTY_TIME;
2281 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2282 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2283 * in one call to __mark_inode_dirty().)
2285 dirtytime = flags & I_DIRTY_TIME;
2286 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2290 * Paired with smp_mb() in __writeback_single_inode() for the
2291 * following lockless i_state test. See there for details.
2295 if (((inode->i_state & flags) == flags) ||
2296 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2299 if (unlikely(block_dump))
2300 block_dump___mark_inode_dirty(inode);
2302 spin_lock(&inode->i_lock);
2303 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2304 goto out_unlock_inode;
2305 if ((inode->i_state & flags) != flags) {
2306 const int was_dirty = inode->i_state & I_DIRTY;
2308 inode_attach_wb(inode, NULL);
2310 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2311 if (flags & I_DIRTY_INODE)
2312 inode->i_state &= ~I_DIRTY_TIME;
2313 inode->i_state |= flags;
2316 * If the inode is queued for writeback by flush worker, just
2317 * update its dirty state. Once the flush worker is done with
2318 * the inode it will place it on the appropriate superblock
2319 * list, based upon its state.
2321 if (inode->i_state & I_SYNC_QUEUED)
2322 goto out_unlock_inode;
2325 * Only add valid (hashed) inodes to the superblock's
2326 * dirty list. Add blockdev inodes as well.
2328 if (!S_ISBLK(inode->i_mode)) {
2329 if (inode_unhashed(inode))
2330 goto out_unlock_inode;
2332 if (inode->i_state & I_FREEING)
2333 goto out_unlock_inode;
2336 * If the inode was already on b_dirty/b_io/b_more_io, don't
2337 * reposition it (that would break b_dirty time-ordering).
2340 struct bdi_writeback *wb;
2341 struct list_head *dirty_list;
2342 bool wakeup_bdi = false;
2344 wb = locked_inode_to_wb_and_lock_list(inode);
2346 inode->dirtied_when = jiffies;
2348 inode->dirtied_time_when = jiffies;
2350 if (inode->i_state & I_DIRTY)
2351 dirty_list = &wb->b_dirty;
2353 dirty_list = &wb->b_dirty_time;
2355 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2358 spin_unlock(&wb->list_lock);
2359 trace_writeback_dirty_inode_enqueue(inode);
2362 * If this is the first dirty inode for this bdi,
2363 * we have to wake-up the corresponding bdi thread
2364 * to make sure background write-back happens
2368 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2369 wb_wakeup_delayed(wb);
2374 spin_unlock(&inode->i_lock);
2376 EXPORT_SYMBOL(__mark_inode_dirty);
2379 * The @s_sync_lock is used to serialise concurrent sync operations
2380 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2381 * Concurrent callers will block on the s_sync_lock rather than doing contending
2382 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2383 * has been issued up to the time this function is enter is guaranteed to be
2384 * completed by the time we have gained the lock and waited for all IO that is
2385 * in progress regardless of the order callers are granted the lock.
2387 static void wait_sb_inodes(struct super_block *sb)
2389 LIST_HEAD(sync_list);
2392 * We need to be protected against the filesystem going from
2393 * r/o to r/w or vice versa.
2395 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2397 mutex_lock(&sb->s_sync_lock);
2400 * Splice the writeback list onto a temporary list to avoid waiting on
2401 * inodes that have started writeback after this point.
2403 * Use rcu_read_lock() to keep the inodes around until we have a
2404 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2405 * the local list because inodes can be dropped from either by writeback
2409 spin_lock_irq(&sb->s_inode_wblist_lock);
2410 list_splice_init(&sb->s_inodes_wb, &sync_list);
2413 * Data integrity sync. Must wait for all pages under writeback, because
2414 * there may have been pages dirtied before our sync call, but which had
2415 * writeout started before we write it out. In which case, the inode
2416 * may not be on the dirty list, but we still have to wait for that
2419 while (!list_empty(&sync_list)) {
2420 struct inode *inode = list_first_entry(&sync_list, struct inode,
2422 struct address_space *mapping = inode->i_mapping;
2425 * Move each inode back to the wb list before we drop the lock
2426 * to preserve consistency between i_wb_list and the mapping
2427 * writeback tag. Writeback completion is responsible to remove
2428 * the inode from either list once the writeback tag is cleared.
2430 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2433 * The mapping can appear untagged while still on-list since we
2434 * do not have the mapping lock. Skip it here, wb completion
2437 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2440 spin_unlock_irq(&sb->s_inode_wblist_lock);
2442 spin_lock(&inode->i_lock);
2443 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2444 spin_unlock(&inode->i_lock);
2446 spin_lock_irq(&sb->s_inode_wblist_lock);
2450 spin_unlock(&inode->i_lock);
2454 * We keep the error status of individual mapping so that
2455 * applications can catch the writeback error using fsync(2).
2456 * See filemap_fdatawait_keep_errors() for details.
2458 filemap_fdatawait_keep_errors(mapping);
2465 spin_lock_irq(&sb->s_inode_wblist_lock);
2467 spin_unlock_irq(&sb->s_inode_wblist_lock);
2469 mutex_unlock(&sb->s_sync_lock);
2472 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2473 enum wb_reason reason, bool skip_if_busy)
2475 struct backing_dev_info *bdi = sb->s_bdi;
2476 DEFINE_WB_COMPLETION(done, bdi);
2477 struct wb_writeback_work work = {
2479 .sync_mode = WB_SYNC_NONE,
2480 .tagged_writepages = 1,
2486 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2488 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2490 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2491 wb_wait_for_completion(&done);
2495 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2496 * @sb: the superblock
2497 * @nr: the number of pages to write
2498 * @reason: reason why some writeback work initiated
2500 * Start writeback on some inodes on this super_block. No guarantees are made
2501 * on how many (if any) will be written, and this function does not wait
2502 * for IO completion of submitted IO.
2504 void writeback_inodes_sb_nr(struct super_block *sb,
2506 enum wb_reason reason)
2508 __writeback_inodes_sb_nr(sb, nr, reason, false);
2510 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2513 * writeback_inodes_sb - writeback dirty inodes from given super_block
2514 * @sb: the superblock
2515 * @reason: reason why some writeback work was initiated
2517 * Start writeback on some inodes on this super_block. No guarantees are made
2518 * on how many (if any) will be written, and this function does not wait
2519 * for IO completion of submitted IO.
2521 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2523 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2525 EXPORT_SYMBOL(writeback_inodes_sb);
2528 * try_to_writeback_inodes_sb - try to start writeback if none underway
2529 * @sb: the superblock
2530 * @reason: reason why some writeback work was initiated
2532 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2534 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2536 if (!down_read_trylock(&sb->s_umount))
2539 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2540 up_read(&sb->s_umount);
2542 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2545 * sync_inodes_sb - sync sb inode pages
2546 * @sb: the superblock
2548 * This function writes and waits on any dirty inode belonging to this
2551 void sync_inodes_sb(struct super_block *sb)
2553 struct backing_dev_info *bdi = sb->s_bdi;
2554 DEFINE_WB_COMPLETION(done, bdi);
2555 struct wb_writeback_work work = {
2557 .sync_mode = WB_SYNC_ALL,
2558 .nr_pages = LONG_MAX,
2561 .reason = WB_REASON_SYNC,
2566 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2567 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2568 * bdi_has_dirty() need to be written out too.
2570 if (bdi == &noop_backing_dev_info)
2572 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2574 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2575 bdi_down_write_wb_switch_rwsem(bdi);
2576 bdi_split_work_to_wbs(bdi, &work, false);
2577 wb_wait_for_completion(&done);
2578 bdi_up_write_wb_switch_rwsem(bdi);
2582 EXPORT_SYMBOL(sync_inodes_sb);
2585 * write_inode_now - write an inode to disk
2586 * @inode: inode to write to disk
2587 * @sync: whether the write should be synchronous or not
2589 * This function commits an inode to disk immediately if it is dirty. This is
2590 * primarily needed by knfsd.
2592 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2594 int write_inode_now(struct inode *inode, int sync)
2596 struct writeback_control wbc = {
2597 .nr_to_write = LONG_MAX,
2598 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2600 .range_end = LLONG_MAX,
2603 if (!mapping_can_writeback(inode->i_mapping))
2604 wbc.nr_to_write = 0;
2607 return writeback_single_inode(inode, &wbc);
2609 EXPORT_SYMBOL(write_inode_now);
2612 * sync_inode - write an inode and its pages to disk.
2613 * @inode: the inode to sync
2614 * @wbc: controls the writeback mode
2616 * sync_inode() will write an inode and its pages to disk. It will also
2617 * correctly update the inode on its superblock's dirty inode lists and will
2618 * update inode->i_state.
2620 * The caller must have a ref on the inode.
2622 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2624 return writeback_single_inode(inode, wbc);
2626 EXPORT_SYMBOL(sync_inode);
2629 * sync_inode_metadata - write an inode to disk
2630 * @inode: the inode to sync
2631 * @wait: wait for I/O to complete.
2633 * Write an inode to disk and adjust its dirty state after completion.
2635 * Note: only writes the actual inode, no associated data or other metadata.
2637 int sync_inode_metadata(struct inode *inode, int wait)
2639 struct writeback_control wbc = {
2640 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2641 .nr_to_write = 0, /* metadata-only */
2644 return sync_inode(inode, &wbc);
2646 EXPORT_SYMBOL(sync_inode_metadata);