Merge drm/drm-next into drm-intel-next
[platform/kernel/linux-starfive.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123
124         list_move(&inode->i_io_list, head);
125
126         /* dirty_time doesn't count as dirty_io until expiration */
127         if (head != &wb->b_dirty_time)
128                 return wb_io_lists_populated(wb);
129
130         wb_io_lists_depopulated(wb);
131         return false;
132 }
133
134 /**
135  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
136  * @inode: inode to be removed
137  * @wb: bdi_writeback @inode is being removed from
138  *
139  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
140  * clear %WB_has_dirty_io if all are empty afterwards.
141  */
142 static void inode_io_list_del_locked(struct inode *inode,
143                                      struct bdi_writeback *wb)
144 {
145         assert_spin_locked(&wb->list_lock);
146         assert_spin_locked(&inode->i_lock);
147
148         inode->i_state &= ~I_SYNC_QUEUED;
149         list_del_init(&inode->i_io_list);
150         wb_io_lists_depopulated(wb);
151 }
152
153 static void wb_wakeup(struct bdi_writeback *wb)
154 {
155         spin_lock_bh(&wb->work_lock);
156         if (test_bit(WB_registered, &wb->state))
157                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
158         spin_unlock_bh(&wb->work_lock);
159 }
160
161 static void finish_writeback_work(struct bdi_writeback *wb,
162                                   struct wb_writeback_work *work)
163 {
164         struct wb_completion *done = work->done;
165
166         if (work->auto_free)
167                 kfree(work);
168         if (done) {
169                 wait_queue_head_t *waitq = done->waitq;
170
171                 /* @done can't be accessed after the following dec */
172                 if (atomic_dec_and_test(&done->cnt))
173                         wake_up_all(waitq);
174         }
175 }
176
177 static void wb_queue_work(struct bdi_writeback *wb,
178                           struct wb_writeback_work *work)
179 {
180         trace_writeback_queue(wb, work);
181
182         if (work->done)
183                 atomic_inc(&work->done->cnt);
184
185         spin_lock_bh(&wb->work_lock);
186
187         if (test_bit(WB_registered, &wb->state)) {
188                 list_add_tail(&work->list, &wb->work_list);
189                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
190         } else
191                 finish_writeback_work(wb, work);
192
193         spin_unlock_bh(&wb->work_lock);
194 }
195
196 /**
197  * wb_wait_for_completion - wait for completion of bdi_writeback_works
198  * @done: target wb_completion
199  *
200  * Wait for one or more work items issued to @bdi with their ->done field
201  * set to @done, which should have been initialized with
202  * DEFINE_WB_COMPLETION().  This function returns after all such work items
203  * are completed.  Work items which are waited upon aren't freed
204  * automatically on completion.
205  */
206 void wb_wait_for_completion(struct wb_completion *done)
207 {
208         atomic_dec(&done->cnt);         /* put down the initial count */
209         wait_event(*done->waitq, !atomic_read(&done->cnt));
210 }
211
212 #ifdef CONFIG_CGROUP_WRITEBACK
213
214 /*
215  * Parameters for foreign inode detection, see wbc_detach_inode() to see
216  * how they're used.
217  *
218  * These paramters are inherently heuristical as the detection target
219  * itself is fuzzy.  All we want to do is detaching an inode from the
220  * current owner if it's being written to by some other cgroups too much.
221  *
222  * The current cgroup writeback is built on the assumption that multiple
223  * cgroups writing to the same inode concurrently is very rare and a mode
224  * of operation which isn't well supported.  As such, the goal is not
225  * taking too long when a different cgroup takes over an inode while
226  * avoiding too aggressive flip-flops from occasional foreign writes.
227  *
228  * We record, very roughly, 2s worth of IO time history and if more than
229  * half of that is foreign, trigger the switch.  The recording is quantized
230  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
231  * writes smaller than 1/8 of avg size are ignored.
232  */
233 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
234 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
235 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
236 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
237
238 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
239 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
240                                         /* each slot's duration is 2s / 16 */
241 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
242                                         /* if foreign slots >= 8, switch */
243 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
244                                         /* one round can affect upto 5 slots */
245 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
246
247 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
248 static struct workqueue_struct *isw_wq;
249
250 void __inode_attach_wb(struct inode *inode, struct page *page)
251 {
252         struct backing_dev_info *bdi = inode_to_bdi(inode);
253         struct bdi_writeback *wb = NULL;
254
255         if (inode_cgwb_enabled(inode)) {
256                 struct cgroup_subsys_state *memcg_css;
257
258                 if (page) {
259                         memcg_css = mem_cgroup_css_from_page(page);
260                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
261                 } else {
262                         /* must pin memcg_css, see wb_get_create() */
263                         memcg_css = task_get_css(current, memory_cgrp_id);
264                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
265                         css_put(memcg_css);
266                 }
267         }
268
269         if (!wb)
270                 wb = &bdi->wb;
271
272         /*
273          * There may be multiple instances of this function racing to
274          * update the same inode.  Use cmpxchg() to tell the winner.
275          */
276         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
277                 wb_put(wb);
278 }
279 EXPORT_SYMBOL_GPL(__inode_attach_wb);
280
281 /**
282  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
283  * @inode: inode of interest with i_lock held
284  *
285  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
286  * held on entry and is released on return.  The returned wb is guaranteed
287  * to stay @inode's associated wb until its list_lock is released.
288  */
289 static struct bdi_writeback *
290 locked_inode_to_wb_and_lock_list(struct inode *inode)
291         __releases(&inode->i_lock)
292         __acquires(&wb->list_lock)
293 {
294         while (true) {
295                 struct bdi_writeback *wb = inode_to_wb(inode);
296
297                 /*
298                  * inode_to_wb() association is protected by both
299                  * @inode->i_lock and @wb->list_lock but list_lock nests
300                  * outside i_lock.  Drop i_lock and verify that the
301                  * association hasn't changed after acquiring list_lock.
302                  */
303                 wb_get(wb);
304                 spin_unlock(&inode->i_lock);
305                 spin_lock(&wb->list_lock);
306
307                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
308                 if (likely(wb == inode->i_wb)) {
309                         wb_put(wb);     /* @inode already has ref */
310                         return wb;
311                 }
312
313                 spin_unlock(&wb->list_lock);
314                 wb_put(wb);
315                 cpu_relax();
316                 spin_lock(&inode->i_lock);
317         }
318 }
319
320 /**
321  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
322  * @inode: inode of interest
323  *
324  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
325  * on entry.
326  */
327 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
328         __acquires(&wb->list_lock)
329 {
330         spin_lock(&inode->i_lock);
331         return locked_inode_to_wb_and_lock_list(inode);
332 }
333
334 struct inode_switch_wbs_context {
335         struct inode            *inode;
336         struct bdi_writeback    *new_wb;
337
338         struct rcu_head         rcu_head;
339         struct work_struct      work;
340 };
341
342 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
343 {
344         down_write(&bdi->wb_switch_rwsem);
345 }
346
347 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
348 {
349         up_write(&bdi->wb_switch_rwsem);
350 }
351
352 static void inode_switch_wbs_work_fn(struct work_struct *work)
353 {
354         struct inode_switch_wbs_context *isw =
355                 container_of(work, struct inode_switch_wbs_context, work);
356         struct inode *inode = isw->inode;
357         struct backing_dev_info *bdi = inode_to_bdi(inode);
358         struct address_space *mapping = inode->i_mapping;
359         struct bdi_writeback *old_wb = inode->i_wb;
360         struct bdi_writeback *new_wb = isw->new_wb;
361         XA_STATE(xas, &mapping->i_pages, 0);
362         struct page *page;
363         bool switched = false;
364
365         /*
366          * If @inode switches cgwb membership while sync_inodes_sb() is
367          * being issued, sync_inodes_sb() might miss it.  Synchronize.
368          */
369         down_read(&bdi->wb_switch_rwsem);
370
371         /*
372          * By the time control reaches here, RCU grace period has passed
373          * since I_WB_SWITCH assertion and all wb stat update transactions
374          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
375          * synchronizing against the i_pages lock.
376          *
377          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
378          * gives us exclusion against all wb related operations on @inode
379          * including IO list manipulations and stat updates.
380          */
381         if (old_wb < new_wb) {
382                 spin_lock(&old_wb->list_lock);
383                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
384         } else {
385                 spin_lock(&new_wb->list_lock);
386                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
387         }
388         spin_lock(&inode->i_lock);
389         xa_lock_irq(&mapping->i_pages);
390
391         /*
392          * Once I_FREEING is visible under i_lock, the eviction path owns
393          * the inode and we shouldn't modify ->i_io_list.
394          */
395         if (unlikely(inode->i_state & I_FREEING))
396                 goto skip_switch;
397
398         trace_inode_switch_wbs(inode, old_wb, new_wb);
399
400         /*
401          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
402          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
403          * pages actually under writeback.
404          */
405         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
406                 if (PageDirty(page)) {
407                         dec_wb_stat(old_wb, WB_RECLAIMABLE);
408                         inc_wb_stat(new_wb, WB_RECLAIMABLE);
409                 }
410         }
411
412         xas_set(&xas, 0);
413         xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
414                 WARN_ON_ONCE(!PageWriteback(page));
415                 dec_wb_stat(old_wb, WB_WRITEBACK);
416                 inc_wb_stat(new_wb, WB_WRITEBACK);
417         }
418
419         wb_get(new_wb);
420
421         /*
422          * Transfer to @new_wb's IO list if necessary.  The specific list
423          * @inode was on is ignored and the inode is put on ->b_dirty which
424          * is always correct including from ->b_dirty_time.  The transfer
425          * preserves @inode->dirtied_when ordering.
426          */
427         if (!list_empty(&inode->i_io_list)) {
428                 struct inode *pos;
429
430                 inode_io_list_del_locked(inode, old_wb);
431                 inode->i_wb = new_wb;
432                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
433                         if (time_after_eq(inode->dirtied_when,
434                                           pos->dirtied_when))
435                                 break;
436                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
437         } else {
438                 inode->i_wb = new_wb;
439         }
440
441         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
442         inode->i_wb_frn_winner = 0;
443         inode->i_wb_frn_avg_time = 0;
444         inode->i_wb_frn_history = 0;
445         switched = true;
446 skip_switch:
447         /*
448          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
449          * ensures that the new wb is visible if they see !I_WB_SWITCH.
450          */
451         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
452
453         xa_unlock_irq(&mapping->i_pages);
454         spin_unlock(&inode->i_lock);
455         spin_unlock(&new_wb->list_lock);
456         spin_unlock(&old_wb->list_lock);
457
458         up_read(&bdi->wb_switch_rwsem);
459
460         if (switched) {
461                 wb_wakeup(new_wb);
462                 wb_put(old_wb);
463         }
464         wb_put(new_wb);
465
466         iput(inode);
467         kfree(isw);
468
469         atomic_dec(&isw_nr_in_flight);
470 }
471
472 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
473 {
474         struct inode_switch_wbs_context *isw = container_of(rcu_head,
475                                 struct inode_switch_wbs_context, rcu_head);
476
477         /* needs to grab bh-unsafe locks, bounce to work item */
478         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
479         queue_work(isw_wq, &isw->work);
480 }
481
482 /**
483  * inode_switch_wbs - change the wb association of an inode
484  * @inode: target inode
485  * @new_wb_id: ID of the new wb
486  *
487  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
488  * switching is performed asynchronously and may fail silently.
489  */
490 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
491 {
492         struct backing_dev_info *bdi = inode_to_bdi(inode);
493         struct cgroup_subsys_state *memcg_css;
494         struct inode_switch_wbs_context *isw;
495
496         /* noop if seems to be already in progress */
497         if (inode->i_state & I_WB_SWITCH)
498                 return;
499
500         /* avoid queueing a new switch if too many are already in flight */
501         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
502                 return;
503
504         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
505         if (!isw)
506                 return;
507
508         /* find and pin the new wb */
509         rcu_read_lock();
510         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
511         if (memcg_css)
512                 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
513         rcu_read_unlock();
514         if (!isw->new_wb)
515                 goto out_free;
516
517         /* while holding I_WB_SWITCH, no one else can update the association */
518         spin_lock(&inode->i_lock);
519         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
520             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
521             inode_to_wb(inode) == isw->new_wb) {
522                 spin_unlock(&inode->i_lock);
523                 goto out_free;
524         }
525         inode->i_state |= I_WB_SWITCH;
526         __iget(inode);
527         spin_unlock(&inode->i_lock);
528
529         isw->inode = inode;
530
531         /*
532          * In addition to synchronizing among switchers, I_WB_SWITCH tells
533          * the RCU protected stat update paths to grab the i_page
534          * lock so that stat transfer can synchronize against them.
535          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
536          */
537         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
538
539         atomic_inc(&isw_nr_in_flight);
540         return;
541
542 out_free:
543         if (isw->new_wb)
544                 wb_put(isw->new_wb);
545         kfree(isw);
546 }
547
548 /**
549  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
550  * @wbc: writeback_control of interest
551  * @inode: target inode
552  *
553  * @inode is locked and about to be written back under the control of @wbc.
554  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
555  * writeback completion, wbc_detach_inode() should be called.  This is used
556  * to track the cgroup writeback context.
557  */
558 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
559                                  struct inode *inode)
560 {
561         if (!inode_cgwb_enabled(inode)) {
562                 spin_unlock(&inode->i_lock);
563                 return;
564         }
565
566         wbc->wb = inode_to_wb(inode);
567         wbc->inode = inode;
568
569         wbc->wb_id = wbc->wb->memcg_css->id;
570         wbc->wb_lcand_id = inode->i_wb_frn_winner;
571         wbc->wb_tcand_id = 0;
572         wbc->wb_bytes = 0;
573         wbc->wb_lcand_bytes = 0;
574         wbc->wb_tcand_bytes = 0;
575
576         wb_get(wbc->wb);
577         spin_unlock(&inode->i_lock);
578
579         /*
580          * A dying wb indicates that either the blkcg associated with the
581          * memcg changed or the associated memcg is dying.  In the first
582          * case, a replacement wb should already be available and we should
583          * refresh the wb immediately.  In the second case, trying to
584          * refresh will keep failing.
585          */
586         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
587                 inode_switch_wbs(inode, wbc->wb_id);
588 }
589 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
590
591 /**
592  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
593  * @wbc: writeback_control of the just finished writeback
594  *
595  * To be called after a writeback attempt of an inode finishes and undoes
596  * wbc_attach_and_unlock_inode().  Can be called under any context.
597  *
598  * As concurrent write sharing of an inode is expected to be very rare and
599  * memcg only tracks page ownership on first-use basis severely confining
600  * the usefulness of such sharing, cgroup writeback tracks ownership
601  * per-inode.  While the support for concurrent write sharing of an inode
602  * is deemed unnecessary, an inode being written to by different cgroups at
603  * different points in time is a lot more common, and, more importantly,
604  * charging only by first-use can too readily lead to grossly incorrect
605  * behaviors (single foreign page can lead to gigabytes of writeback to be
606  * incorrectly attributed).
607  *
608  * To resolve this issue, cgroup writeback detects the majority dirtier of
609  * an inode and transfers the ownership to it.  To avoid unnnecessary
610  * oscillation, the detection mechanism keeps track of history and gives
611  * out the switch verdict only if the foreign usage pattern is stable over
612  * a certain amount of time and/or writeback attempts.
613  *
614  * On each writeback attempt, @wbc tries to detect the majority writer
615  * using Boyer-Moore majority vote algorithm.  In addition to the byte
616  * count from the majority voting, it also counts the bytes written for the
617  * current wb and the last round's winner wb (max of last round's current
618  * wb, the winner from two rounds ago, and the last round's majority
619  * candidate).  Keeping track of the historical winner helps the algorithm
620  * to semi-reliably detect the most active writer even when it's not the
621  * absolute majority.
622  *
623  * Once the winner of the round is determined, whether the winner is
624  * foreign or not and how much IO time the round consumed is recorded in
625  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
626  * over a certain threshold, the switch verdict is given.
627  */
628 void wbc_detach_inode(struct writeback_control *wbc)
629 {
630         struct bdi_writeback *wb = wbc->wb;
631         struct inode *inode = wbc->inode;
632         unsigned long avg_time, max_bytes, max_time;
633         u16 history;
634         int max_id;
635
636         if (!wb)
637                 return;
638
639         history = inode->i_wb_frn_history;
640         avg_time = inode->i_wb_frn_avg_time;
641
642         /* pick the winner of this round */
643         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
644             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
645                 max_id = wbc->wb_id;
646                 max_bytes = wbc->wb_bytes;
647         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
648                 max_id = wbc->wb_lcand_id;
649                 max_bytes = wbc->wb_lcand_bytes;
650         } else {
651                 max_id = wbc->wb_tcand_id;
652                 max_bytes = wbc->wb_tcand_bytes;
653         }
654
655         /*
656          * Calculate the amount of IO time the winner consumed and fold it
657          * into the running average kept per inode.  If the consumed IO
658          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
659          * deciding whether to switch or not.  This is to prevent one-off
660          * small dirtiers from skewing the verdict.
661          */
662         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
663                                 wb->avg_write_bandwidth);
664         if (avg_time)
665                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
666                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
667         else
668                 avg_time = max_time;    /* immediate catch up on first run */
669
670         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
671                 int slots;
672
673                 /*
674                  * The switch verdict is reached if foreign wb's consume
675                  * more than a certain proportion of IO time in a
676                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
677                  * history mask where each bit represents one sixteenth of
678                  * the period.  Determine the number of slots to shift into
679                  * history from @max_time.
680                  */
681                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
682                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
683                 history <<= slots;
684                 if (wbc->wb_id != max_id)
685                         history |= (1U << slots) - 1;
686
687                 if (history)
688                         trace_inode_foreign_history(inode, wbc, history);
689
690                 /*
691                  * Switch if the current wb isn't the consistent winner.
692                  * If there are multiple closely competing dirtiers, the
693                  * inode may switch across them repeatedly over time, which
694                  * is okay.  The main goal is avoiding keeping an inode on
695                  * the wrong wb for an extended period of time.
696                  */
697                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
698                         inode_switch_wbs(inode, max_id);
699         }
700
701         /*
702          * Multiple instances of this function may race to update the
703          * following fields but we don't mind occassional inaccuracies.
704          */
705         inode->i_wb_frn_winner = max_id;
706         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
707         inode->i_wb_frn_history = history;
708
709         wb_put(wbc->wb);
710         wbc->wb = NULL;
711 }
712 EXPORT_SYMBOL_GPL(wbc_detach_inode);
713
714 /**
715  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
716  * @wbc: writeback_control of the writeback in progress
717  * @page: page being written out
718  * @bytes: number of bytes being written out
719  *
720  * @bytes from @page are about to written out during the writeback
721  * controlled by @wbc.  Keep the book for foreign inode detection.  See
722  * wbc_detach_inode().
723  */
724 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
725                               size_t bytes)
726 {
727         struct cgroup_subsys_state *css;
728         int id;
729
730         /*
731          * pageout() path doesn't attach @wbc to the inode being written
732          * out.  This is intentional as we don't want the function to block
733          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
734          * regular writeback instead of writing things out itself.
735          */
736         if (!wbc->wb || wbc->no_cgroup_owner)
737                 return;
738
739         css = mem_cgroup_css_from_page(page);
740         /* dead cgroups shouldn't contribute to inode ownership arbitration */
741         if (!(css->flags & CSS_ONLINE))
742                 return;
743
744         id = css->id;
745
746         if (id == wbc->wb_id) {
747                 wbc->wb_bytes += bytes;
748                 return;
749         }
750
751         if (id == wbc->wb_lcand_id)
752                 wbc->wb_lcand_bytes += bytes;
753
754         /* Boyer-Moore majority vote algorithm */
755         if (!wbc->wb_tcand_bytes)
756                 wbc->wb_tcand_id = id;
757         if (id == wbc->wb_tcand_id)
758                 wbc->wb_tcand_bytes += bytes;
759         else
760                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
761 }
762 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
763
764 /**
765  * inode_congested - test whether an inode is congested
766  * @inode: inode to test for congestion (may be NULL)
767  * @cong_bits: mask of WB_[a]sync_congested bits to test
768  *
769  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
770  * bits to test and the return value is the mask of set bits.
771  *
772  * If cgroup writeback is enabled for @inode, the congestion state is
773  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
774  * associated with @inode is congested; otherwise, the root wb's congestion
775  * state is used.
776  *
777  * @inode is allowed to be NULL as this function is often called on
778  * mapping->host which is NULL for the swapper space.
779  */
780 int inode_congested(struct inode *inode, int cong_bits)
781 {
782         /*
783          * Once set, ->i_wb never becomes NULL while the inode is alive.
784          * Start transaction iff ->i_wb is visible.
785          */
786         if (inode && inode_to_wb_is_valid(inode)) {
787                 struct bdi_writeback *wb;
788                 struct wb_lock_cookie lock_cookie = {};
789                 bool congested;
790
791                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
792                 congested = wb_congested(wb, cong_bits);
793                 unlocked_inode_to_wb_end(inode, &lock_cookie);
794                 return congested;
795         }
796
797         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
798 }
799 EXPORT_SYMBOL_GPL(inode_congested);
800
801 /**
802  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
803  * @wb: target bdi_writeback to split @nr_pages to
804  * @nr_pages: number of pages to write for the whole bdi
805  *
806  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
807  * relation to the total write bandwidth of all wb's w/ dirty inodes on
808  * @wb->bdi.
809  */
810 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
811 {
812         unsigned long this_bw = wb->avg_write_bandwidth;
813         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
814
815         if (nr_pages == LONG_MAX)
816                 return LONG_MAX;
817
818         /*
819          * This may be called on clean wb's and proportional distribution
820          * may not make sense, just use the original @nr_pages in those
821          * cases.  In general, we wanna err on the side of writing more.
822          */
823         if (!tot_bw || this_bw >= tot_bw)
824                 return nr_pages;
825         else
826                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
827 }
828
829 /**
830  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
831  * @bdi: target backing_dev_info
832  * @base_work: wb_writeback_work to issue
833  * @skip_if_busy: skip wb's which already have writeback in progress
834  *
835  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
836  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
837  * distributed to the busy wbs according to each wb's proportion in the
838  * total active write bandwidth of @bdi.
839  */
840 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
841                                   struct wb_writeback_work *base_work,
842                                   bool skip_if_busy)
843 {
844         struct bdi_writeback *last_wb = NULL;
845         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
846                                               struct bdi_writeback, bdi_node);
847
848         might_sleep();
849 restart:
850         rcu_read_lock();
851         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
852                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
853                 struct wb_writeback_work fallback_work;
854                 struct wb_writeback_work *work;
855                 long nr_pages;
856
857                 if (last_wb) {
858                         wb_put(last_wb);
859                         last_wb = NULL;
860                 }
861
862                 /* SYNC_ALL writes out I_DIRTY_TIME too */
863                 if (!wb_has_dirty_io(wb) &&
864                     (base_work->sync_mode == WB_SYNC_NONE ||
865                      list_empty(&wb->b_dirty_time)))
866                         continue;
867                 if (skip_if_busy && writeback_in_progress(wb))
868                         continue;
869
870                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
871
872                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
873                 if (work) {
874                         *work = *base_work;
875                         work->nr_pages = nr_pages;
876                         work->auto_free = 1;
877                         wb_queue_work(wb, work);
878                         continue;
879                 }
880
881                 /* alloc failed, execute synchronously using on-stack fallback */
882                 work = &fallback_work;
883                 *work = *base_work;
884                 work->nr_pages = nr_pages;
885                 work->auto_free = 0;
886                 work->done = &fallback_work_done;
887
888                 wb_queue_work(wb, work);
889
890                 /*
891                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
892                  * continuing iteration from @wb after dropping and
893                  * regrabbing rcu read lock.
894                  */
895                 wb_get(wb);
896                 last_wb = wb;
897
898                 rcu_read_unlock();
899                 wb_wait_for_completion(&fallback_work_done);
900                 goto restart;
901         }
902         rcu_read_unlock();
903
904         if (last_wb)
905                 wb_put(last_wb);
906 }
907
908 /**
909  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
910  * @bdi_id: target bdi id
911  * @memcg_id: target memcg css id
912  * @nr: number of pages to write, 0 for best-effort dirty flushing
913  * @reason: reason why some writeback work initiated
914  * @done: target wb_completion
915  *
916  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
917  * with the specified parameters.
918  */
919 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
920                            enum wb_reason reason, struct wb_completion *done)
921 {
922         struct backing_dev_info *bdi;
923         struct cgroup_subsys_state *memcg_css;
924         struct bdi_writeback *wb;
925         struct wb_writeback_work *work;
926         int ret;
927
928         /* lookup bdi and memcg */
929         bdi = bdi_get_by_id(bdi_id);
930         if (!bdi)
931                 return -ENOENT;
932
933         rcu_read_lock();
934         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
935         if (memcg_css && !css_tryget(memcg_css))
936                 memcg_css = NULL;
937         rcu_read_unlock();
938         if (!memcg_css) {
939                 ret = -ENOENT;
940                 goto out_bdi_put;
941         }
942
943         /*
944          * And find the associated wb.  If the wb isn't there already
945          * there's nothing to flush, don't create one.
946          */
947         wb = wb_get_lookup(bdi, memcg_css);
948         if (!wb) {
949                 ret = -ENOENT;
950                 goto out_css_put;
951         }
952
953         /*
954          * If @nr is zero, the caller is attempting to write out most of
955          * the currently dirty pages.  Let's take the current dirty page
956          * count and inflate it by 25% which should be large enough to
957          * flush out most dirty pages while avoiding getting livelocked by
958          * concurrent dirtiers.
959          */
960         if (!nr) {
961                 unsigned long filepages, headroom, dirty, writeback;
962
963                 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
964                                       &writeback);
965                 nr = dirty * 10 / 8;
966         }
967
968         /* issue the writeback work */
969         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
970         if (work) {
971                 work->nr_pages = nr;
972                 work->sync_mode = WB_SYNC_NONE;
973                 work->range_cyclic = 1;
974                 work->reason = reason;
975                 work->done = done;
976                 work->auto_free = 1;
977                 wb_queue_work(wb, work);
978                 ret = 0;
979         } else {
980                 ret = -ENOMEM;
981         }
982
983         wb_put(wb);
984 out_css_put:
985         css_put(memcg_css);
986 out_bdi_put:
987         bdi_put(bdi);
988         return ret;
989 }
990
991 /**
992  * cgroup_writeback_umount - flush inode wb switches for umount
993  *
994  * This function is called when a super_block is about to be destroyed and
995  * flushes in-flight inode wb switches.  An inode wb switch goes through
996  * RCU and then workqueue, so the two need to be flushed in order to ensure
997  * that all previously scheduled switches are finished.  As wb switches are
998  * rare occurrences and synchronize_rcu() can take a while, perform
999  * flushing iff wb switches are in flight.
1000  */
1001 void cgroup_writeback_umount(void)
1002 {
1003         if (atomic_read(&isw_nr_in_flight)) {
1004                 /*
1005                  * Use rcu_barrier() to wait for all pending callbacks to
1006                  * ensure that all in-flight wb switches are in the workqueue.
1007                  */
1008                 rcu_barrier();
1009                 flush_workqueue(isw_wq);
1010         }
1011 }
1012
1013 static int __init cgroup_writeback_init(void)
1014 {
1015         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1016         if (!isw_wq)
1017                 return -ENOMEM;
1018         return 0;
1019 }
1020 fs_initcall(cgroup_writeback_init);
1021
1022 #else   /* CONFIG_CGROUP_WRITEBACK */
1023
1024 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1025 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1026
1027 static struct bdi_writeback *
1028 locked_inode_to_wb_and_lock_list(struct inode *inode)
1029         __releases(&inode->i_lock)
1030         __acquires(&wb->list_lock)
1031 {
1032         struct bdi_writeback *wb = inode_to_wb(inode);
1033
1034         spin_unlock(&inode->i_lock);
1035         spin_lock(&wb->list_lock);
1036         return wb;
1037 }
1038
1039 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1040         __acquires(&wb->list_lock)
1041 {
1042         struct bdi_writeback *wb = inode_to_wb(inode);
1043
1044         spin_lock(&wb->list_lock);
1045         return wb;
1046 }
1047
1048 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1049 {
1050         return nr_pages;
1051 }
1052
1053 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1054                                   struct wb_writeback_work *base_work,
1055                                   bool skip_if_busy)
1056 {
1057         might_sleep();
1058
1059         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1060                 base_work->auto_free = 0;
1061                 wb_queue_work(&bdi->wb, base_work);
1062         }
1063 }
1064
1065 #endif  /* CONFIG_CGROUP_WRITEBACK */
1066
1067 /*
1068  * Add in the number of potentially dirty inodes, because each inode
1069  * write can dirty pagecache in the underlying blockdev.
1070  */
1071 static unsigned long get_nr_dirty_pages(void)
1072 {
1073         return global_node_page_state(NR_FILE_DIRTY) +
1074                 get_nr_dirty_inodes();
1075 }
1076
1077 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1078 {
1079         if (!wb_has_dirty_io(wb))
1080                 return;
1081
1082         /*
1083          * All callers of this function want to start writeback of all
1084          * dirty pages. Places like vmscan can call this at a very
1085          * high frequency, causing pointless allocations of tons of
1086          * work items and keeping the flusher threads busy retrieving
1087          * that work. Ensure that we only allow one of them pending and
1088          * inflight at the time.
1089          */
1090         if (test_bit(WB_start_all, &wb->state) ||
1091             test_and_set_bit(WB_start_all, &wb->state))
1092                 return;
1093
1094         wb->start_all_reason = reason;
1095         wb_wakeup(wb);
1096 }
1097
1098 /**
1099  * wb_start_background_writeback - start background writeback
1100  * @wb: bdi_writback to write from
1101  *
1102  * Description:
1103  *   This makes sure WB_SYNC_NONE background writeback happens. When
1104  *   this function returns, it is only guaranteed that for given wb
1105  *   some IO is happening if we are over background dirty threshold.
1106  *   Caller need not hold sb s_umount semaphore.
1107  */
1108 void wb_start_background_writeback(struct bdi_writeback *wb)
1109 {
1110         /*
1111          * We just wake up the flusher thread. It will perform background
1112          * writeback as soon as there is no other work to do.
1113          */
1114         trace_writeback_wake_background(wb);
1115         wb_wakeup(wb);
1116 }
1117
1118 /*
1119  * Remove the inode from the writeback list it is on.
1120  */
1121 void inode_io_list_del(struct inode *inode)
1122 {
1123         struct bdi_writeback *wb;
1124
1125         wb = inode_to_wb_and_lock_list(inode);
1126         spin_lock(&inode->i_lock);
1127         inode_io_list_del_locked(inode, wb);
1128         spin_unlock(&inode->i_lock);
1129         spin_unlock(&wb->list_lock);
1130 }
1131 EXPORT_SYMBOL(inode_io_list_del);
1132
1133 /*
1134  * mark an inode as under writeback on the sb
1135  */
1136 void sb_mark_inode_writeback(struct inode *inode)
1137 {
1138         struct super_block *sb = inode->i_sb;
1139         unsigned long flags;
1140
1141         if (list_empty(&inode->i_wb_list)) {
1142                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1143                 if (list_empty(&inode->i_wb_list)) {
1144                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1145                         trace_sb_mark_inode_writeback(inode);
1146                 }
1147                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1148         }
1149 }
1150
1151 /*
1152  * clear an inode as under writeback on the sb
1153  */
1154 void sb_clear_inode_writeback(struct inode *inode)
1155 {
1156         struct super_block *sb = inode->i_sb;
1157         unsigned long flags;
1158
1159         if (!list_empty(&inode->i_wb_list)) {
1160                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1161                 if (!list_empty(&inode->i_wb_list)) {
1162                         list_del_init(&inode->i_wb_list);
1163                         trace_sb_clear_inode_writeback(inode);
1164                 }
1165                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1166         }
1167 }
1168
1169 /*
1170  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1171  * furthest end of its superblock's dirty-inode list.
1172  *
1173  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1174  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1175  * the case then the inode must have been redirtied while it was being written
1176  * out and we don't reset its dirtied_when.
1177  */
1178 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1179 {
1180         assert_spin_locked(&inode->i_lock);
1181
1182         if (!list_empty(&wb->b_dirty)) {
1183                 struct inode *tail;
1184
1185                 tail = wb_inode(wb->b_dirty.next);
1186                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1187                         inode->dirtied_when = jiffies;
1188         }
1189         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1190         inode->i_state &= ~I_SYNC_QUEUED;
1191 }
1192
1193 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1194 {
1195         spin_lock(&inode->i_lock);
1196         redirty_tail_locked(inode, wb);
1197         spin_unlock(&inode->i_lock);
1198 }
1199
1200 /*
1201  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1202  */
1203 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1204 {
1205         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1206 }
1207
1208 static void inode_sync_complete(struct inode *inode)
1209 {
1210         inode->i_state &= ~I_SYNC;
1211         /* If inode is clean an unused, put it into LRU now... */
1212         inode_add_lru(inode);
1213         /* Waiters must see I_SYNC cleared before being woken up */
1214         smp_mb();
1215         wake_up_bit(&inode->i_state, __I_SYNC);
1216 }
1217
1218 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1219 {
1220         bool ret = time_after(inode->dirtied_when, t);
1221 #ifndef CONFIG_64BIT
1222         /*
1223          * For inodes being constantly redirtied, dirtied_when can get stuck.
1224          * It _appears_ to be in the future, but is actually in distant past.
1225          * This test is necessary to prevent such wrapped-around relative times
1226          * from permanently stopping the whole bdi writeback.
1227          */
1228         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1229 #endif
1230         return ret;
1231 }
1232
1233 #define EXPIRE_DIRTY_ATIME 0x0001
1234
1235 /*
1236  * Move expired (dirtied before dirtied_before) dirty inodes from
1237  * @delaying_queue to @dispatch_queue.
1238  */
1239 static int move_expired_inodes(struct list_head *delaying_queue,
1240                                struct list_head *dispatch_queue,
1241                                unsigned long dirtied_before)
1242 {
1243         LIST_HEAD(tmp);
1244         struct list_head *pos, *node;
1245         struct super_block *sb = NULL;
1246         struct inode *inode;
1247         int do_sb_sort = 0;
1248         int moved = 0;
1249
1250         while (!list_empty(delaying_queue)) {
1251                 inode = wb_inode(delaying_queue->prev);
1252                 if (inode_dirtied_after(inode, dirtied_before))
1253                         break;
1254                 list_move(&inode->i_io_list, &tmp);
1255                 moved++;
1256                 spin_lock(&inode->i_lock);
1257                 inode->i_state |= I_SYNC_QUEUED;
1258                 spin_unlock(&inode->i_lock);
1259                 if (sb_is_blkdev_sb(inode->i_sb))
1260                         continue;
1261                 if (sb && sb != inode->i_sb)
1262                         do_sb_sort = 1;
1263                 sb = inode->i_sb;
1264         }
1265
1266         /* just one sb in list, splice to dispatch_queue and we're done */
1267         if (!do_sb_sort) {
1268                 list_splice(&tmp, dispatch_queue);
1269                 goto out;
1270         }
1271
1272         /* Move inodes from one superblock together */
1273         while (!list_empty(&tmp)) {
1274                 sb = wb_inode(tmp.prev)->i_sb;
1275                 list_for_each_prev_safe(pos, node, &tmp) {
1276                         inode = wb_inode(pos);
1277                         if (inode->i_sb == sb)
1278                                 list_move(&inode->i_io_list, dispatch_queue);
1279                 }
1280         }
1281 out:
1282         return moved;
1283 }
1284
1285 /*
1286  * Queue all expired dirty inodes for io, eldest first.
1287  * Before
1288  *         newly dirtied     b_dirty    b_io    b_more_io
1289  *         =============>    gf         edc     BA
1290  * After
1291  *         newly dirtied     b_dirty    b_io    b_more_io
1292  *         =============>    g          fBAedc
1293  *                                           |
1294  *                                           +--> dequeue for IO
1295  */
1296 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1297                      unsigned long dirtied_before)
1298 {
1299         int moved;
1300         unsigned long time_expire_jif = dirtied_before;
1301
1302         assert_spin_locked(&wb->list_lock);
1303         list_splice_init(&wb->b_more_io, &wb->b_io);
1304         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1305         if (!work->for_sync)
1306                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1307         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1308                                      time_expire_jif);
1309         if (moved)
1310                 wb_io_lists_populated(wb);
1311         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1312 }
1313
1314 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1315 {
1316         int ret;
1317
1318         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1319                 trace_writeback_write_inode_start(inode, wbc);
1320                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1321                 trace_writeback_write_inode(inode, wbc);
1322                 return ret;
1323         }
1324         return 0;
1325 }
1326
1327 /*
1328  * Wait for writeback on an inode to complete. Called with i_lock held.
1329  * Caller must make sure inode cannot go away when we drop i_lock.
1330  */
1331 static void __inode_wait_for_writeback(struct inode *inode)
1332         __releases(inode->i_lock)
1333         __acquires(inode->i_lock)
1334 {
1335         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1336         wait_queue_head_t *wqh;
1337
1338         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1339         while (inode->i_state & I_SYNC) {
1340                 spin_unlock(&inode->i_lock);
1341                 __wait_on_bit(wqh, &wq, bit_wait,
1342                               TASK_UNINTERRUPTIBLE);
1343                 spin_lock(&inode->i_lock);
1344         }
1345 }
1346
1347 /*
1348  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1349  */
1350 void inode_wait_for_writeback(struct inode *inode)
1351 {
1352         spin_lock(&inode->i_lock);
1353         __inode_wait_for_writeback(inode);
1354         spin_unlock(&inode->i_lock);
1355 }
1356
1357 /*
1358  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1359  * held and drops it. It is aimed for callers not holding any inode reference
1360  * so once i_lock is dropped, inode can go away.
1361  */
1362 static void inode_sleep_on_writeback(struct inode *inode)
1363         __releases(inode->i_lock)
1364 {
1365         DEFINE_WAIT(wait);
1366         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1367         int sleep;
1368
1369         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1370         sleep = inode->i_state & I_SYNC;
1371         spin_unlock(&inode->i_lock);
1372         if (sleep)
1373                 schedule();
1374         finish_wait(wqh, &wait);
1375 }
1376
1377 /*
1378  * Find proper writeback list for the inode depending on its current state and
1379  * possibly also change of its state while we were doing writeback.  Here we
1380  * handle things such as livelock prevention or fairness of writeback among
1381  * inodes. This function can be called only by flusher thread - noone else
1382  * processes all inodes in writeback lists and requeueing inodes behind flusher
1383  * thread's back can have unexpected consequences.
1384  */
1385 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1386                           struct writeback_control *wbc)
1387 {
1388         if (inode->i_state & I_FREEING)
1389                 return;
1390
1391         /*
1392          * Sync livelock prevention. Each inode is tagged and synced in one
1393          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1394          * the dirty time to prevent enqueue and sync it again.
1395          */
1396         if ((inode->i_state & I_DIRTY) &&
1397             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1398                 inode->dirtied_when = jiffies;
1399
1400         if (wbc->pages_skipped) {
1401                 /*
1402                  * writeback is not making progress due to locked
1403                  * buffers. Skip this inode for now.
1404                  */
1405                 redirty_tail_locked(inode, wb);
1406                 return;
1407         }
1408
1409         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1410                 /*
1411                  * We didn't write back all the pages.  nfs_writepages()
1412                  * sometimes bales out without doing anything.
1413                  */
1414                 if (wbc->nr_to_write <= 0) {
1415                         /* Slice used up. Queue for next turn. */
1416                         requeue_io(inode, wb);
1417                 } else {
1418                         /*
1419                          * Writeback blocked by something other than
1420                          * congestion. Delay the inode for some time to
1421                          * avoid spinning on the CPU (100% iowait)
1422                          * retrying writeback of the dirty page/inode
1423                          * that cannot be performed immediately.
1424                          */
1425                         redirty_tail_locked(inode, wb);
1426                 }
1427         } else if (inode->i_state & I_DIRTY) {
1428                 /*
1429                  * Filesystems can dirty the inode during writeback operations,
1430                  * such as delayed allocation during submission or metadata
1431                  * updates after data IO completion.
1432                  */
1433                 redirty_tail_locked(inode, wb);
1434         } else if (inode->i_state & I_DIRTY_TIME) {
1435                 inode->dirtied_when = jiffies;
1436                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1437                 inode->i_state &= ~I_SYNC_QUEUED;
1438         } else {
1439                 /* The inode is clean. Remove from writeback lists. */
1440                 inode_io_list_del_locked(inode, wb);
1441         }
1442 }
1443
1444 /*
1445  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1446  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1447  *
1448  * This doesn't remove the inode from the writeback list it is on, except
1449  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1450  * expiration.  The caller is otherwise responsible for writeback list handling.
1451  *
1452  * The caller is also responsible for setting the I_SYNC flag beforehand and
1453  * calling inode_sync_complete() to clear it afterwards.
1454  */
1455 static int
1456 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1457 {
1458         struct address_space *mapping = inode->i_mapping;
1459         long nr_to_write = wbc->nr_to_write;
1460         unsigned dirty;
1461         int ret;
1462
1463         WARN_ON(!(inode->i_state & I_SYNC));
1464
1465         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1466
1467         ret = do_writepages(mapping, wbc);
1468
1469         /*
1470          * Make sure to wait on the data before writing out the metadata.
1471          * This is important for filesystems that modify metadata on data
1472          * I/O completion. We don't do it for sync(2) writeback because it has a
1473          * separate, external IO completion path and ->sync_fs for guaranteeing
1474          * inode metadata is written back correctly.
1475          */
1476         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1477                 int err = filemap_fdatawait(mapping);
1478                 if (ret == 0)
1479                         ret = err;
1480         }
1481
1482         /*
1483          * If the inode has dirty timestamps and we need to write them, call
1484          * mark_inode_dirty_sync() to notify the filesystem about it and to
1485          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1486          */
1487         if ((inode->i_state & I_DIRTY_TIME) &&
1488             (wbc->sync_mode == WB_SYNC_ALL ||
1489              time_after(jiffies, inode->dirtied_time_when +
1490                         dirtytime_expire_interval * HZ))) {
1491                 trace_writeback_lazytime(inode);
1492                 mark_inode_dirty_sync(inode);
1493         }
1494
1495         /*
1496          * Get and clear the dirty flags from i_state.  This needs to be done
1497          * after calling writepages because some filesystems may redirty the
1498          * inode during writepages due to delalloc.  It also needs to be done
1499          * after handling timestamp expiration, as that may dirty the inode too.
1500          */
1501         spin_lock(&inode->i_lock);
1502         dirty = inode->i_state & I_DIRTY;
1503         inode->i_state &= ~dirty;
1504
1505         /*
1506          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1507          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1508          * either they see the I_DIRTY bits cleared or we see the dirtied
1509          * inode.
1510          *
1511          * I_DIRTY_PAGES is always cleared together above even if @mapping
1512          * still has dirty pages.  The flag is reinstated after smp_mb() if
1513          * necessary.  This guarantees that either __mark_inode_dirty()
1514          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1515          */
1516         smp_mb();
1517
1518         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1519                 inode->i_state |= I_DIRTY_PAGES;
1520
1521         spin_unlock(&inode->i_lock);
1522
1523         /* Don't write the inode if only I_DIRTY_PAGES was set */
1524         if (dirty & ~I_DIRTY_PAGES) {
1525                 int err = write_inode(inode, wbc);
1526                 if (ret == 0)
1527                         ret = err;
1528         }
1529         trace_writeback_single_inode(inode, wbc, nr_to_write);
1530         return ret;
1531 }
1532
1533 /*
1534  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1535  * the regular batched writeback done by the flusher threads in
1536  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1537  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1538  *
1539  * To prevent the inode from going away, either the caller must have a reference
1540  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1541  */
1542 static int writeback_single_inode(struct inode *inode,
1543                                   struct writeback_control *wbc)
1544 {
1545         struct bdi_writeback *wb;
1546         int ret = 0;
1547
1548         spin_lock(&inode->i_lock);
1549         if (!atomic_read(&inode->i_count))
1550                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1551         else
1552                 WARN_ON(inode->i_state & I_WILL_FREE);
1553
1554         if (inode->i_state & I_SYNC) {
1555                 /*
1556                  * Writeback is already running on the inode.  For WB_SYNC_NONE,
1557                  * that's enough and we can just return.  For WB_SYNC_ALL, we
1558                  * must wait for the existing writeback to complete, then do
1559                  * writeback again if there's anything left.
1560                  */
1561                 if (wbc->sync_mode != WB_SYNC_ALL)
1562                         goto out;
1563                 __inode_wait_for_writeback(inode);
1564         }
1565         WARN_ON(inode->i_state & I_SYNC);
1566         /*
1567          * If the inode is already fully clean, then there's nothing to do.
1568          *
1569          * For data-integrity syncs we also need to check whether any pages are
1570          * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1571          * there are any such pages, we'll need to wait for them.
1572          */
1573         if (!(inode->i_state & I_DIRTY_ALL) &&
1574             (wbc->sync_mode != WB_SYNC_ALL ||
1575              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1576                 goto out;
1577         inode->i_state |= I_SYNC;
1578         wbc_attach_and_unlock_inode(wbc, inode);
1579
1580         ret = __writeback_single_inode(inode, wbc);
1581
1582         wbc_detach_inode(wbc);
1583
1584         wb = inode_to_wb_and_lock_list(inode);
1585         spin_lock(&inode->i_lock);
1586         /*
1587          * If the inode is now fully clean, then it can be safely removed from
1588          * its writeback list (if any).  Otherwise the flusher threads are
1589          * responsible for the writeback lists.
1590          */
1591         if (!(inode->i_state & I_DIRTY_ALL))
1592                 inode_io_list_del_locked(inode, wb);
1593         spin_unlock(&wb->list_lock);
1594         inode_sync_complete(inode);
1595 out:
1596         spin_unlock(&inode->i_lock);
1597         return ret;
1598 }
1599
1600 static long writeback_chunk_size(struct bdi_writeback *wb,
1601                                  struct wb_writeback_work *work)
1602 {
1603         long pages;
1604
1605         /*
1606          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1607          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1608          * here avoids calling into writeback_inodes_wb() more than once.
1609          *
1610          * The intended call sequence for WB_SYNC_ALL writeback is:
1611          *
1612          *      wb_writeback()
1613          *          writeback_sb_inodes()       <== called only once
1614          *              write_cache_pages()     <== called once for each inode
1615          *                   (quickly) tag currently dirty pages
1616          *                   (maybe slowly) sync all tagged pages
1617          */
1618         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1619                 pages = LONG_MAX;
1620         else {
1621                 pages = min(wb->avg_write_bandwidth / 2,
1622                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1623                 pages = min(pages, work->nr_pages);
1624                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1625                                    MIN_WRITEBACK_PAGES);
1626         }
1627
1628         return pages;
1629 }
1630
1631 /*
1632  * Write a portion of b_io inodes which belong to @sb.
1633  *
1634  * Return the number of pages and/or inodes written.
1635  *
1636  * NOTE! This is called with wb->list_lock held, and will
1637  * unlock and relock that for each inode it ends up doing
1638  * IO for.
1639  */
1640 static long writeback_sb_inodes(struct super_block *sb,
1641                                 struct bdi_writeback *wb,
1642                                 struct wb_writeback_work *work)
1643 {
1644         struct writeback_control wbc = {
1645                 .sync_mode              = work->sync_mode,
1646                 .tagged_writepages      = work->tagged_writepages,
1647                 .for_kupdate            = work->for_kupdate,
1648                 .for_background         = work->for_background,
1649                 .for_sync               = work->for_sync,
1650                 .range_cyclic           = work->range_cyclic,
1651                 .range_start            = 0,
1652                 .range_end              = LLONG_MAX,
1653         };
1654         unsigned long start_time = jiffies;
1655         long write_chunk;
1656         long wrote = 0;  /* count both pages and inodes */
1657
1658         while (!list_empty(&wb->b_io)) {
1659                 struct inode *inode = wb_inode(wb->b_io.prev);
1660                 struct bdi_writeback *tmp_wb;
1661
1662                 if (inode->i_sb != sb) {
1663                         if (work->sb) {
1664                                 /*
1665                                  * We only want to write back data for this
1666                                  * superblock, move all inodes not belonging
1667                                  * to it back onto the dirty list.
1668                                  */
1669                                 redirty_tail(inode, wb);
1670                                 continue;
1671                         }
1672
1673                         /*
1674                          * The inode belongs to a different superblock.
1675                          * Bounce back to the caller to unpin this and
1676                          * pin the next superblock.
1677                          */
1678                         break;
1679                 }
1680
1681                 /*
1682                  * Don't bother with new inodes or inodes being freed, first
1683                  * kind does not need periodic writeout yet, and for the latter
1684                  * kind writeout is handled by the freer.
1685                  */
1686                 spin_lock(&inode->i_lock);
1687                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1688                         redirty_tail_locked(inode, wb);
1689                         spin_unlock(&inode->i_lock);
1690                         continue;
1691                 }
1692                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1693                         /*
1694                          * If this inode is locked for writeback and we are not
1695                          * doing writeback-for-data-integrity, move it to
1696                          * b_more_io so that writeback can proceed with the
1697                          * other inodes on s_io.
1698                          *
1699                          * We'll have another go at writing back this inode
1700                          * when we completed a full scan of b_io.
1701                          */
1702                         spin_unlock(&inode->i_lock);
1703                         requeue_io(inode, wb);
1704                         trace_writeback_sb_inodes_requeue(inode);
1705                         continue;
1706                 }
1707                 spin_unlock(&wb->list_lock);
1708
1709                 /*
1710                  * We already requeued the inode if it had I_SYNC set and we
1711                  * are doing WB_SYNC_NONE writeback. So this catches only the
1712                  * WB_SYNC_ALL case.
1713                  */
1714                 if (inode->i_state & I_SYNC) {
1715                         /* Wait for I_SYNC. This function drops i_lock... */
1716                         inode_sleep_on_writeback(inode);
1717                         /* Inode may be gone, start again */
1718                         spin_lock(&wb->list_lock);
1719                         continue;
1720                 }
1721                 inode->i_state |= I_SYNC;
1722                 wbc_attach_and_unlock_inode(&wbc, inode);
1723
1724                 write_chunk = writeback_chunk_size(wb, work);
1725                 wbc.nr_to_write = write_chunk;
1726                 wbc.pages_skipped = 0;
1727
1728                 /*
1729                  * We use I_SYNC to pin the inode in memory. While it is set
1730                  * evict_inode() will wait so the inode cannot be freed.
1731                  */
1732                 __writeback_single_inode(inode, &wbc);
1733
1734                 wbc_detach_inode(&wbc);
1735                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1736                 wrote += write_chunk - wbc.nr_to_write;
1737
1738                 if (need_resched()) {
1739                         /*
1740                          * We're trying to balance between building up a nice
1741                          * long list of IOs to improve our merge rate, and
1742                          * getting those IOs out quickly for anyone throttling
1743                          * in balance_dirty_pages().  cond_resched() doesn't
1744                          * unplug, so get our IOs out the door before we
1745                          * give up the CPU.
1746                          */
1747                         blk_flush_plug(current);
1748                         cond_resched();
1749                 }
1750
1751                 /*
1752                  * Requeue @inode if still dirty.  Be careful as @inode may
1753                  * have been switched to another wb in the meantime.
1754                  */
1755                 tmp_wb = inode_to_wb_and_lock_list(inode);
1756                 spin_lock(&inode->i_lock);
1757                 if (!(inode->i_state & I_DIRTY_ALL))
1758                         wrote++;
1759                 requeue_inode(inode, tmp_wb, &wbc);
1760                 inode_sync_complete(inode);
1761                 spin_unlock(&inode->i_lock);
1762
1763                 if (unlikely(tmp_wb != wb)) {
1764                         spin_unlock(&tmp_wb->list_lock);
1765                         spin_lock(&wb->list_lock);
1766                 }
1767
1768                 /*
1769                  * bail out to wb_writeback() often enough to check
1770                  * background threshold and other termination conditions.
1771                  */
1772                 if (wrote) {
1773                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1774                                 break;
1775                         if (work->nr_pages <= 0)
1776                                 break;
1777                 }
1778         }
1779         return wrote;
1780 }
1781
1782 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1783                                   struct wb_writeback_work *work)
1784 {
1785         unsigned long start_time = jiffies;
1786         long wrote = 0;
1787
1788         while (!list_empty(&wb->b_io)) {
1789                 struct inode *inode = wb_inode(wb->b_io.prev);
1790                 struct super_block *sb = inode->i_sb;
1791
1792                 if (!trylock_super(sb)) {
1793                         /*
1794                          * trylock_super() may fail consistently due to
1795                          * s_umount being grabbed by someone else. Don't use
1796                          * requeue_io() to avoid busy retrying the inode/sb.
1797                          */
1798                         redirty_tail(inode, wb);
1799                         continue;
1800                 }
1801                 wrote += writeback_sb_inodes(sb, wb, work);
1802                 up_read(&sb->s_umount);
1803
1804                 /* refer to the same tests at the end of writeback_sb_inodes */
1805                 if (wrote) {
1806                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1807                                 break;
1808                         if (work->nr_pages <= 0)
1809                                 break;
1810                 }
1811         }
1812         /* Leave any unwritten inodes on b_io */
1813         return wrote;
1814 }
1815
1816 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1817                                 enum wb_reason reason)
1818 {
1819         struct wb_writeback_work work = {
1820                 .nr_pages       = nr_pages,
1821                 .sync_mode      = WB_SYNC_NONE,
1822                 .range_cyclic   = 1,
1823                 .reason         = reason,
1824         };
1825         struct blk_plug plug;
1826
1827         blk_start_plug(&plug);
1828         spin_lock(&wb->list_lock);
1829         if (list_empty(&wb->b_io))
1830                 queue_io(wb, &work, jiffies);
1831         __writeback_inodes_wb(wb, &work);
1832         spin_unlock(&wb->list_lock);
1833         blk_finish_plug(&plug);
1834
1835         return nr_pages - work.nr_pages;
1836 }
1837
1838 /*
1839  * Explicit flushing or periodic writeback of "old" data.
1840  *
1841  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1842  * dirtying-time in the inode's address_space.  So this periodic writeback code
1843  * just walks the superblock inode list, writing back any inodes which are
1844  * older than a specific point in time.
1845  *
1846  * Try to run once per dirty_writeback_interval.  But if a writeback event
1847  * takes longer than a dirty_writeback_interval interval, then leave a
1848  * one-second gap.
1849  *
1850  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1851  * all dirty pages if they are all attached to "old" mappings.
1852  */
1853 static long wb_writeback(struct bdi_writeback *wb,
1854                          struct wb_writeback_work *work)
1855 {
1856         unsigned long wb_start = jiffies;
1857         long nr_pages = work->nr_pages;
1858         unsigned long dirtied_before = jiffies;
1859         struct inode *inode;
1860         long progress;
1861         struct blk_plug plug;
1862
1863         blk_start_plug(&plug);
1864         spin_lock(&wb->list_lock);
1865         for (;;) {
1866                 /*
1867                  * Stop writeback when nr_pages has been consumed
1868                  */
1869                 if (work->nr_pages <= 0)
1870                         break;
1871
1872                 /*
1873                  * Background writeout and kupdate-style writeback may
1874                  * run forever. Stop them if there is other work to do
1875                  * so that e.g. sync can proceed. They'll be restarted
1876                  * after the other works are all done.
1877                  */
1878                 if ((work->for_background || work->for_kupdate) &&
1879                     !list_empty(&wb->work_list))
1880                         break;
1881
1882                 /*
1883                  * For background writeout, stop when we are below the
1884                  * background dirty threshold
1885                  */
1886                 if (work->for_background && !wb_over_bg_thresh(wb))
1887                         break;
1888
1889                 /*
1890                  * Kupdate and background works are special and we want to
1891                  * include all inodes that need writing. Livelock avoidance is
1892                  * handled by these works yielding to any other work so we are
1893                  * safe.
1894                  */
1895                 if (work->for_kupdate) {
1896                         dirtied_before = jiffies -
1897                                 msecs_to_jiffies(dirty_expire_interval * 10);
1898                 } else if (work->for_background)
1899                         dirtied_before = jiffies;
1900
1901                 trace_writeback_start(wb, work);
1902                 if (list_empty(&wb->b_io))
1903                         queue_io(wb, work, dirtied_before);
1904                 if (work->sb)
1905                         progress = writeback_sb_inodes(work->sb, wb, work);
1906                 else
1907                         progress = __writeback_inodes_wb(wb, work);
1908                 trace_writeback_written(wb, work);
1909
1910                 wb_update_bandwidth(wb, wb_start);
1911
1912                 /*
1913                  * Did we write something? Try for more
1914                  *
1915                  * Dirty inodes are moved to b_io for writeback in batches.
1916                  * The completion of the current batch does not necessarily
1917                  * mean the overall work is done. So we keep looping as long
1918                  * as made some progress on cleaning pages or inodes.
1919                  */
1920                 if (progress)
1921                         continue;
1922                 /*
1923                  * No more inodes for IO, bail
1924                  */
1925                 if (list_empty(&wb->b_more_io))
1926                         break;
1927                 /*
1928                  * Nothing written. Wait for some inode to
1929                  * become available for writeback. Otherwise
1930                  * we'll just busyloop.
1931                  */
1932                 trace_writeback_wait(wb, work);
1933                 inode = wb_inode(wb->b_more_io.prev);
1934                 spin_lock(&inode->i_lock);
1935                 spin_unlock(&wb->list_lock);
1936                 /* This function drops i_lock... */
1937                 inode_sleep_on_writeback(inode);
1938                 spin_lock(&wb->list_lock);
1939         }
1940         spin_unlock(&wb->list_lock);
1941         blk_finish_plug(&plug);
1942
1943         return nr_pages - work->nr_pages;
1944 }
1945
1946 /*
1947  * Return the next wb_writeback_work struct that hasn't been processed yet.
1948  */
1949 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1950 {
1951         struct wb_writeback_work *work = NULL;
1952
1953         spin_lock_bh(&wb->work_lock);
1954         if (!list_empty(&wb->work_list)) {
1955                 work = list_entry(wb->work_list.next,
1956                                   struct wb_writeback_work, list);
1957                 list_del_init(&work->list);
1958         }
1959         spin_unlock_bh(&wb->work_lock);
1960         return work;
1961 }
1962
1963 static long wb_check_background_flush(struct bdi_writeback *wb)
1964 {
1965         if (wb_over_bg_thresh(wb)) {
1966
1967                 struct wb_writeback_work work = {
1968                         .nr_pages       = LONG_MAX,
1969                         .sync_mode      = WB_SYNC_NONE,
1970                         .for_background = 1,
1971                         .range_cyclic   = 1,
1972                         .reason         = WB_REASON_BACKGROUND,
1973                 };
1974
1975                 return wb_writeback(wb, &work);
1976         }
1977
1978         return 0;
1979 }
1980
1981 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1982 {
1983         unsigned long expired;
1984         long nr_pages;
1985
1986         /*
1987          * When set to zero, disable periodic writeback
1988          */
1989         if (!dirty_writeback_interval)
1990                 return 0;
1991
1992         expired = wb->last_old_flush +
1993                         msecs_to_jiffies(dirty_writeback_interval * 10);
1994         if (time_before(jiffies, expired))
1995                 return 0;
1996
1997         wb->last_old_flush = jiffies;
1998         nr_pages = get_nr_dirty_pages();
1999
2000         if (nr_pages) {
2001                 struct wb_writeback_work work = {
2002                         .nr_pages       = nr_pages,
2003                         .sync_mode      = WB_SYNC_NONE,
2004                         .for_kupdate    = 1,
2005                         .range_cyclic   = 1,
2006                         .reason         = WB_REASON_PERIODIC,
2007                 };
2008
2009                 return wb_writeback(wb, &work);
2010         }
2011
2012         return 0;
2013 }
2014
2015 static long wb_check_start_all(struct bdi_writeback *wb)
2016 {
2017         long nr_pages;
2018
2019         if (!test_bit(WB_start_all, &wb->state))
2020                 return 0;
2021
2022         nr_pages = get_nr_dirty_pages();
2023         if (nr_pages) {
2024                 struct wb_writeback_work work = {
2025                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2026                         .sync_mode      = WB_SYNC_NONE,
2027                         .range_cyclic   = 1,
2028                         .reason         = wb->start_all_reason,
2029                 };
2030
2031                 nr_pages = wb_writeback(wb, &work);
2032         }
2033
2034         clear_bit(WB_start_all, &wb->state);
2035         return nr_pages;
2036 }
2037
2038
2039 /*
2040  * Retrieve work items and do the writeback they describe
2041  */
2042 static long wb_do_writeback(struct bdi_writeback *wb)
2043 {
2044         struct wb_writeback_work *work;
2045         long wrote = 0;
2046
2047         set_bit(WB_writeback_running, &wb->state);
2048         while ((work = get_next_work_item(wb)) != NULL) {
2049                 trace_writeback_exec(wb, work);
2050                 wrote += wb_writeback(wb, work);
2051                 finish_writeback_work(wb, work);
2052         }
2053
2054         /*
2055          * Check for a flush-everything request
2056          */
2057         wrote += wb_check_start_all(wb);
2058
2059         /*
2060          * Check for periodic writeback, kupdated() style
2061          */
2062         wrote += wb_check_old_data_flush(wb);
2063         wrote += wb_check_background_flush(wb);
2064         clear_bit(WB_writeback_running, &wb->state);
2065
2066         return wrote;
2067 }
2068
2069 /*
2070  * Handle writeback of dirty data for the device backed by this bdi. Also
2071  * reschedules periodically and does kupdated style flushing.
2072  */
2073 void wb_workfn(struct work_struct *work)
2074 {
2075         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2076                                                 struct bdi_writeback, dwork);
2077         long pages_written;
2078
2079         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2080         current->flags |= PF_SWAPWRITE;
2081
2082         if (likely(!current_is_workqueue_rescuer() ||
2083                    !test_bit(WB_registered, &wb->state))) {
2084                 /*
2085                  * The normal path.  Keep writing back @wb until its
2086                  * work_list is empty.  Note that this path is also taken
2087                  * if @wb is shutting down even when we're running off the
2088                  * rescuer as work_list needs to be drained.
2089                  */
2090                 do {
2091                         pages_written = wb_do_writeback(wb);
2092                         trace_writeback_pages_written(pages_written);
2093                 } while (!list_empty(&wb->work_list));
2094         } else {
2095                 /*
2096                  * bdi_wq can't get enough workers and we're running off
2097                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2098                  * enough for efficient IO.
2099                  */
2100                 pages_written = writeback_inodes_wb(wb, 1024,
2101                                                     WB_REASON_FORKER_THREAD);
2102                 trace_writeback_pages_written(pages_written);
2103         }
2104
2105         if (!list_empty(&wb->work_list))
2106                 wb_wakeup(wb);
2107         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2108                 wb_wakeup_delayed(wb);
2109
2110         current->flags &= ~PF_SWAPWRITE;
2111 }
2112
2113 /*
2114  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2115  * write back the whole world.
2116  */
2117 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2118                                          enum wb_reason reason)
2119 {
2120         struct bdi_writeback *wb;
2121
2122         if (!bdi_has_dirty_io(bdi))
2123                 return;
2124
2125         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2126                 wb_start_writeback(wb, reason);
2127 }
2128
2129 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2130                                 enum wb_reason reason)
2131 {
2132         rcu_read_lock();
2133         __wakeup_flusher_threads_bdi(bdi, reason);
2134         rcu_read_unlock();
2135 }
2136
2137 /*
2138  * Wakeup the flusher threads to start writeback of all currently dirty pages
2139  */
2140 void wakeup_flusher_threads(enum wb_reason reason)
2141 {
2142         struct backing_dev_info *bdi;
2143
2144         /*
2145          * If we are expecting writeback progress we must submit plugged IO.
2146          */
2147         if (blk_needs_flush_plug(current))
2148                 blk_schedule_flush_plug(current);
2149
2150         rcu_read_lock();
2151         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2152                 __wakeup_flusher_threads_bdi(bdi, reason);
2153         rcu_read_unlock();
2154 }
2155
2156 /*
2157  * Wake up bdi's periodically to make sure dirtytime inodes gets
2158  * written back periodically.  We deliberately do *not* check the
2159  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2160  * kernel to be constantly waking up once there are any dirtytime
2161  * inodes on the system.  So instead we define a separate delayed work
2162  * function which gets called much more rarely.  (By default, only
2163  * once every 12 hours.)
2164  *
2165  * If there is any other write activity going on in the file system,
2166  * this function won't be necessary.  But if the only thing that has
2167  * happened on the file system is a dirtytime inode caused by an atime
2168  * update, we need this infrastructure below to make sure that inode
2169  * eventually gets pushed out to disk.
2170  */
2171 static void wakeup_dirtytime_writeback(struct work_struct *w);
2172 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2173
2174 static void wakeup_dirtytime_writeback(struct work_struct *w)
2175 {
2176         struct backing_dev_info *bdi;
2177
2178         rcu_read_lock();
2179         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2180                 struct bdi_writeback *wb;
2181
2182                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2183                         if (!list_empty(&wb->b_dirty_time))
2184                                 wb_wakeup(wb);
2185         }
2186         rcu_read_unlock();
2187         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2188 }
2189
2190 static int __init start_dirtytime_writeback(void)
2191 {
2192         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2193         return 0;
2194 }
2195 __initcall(start_dirtytime_writeback);
2196
2197 int dirtytime_interval_handler(struct ctl_table *table, int write,
2198                                void *buffer, size_t *lenp, loff_t *ppos)
2199 {
2200         int ret;
2201
2202         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2203         if (ret == 0 && write)
2204                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2205         return ret;
2206 }
2207
2208 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2209 {
2210         if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2211                 struct dentry *dentry;
2212                 const char *name = "?";
2213
2214                 dentry = d_find_alias(inode);
2215                 if (dentry) {
2216                         spin_lock(&dentry->d_lock);
2217                         name = (const char *) dentry->d_name.name;
2218                 }
2219                 printk(KERN_DEBUG
2220                        "%s(%d): dirtied inode %lu (%s) on %s\n",
2221                        current->comm, task_pid_nr(current), inode->i_ino,
2222                        name, inode->i_sb->s_id);
2223                 if (dentry) {
2224                         spin_unlock(&dentry->d_lock);
2225                         dput(dentry);
2226                 }
2227         }
2228 }
2229
2230 /**
2231  * __mark_inode_dirty - internal function to mark an inode dirty
2232  *
2233  * @inode: inode to mark
2234  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2235  *         multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2236  *         with I_DIRTY_PAGES.
2237  *
2238  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2239  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2240  *
2241  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2242  * instead of calling this directly.
2243  *
2244  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2245  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2246  * even if they are later hashed, as they will have been marked dirty already.
2247  *
2248  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2249  *
2250  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2251  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2252  * the kernel-internal blockdev inode represents the dirtying time of the
2253  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2254  * page->mapping->host, so the page-dirtying time is recorded in the internal
2255  * blockdev inode.
2256  */
2257 void __mark_inode_dirty(struct inode *inode, int flags)
2258 {
2259         struct super_block *sb = inode->i_sb;
2260         int dirtytime = 0;
2261
2262         trace_writeback_mark_inode_dirty(inode, flags);
2263
2264         if (flags & I_DIRTY_INODE) {
2265                 /*
2266                  * Notify the filesystem about the inode being dirtied, so that
2267                  * (if needed) it can update on-disk fields and journal the
2268                  * inode.  This is only needed when the inode itself is being
2269                  * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2270                  * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2271                  */
2272                 trace_writeback_dirty_inode_start(inode, flags);
2273                 if (sb->s_op->dirty_inode)
2274                         sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2275                 trace_writeback_dirty_inode(inode, flags);
2276
2277                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2278                 flags &= ~I_DIRTY_TIME;
2279         } else {
2280                 /*
2281                  * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2282                  * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2283                  * in one call to __mark_inode_dirty().)
2284                  */
2285                 dirtytime = flags & I_DIRTY_TIME;
2286                 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2287         }
2288
2289         /*
2290          * Paired with smp_mb() in __writeback_single_inode() for the
2291          * following lockless i_state test.  See there for details.
2292          */
2293         smp_mb();
2294
2295         if (((inode->i_state & flags) == flags) ||
2296             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2297                 return;
2298
2299         if (unlikely(block_dump))
2300                 block_dump___mark_inode_dirty(inode);
2301
2302         spin_lock(&inode->i_lock);
2303         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2304                 goto out_unlock_inode;
2305         if ((inode->i_state & flags) != flags) {
2306                 const int was_dirty = inode->i_state & I_DIRTY;
2307
2308                 inode_attach_wb(inode, NULL);
2309
2310                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2311                 if (flags & I_DIRTY_INODE)
2312                         inode->i_state &= ~I_DIRTY_TIME;
2313                 inode->i_state |= flags;
2314
2315                 /*
2316                  * If the inode is queued for writeback by flush worker, just
2317                  * update its dirty state. Once the flush worker is done with
2318                  * the inode it will place it on the appropriate superblock
2319                  * list, based upon its state.
2320                  */
2321                 if (inode->i_state & I_SYNC_QUEUED)
2322                         goto out_unlock_inode;
2323
2324                 /*
2325                  * Only add valid (hashed) inodes to the superblock's
2326                  * dirty list.  Add blockdev inodes as well.
2327                  */
2328                 if (!S_ISBLK(inode->i_mode)) {
2329                         if (inode_unhashed(inode))
2330                                 goto out_unlock_inode;
2331                 }
2332                 if (inode->i_state & I_FREEING)
2333                         goto out_unlock_inode;
2334
2335                 /*
2336                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2337                  * reposition it (that would break b_dirty time-ordering).
2338                  */
2339                 if (!was_dirty) {
2340                         struct bdi_writeback *wb;
2341                         struct list_head *dirty_list;
2342                         bool wakeup_bdi = false;
2343
2344                         wb = locked_inode_to_wb_and_lock_list(inode);
2345
2346                         inode->dirtied_when = jiffies;
2347                         if (dirtytime)
2348                                 inode->dirtied_time_when = jiffies;
2349
2350                         if (inode->i_state & I_DIRTY)
2351                                 dirty_list = &wb->b_dirty;
2352                         else
2353                                 dirty_list = &wb->b_dirty_time;
2354
2355                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2356                                                                dirty_list);
2357
2358                         spin_unlock(&wb->list_lock);
2359                         trace_writeback_dirty_inode_enqueue(inode);
2360
2361                         /*
2362                          * If this is the first dirty inode for this bdi,
2363                          * we have to wake-up the corresponding bdi thread
2364                          * to make sure background write-back happens
2365                          * later.
2366                          */
2367                         if (wakeup_bdi &&
2368                             (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2369                                 wb_wakeup_delayed(wb);
2370                         return;
2371                 }
2372         }
2373 out_unlock_inode:
2374         spin_unlock(&inode->i_lock);
2375 }
2376 EXPORT_SYMBOL(__mark_inode_dirty);
2377
2378 /*
2379  * The @s_sync_lock is used to serialise concurrent sync operations
2380  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2381  * Concurrent callers will block on the s_sync_lock rather than doing contending
2382  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2383  * has been issued up to the time this function is enter is guaranteed to be
2384  * completed by the time we have gained the lock and waited for all IO that is
2385  * in progress regardless of the order callers are granted the lock.
2386  */
2387 static void wait_sb_inodes(struct super_block *sb)
2388 {
2389         LIST_HEAD(sync_list);
2390
2391         /*
2392          * We need to be protected against the filesystem going from
2393          * r/o to r/w or vice versa.
2394          */
2395         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2396
2397         mutex_lock(&sb->s_sync_lock);
2398
2399         /*
2400          * Splice the writeback list onto a temporary list to avoid waiting on
2401          * inodes that have started writeback after this point.
2402          *
2403          * Use rcu_read_lock() to keep the inodes around until we have a
2404          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2405          * the local list because inodes can be dropped from either by writeback
2406          * completion.
2407          */
2408         rcu_read_lock();
2409         spin_lock_irq(&sb->s_inode_wblist_lock);
2410         list_splice_init(&sb->s_inodes_wb, &sync_list);
2411
2412         /*
2413          * Data integrity sync. Must wait for all pages under writeback, because
2414          * there may have been pages dirtied before our sync call, but which had
2415          * writeout started before we write it out.  In which case, the inode
2416          * may not be on the dirty list, but we still have to wait for that
2417          * writeout.
2418          */
2419         while (!list_empty(&sync_list)) {
2420                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2421                                                        i_wb_list);
2422                 struct address_space *mapping = inode->i_mapping;
2423
2424                 /*
2425                  * Move each inode back to the wb list before we drop the lock
2426                  * to preserve consistency between i_wb_list and the mapping
2427                  * writeback tag. Writeback completion is responsible to remove
2428                  * the inode from either list once the writeback tag is cleared.
2429                  */
2430                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2431
2432                 /*
2433                  * The mapping can appear untagged while still on-list since we
2434                  * do not have the mapping lock. Skip it here, wb completion
2435                  * will remove it.
2436                  */
2437                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2438                         continue;
2439
2440                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2441
2442                 spin_lock(&inode->i_lock);
2443                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2444                         spin_unlock(&inode->i_lock);
2445
2446                         spin_lock_irq(&sb->s_inode_wblist_lock);
2447                         continue;
2448                 }
2449                 __iget(inode);
2450                 spin_unlock(&inode->i_lock);
2451                 rcu_read_unlock();
2452
2453                 /*
2454                  * We keep the error status of individual mapping so that
2455                  * applications can catch the writeback error using fsync(2).
2456                  * See filemap_fdatawait_keep_errors() for details.
2457                  */
2458                 filemap_fdatawait_keep_errors(mapping);
2459
2460                 cond_resched();
2461
2462                 iput(inode);
2463
2464                 rcu_read_lock();
2465                 spin_lock_irq(&sb->s_inode_wblist_lock);
2466         }
2467         spin_unlock_irq(&sb->s_inode_wblist_lock);
2468         rcu_read_unlock();
2469         mutex_unlock(&sb->s_sync_lock);
2470 }
2471
2472 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2473                                      enum wb_reason reason, bool skip_if_busy)
2474 {
2475         struct backing_dev_info *bdi = sb->s_bdi;
2476         DEFINE_WB_COMPLETION(done, bdi);
2477         struct wb_writeback_work work = {
2478                 .sb                     = sb,
2479                 .sync_mode              = WB_SYNC_NONE,
2480                 .tagged_writepages      = 1,
2481                 .done                   = &done,
2482                 .nr_pages               = nr,
2483                 .reason                 = reason,
2484         };
2485
2486         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2487                 return;
2488         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2489
2490         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2491         wb_wait_for_completion(&done);
2492 }
2493
2494 /**
2495  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2496  * @sb: the superblock
2497  * @nr: the number of pages to write
2498  * @reason: reason why some writeback work initiated
2499  *
2500  * Start writeback on some inodes on this super_block. No guarantees are made
2501  * on how many (if any) will be written, and this function does not wait
2502  * for IO completion of submitted IO.
2503  */
2504 void writeback_inodes_sb_nr(struct super_block *sb,
2505                             unsigned long nr,
2506                             enum wb_reason reason)
2507 {
2508         __writeback_inodes_sb_nr(sb, nr, reason, false);
2509 }
2510 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2511
2512 /**
2513  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2514  * @sb: the superblock
2515  * @reason: reason why some writeback work was initiated
2516  *
2517  * Start writeback on some inodes on this super_block. No guarantees are made
2518  * on how many (if any) will be written, and this function does not wait
2519  * for IO completion of submitted IO.
2520  */
2521 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2522 {
2523         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2524 }
2525 EXPORT_SYMBOL(writeback_inodes_sb);
2526
2527 /**
2528  * try_to_writeback_inodes_sb - try to start writeback if none underway
2529  * @sb: the superblock
2530  * @reason: reason why some writeback work was initiated
2531  *
2532  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2533  */
2534 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2535 {
2536         if (!down_read_trylock(&sb->s_umount))
2537                 return;
2538
2539         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2540         up_read(&sb->s_umount);
2541 }
2542 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2543
2544 /**
2545  * sync_inodes_sb       -       sync sb inode pages
2546  * @sb: the superblock
2547  *
2548  * This function writes and waits on any dirty inode belonging to this
2549  * super_block.
2550  */
2551 void sync_inodes_sb(struct super_block *sb)
2552 {
2553         struct backing_dev_info *bdi = sb->s_bdi;
2554         DEFINE_WB_COMPLETION(done, bdi);
2555         struct wb_writeback_work work = {
2556                 .sb             = sb,
2557                 .sync_mode      = WB_SYNC_ALL,
2558                 .nr_pages       = LONG_MAX,
2559                 .range_cyclic   = 0,
2560                 .done           = &done,
2561                 .reason         = WB_REASON_SYNC,
2562                 .for_sync       = 1,
2563         };
2564
2565         /*
2566          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2567          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2568          * bdi_has_dirty() need to be written out too.
2569          */
2570         if (bdi == &noop_backing_dev_info)
2571                 return;
2572         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2573
2574         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2575         bdi_down_write_wb_switch_rwsem(bdi);
2576         bdi_split_work_to_wbs(bdi, &work, false);
2577         wb_wait_for_completion(&done);
2578         bdi_up_write_wb_switch_rwsem(bdi);
2579
2580         wait_sb_inodes(sb);
2581 }
2582 EXPORT_SYMBOL(sync_inodes_sb);
2583
2584 /**
2585  * write_inode_now      -       write an inode to disk
2586  * @inode: inode to write to disk
2587  * @sync: whether the write should be synchronous or not
2588  *
2589  * This function commits an inode to disk immediately if it is dirty. This is
2590  * primarily needed by knfsd.
2591  *
2592  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2593  */
2594 int write_inode_now(struct inode *inode, int sync)
2595 {
2596         struct writeback_control wbc = {
2597                 .nr_to_write = LONG_MAX,
2598                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2599                 .range_start = 0,
2600                 .range_end = LLONG_MAX,
2601         };
2602
2603         if (!mapping_can_writeback(inode->i_mapping))
2604                 wbc.nr_to_write = 0;
2605
2606         might_sleep();
2607         return writeback_single_inode(inode, &wbc);
2608 }
2609 EXPORT_SYMBOL(write_inode_now);
2610
2611 /**
2612  * sync_inode - write an inode and its pages to disk.
2613  * @inode: the inode to sync
2614  * @wbc: controls the writeback mode
2615  *
2616  * sync_inode() will write an inode and its pages to disk.  It will also
2617  * correctly update the inode on its superblock's dirty inode lists and will
2618  * update inode->i_state.
2619  *
2620  * The caller must have a ref on the inode.
2621  */
2622 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2623 {
2624         return writeback_single_inode(inode, wbc);
2625 }
2626 EXPORT_SYMBOL(sync_inode);
2627
2628 /**
2629  * sync_inode_metadata - write an inode to disk
2630  * @inode: the inode to sync
2631  * @wait: wait for I/O to complete.
2632  *
2633  * Write an inode to disk and adjust its dirty state after completion.
2634  *
2635  * Note: only writes the actual inode, no associated data or other metadata.
2636  */
2637 int sync_inode_metadata(struct inode *inode, int wait)
2638 {
2639         struct writeback_control wbc = {
2640                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2641                 .nr_to_write = 0, /* metadata-only */
2642         };
2643
2644         return sync_inode(inode, &wbc);
2645 }
2646 EXPORT_SYMBOL(sync_inode_metadata);