1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2002, Linus Torvalds.
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
35 * 4MB minimal write chunk size
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
40 * Passed into wb_writeback(), essentially a subset of writeback_control
42 struct wb_writeback_work {
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
46 unsigned int tagged_writepages:1;
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
51 unsigned int auto_free:1; /* free on completion */
52 enum wb_reason reason; /* why was writeback initiated? */
54 struct list_head list; /* pending work list */
55 struct wb_completion *done; /* set if the caller waits */
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
70 static inline struct inode *wb_inode(struct list_head *head)
72 return list_entry(head, struct inode, i_io_list);
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
87 if (wb_has_dirty_io(wb)) {
90 set_bit(WB_has_dirty_io, &wb->state);
91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 clear_bit(WB_has_dirty_io, &wb->state);
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
118 static bool inode_io_list_move_locked(struct inode *inode,
119 struct bdi_writeback *wb,
120 struct list_head *head)
122 assert_spin_locked(&wb->list_lock);
123 assert_spin_locked(&inode->i_lock);
125 list_move(&inode->i_io_list, head);
127 /* dirty_time doesn't count as dirty_io until expiration */
128 if (head != &wb->b_dirty_time)
129 return wb_io_lists_populated(wb);
131 wb_io_lists_depopulated(wb);
135 static void wb_wakeup(struct bdi_writeback *wb)
137 spin_lock_irq(&wb->work_lock);
138 if (test_bit(WB_registered, &wb->state))
139 mod_delayed_work(bdi_wq, &wb->dwork, 0);
140 spin_unlock_irq(&wb->work_lock);
143 static void finish_writeback_work(struct bdi_writeback *wb,
144 struct wb_writeback_work *work)
146 struct wb_completion *done = work->done;
151 wait_queue_head_t *waitq = done->waitq;
153 /* @done can't be accessed after the following dec */
154 if (atomic_dec_and_test(&done->cnt))
159 static void wb_queue_work(struct bdi_writeback *wb,
160 struct wb_writeback_work *work)
162 trace_writeback_queue(wb, work);
165 atomic_inc(&work->done->cnt);
167 spin_lock_irq(&wb->work_lock);
169 if (test_bit(WB_registered, &wb->state)) {
170 list_add_tail(&work->list, &wb->work_list);
171 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 finish_writeback_work(wb, work);
175 spin_unlock_irq(&wb->work_lock);
179 * wb_wait_for_completion - wait for completion of bdi_writeback_works
180 * @done: target wb_completion
182 * Wait for one or more work items issued to @bdi with their ->done field
183 * set to @done, which should have been initialized with
184 * DEFINE_WB_COMPLETION(). This function returns after all such work items
185 * are completed. Work items which are waited upon aren't freed
186 * automatically on completion.
188 void wb_wait_for_completion(struct wb_completion *done)
190 atomic_dec(&done->cnt); /* put down the initial count */
191 wait_event(*done->waitq, !atomic_read(&done->cnt));
194 #ifdef CONFIG_CGROUP_WRITEBACK
197 * Parameters for foreign inode detection, see wbc_detach_inode() to see
200 * These paramters are inherently heuristical as the detection target
201 * itself is fuzzy. All we want to do is detaching an inode from the
202 * current owner if it's being written to by some other cgroups too much.
204 * The current cgroup writeback is built on the assumption that multiple
205 * cgroups writing to the same inode concurrently is very rare and a mode
206 * of operation which isn't well supported. As such, the goal is not
207 * taking too long when a different cgroup takes over an inode while
208 * avoiding too aggressive flip-flops from occasional foreign writes.
210 * We record, very roughly, 2s worth of IO time history and if more than
211 * half of that is foreign, trigger the switch. The recording is quantized
212 * to 16 slots. To avoid tiny writes from swinging the decision too much,
213 * writes smaller than 1/8 of avg size are ignored.
215 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
216 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
217 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
218 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
220 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
221 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
222 /* each slot's duration is 2s / 16 */
223 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
224 /* if foreign slots >= 8, switch */
225 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
226 /* one round can affect upto 5 slots */
227 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
230 * Maximum inodes per isw. A specific value has been chosen to make
231 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
233 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
234 / sizeof(struct inode *))
236 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
237 static struct workqueue_struct *isw_wq;
239 void __inode_attach_wb(struct inode *inode, struct page *page)
241 struct backing_dev_info *bdi = inode_to_bdi(inode);
242 struct bdi_writeback *wb = NULL;
244 if (inode_cgwb_enabled(inode)) {
245 struct cgroup_subsys_state *memcg_css;
248 memcg_css = mem_cgroup_css_from_page(page);
249 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
251 /* must pin memcg_css, see wb_get_create() */
252 memcg_css = task_get_css(current, memory_cgrp_id);
253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
262 * There may be multiple instances of this function racing to
263 * update the same inode. Use cmpxchg() to tell the winner.
265 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
268 EXPORT_SYMBOL_GPL(__inode_attach_wb);
271 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
272 * @inode: inode of interest with i_lock held
273 * @wb: target bdi_writeback
275 * Remove the inode from wb's io lists and if necessarily put onto b_attached
276 * list. Only inodes attached to cgwb's are kept on this list.
278 static void inode_cgwb_move_to_attached(struct inode *inode,
279 struct bdi_writeback *wb)
281 assert_spin_locked(&wb->list_lock);
282 assert_spin_locked(&inode->i_lock);
284 inode->i_state &= ~I_SYNC_QUEUED;
285 if (wb != &wb->bdi->wb)
286 list_move(&inode->i_io_list, &wb->b_attached);
288 list_del_init(&inode->i_io_list);
289 wb_io_lists_depopulated(wb);
293 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
294 * @inode: inode of interest with i_lock held
296 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
297 * held on entry and is released on return. The returned wb is guaranteed
298 * to stay @inode's associated wb until its list_lock is released.
300 static struct bdi_writeback *
301 locked_inode_to_wb_and_lock_list(struct inode *inode)
302 __releases(&inode->i_lock)
303 __acquires(&wb->list_lock)
306 struct bdi_writeback *wb = inode_to_wb(inode);
309 * inode_to_wb() association is protected by both
310 * @inode->i_lock and @wb->list_lock but list_lock nests
311 * outside i_lock. Drop i_lock and verify that the
312 * association hasn't changed after acquiring list_lock.
315 spin_unlock(&inode->i_lock);
316 spin_lock(&wb->list_lock);
318 /* i_wb may have changed inbetween, can't use inode_to_wb() */
319 if (likely(wb == inode->i_wb)) {
320 wb_put(wb); /* @inode already has ref */
324 spin_unlock(&wb->list_lock);
327 spin_lock(&inode->i_lock);
332 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
333 * @inode: inode of interest
335 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
338 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
339 __acquires(&wb->list_lock)
341 spin_lock(&inode->i_lock);
342 return locked_inode_to_wb_and_lock_list(inode);
345 struct inode_switch_wbs_context {
346 struct rcu_work work;
349 * Multiple inodes can be switched at once. The switching procedure
350 * consists of two parts, separated by a RCU grace period. To make
351 * sure that the second part is executed for each inode gone through
352 * the first part, all inode pointers are placed into a NULL-terminated
353 * array embedded into struct inode_switch_wbs_context. Otherwise
354 * an inode could be left in a non-consistent state.
356 struct bdi_writeback *new_wb;
357 struct inode *inodes[];
360 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
362 down_write(&bdi->wb_switch_rwsem);
365 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
367 up_write(&bdi->wb_switch_rwsem);
370 static bool inode_do_switch_wbs(struct inode *inode,
371 struct bdi_writeback *old_wb,
372 struct bdi_writeback *new_wb)
374 struct address_space *mapping = inode->i_mapping;
375 XA_STATE(xas, &mapping->i_pages, 0);
377 bool switched = false;
379 spin_lock(&inode->i_lock);
380 xa_lock_irq(&mapping->i_pages);
383 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
384 * path owns the inode and we shouldn't modify ->i_io_list.
386 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
389 trace_inode_switch_wbs(inode, old_wb, new_wb);
392 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
393 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
394 * folios actually under writeback.
396 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
397 if (folio_test_dirty(folio)) {
398 long nr = folio_nr_pages(folio);
399 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
400 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
405 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
406 long nr = folio_nr_pages(folio);
407 WARN_ON_ONCE(!folio_test_writeback(folio));
408 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
409 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
412 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
413 atomic_dec(&old_wb->writeback_inodes);
414 atomic_inc(&new_wb->writeback_inodes);
420 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
421 * the specific list @inode was on is ignored and the @inode is put on
422 * ->b_dirty which is always correct including from ->b_dirty_time.
423 * The transfer preserves @inode->dirtied_when ordering. If the @inode
424 * was clean, it means it was on the b_attached list, so move it onto
425 * the b_attached list of @new_wb.
427 if (!list_empty(&inode->i_io_list)) {
428 inode->i_wb = new_wb;
430 if (inode->i_state & I_DIRTY_ALL) {
433 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
434 if (time_after_eq(inode->dirtied_when,
437 inode_io_list_move_locked(inode, new_wb,
438 pos->i_io_list.prev);
440 inode_cgwb_move_to_attached(inode, new_wb);
443 inode->i_wb = new_wb;
446 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
447 inode->i_wb_frn_winner = 0;
448 inode->i_wb_frn_avg_time = 0;
449 inode->i_wb_frn_history = 0;
453 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
454 * ensures that the new wb is visible if they see !I_WB_SWITCH.
456 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
458 xa_unlock_irq(&mapping->i_pages);
459 spin_unlock(&inode->i_lock);
464 static void inode_switch_wbs_work_fn(struct work_struct *work)
466 struct inode_switch_wbs_context *isw =
467 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
468 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
469 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
470 struct bdi_writeback *new_wb = isw->new_wb;
471 unsigned long nr_switched = 0;
472 struct inode **inodep;
475 * If @inode switches cgwb membership while sync_inodes_sb() is
476 * being issued, sync_inodes_sb() might miss it. Synchronize.
478 down_read(&bdi->wb_switch_rwsem);
481 * By the time control reaches here, RCU grace period has passed
482 * since I_WB_SWITCH assertion and all wb stat update transactions
483 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
484 * synchronizing against the i_pages lock.
486 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
487 * gives us exclusion against all wb related operations on @inode
488 * including IO list manipulations and stat updates.
490 if (old_wb < new_wb) {
491 spin_lock(&old_wb->list_lock);
492 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
494 spin_lock(&new_wb->list_lock);
495 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
498 for (inodep = isw->inodes; *inodep; inodep++) {
499 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
500 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
504 spin_unlock(&new_wb->list_lock);
505 spin_unlock(&old_wb->list_lock);
507 up_read(&bdi->wb_switch_rwsem);
511 wb_put_many(old_wb, nr_switched);
514 for (inodep = isw->inodes; *inodep; inodep++)
518 atomic_dec(&isw_nr_in_flight);
521 static bool inode_prepare_wbs_switch(struct inode *inode,
522 struct bdi_writeback *new_wb)
525 * Paired with smp_mb() in cgroup_writeback_umount().
526 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
527 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
528 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
535 /* while holding I_WB_SWITCH, no one else can update the association */
536 spin_lock(&inode->i_lock);
537 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
538 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
539 inode_to_wb(inode) == new_wb) {
540 spin_unlock(&inode->i_lock);
543 inode->i_state |= I_WB_SWITCH;
545 spin_unlock(&inode->i_lock);
551 * inode_switch_wbs - change the wb association of an inode
552 * @inode: target inode
553 * @new_wb_id: ID of the new wb
555 * Switch @inode's wb association to the wb identified by @new_wb_id. The
556 * switching is performed asynchronously and may fail silently.
558 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
560 struct backing_dev_info *bdi = inode_to_bdi(inode);
561 struct cgroup_subsys_state *memcg_css;
562 struct inode_switch_wbs_context *isw;
564 /* noop if seems to be already in progress */
565 if (inode->i_state & I_WB_SWITCH)
568 /* avoid queueing a new switch if too many are already in flight */
569 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
572 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
576 atomic_inc(&isw_nr_in_flight);
578 /* find and pin the new wb */
580 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
581 if (memcg_css && !css_tryget(memcg_css))
587 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
592 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
595 isw->inodes[0] = inode;
598 * In addition to synchronizing among switchers, I_WB_SWITCH tells
599 * the RCU protected stat update paths to grab the i_page
600 * lock so that stat transfer can synchronize against them.
601 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
603 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
604 queue_rcu_work(isw_wq, &isw->work);
608 atomic_dec(&isw_nr_in_flight);
615 * cleanup_offline_cgwb - detach associated inodes
618 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
619 * to eventually release the dying @wb. Returns %true if not all inodes were
620 * switched and the function has to be restarted.
622 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
624 struct cgroup_subsys_state *memcg_css;
625 struct inode_switch_wbs_context *isw;
628 bool restart = false;
630 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
635 atomic_inc(&isw_nr_in_flight);
637 for (memcg_css = wb->memcg_css->parent; memcg_css;
638 memcg_css = memcg_css->parent) {
639 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
643 if (unlikely(!isw->new_wb))
644 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
647 spin_lock(&wb->list_lock);
648 list_for_each_entry(inode, &wb->b_attached, i_io_list) {
649 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
652 isw->inodes[nr++] = inode;
654 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
659 spin_unlock(&wb->list_lock);
661 /* no attached inodes? bail out */
663 atomic_dec(&isw_nr_in_flight);
670 * In addition to synchronizing among switchers, I_WB_SWITCH tells
671 * the RCU protected stat update paths to grab the i_page
672 * lock so that stat transfer can synchronize against them.
673 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
675 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
676 queue_rcu_work(isw_wq, &isw->work);
682 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
683 * @wbc: writeback_control of interest
684 * @inode: target inode
686 * @inode is locked and about to be written back under the control of @wbc.
687 * Record @inode's writeback context into @wbc and unlock the i_lock. On
688 * writeback completion, wbc_detach_inode() should be called. This is used
689 * to track the cgroup writeback context.
691 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
694 if (!inode_cgwb_enabled(inode)) {
695 spin_unlock(&inode->i_lock);
699 wbc->wb = inode_to_wb(inode);
702 wbc->wb_id = wbc->wb->memcg_css->id;
703 wbc->wb_lcand_id = inode->i_wb_frn_winner;
704 wbc->wb_tcand_id = 0;
706 wbc->wb_lcand_bytes = 0;
707 wbc->wb_tcand_bytes = 0;
710 spin_unlock(&inode->i_lock);
713 * A dying wb indicates that either the blkcg associated with the
714 * memcg changed or the associated memcg is dying. In the first
715 * case, a replacement wb should already be available and we should
716 * refresh the wb immediately. In the second case, trying to
717 * refresh will keep failing.
719 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
720 inode_switch_wbs(inode, wbc->wb_id);
722 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
725 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
726 * @wbc: writeback_control of the just finished writeback
728 * To be called after a writeback attempt of an inode finishes and undoes
729 * wbc_attach_and_unlock_inode(). Can be called under any context.
731 * As concurrent write sharing of an inode is expected to be very rare and
732 * memcg only tracks page ownership on first-use basis severely confining
733 * the usefulness of such sharing, cgroup writeback tracks ownership
734 * per-inode. While the support for concurrent write sharing of an inode
735 * is deemed unnecessary, an inode being written to by different cgroups at
736 * different points in time is a lot more common, and, more importantly,
737 * charging only by first-use can too readily lead to grossly incorrect
738 * behaviors (single foreign page can lead to gigabytes of writeback to be
739 * incorrectly attributed).
741 * To resolve this issue, cgroup writeback detects the majority dirtier of
742 * an inode and transfers the ownership to it. To avoid unnecessary
743 * oscillation, the detection mechanism keeps track of history and gives
744 * out the switch verdict only if the foreign usage pattern is stable over
745 * a certain amount of time and/or writeback attempts.
747 * On each writeback attempt, @wbc tries to detect the majority writer
748 * using Boyer-Moore majority vote algorithm. In addition to the byte
749 * count from the majority voting, it also counts the bytes written for the
750 * current wb and the last round's winner wb (max of last round's current
751 * wb, the winner from two rounds ago, and the last round's majority
752 * candidate). Keeping track of the historical winner helps the algorithm
753 * to semi-reliably detect the most active writer even when it's not the
756 * Once the winner of the round is determined, whether the winner is
757 * foreign or not and how much IO time the round consumed is recorded in
758 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
759 * over a certain threshold, the switch verdict is given.
761 void wbc_detach_inode(struct writeback_control *wbc)
763 struct bdi_writeback *wb = wbc->wb;
764 struct inode *inode = wbc->inode;
765 unsigned long avg_time, max_bytes, max_time;
772 history = inode->i_wb_frn_history;
773 avg_time = inode->i_wb_frn_avg_time;
775 /* pick the winner of this round */
776 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
777 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
779 max_bytes = wbc->wb_bytes;
780 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
781 max_id = wbc->wb_lcand_id;
782 max_bytes = wbc->wb_lcand_bytes;
784 max_id = wbc->wb_tcand_id;
785 max_bytes = wbc->wb_tcand_bytes;
789 * Calculate the amount of IO time the winner consumed and fold it
790 * into the running average kept per inode. If the consumed IO
791 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
792 * deciding whether to switch or not. This is to prevent one-off
793 * small dirtiers from skewing the verdict.
795 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
796 wb->avg_write_bandwidth);
798 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
799 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
801 avg_time = max_time; /* immediate catch up on first run */
803 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
807 * The switch verdict is reached if foreign wb's consume
808 * more than a certain proportion of IO time in a
809 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
810 * history mask where each bit represents one sixteenth of
811 * the period. Determine the number of slots to shift into
812 * history from @max_time.
814 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
815 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
817 if (wbc->wb_id != max_id)
818 history |= (1U << slots) - 1;
821 trace_inode_foreign_history(inode, wbc, history);
824 * Switch if the current wb isn't the consistent winner.
825 * If there are multiple closely competing dirtiers, the
826 * inode may switch across them repeatedly over time, which
827 * is okay. The main goal is avoiding keeping an inode on
828 * the wrong wb for an extended period of time.
830 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
831 inode_switch_wbs(inode, max_id);
835 * Multiple instances of this function may race to update the
836 * following fields but we don't mind occassional inaccuracies.
838 inode->i_wb_frn_winner = max_id;
839 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
840 inode->i_wb_frn_history = history;
845 EXPORT_SYMBOL_GPL(wbc_detach_inode);
848 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
849 * @wbc: writeback_control of the writeback in progress
850 * @page: page being written out
851 * @bytes: number of bytes being written out
853 * @bytes from @page are about to written out during the writeback
854 * controlled by @wbc. Keep the book for foreign inode detection. See
855 * wbc_detach_inode().
857 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
860 struct cgroup_subsys_state *css;
864 * pageout() path doesn't attach @wbc to the inode being written
865 * out. This is intentional as we don't want the function to block
866 * behind a slow cgroup. Ultimately, we want pageout() to kick off
867 * regular writeback instead of writing things out itself.
869 if (!wbc->wb || wbc->no_cgroup_owner)
872 css = mem_cgroup_css_from_page(page);
873 /* dead cgroups shouldn't contribute to inode ownership arbitration */
874 if (!(css->flags & CSS_ONLINE))
879 if (id == wbc->wb_id) {
880 wbc->wb_bytes += bytes;
884 if (id == wbc->wb_lcand_id)
885 wbc->wb_lcand_bytes += bytes;
887 /* Boyer-Moore majority vote algorithm */
888 if (!wbc->wb_tcand_bytes)
889 wbc->wb_tcand_id = id;
890 if (id == wbc->wb_tcand_id)
891 wbc->wb_tcand_bytes += bytes;
893 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
895 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
898 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
899 * @wb: target bdi_writeback to split @nr_pages to
900 * @nr_pages: number of pages to write for the whole bdi
902 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
903 * relation to the total write bandwidth of all wb's w/ dirty inodes on
906 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
908 unsigned long this_bw = wb->avg_write_bandwidth;
909 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
911 if (nr_pages == LONG_MAX)
915 * This may be called on clean wb's and proportional distribution
916 * may not make sense, just use the original @nr_pages in those
917 * cases. In general, we wanna err on the side of writing more.
919 if (!tot_bw || this_bw >= tot_bw)
922 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
926 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
927 * @bdi: target backing_dev_info
928 * @base_work: wb_writeback_work to issue
929 * @skip_if_busy: skip wb's which already have writeback in progress
931 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
932 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
933 * distributed to the busy wbs according to each wb's proportion in the
934 * total active write bandwidth of @bdi.
936 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
937 struct wb_writeback_work *base_work,
940 struct bdi_writeback *last_wb = NULL;
941 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
942 struct bdi_writeback, bdi_node);
947 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
948 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
949 struct wb_writeback_work fallback_work;
950 struct wb_writeback_work *work;
958 /* SYNC_ALL writes out I_DIRTY_TIME too */
959 if (!wb_has_dirty_io(wb) &&
960 (base_work->sync_mode == WB_SYNC_NONE ||
961 list_empty(&wb->b_dirty_time)))
963 if (skip_if_busy && writeback_in_progress(wb))
966 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
968 work = kmalloc(sizeof(*work), GFP_ATOMIC);
971 work->nr_pages = nr_pages;
973 wb_queue_work(wb, work);
978 * If wb_tryget fails, the wb has been shutdown, skip it.
980 * Pin @wb so that it stays on @bdi->wb_list. This allows
981 * continuing iteration from @wb after dropping and
982 * regrabbing rcu read lock.
987 /* alloc failed, execute synchronously using on-stack fallback */
988 work = &fallback_work;
990 work->nr_pages = nr_pages;
992 work->done = &fallback_work_done;
994 wb_queue_work(wb, work);
998 wb_wait_for_completion(&fallback_work_done);
1008 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1009 * @bdi_id: target bdi id
1010 * @memcg_id: target memcg css id
1011 * @reason: reason why some writeback work initiated
1012 * @done: target wb_completion
1014 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1015 * with the specified parameters.
1017 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1018 enum wb_reason reason, struct wb_completion *done)
1020 struct backing_dev_info *bdi;
1021 struct cgroup_subsys_state *memcg_css;
1022 struct bdi_writeback *wb;
1023 struct wb_writeback_work *work;
1024 unsigned long dirty;
1027 /* lookup bdi and memcg */
1028 bdi = bdi_get_by_id(bdi_id);
1033 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1034 if (memcg_css && !css_tryget(memcg_css))
1043 * And find the associated wb. If the wb isn't there already
1044 * there's nothing to flush, don't create one.
1046 wb = wb_get_lookup(bdi, memcg_css);
1053 * The caller is attempting to write out most of
1054 * the currently dirty pages. Let's take the current dirty page
1055 * count and inflate it by 25% which should be large enough to
1056 * flush out most dirty pages while avoiding getting livelocked by
1057 * concurrent dirtiers.
1059 * BTW the memcg stats are flushed periodically and this is best-effort
1060 * estimation, so some potential error is ok.
1062 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1063 dirty = dirty * 10 / 8;
1065 /* issue the writeback work */
1066 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1068 work->nr_pages = dirty;
1069 work->sync_mode = WB_SYNC_NONE;
1070 work->range_cyclic = 1;
1071 work->reason = reason;
1073 work->auto_free = 1;
1074 wb_queue_work(wb, work);
1089 * cgroup_writeback_umount - flush inode wb switches for umount
1091 * This function is called when a super_block is about to be destroyed and
1092 * flushes in-flight inode wb switches. An inode wb switch goes through
1093 * RCU and then workqueue, so the two need to be flushed in order to ensure
1094 * that all previously scheduled switches are finished. As wb switches are
1095 * rare occurrences and synchronize_rcu() can take a while, perform
1096 * flushing iff wb switches are in flight.
1098 void cgroup_writeback_umount(void)
1101 * SB_ACTIVE should be reliably cleared before checking
1102 * isw_nr_in_flight, see generic_shutdown_super().
1106 if (atomic_read(&isw_nr_in_flight)) {
1108 * Use rcu_barrier() to wait for all pending callbacks to
1109 * ensure that all in-flight wb switches are in the workqueue.
1112 flush_workqueue(isw_wq);
1116 static int __init cgroup_writeback_init(void)
1118 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1123 fs_initcall(cgroup_writeback_init);
1125 #else /* CONFIG_CGROUP_WRITEBACK */
1127 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1128 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1130 static void inode_cgwb_move_to_attached(struct inode *inode,
1131 struct bdi_writeback *wb)
1133 assert_spin_locked(&wb->list_lock);
1134 assert_spin_locked(&inode->i_lock);
1136 inode->i_state &= ~I_SYNC_QUEUED;
1137 list_del_init(&inode->i_io_list);
1138 wb_io_lists_depopulated(wb);
1141 static struct bdi_writeback *
1142 locked_inode_to_wb_and_lock_list(struct inode *inode)
1143 __releases(&inode->i_lock)
1144 __acquires(&wb->list_lock)
1146 struct bdi_writeback *wb = inode_to_wb(inode);
1148 spin_unlock(&inode->i_lock);
1149 spin_lock(&wb->list_lock);
1153 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1154 __acquires(&wb->list_lock)
1156 struct bdi_writeback *wb = inode_to_wb(inode);
1158 spin_lock(&wb->list_lock);
1162 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1167 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1168 struct wb_writeback_work *base_work,
1173 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1174 base_work->auto_free = 0;
1175 wb_queue_work(&bdi->wb, base_work);
1179 #endif /* CONFIG_CGROUP_WRITEBACK */
1182 * Add in the number of potentially dirty inodes, because each inode
1183 * write can dirty pagecache in the underlying blockdev.
1185 static unsigned long get_nr_dirty_pages(void)
1187 return global_node_page_state(NR_FILE_DIRTY) +
1188 get_nr_dirty_inodes();
1191 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1193 if (!wb_has_dirty_io(wb))
1197 * All callers of this function want to start writeback of all
1198 * dirty pages. Places like vmscan can call this at a very
1199 * high frequency, causing pointless allocations of tons of
1200 * work items and keeping the flusher threads busy retrieving
1201 * that work. Ensure that we only allow one of them pending and
1202 * inflight at the time.
1204 if (test_bit(WB_start_all, &wb->state) ||
1205 test_and_set_bit(WB_start_all, &wb->state))
1208 wb->start_all_reason = reason;
1213 * wb_start_background_writeback - start background writeback
1214 * @wb: bdi_writback to write from
1217 * This makes sure WB_SYNC_NONE background writeback happens. When
1218 * this function returns, it is only guaranteed that for given wb
1219 * some IO is happening if we are over background dirty threshold.
1220 * Caller need not hold sb s_umount semaphore.
1222 void wb_start_background_writeback(struct bdi_writeback *wb)
1225 * We just wake up the flusher thread. It will perform background
1226 * writeback as soon as there is no other work to do.
1228 trace_writeback_wake_background(wb);
1233 * Remove the inode from the writeback list it is on.
1235 void inode_io_list_del(struct inode *inode)
1237 struct bdi_writeback *wb;
1239 wb = inode_to_wb_and_lock_list(inode);
1240 spin_lock(&inode->i_lock);
1242 inode->i_state &= ~I_SYNC_QUEUED;
1243 list_del_init(&inode->i_io_list);
1244 wb_io_lists_depopulated(wb);
1246 spin_unlock(&inode->i_lock);
1247 spin_unlock(&wb->list_lock);
1249 EXPORT_SYMBOL(inode_io_list_del);
1252 * mark an inode as under writeback on the sb
1254 void sb_mark_inode_writeback(struct inode *inode)
1256 struct super_block *sb = inode->i_sb;
1257 unsigned long flags;
1259 if (list_empty(&inode->i_wb_list)) {
1260 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1261 if (list_empty(&inode->i_wb_list)) {
1262 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1263 trace_sb_mark_inode_writeback(inode);
1265 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1270 * clear an inode as under writeback on the sb
1272 void sb_clear_inode_writeback(struct inode *inode)
1274 struct super_block *sb = inode->i_sb;
1275 unsigned long flags;
1277 if (!list_empty(&inode->i_wb_list)) {
1278 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1279 if (!list_empty(&inode->i_wb_list)) {
1280 list_del_init(&inode->i_wb_list);
1281 trace_sb_clear_inode_writeback(inode);
1283 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1288 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1289 * furthest end of its superblock's dirty-inode list.
1291 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1292 * already the most-recently-dirtied inode on the b_dirty list. If that is
1293 * the case then the inode must have been redirtied while it was being written
1294 * out and we don't reset its dirtied_when.
1296 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1298 assert_spin_locked(&inode->i_lock);
1300 if (!list_empty(&wb->b_dirty)) {
1303 tail = wb_inode(wb->b_dirty.next);
1304 if (time_before(inode->dirtied_when, tail->dirtied_when))
1305 inode->dirtied_when = jiffies;
1307 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1308 inode->i_state &= ~I_SYNC_QUEUED;
1311 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1313 spin_lock(&inode->i_lock);
1314 redirty_tail_locked(inode, wb);
1315 spin_unlock(&inode->i_lock);
1319 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1321 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1323 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1326 static void inode_sync_complete(struct inode *inode)
1328 inode->i_state &= ~I_SYNC;
1329 /* If inode is clean an unused, put it into LRU now... */
1330 inode_add_lru(inode);
1331 /* Waiters must see I_SYNC cleared before being woken up */
1333 wake_up_bit(&inode->i_state, __I_SYNC);
1336 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1338 bool ret = time_after(inode->dirtied_when, t);
1339 #ifndef CONFIG_64BIT
1341 * For inodes being constantly redirtied, dirtied_when can get stuck.
1342 * It _appears_ to be in the future, but is actually in distant past.
1343 * This test is necessary to prevent such wrapped-around relative times
1344 * from permanently stopping the whole bdi writeback.
1346 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1351 #define EXPIRE_DIRTY_ATIME 0x0001
1354 * Move expired (dirtied before dirtied_before) dirty inodes from
1355 * @delaying_queue to @dispatch_queue.
1357 static int move_expired_inodes(struct list_head *delaying_queue,
1358 struct list_head *dispatch_queue,
1359 unsigned long dirtied_before)
1362 struct list_head *pos, *node;
1363 struct super_block *sb = NULL;
1364 struct inode *inode;
1368 while (!list_empty(delaying_queue)) {
1369 inode = wb_inode(delaying_queue->prev);
1370 if (inode_dirtied_after(inode, dirtied_before))
1372 spin_lock(&inode->i_lock);
1373 list_move(&inode->i_io_list, &tmp);
1375 inode->i_state |= I_SYNC_QUEUED;
1376 spin_unlock(&inode->i_lock);
1377 if (sb_is_blkdev_sb(inode->i_sb))
1379 if (sb && sb != inode->i_sb)
1384 /* just one sb in list, splice to dispatch_queue and we're done */
1386 list_splice(&tmp, dispatch_queue);
1391 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1392 * we don't take inode->i_lock here because it is just a pointless overhead.
1393 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1394 * fully under our control.
1396 while (!list_empty(&tmp)) {
1397 sb = wb_inode(tmp.prev)->i_sb;
1398 list_for_each_prev_safe(pos, node, &tmp) {
1399 inode = wb_inode(pos);
1400 if (inode->i_sb == sb)
1401 list_move(&inode->i_io_list, dispatch_queue);
1409 * Queue all expired dirty inodes for io, eldest first.
1411 * newly dirtied b_dirty b_io b_more_io
1412 * =============> gf edc BA
1414 * newly dirtied b_dirty b_io b_more_io
1415 * =============> g fBAedc
1417 * +--> dequeue for IO
1419 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1420 unsigned long dirtied_before)
1423 unsigned long time_expire_jif = dirtied_before;
1425 assert_spin_locked(&wb->list_lock);
1426 list_splice_init(&wb->b_more_io, &wb->b_io);
1427 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1428 if (!work->for_sync)
1429 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1430 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1433 wb_io_lists_populated(wb);
1434 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1437 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1441 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1442 trace_writeback_write_inode_start(inode, wbc);
1443 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1444 trace_writeback_write_inode(inode, wbc);
1451 * Wait for writeback on an inode to complete. Called with i_lock held.
1452 * Caller must make sure inode cannot go away when we drop i_lock.
1454 static void __inode_wait_for_writeback(struct inode *inode)
1455 __releases(inode->i_lock)
1456 __acquires(inode->i_lock)
1458 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1459 wait_queue_head_t *wqh;
1461 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1462 while (inode->i_state & I_SYNC) {
1463 spin_unlock(&inode->i_lock);
1464 __wait_on_bit(wqh, &wq, bit_wait,
1465 TASK_UNINTERRUPTIBLE);
1466 spin_lock(&inode->i_lock);
1471 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1473 void inode_wait_for_writeback(struct inode *inode)
1475 spin_lock(&inode->i_lock);
1476 __inode_wait_for_writeback(inode);
1477 spin_unlock(&inode->i_lock);
1481 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1482 * held and drops it. It is aimed for callers not holding any inode reference
1483 * so once i_lock is dropped, inode can go away.
1485 static void inode_sleep_on_writeback(struct inode *inode)
1486 __releases(inode->i_lock)
1489 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1492 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1493 sleep = inode->i_state & I_SYNC;
1494 spin_unlock(&inode->i_lock);
1497 finish_wait(wqh, &wait);
1501 * Find proper writeback list for the inode depending on its current state and
1502 * possibly also change of its state while we were doing writeback. Here we
1503 * handle things such as livelock prevention or fairness of writeback among
1504 * inodes. This function can be called only by flusher thread - noone else
1505 * processes all inodes in writeback lists and requeueing inodes behind flusher
1506 * thread's back can have unexpected consequences.
1508 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1509 struct writeback_control *wbc)
1511 if (inode->i_state & I_FREEING)
1515 * Sync livelock prevention. Each inode is tagged and synced in one
1516 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1517 * the dirty time to prevent enqueue and sync it again.
1519 if ((inode->i_state & I_DIRTY) &&
1520 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1521 inode->dirtied_when = jiffies;
1523 if (wbc->pages_skipped) {
1525 * writeback is not making progress due to locked
1526 * buffers. Skip this inode for now.
1528 redirty_tail_locked(inode, wb);
1532 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1534 * We didn't write back all the pages. nfs_writepages()
1535 * sometimes bales out without doing anything.
1537 if (wbc->nr_to_write <= 0) {
1538 /* Slice used up. Queue for next turn. */
1539 requeue_io(inode, wb);
1542 * Writeback blocked by something other than
1543 * congestion. Delay the inode for some time to
1544 * avoid spinning on the CPU (100% iowait)
1545 * retrying writeback of the dirty page/inode
1546 * that cannot be performed immediately.
1548 redirty_tail_locked(inode, wb);
1550 } else if (inode->i_state & I_DIRTY) {
1552 * Filesystems can dirty the inode during writeback operations,
1553 * such as delayed allocation during submission or metadata
1554 * updates after data IO completion.
1556 redirty_tail_locked(inode, wb);
1557 } else if (inode->i_state & I_DIRTY_TIME) {
1558 inode->dirtied_when = jiffies;
1559 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1560 inode->i_state &= ~I_SYNC_QUEUED;
1562 /* The inode is clean. Remove from writeback lists. */
1563 inode_cgwb_move_to_attached(inode, wb);
1568 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1569 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1571 * This doesn't remove the inode from the writeback list it is on, except
1572 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1573 * expiration. The caller is otherwise responsible for writeback list handling.
1575 * The caller is also responsible for setting the I_SYNC flag beforehand and
1576 * calling inode_sync_complete() to clear it afterwards.
1579 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1581 struct address_space *mapping = inode->i_mapping;
1582 long nr_to_write = wbc->nr_to_write;
1586 WARN_ON(!(inode->i_state & I_SYNC));
1588 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1590 ret = do_writepages(mapping, wbc);
1593 * Make sure to wait on the data before writing out the metadata.
1594 * This is important for filesystems that modify metadata on data
1595 * I/O completion. We don't do it for sync(2) writeback because it has a
1596 * separate, external IO completion path and ->sync_fs for guaranteeing
1597 * inode metadata is written back correctly.
1599 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1600 int err = filemap_fdatawait(mapping);
1606 * If the inode has dirty timestamps and we need to write them, call
1607 * mark_inode_dirty_sync() to notify the filesystem about it and to
1608 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1610 if ((inode->i_state & I_DIRTY_TIME) &&
1611 (wbc->sync_mode == WB_SYNC_ALL ||
1612 time_after(jiffies, inode->dirtied_time_when +
1613 dirtytime_expire_interval * HZ))) {
1614 trace_writeback_lazytime(inode);
1615 mark_inode_dirty_sync(inode);
1619 * Get and clear the dirty flags from i_state. This needs to be done
1620 * after calling writepages because some filesystems may redirty the
1621 * inode during writepages due to delalloc. It also needs to be done
1622 * after handling timestamp expiration, as that may dirty the inode too.
1624 spin_lock(&inode->i_lock);
1625 dirty = inode->i_state & I_DIRTY;
1626 inode->i_state &= ~dirty;
1629 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1630 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1631 * either they see the I_DIRTY bits cleared or we see the dirtied
1634 * I_DIRTY_PAGES is always cleared together above even if @mapping
1635 * still has dirty pages. The flag is reinstated after smp_mb() if
1636 * necessary. This guarantees that either __mark_inode_dirty()
1637 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1641 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1642 inode->i_state |= I_DIRTY_PAGES;
1643 else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1644 if (!(inode->i_state & I_DIRTY_PAGES)) {
1645 inode->i_state &= ~I_PINNING_FSCACHE_WB;
1646 wbc->unpinned_fscache_wb = true;
1647 dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1651 spin_unlock(&inode->i_lock);
1653 /* Don't write the inode if only I_DIRTY_PAGES was set */
1654 if (dirty & ~I_DIRTY_PAGES) {
1655 int err = write_inode(inode, wbc);
1659 wbc->unpinned_fscache_wb = false;
1660 trace_writeback_single_inode(inode, wbc, nr_to_write);
1665 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1666 * the regular batched writeback done by the flusher threads in
1667 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1668 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1670 * To prevent the inode from going away, either the caller must have a reference
1671 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1673 static int writeback_single_inode(struct inode *inode,
1674 struct writeback_control *wbc)
1676 struct bdi_writeback *wb;
1679 spin_lock(&inode->i_lock);
1680 if (!atomic_read(&inode->i_count))
1681 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1683 WARN_ON(inode->i_state & I_WILL_FREE);
1685 if (inode->i_state & I_SYNC) {
1687 * Writeback is already running on the inode. For WB_SYNC_NONE,
1688 * that's enough and we can just return. For WB_SYNC_ALL, we
1689 * must wait for the existing writeback to complete, then do
1690 * writeback again if there's anything left.
1692 if (wbc->sync_mode != WB_SYNC_ALL)
1694 __inode_wait_for_writeback(inode);
1696 WARN_ON(inode->i_state & I_SYNC);
1698 * If the inode is already fully clean, then there's nothing to do.
1700 * For data-integrity syncs we also need to check whether any pages are
1701 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1702 * there are any such pages, we'll need to wait for them.
1704 if (!(inode->i_state & I_DIRTY_ALL) &&
1705 (wbc->sync_mode != WB_SYNC_ALL ||
1706 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1708 inode->i_state |= I_SYNC;
1709 wbc_attach_and_unlock_inode(wbc, inode);
1711 ret = __writeback_single_inode(inode, wbc);
1713 wbc_detach_inode(wbc);
1715 wb = inode_to_wb_and_lock_list(inode);
1716 spin_lock(&inode->i_lock);
1718 * If the inode is freeing, its i_io_list shoudn't be updated
1719 * as it can be finally deleted at this moment.
1721 if (!(inode->i_state & I_FREEING)) {
1723 * If the inode is now fully clean, then it can be safely
1724 * removed from its writeback list (if any). Otherwise the
1725 * flusher threads are responsible for the writeback lists.
1727 if (!(inode->i_state & I_DIRTY_ALL))
1728 inode_cgwb_move_to_attached(inode, wb);
1729 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1730 if ((inode->i_state & I_DIRTY))
1731 redirty_tail_locked(inode, wb);
1732 else if (inode->i_state & I_DIRTY_TIME) {
1733 inode->dirtied_when = jiffies;
1734 inode_io_list_move_locked(inode,
1741 spin_unlock(&wb->list_lock);
1742 inode_sync_complete(inode);
1744 spin_unlock(&inode->i_lock);
1748 static long writeback_chunk_size(struct bdi_writeback *wb,
1749 struct wb_writeback_work *work)
1754 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1755 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1756 * here avoids calling into writeback_inodes_wb() more than once.
1758 * The intended call sequence for WB_SYNC_ALL writeback is:
1761 * writeback_sb_inodes() <== called only once
1762 * write_cache_pages() <== called once for each inode
1763 * (quickly) tag currently dirty pages
1764 * (maybe slowly) sync all tagged pages
1766 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1769 pages = min(wb->avg_write_bandwidth / 2,
1770 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1771 pages = min(pages, work->nr_pages);
1772 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1773 MIN_WRITEBACK_PAGES);
1780 * Write a portion of b_io inodes which belong to @sb.
1782 * Return the number of pages and/or inodes written.
1784 * NOTE! This is called with wb->list_lock held, and will
1785 * unlock and relock that for each inode it ends up doing
1788 static long writeback_sb_inodes(struct super_block *sb,
1789 struct bdi_writeback *wb,
1790 struct wb_writeback_work *work)
1792 struct writeback_control wbc = {
1793 .sync_mode = work->sync_mode,
1794 .tagged_writepages = work->tagged_writepages,
1795 .for_kupdate = work->for_kupdate,
1796 .for_background = work->for_background,
1797 .for_sync = work->for_sync,
1798 .range_cyclic = work->range_cyclic,
1800 .range_end = LLONG_MAX,
1802 unsigned long start_time = jiffies;
1804 long total_wrote = 0; /* count both pages and inodes */
1806 while (!list_empty(&wb->b_io)) {
1807 struct inode *inode = wb_inode(wb->b_io.prev);
1808 struct bdi_writeback *tmp_wb;
1811 if (inode->i_sb != sb) {
1814 * We only want to write back data for this
1815 * superblock, move all inodes not belonging
1816 * to it back onto the dirty list.
1818 redirty_tail(inode, wb);
1823 * The inode belongs to a different superblock.
1824 * Bounce back to the caller to unpin this and
1825 * pin the next superblock.
1831 * Don't bother with new inodes or inodes being freed, first
1832 * kind does not need periodic writeout yet, and for the latter
1833 * kind writeout is handled by the freer.
1835 spin_lock(&inode->i_lock);
1836 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1837 redirty_tail_locked(inode, wb);
1838 spin_unlock(&inode->i_lock);
1841 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1843 * If this inode is locked for writeback and we are not
1844 * doing writeback-for-data-integrity, move it to
1845 * b_more_io so that writeback can proceed with the
1846 * other inodes on s_io.
1848 * We'll have another go at writing back this inode
1849 * when we completed a full scan of b_io.
1851 requeue_io(inode, wb);
1852 spin_unlock(&inode->i_lock);
1853 trace_writeback_sb_inodes_requeue(inode);
1856 spin_unlock(&wb->list_lock);
1859 * We already requeued the inode if it had I_SYNC set and we
1860 * are doing WB_SYNC_NONE writeback. So this catches only the
1863 if (inode->i_state & I_SYNC) {
1864 /* Wait for I_SYNC. This function drops i_lock... */
1865 inode_sleep_on_writeback(inode);
1866 /* Inode may be gone, start again */
1867 spin_lock(&wb->list_lock);
1870 inode->i_state |= I_SYNC;
1871 wbc_attach_and_unlock_inode(&wbc, inode);
1873 write_chunk = writeback_chunk_size(wb, work);
1874 wbc.nr_to_write = write_chunk;
1875 wbc.pages_skipped = 0;
1878 * We use I_SYNC to pin the inode in memory. While it is set
1879 * evict_inode() will wait so the inode cannot be freed.
1881 __writeback_single_inode(inode, &wbc);
1883 wbc_detach_inode(&wbc);
1884 work->nr_pages -= write_chunk - wbc.nr_to_write;
1885 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1886 wrote = wrote < 0 ? 0 : wrote;
1887 total_wrote += wrote;
1889 if (need_resched()) {
1891 * We're trying to balance between building up a nice
1892 * long list of IOs to improve our merge rate, and
1893 * getting those IOs out quickly for anyone throttling
1894 * in balance_dirty_pages(). cond_resched() doesn't
1895 * unplug, so get our IOs out the door before we
1898 blk_flush_plug(current->plug, false);
1903 * Requeue @inode if still dirty. Be careful as @inode may
1904 * have been switched to another wb in the meantime.
1906 tmp_wb = inode_to_wb_and_lock_list(inode);
1907 spin_lock(&inode->i_lock);
1908 if (!(inode->i_state & I_DIRTY_ALL))
1910 requeue_inode(inode, tmp_wb, &wbc);
1911 inode_sync_complete(inode);
1912 spin_unlock(&inode->i_lock);
1914 if (unlikely(tmp_wb != wb)) {
1915 spin_unlock(&tmp_wb->list_lock);
1916 spin_lock(&wb->list_lock);
1920 * bail out to wb_writeback() often enough to check
1921 * background threshold and other termination conditions.
1924 if (time_is_before_jiffies(start_time + HZ / 10UL))
1926 if (work->nr_pages <= 0)
1933 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1934 struct wb_writeback_work *work)
1936 unsigned long start_time = jiffies;
1939 while (!list_empty(&wb->b_io)) {
1940 struct inode *inode = wb_inode(wb->b_io.prev);
1941 struct super_block *sb = inode->i_sb;
1943 if (!trylock_super(sb)) {
1945 * trylock_super() may fail consistently due to
1946 * s_umount being grabbed by someone else. Don't use
1947 * requeue_io() to avoid busy retrying the inode/sb.
1949 redirty_tail(inode, wb);
1952 wrote += writeback_sb_inodes(sb, wb, work);
1953 up_read(&sb->s_umount);
1955 /* refer to the same tests at the end of writeback_sb_inodes */
1957 if (time_is_before_jiffies(start_time + HZ / 10UL))
1959 if (work->nr_pages <= 0)
1963 /* Leave any unwritten inodes on b_io */
1967 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1968 enum wb_reason reason)
1970 struct wb_writeback_work work = {
1971 .nr_pages = nr_pages,
1972 .sync_mode = WB_SYNC_NONE,
1976 struct blk_plug plug;
1978 blk_start_plug(&plug);
1979 spin_lock(&wb->list_lock);
1980 if (list_empty(&wb->b_io))
1981 queue_io(wb, &work, jiffies);
1982 __writeback_inodes_wb(wb, &work);
1983 spin_unlock(&wb->list_lock);
1984 blk_finish_plug(&plug);
1986 return nr_pages - work.nr_pages;
1990 * Explicit flushing or periodic writeback of "old" data.
1992 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1993 * dirtying-time in the inode's address_space. So this periodic writeback code
1994 * just walks the superblock inode list, writing back any inodes which are
1995 * older than a specific point in time.
1997 * Try to run once per dirty_writeback_interval. But if a writeback event
1998 * takes longer than a dirty_writeback_interval interval, then leave a
2001 * dirtied_before takes precedence over nr_to_write. So we'll only write back
2002 * all dirty pages if they are all attached to "old" mappings.
2004 static long wb_writeback(struct bdi_writeback *wb,
2005 struct wb_writeback_work *work)
2007 long nr_pages = work->nr_pages;
2008 unsigned long dirtied_before = jiffies;
2009 struct inode *inode;
2011 struct blk_plug plug;
2013 blk_start_plug(&plug);
2014 spin_lock(&wb->list_lock);
2017 * Stop writeback when nr_pages has been consumed
2019 if (work->nr_pages <= 0)
2023 * Background writeout and kupdate-style writeback may
2024 * run forever. Stop them if there is other work to do
2025 * so that e.g. sync can proceed. They'll be restarted
2026 * after the other works are all done.
2028 if ((work->for_background || work->for_kupdate) &&
2029 !list_empty(&wb->work_list))
2033 * For background writeout, stop when we are below the
2034 * background dirty threshold
2036 if (work->for_background && !wb_over_bg_thresh(wb))
2040 * Kupdate and background works are special and we want to
2041 * include all inodes that need writing. Livelock avoidance is
2042 * handled by these works yielding to any other work so we are
2045 if (work->for_kupdate) {
2046 dirtied_before = jiffies -
2047 msecs_to_jiffies(dirty_expire_interval * 10);
2048 } else if (work->for_background)
2049 dirtied_before = jiffies;
2051 trace_writeback_start(wb, work);
2052 if (list_empty(&wb->b_io))
2053 queue_io(wb, work, dirtied_before);
2055 progress = writeback_sb_inodes(work->sb, wb, work);
2057 progress = __writeback_inodes_wb(wb, work);
2058 trace_writeback_written(wb, work);
2061 * Did we write something? Try for more
2063 * Dirty inodes are moved to b_io for writeback in batches.
2064 * The completion of the current batch does not necessarily
2065 * mean the overall work is done. So we keep looping as long
2066 * as made some progress on cleaning pages or inodes.
2071 * No more inodes for IO, bail
2073 if (list_empty(&wb->b_more_io))
2076 * Nothing written. Wait for some inode to
2077 * become available for writeback. Otherwise
2078 * we'll just busyloop.
2080 trace_writeback_wait(wb, work);
2081 inode = wb_inode(wb->b_more_io.prev);
2082 spin_lock(&inode->i_lock);
2083 spin_unlock(&wb->list_lock);
2084 /* This function drops i_lock... */
2085 inode_sleep_on_writeback(inode);
2086 spin_lock(&wb->list_lock);
2088 spin_unlock(&wb->list_lock);
2089 blk_finish_plug(&plug);
2091 return nr_pages - work->nr_pages;
2095 * Return the next wb_writeback_work struct that hasn't been processed yet.
2097 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2099 struct wb_writeback_work *work = NULL;
2101 spin_lock_irq(&wb->work_lock);
2102 if (!list_empty(&wb->work_list)) {
2103 work = list_entry(wb->work_list.next,
2104 struct wb_writeback_work, list);
2105 list_del_init(&work->list);
2107 spin_unlock_irq(&wb->work_lock);
2111 static long wb_check_background_flush(struct bdi_writeback *wb)
2113 if (wb_over_bg_thresh(wb)) {
2115 struct wb_writeback_work work = {
2116 .nr_pages = LONG_MAX,
2117 .sync_mode = WB_SYNC_NONE,
2118 .for_background = 1,
2120 .reason = WB_REASON_BACKGROUND,
2123 return wb_writeback(wb, &work);
2129 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2131 unsigned long expired;
2135 * When set to zero, disable periodic writeback
2137 if (!dirty_writeback_interval)
2140 expired = wb->last_old_flush +
2141 msecs_to_jiffies(dirty_writeback_interval * 10);
2142 if (time_before(jiffies, expired))
2145 wb->last_old_flush = jiffies;
2146 nr_pages = get_nr_dirty_pages();
2149 struct wb_writeback_work work = {
2150 .nr_pages = nr_pages,
2151 .sync_mode = WB_SYNC_NONE,
2154 .reason = WB_REASON_PERIODIC,
2157 return wb_writeback(wb, &work);
2163 static long wb_check_start_all(struct bdi_writeback *wb)
2167 if (!test_bit(WB_start_all, &wb->state))
2170 nr_pages = get_nr_dirty_pages();
2172 struct wb_writeback_work work = {
2173 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2174 .sync_mode = WB_SYNC_NONE,
2176 .reason = wb->start_all_reason,
2179 nr_pages = wb_writeback(wb, &work);
2182 clear_bit(WB_start_all, &wb->state);
2188 * Retrieve work items and do the writeback they describe
2190 static long wb_do_writeback(struct bdi_writeback *wb)
2192 struct wb_writeback_work *work;
2195 set_bit(WB_writeback_running, &wb->state);
2196 while ((work = get_next_work_item(wb)) != NULL) {
2197 trace_writeback_exec(wb, work);
2198 wrote += wb_writeback(wb, work);
2199 finish_writeback_work(wb, work);
2203 * Check for a flush-everything request
2205 wrote += wb_check_start_all(wb);
2208 * Check for periodic writeback, kupdated() style
2210 wrote += wb_check_old_data_flush(wb);
2211 wrote += wb_check_background_flush(wb);
2212 clear_bit(WB_writeback_running, &wb->state);
2218 * Handle writeback of dirty data for the device backed by this bdi. Also
2219 * reschedules periodically and does kupdated style flushing.
2221 void wb_workfn(struct work_struct *work)
2223 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2224 struct bdi_writeback, dwork);
2227 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2229 if (likely(!current_is_workqueue_rescuer() ||
2230 !test_bit(WB_registered, &wb->state))) {
2232 * The normal path. Keep writing back @wb until its
2233 * work_list is empty. Note that this path is also taken
2234 * if @wb is shutting down even when we're running off the
2235 * rescuer as work_list needs to be drained.
2238 pages_written = wb_do_writeback(wb);
2239 trace_writeback_pages_written(pages_written);
2240 } while (!list_empty(&wb->work_list));
2243 * bdi_wq can't get enough workers and we're running off
2244 * the emergency worker. Don't hog it. Hopefully, 1024 is
2245 * enough for efficient IO.
2247 pages_written = writeback_inodes_wb(wb, 1024,
2248 WB_REASON_FORKER_THREAD);
2249 trace_writeback_pages_written(pages_written);
2252 if (!list_empty(&wb->work_list))
2254 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2255 wb_wakeup_delayed(wb);
2259 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2260 * write back the whole world.
2262 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2263 enum wb_reason reason)
2265 struct bdi_writeback *wb;
2267 if (!bdi_has_dirty_io(bdi))
2270 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2271 wb_start_writeback(wb, reason);
2274 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2275 enum wb_reason reason)
2278 __wakeup_flusher_threads_bdi(bdi, reason);
2283 * Wakeup the flusher threads to start writeback of all currently dirty pages
2285 void wakeup_flusher_threads(enum wb_reason reason)
2287 struct backing_dev_info *bdi;
2290 * If we are expecting writeback progress we must submit plugged IO.
2292 blk_flush_plug(current->plug, true);
2295 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2296 __wakeup_flusher_threads_bdi(bdi, reason);
2301 * Wake up bdi's periodically to make sure dirtytime inodes gets
2302 * written back periodically. We deliberately do *not* check the
2303 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2304 * kernel to be constantly waking up once there are any dirtytime
2305 * inodes on the system. So instead we define a separate delayed work
2306 * function which gets called much more rarely. (By default, only
2307 * once every 12 hours.)
2309 * If there is any other write activity going on in the file system,
2310 * this function won't be necessary. But if the only thing that has
2311 * happened on the file system is a dirtytime inode caused by an atime
2312 * update, we need this infrastructure below to make sure that inode
2313 * eventually gets pushed out to disk.
2315 static void wakeup_dirtytime_writeback(struct work_struct *w);
2316 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2318 static void wakeup_dirtytime_writeback(struct work_struct *w)
2320 struct backing_dev_info *bdi;
2323 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2324 struct bdi_writeback *wb;
2326 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2327 if (!list_empty(&wb->b_dirty_time))
2331 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2334 static int __init start_dirtytime_writeback(void)
2336 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2339 __initcall(start_dirtytime_writeback);
2341 int dirtytime_interval_handler(struct ctl_table *table, int write,
2342 void *buffer, size_t *lenp, loff_t *ppos)
2346 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2347 if (ret == 0 && write)
2348 mod_delayed_work(system_wq, &dirtytime_work, 0);
2353 * __mark_inode_dirty - internal function to mark an inode dirty
2355 * @inode: inode to mark
2356 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2357 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2358 * with I_DIRTY_PAGES.
2360 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2361 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
2363 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2364 * instead of calling this directly.
2366 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2367 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2368 * even if they are later hashed, as they will have been marked dirty already.
2370 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2372 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2373 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2374 * the kernel-internal blockdev inode represents the dirtying time of the
2375 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2376 * page->mapping->host, so the page-dirtying time is recorded in the internal
2379 void __mark_inode_dirty(struct inode *inode, int flags)
2381 struct super_block *sb = inode->i_sb;
2383 struct bdi_writeback *wb = NULL;
2385 trace_writeback_mark_inode_dirty(inode, flags);
2387 if (flags & I_DIRTY_INODE) {
2389 * Inode timestamp update will piggback on this dirtying.
2390 * We tell ->dirty_inode callback that timestamps need to
2391 * be updated by setting I_DIRTY_TIME in flags.
2393 if (inode->i_state & I_DIRTY_TIME) {
2394 spin_lock(&inode->i_lock);
2395 if (inode->i_state & I_DIRTY_TIME) {
2396 inode->i_state &= ~I_DIRTY_TIME;
2397 flags |= I_DIRTY_TIME;
2399 spin_unlock(&inode->i_lock);
2403 * Notify the filesystem about the inode being dirtied, so that
2404 * (if needed) it can update on-disk fields and journal the
2405 * inode. This is only needed when the inode itself is being
2406 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2407 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2409 trace_writeback_dirty_inode_start(inode, flags);
2410 if (sb->s_op->dirty_inode)
2411 sb->s_op->dirty_inode(inode,
2412 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2413 trace_writeback_dirty_inode(inode, flags);
2415 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2416 flags &= ~I_DIRTY_TIME;
2419 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2420 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2421 * in one call to __mark_inode_dirty().)
2423 dirtytime = flags & I_DIRTY_TIME;
2424 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2428 * Paired with smp_mb() in __writeback_single_inode() for the
2429 * following lockless i_state test. See there for details.
2433 if ((inode->i_state & flags) == flags)
2436 spin_lock(&inode->i_lock);
2437 if ((inode->i_state & flags) != flags) {
2438 const int was_dirty = inode->i_state & I_DIRTY;
2440 inode_attach_wb(inode, NULL);
2442 inode->i_state |= flags;
2445 * Grab inode's wb early because it requires dropping i_lock and we
2446 * need to make sure following checks happen atomically with dirty
2447 * list handling so that we don't move inodes under flush worker's
2451 wb = locked_inode_to_wb_and_lock_list(inode);
2452 spin_lock(&inode->i_lock);
2456 * If the inode is queued for writeback by flush worker, just
2457 * update its dirty state. Once the flush worker is done with
2458 * the inode it will place it on the appropriate superblock
2459 * list, based upon its state.
2461 if (inode->i_state & I_SYNC_QUEUED)
2465 * Only add valid (hashed) inodes to the superblock's
2466 * dirty list. Add blockdev inodes as well.
2468 if (!S_ISBLK(inode->i_mode)) {
2469 if (inode_unhashed(inode))
2472 if (inode->i_state & I_FREEING)
2476 * If the inode was already on b_dirty/b_io/b_more_io, don't
2477 * reposition it (that would break b_dirty time-ordering).
2480 struct list_head *dirty_list;
2481 bool wakeup_bdi = false;
2483 inode->dirtied_when = jiffies;
2485 inode->dirtied_time_when = jiffies;
2487 if (inode->i_state & I_DIRTY)
2488 dirty_list = &wb->b_dirty;
2490 dirty_list = &wb->b_dirty_time;
2492 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2495 spin_unlock(&wb->list_lock);
2496 spin_unlock(&inode->i_lock);
2497 trace_writeback_dirty_inode_enqueue(inode);
2500 * If this is the first dirty inode for this bdi,
2501 * we have to wake-up the corresponding bdi thread
2502 * to make sure background write-back happens
2506 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2507 wb_wakeup_delayed(wb);
2513 spin_unlock(&wb->list_lock);
2514 spin_unlock(&inode->i_lock);
2516 EXPORT_SYMBOL(__mark_inode_dirty);
2519 * The @s_sync_lock is used to serialise concurrent sync operations
2520 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2521 * Concurrent callers will block on the s_sync_lock rather than doing contending
2522 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2523 * has been issued up to the time this function is enter is guaranteed to be
2524 * completed by the time we have gained the lock and waited for all IO that is
2525 * in progress regardless of the order callers are granted the lock.
2527 static void wait_sb_inodes(struct super_block *sb)
2529 LIST_HEAD(sync_list);
2532 * We need to be protected against the filesystem going from
2533 * r/o to r/w or vice versa.
2535 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2537 mutex_lock(&sb->s_sync_lock);
2540 * Splice the writeback list onto a temporary list to avoid waiting on
2541 * inodes that have started writeback after this point.
2543 * Use rcu_read_lock() to keep the inodes around until we have a
2544 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2545 * the local list because inodes can be dropped from either by writeback
2549 spin_lock_irq(&sb->s_inode_wblist_lock);
2550 list_splice_init(&sb->s_inodes_wb, &sync_list);
2553 * Data integrity sync. Must wait for all pages under writeback, because
2554 * there may have been pages dirtied before our sync call, but which had
2555 * writeout started before we write it out. In which case, the inode
2556 * may not be on the dirty list, but we still have to wait for that
2559 while (!list_empty(&sync_list)) {
2560 struct inode *inode = list_first_entry(&sync_list, struct inode,
2562 struct address_space *mapping = inode->i_mapping;
2565 * Move each inode back to the wb list before we drop the lock
2566 * to preserve consistency between i_wb_list and the mapping
2567 * writeback tag. Writeback completion is responsible to remove
2568 * the inode from either list once the writeback tag is cleared.
2570 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2573 * The mapping can appear untagged while still on-list since we
2574 * do not have the mapping lock. Skip it here, wb completion
2577 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2580 spin_unlock_irq(&sb->s_inode_wblist_lock);
2582 spin_lock(&inode->i_lock);
2583 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2584 spin_unlock(&inode->i_lock);
2586 spin_lock_irq(&sb->s_inode_wblist_lock);
2590 spin_unlock(&inode->i_lock);
2594 * We keep the error status of individual mapping so that
2595 * applications can catch the writeback error using fsync(2).
2596 * See filemap_fdatawait_keep_errors() for details.
2598 filemap_fdatawait_keep_errors(mapping);
2605 spin_lock_irq(&sb->s_inode_wblist_lock);
2607 spin_unlock_irq(&sb->s_inode_wblist_lock);
2609 mutex_unlock(&sb->s_sync_lock);
2612 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2613 enum wb_reason reason, bool skip_if_busy)
2615 struct backing_dev_info *bdi = sb->s_bdi;
2616 DEFINE_WB_COMPLETION(done, bdi);
2617 struct wb_writeback_work work = {
2619 .sync_mode = WB_SYNC_NONE,
2620 .tagged_writepages = 1,
2626 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2628 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2630 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2631 wb_wait_for_completion(&done);
2635 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2636 * @sb: the superblock
2637 * @nr: the number of pages to write
2638 * @reason: reason why some writeback work initiated
2640 * Start writeback on some inodes on this super_block. No guarantees are made
2641 * on how many (if any) will be written, and this function does not wait
2642 * for IO completion of submitted IO.
2644 void writeback_inodes_sb_nr(struct super_block *sb,
2646 enum wb_reason reason)
2648 __writeback_inodes_sb_nr(sb, nr, reason, false);
2650 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2653 * writeback_inodes_sb - writeback dirty inodes from given super_block
2654 * @sb: the superblock
2655 * @reason: reason why some writeback work was initiated
2657 * Start writeback on some inodes on this super_block. No guarantees are made
2658 * on how many (if any) will be written, and this function does not wait
2659 * for IO completion of submitted IO.
2661 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2663 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2665 EXPORT_SYMBOL(writeback_inodes_sb);
2668 * try_to_writeback_inodes_sb - try to start writeback if none underway
2669 * @sb: the superblock
2670 * @reason: reason why some writeback work was initiated
2672 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2674 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2676 if (!down_read_trylock(&sb->s_umount))
2679 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2680 up_read(&sb->s_umount);
2682 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2685 * sync_inodes_sb - sync sb inode pages
2686 * @sb: the superblock
2688 * This function writes and waits on any dirty inode belonging to this
2691 void sync_inodes_sb(struct super_block *sb)
2693 struct backing_dev_info *bdi = sb->s_bdi;
2694 DEFINE_WB_COMPLETION(done, bdi);
2695 struct wb_writeback_work work = {
2697 .sync_mode = WB_SYNC_ALL,
2698 .nr_pages = LONG_MAX,
2701 .reason = WB_REASON_SYNC,
2706 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2707 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2708 * bdi_has_dirty() need to be written out too.
2710 if (bdi == &noop_backing_dev_info)
2712 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2714 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2715 bdi_down_write_wb_switch_rwsem(bdi);
2716 bdi_split_work_to_wbs(bdi, &work, false);
2717 wb_wait_for_completion(&done);
2718 bdi_up_write_wb_switch_rwsem(bdi);
2722 EXPORT_SYMBOL(sync_inodes_sb);
2725 * write_inode_now - write an inode to disk
2726 * @inode: inode to write to disk
2727 * @sync: whether the write should be synchronous or not
2729 * This function commits an inode to disk immediately if it is dirty. This is
2730 * primarily needed by knfsd.
2732 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2734 int write_inode_now(struct inode *inode, int sync)
2736 struct writeback_control wbc = {
2737 .nr_to_write = LONG_MAX,
2738 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2740 .range_end = LLONG_MAX,
2743 if (!mapping_can_writeback(inode->i_mapping))
2744 wbc.nr_to_write = 0;
2747 return writeback_single_inode(inode, &wbc);
2749 EXPORT_SYMBOL(write_inode_now);
2752 * sync_inode_metadata - write an inode to disk
2753 * @inode: the inode to sync
2754 * @wait: wait for I/O to complete.
2756 * Write an inode to disk and adjust its dirty state after completion.
2758 * Note: only writes the actual inode, no associated data or other metadata.
2760 int sync_inode_metadata(struct inode *inode, int wait)
2762 struct writeback_control wbc = {
2763 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2764 .nr_to_write = 0, /* metadata-only */
2767 return writeback_single_inode(inode, &wbc);
2769 EXPORT_SYMBOL(sync_inode_metadata);