btrfs: reinsert BGs failed to reclaim
[platform/kernel/linux-starfive.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123         assert_spin_locked(&inode->i_lock);
124
125         list_move(&inode->i_io_list, head);
126
127         /* dirty_time doesn't count as dirty_io until expiration */
128         if (head != &wb->b_dirty_time)
129                 return wb_io_lists_populated(wb);
130
131         wb_io_lists_depopulated(wb);
132         return false;
133 }
134
135 static void wb_wakeup(struct bdi_writeback *wb)
136 {
137         spin_lock_irq(&wb->work_lock);
138         if (test_bit(WB_registered, &wb->state))
139                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
140         spin_unlock_irq(&wb->work_lock);
141 }
142
143 static void finish_writeback_work(struct bdi_writeback *wb,
144                                   struct wb_writeback_work *work)
145 {
146         struct wb_completion *done = work->done;
147
148         if (work->auto_free)
149                 kfree(work);
150         if (done) {
151                 wait_queue_head_t *waitq = done->waitq;
152
153                 /* @done can't be accessed after the following dec */
154                 if (atomic_dec_and_test(&done->cnt))
155                         wake_up_all(waitq);
156         }
157 }
158
159 static void wb_queue_work(struct bdi_writeback *wb,
160                           struct wb_writeback_work *work)
161 {
162         trace_writeback_queue(wb, work);
163
164         if (work->done)
165                 atomic_inc(&work->done->cnt);
166
167         spin_lock_irq(&wb->work_lock);
168
169         if (test_bit(WB_registered, &wb->state)) {
170                 list_add_tail(&work->list, &wb->work_list);
171                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
172         } else
173                 finish_writeback_work(wb, work);
174
175         spin_unlock_irq(&wb->work_lock);
176 }
177
178 /**
179  * wb_wait_for_completion - wait for completion of bdi_writeback_works
180  * @done: target wb_completion
181  *
182  * Wait for one or more work items issued to @bdi with their ->done field
183  * set to @done, which should have been initialized with
184  * DEFINE_WB_COMPLETION().  This function returns after all such work items
185  * are completed.  Work items which are waited upon aren't freed
186  * automatically on completion.
187  */
188 void wb_wait_for_completion(struct wb_completion *done)
189 {
190         atomic_dec(&done->cnt);         /* put down the initial count */
191         wait_event(*done->waitq, !atomic_read(&done->cnt));
192 }
193
194 #ifdef CONFIG_CGROUP_WRITEBACK
195
196 /*
197  * Parameters for foreign inode detection, see wbc_detach_inode() to see
198  * how they're used.
199  *
200  * These paramters are inherently heuristical as the detection target
201  * itself is fuzzy.  All we want to do is detaching an inode from the
202  * current owner if it's being written to by some other cgroups too much.
203  *
204  * The current cgroup writeback is built on the assumption that multiple
205  * cgroups writing to the same inode concurrently is very rare and a mode
206  * of operation which isn't well supported.  As such, the goal is not
207  * taking too long when a different cgroup takes over an inode while
208  * avoiding too aggressive flip-flops from occasional foreign writes.
209  *
210  * We record, very roughly, 2s worth of IO time history and if more than
211  * half of that is foreign, trigger the switch.  The recording is quantized
212  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
213  * writes smaller than 1/8 of avg size are ignored.
214  */
215 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
216 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
217 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
218 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
219
220 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
221 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
222                                         /* each slot's duration is 2s / 16 */
223 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
224                                         /* if foreign slots >= 8, switch */
225 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
226                                         /* one round can affect upto 5 slots */
227 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
228
229 /*
230  * Maximum inodes per isw.  A specific value has been chosen to make
231  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
232  */
233 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
234                                 / sizeof(struct inode *))
235
236 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
237 static struct workqueue_struct *isw_wq;
238
239 void __inode_attach_wb(struct inode *inode, struct page *page)
240 {
241         struct backing_dev_info *bdi = inode_to_bdi(inode);
242         struct bdi_writeback *wb = NULL;
243
244         if (inode_cgwb_enabled(inode)) {
245                 struct cgroup_subsys_state *memcg_css;
246
247                 if (page) {
248                         memcg_css = mem_cgroup_css_from_page(page);
249                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
250                 } else {
251                         /* must pin memcg_css, see wb_get_create() */
252                         memcg_css = task_get_css(current, memory_cgrp_id);
253                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254                         css_put(memcg_css);
255                 }
256         }
257
258         if (!wb)
259                 wb = &bdi->wb;
260
261         /*
262          * There may be multiple instances of this function racing to
263          * update the same inode.  Use cmpxchg() to tell the winner.
264          */
265         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
266                 wb_put(wb);
267 }
268 EXPORT_SYMBOL_GPL(__inode_attach_wb);
269
270 /**
271  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
272  * @inode: inode of interest with i_lock held
273  * @wb: target bdi_writeback
274  *
275  * Remove the inode from wb's io lists and if necessarily put onto b_attached
276  * list.  Only inodes attached to cgwb's are kept on this list.
277  */
278 static void inode_cgwb_move_to_attached(struct inode *inode,
279                                         struct bdi_writeback *wb)
280 {
281         assert_spin_locked(&wb->list_lock);
282         assert_spin_locked(&inode->i_lock);
283
284         inode->i_state &= ~I_SYNC_QUEUED;
285         if (wb != &wb->bdi->wb)
286                 list_move(&inode->i_io_list, &wb->b_attached);
287         else
288                 list_del_init(&inode->i_io_list);
289         wb_io_lists_depopulated(wb);
290 }
291
292 /**
293  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
294  * @inode: inode of interest with i_lock held
295  *
296  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
297  * held on entry and is released on return.  The returned wb is guaranteed
298  * to stay @inode's associated wb until its list_lock is released.
299  */
300 static struct bdi_writeback *
301 locked_inode_to_wb_and_lock_list(struct inode *inode)
302         __releases(&inode->i_lock)
303         __acquires(&wb->list_lock)
304 {
305         while (true) {
306                 struct bdi_writeback *wb = inode_to_wb(inode);
307
308                 /*
309                  * inode_to_wb() association is protected by both
310                  * @inode->i_lock and @wb->list_lock but list_lock nests
311                  * outside i_lock.  Drop i_lock and verify that the
312                  * association hasn't changed after acquiring list_lock.
313                  */
314                 wb_get(wb);
315                 spin_unlock(&inode->i_lock);
316                 spin_lock(&wb->list_lock);
317
318                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
319                 if (likely(wb == inode->i_wb)) {
320                         wb_put(wb);     /* @inode already has ref */
321                         return wb;
322                 }
323
324                 spin_unlock(&wb->list_lock);
325                 wb_put(wb);
326                 cpu_relax();
327                 spin_lock(&inode->i_lock);
328         }
329 }
330
331 /**
332  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
333  * @inode: inode of interest
334  *
335  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
336  * on entry.
337  */
338 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
339         __acquires(&wb->list_lock)
340 {
341         spin_lock(&inode->i_lock);
342         return locked_inode_to_wb_and_lock_list(inode);
343 }
344
345 struct inode_switch_wbs_context {
346         struct rcu_work         work;
347
348         /*
349          * Multiple inodes can be switched at once.  The switching procedure
350          * consists of two parts, separated by a RCU grace period.  To make
351          * sure that the second part is executed for each inode gone through
352          * the first part, all inode pointers are placed into a NULL-terminated
353          * array embedded into struct inode_switch_wbs_context.  Otherwise
354          * an inode could be left in a non-consistent state.
355          */
356         struct bdi_writeback    *new_wb;
357         struct inode            *inodes[];
358 };
359
360 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
361 {
362         down_write(&bdi->wb_switch_rwsem);
363 }
364
365 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
366 {
367         up_write(&bdi->wb_switch_rwsem);
368 }
369
370 static bool inode_do_switch_wbs(struct inode *inode,
371                                 struct bdi_writeback *old_wb,
372                                 struct bdi_writeback *new_wb)
373 {
374         struct address_space *mapping = inode->i_mapping;
375         XA_STATE(xas, &mapping->i_pages, 0);
376         struct folio *folio;
377         bool switched = false;
378
379         spin_lock(&inode->i_lock);
380         xa_lock_irq(&mapping->i_pages);
381
382         /*
383          * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
384          * path owns the inode and we shouldn't modify ->i_io_list.
385          */
386         if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
387                 goto skip_switch;
388
389         trace_inode_switch_wbs(inode, old_wb, new_wb);
390
391         /*
392          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
393          * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
394          * folios actually under writeback.
395          */
396         xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
397                 if (folio_test_dirty(folio)) {
398                         long nr = folio_nr_pages(folio);
399                         wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
400                         wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
401                 }
402         }
403
404         xas_set(&xas, 0);
405         xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
406                 long nr = folio_nr_pages(folio);
407                 WARN_ON_ONCE(!folio_test_writeback(folio));
408                 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
409                 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
410         }
411
412         if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
413                 atomic_dec(&old_wb->writeback_inodes);
414                 atomic_inc(&new_wb->writeback_inodes);
415         }
416
417         wb_get(new_wb);
418
419         /*
420          * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
421          * the specific list @inode was on is ignored and the @inode is put on
422          * ->b_dirty which is always correct including from ->b_dirty_time.
423          * The transfer preserves @inode->dirtied_when ordering.  If the @inode
424          * was clean, it means it was on the b_attached list, so move it onto
425          * the b_attached list of @new_wb.
426          */
427         if (!list_empty(&inode->i_io_list)) {
428                 inode->i_wb = new_wb;
429
430                 if (inode->i_state & I_DIRTY_ALL) {
431                         struct inode *pos;
432
433                         list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
434                                 if (time_after_eq(inode->dirtied_when,
435                                                   pos->dirtied_when))
436                                         break;
437                         inode_io_list_move_locked(inode, new_wb,
438                                                   pos->i_io_list.prev);
439                 } else {
440                         inode_cgwb_move_to_attached(inode, new_wb);
441                 }
442         } else {
443                 inode->i_wb = new_wb;
444         }
445
446         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
447         inode->i_wb_frn_winner = 0;
448         inode->i_wb_frn_avg_time = 0;
449         inode->i_wb_frn_history = 0;
450         switched = true;
451 skip_switch:
452         /*
453          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
454          * ensures that the new wb is visible if they see !I_WB_SWITCH.
455          */
456         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
457
458         xa_unlock_irq(&mapping->i_pages);
459         spin_unlock(&inode->i_lock);
460
461         return switched;
462 }
463
464 static void inode_switch_wbs_work_fn(struct work_struct *work)
465 {
466         struct inode_switch_wbs_context *isw =
467                 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
468         struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
469         struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
470         struct bdi_writeback *new_wb = isw->new_wb;
471         unsigned long nr_switched = 0;
472         struct inode **inodep;
473
474         /*
475          * If @inode switches cgwb membership while sync_inodes_sb() is
476          * being issued, sync_inodes_sb() might miss it.  Synchronize.
477          */
478         down_read(&bdi->wb_switch_rwsem);
479
480         /*
481          * By the time control reaches here, RCU grace period has passed
482          * since I_WB_SWITCH assertion and all wb stat update transactions
483          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
484          * synchronizing against the i_pages lock.
485          *
486          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
487          * gives us exclusion against all wb related operations on @inode
488          * including IO list manipulations and stat updates.
489          */
490         if (old_wb < new_wb) {
491                 spin_lock(&old_wb->list_lock);
492                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
493         } else {
494                 spin_lock(&new_wb->list_lock);
495                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
496         }
497
498         for (inodep = isw->inodes; *inodep; inodep++) {
499                 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
500                 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
501                         nr_switched++;
502         }
503
504         spin_unlock(&new_wb->list_lock);
505         spin_unlock(&old_wb->list_lock);
506
507         up_read(&bdi->wb_switch_rwsem);
508
509         if (nr_switched) {
510                 wb_wakeup(new_wb);
511                 wb_put_many(old_wb, nr_switched);
512         }
513
514         for (inodep = isw->inodes; *inodep; inodep++)
515                 iput(*inodep);
516         wb_put(new_wb);
517         kfree(isw);
518         atomic_dec(&isw_nr_in_flight);
519 }
520
521 static bool inode_prepare_wbs_switch(struct inode *inode,
522                                      struct bdi_writeback *new_wb)
523 {
524         /*
525          * Paired with smp_mb() in cgroup_writeback_umount().
526          * isw_nr_in_flight must be increased before checking SB_ACTIVE and
527          * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
528          * in cgroup_writeback_umount() and the isw_wq will be not flushed.
529          */
530         smp_mb();
531
532         if (IS_DAX(inode))
533                 return false;
534
535         /* while holding I_WB_SWITCH, no one else can update the association */
536         spin_lock(&inode->i_lock);
537         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
538             inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
539             inode_to_wb(inode) == new_wb) {
540                 spin_unlock(&inode->i_lock);
541                 return false;
542         }
543         inode->i_state |= I_WB_SWITCH;
544         __iget(inode);
545         spin_unlock(&inode->i_lock);
546
547         return true;
548 }
549
550 /**
551  * inode_switch_wbs - change the wb association of an inode
552  * @inode: target inode
553  * @new_wb_id: ID of the new wb
554  *
555  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
556  * switching is performed asynchronously and may fail silently.
557  */
558 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
559 {
560         struct backing_dev_info *bdi = inode_to_bdi(inode);
561         struct cgroup_subsys_state *memcg_css;
562         struct inode_switch_wbs_context *isw;
563
564         /* noop if seems to be already in progress */
565         if (inode->i_state & I_WB_SWITCH)
566                 return;
567
568         /* avoid queueing a new switch if too many are already in flight */
569         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
570                 return;
571
572         isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
573         if (!isw)
574                 return;
575
576         atomic_inc(&isw_nr_in_flight);
577
578         /* find and pin the new wb */
579         rcu_read_lock();
580         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
581         if (memcg_css && !css_tryget(memcg_css))
582                 memcg_css = NULL;
583         rcu_read_unlock();
584         if (!memcg_css)
585                 goto out_free;
586
587         isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
588         css_put(memcg_css);
589         if (!isw->new_wb)
590                 goto out_free;
591
592         if (!inode_prepare_wbs_switch(inode, isw->new_wb))
593                 goto out_free;
594
595         isw->inodes[0] = inode;
596
597         /*
598          * In addition to synchronizing among switchers, I_WB_SWITCH tells
599          * the RCU protected stat update paths to grab the i_page
600          * lock so that stat transfer can synchronize against them.
601          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
602          */
603         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
604         queue_rcu_work(isw_wq, &isw->work);
605         return;
606
607 out_free:
608         atomic_dec(&isw_nr_in_flight);
609         if (isw->new_wb)
610                 wb_put(isw->new_wb);
611         kfree(isw);
612 }
613
614 /**
615  * cleanup_offline_cgwb - detach associated inodes
616  * @wb: target wb
617  *
618  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
619  * to eventually release the dying @wb.  Returns %true if not all inodes were
620  * switched and the function has to be restarted.
621  */
622 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
623 {
624         struct cgroup_subsys_state *memcg_css;
625         struct inode_switch_wbs_context *isw;
626         struct inode *inode;
627         int nr;
628         bool restart = false;
629
630         isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
631                       GFP_KERNEL);
632         if (!isw)
633                 return restart;
634
635         atomic_inc(&isw_nr_in_flight);
636
637         for (memcg_css = wb->memcg_css->parent; memcg_css;
638              memcg_css = memcg_css->parent) {
639                 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
640                 if (isw->new_wb)
641                         break;
642         }
643         if (unlikely(!isw->new_wb))
644                 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
645
646         nr = 0;
647         spin_lock(&wb->list_lock);
648         list_for_each_entry(inode, &wb->b_attached, i_io_list) {
649                 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
650                         continue;
651
652                 isw->inodes[nr++] = inode;
653
654                 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
655                         restart = true;
656                         break;
657                 }
658         }
659         spin_unlock(&wb->list_lock);
660
661         /* no attached inodes? bail out */
662         if (nr == 0) {
663                 atomic_dec(&isw_nr_in_flight);
664                 wb_put(isw->new_wb);
665                 kfree(isw);
666                 return restart;
667         }
668
669         /*
670          * In addition to synchronizing among switchers, I_WB_SWITCH tells
671          * the RCU protected stat update paths to grab the i_page
672          * lock so that stat transfer can synchronize against them.
673          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
674          */
675         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
676         queue_rcu_work(isw_wq, &isw->work);
677
678         return restart;
679 }
680
681 /**
682  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
683  * @wbc: writeback_control of interest
684  * @inode: target inode
685  *
686  * @inode is locked and about to be written back under the control of @wbc.
687  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
688  * writeback completion, wbc_detach_inode() should be called.  This is used
689  * to track the cgroup writeback context.
690  */
691 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
692                                  struct inode *inode)
693 {
694         if (!inode_cgwb_enabled(inode)) {
695                 spin_unlock(&inode->i_lock);
696                 return;
697         }
698
699         wbc->wb = inode_to_wb(inode);
700         wbc->inode = inode;
701
702         wbc->wb_id = wbc->wb->memcg_css->id;
703         wbc->wb_lcand_id = inode->i_wb_frn_winner;
704         wbc->wb_tcand_id = 0;
705         wbc->wb_bytes = 0;
706         wbc->wb_lcand_bytes = 0;
707         wbc->wb_tcand_bytes = 0;
708
709         wb_get(wbc->wb);
710         spin_unlock(&inode->i_lock);
711
712         /*
713          * A dying wb indicates that either the blkcg associated with the
714          * memcg changed or the associated memcg is dying.  In the first
715          * case, a replacement wb should already be available and we should
716          * refresh the wb immediately.  In the second case, trying to
717          * refresh will keep failing.
718          */
719         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
720                 inode_switch_wbs(inode, wbc->wb_id);
721 }
722 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
723
724 /**
725  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
726  * @wbc: writeback_control of the just finished writeback
727  *
728  * To be called after a writeback attempt of an inode finishes and undoes
729  * wbc_attach_and_unlock_inode().  Can be called under any context.
730  *
731  * As concurrent write sharing of an inode is expected to be very rare and
732  * memcg only tracks page ownership on first-use basis severely confining
733  * the usefulness of such sharing, cgroup writeback tracks ownership
734  * per-inode.  While the support for concurrent write sharing of an inode
735  * is deemed unnecessary, an inode being written to by different cgroups at
736  * different points in time is a lot more common, and, more importantly,
737  * charging only by first-use can too readily lead to grossly incorrect
738  * behaviors (single foreign page can lead to gigabytes of writeback to be
739  * incorrectly attributed).
740  *
741  * To resolve this issue, cgroup writeback detects the majority dirtier of
742  * an inode and transfers the ownership to it.  To avoid unnecessary
743  * oscillation, the detection mechanism keeps track of history and gives
744  * out the switch verdict only if the foreign usage pattern is stable over
745  * a certain amount of time and/or writeback attempts.
746  *
747  * On each writeback attempt, @wbc tries to detect the majority writer
748  * using Boyer-Moore majority vote algorithm.  In addition to the byte
749  * count from the majority voting, it also counts the bytes written for the
750  * current wb and the last round's winner wb (max of last round's current
751  * wb, the winner from two rounds ago, and the last round's majority
752  * candidate).  Keeping track of the historical winner helps the algorithm
753  * to semi-reliably detect the most active writer even when it's not the
754  * absolute majority.
755  *
756  * Once the winner of the round is determined, whether the winner is
757  * foreign or not and how much IO time the round consumed is recorded in
758  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
759  * over a certain threshold, the switch verdict is given.
760  */
761 void wbc_detach_inode(struct writeback_control *wbc)
762 {
763         struct bdi_writeback *wb = wbc->wb;
764         struct inode *inode = wbc->inode;
765         unsigned long avg_time, max_bytes, max_time;
766         u16 history;
767         int max_id;
768
769         if (!wb)
770                 return;
771
772         history = inode->i_wb_frn_history;
773         avg_time = inode->i_wb_frn_avg_time;
774
775         /* pick the winner of this round */
776         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
777             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
778                 max_id = wbc->wb_id;
779                 max_bytes = wbc->wb_bytes;
780         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
781                 max_id = wbc->wb_lcand_id;
782                 max_bytes = wbc->wb_lcand_bytes;
783         } else {
784                 max_id = wbc->wb_tcand_id;
785                 max_bytes = wbc->wb_tcand_bytes;
786         }
787
788         /*
789          * Calculate the amount of IO time the winner consumed and fold it
790          * into the running average kept per inode.  If the consumed IO
791          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
792          * deciding whether to switch or not.  This is to prevent one-off
793          * small dirtiers from skewing the verdict.
794          */
795         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
796                                 wb->avg_write_bandwidth);
797         if (avg_time)
798                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
799                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
800         else
801                 avg_time = max_time;    /* immediate catch up on first run */
802
803         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
804                 int slots;
805
806                 /*
807                  * The switch verdict is reached if foreign wb's consume
808                  * more than a certain proportion of IO time in a
809                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
810                  * history mask where each bit represents one sixteenth of
811                  * the period.  Determine the number of slots to shift into
812                  * history from @max_time.
813                  */
814                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
815                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
816                 history <<= slots;
817                 if (wbc->wb_id != max_id)
818                         history |= (1U << slots) - 1;
819
820                 if (history)
821                         trace_inode_foreign_history(inode, wbc, history);
822
823                 /*
824                  * Switch if the current wb isn't the consistent winner.
825                  * If there are multiple closely competing dirtiers, the
826                  * inode may switch across them repeatedly over time, which
827                  * is okay.  The main goal is avoiding keeping an inode on
828                  * the wrong wb for an extended period of time.
829                  */
830                 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
831                         inode_switch_wbs(inode, max_id);
832         }
833
834         /*
835          * Multiple instances of this function may race to update the
836          * following fields but we don't mind occassional inaccuracies.
837          */
838         inode->i_wb_frn_winner = max_id;
839         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
840         inode->i_wb_frn_history = history;
841
842         wb_put(wbc->wb);
843         wbc->wb = NULL;
844 }
845 EXPORT_SYMBOL_GPL(wbc_detach_inode);
846
847 /**
848  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
849  * @wbc: writeback_control of the writeback in progress
850  * @page: page being written out
851  * @bytes: number of bytes being written out
852  *
853  * @bytes from @page are about to written out during the writeback
854  * controlled by @wbc.  Keep the book for foreign inode detection.  See
855  * wbc_detach_inode().
856  */
857 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
858                               size_t bytes)
859 {
860         struct cgroup_subsys_state *css;
861         int id;
862
863         /*
864          * pageout() path doesn't attach @wbc to the inode being written
865          * out.  This is intentional as we don't want the function to block
866          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
867          * regular writeback instead of writing things out itself.
868          */
869         if (!wbc->wb || wbc->no_cgroup_owner)
870                 return;
871
872         css = mem_cgroup_css_from_page(page);
873         /* dead cgroups shouldn't contribute to inode ownership arbitration */
874         if (!(css->flags & CSS_ONLINE))
875                 return;
876
877         id = css->id;
878
879         if (id == wbc->wb_id) {
880                 wbc->wb_bytes += bytes;
881                 return;
882         }
883
884         if (id == wbc->wb_lcand_id)
885                 wbc->wb_lcand_bytes += bytes;
886
887         /* Boyer-Moore majority vote algorithm */
888         if (!wbc->wb_tcand_bytes)
889                 wbc->wb_tcand_id = id;
890         if (id == wbc->wb_tcand_id)
891                 wbc->wb_tcand_bytes += bytes;
892         else
893                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
894 }
895 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
896
897 /**
898  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
899  * @wb: target bdi_writeback to split @nr_pages to
900  * @nr_pages: number of pages to write for the whole bdi
901  *
902  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
903  * relation to the total write bandwidth of all wb's w/ dirty inodes on
904  * @wb->bdi.
905  */
906 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
907 {
908         unsigned long this_bw = wb->avg_write_bandwidth;
909         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
910
911         if (nr_pages == LONG_MAX)
912                 return LONG_MAX;
913
914         /*
915          * This may be called on clean wb's and proportional distribution
916          * may not make sense, just use the original @nr_pages in those
917          * cases.  In general, we wanna err on the side of writing more.
918          */
919         if (!tot_bw || this_bw >= tot_bw)
920                 return nr_pages;
921         else
922                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
923 }
924
925 /**
926  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
927  * @bdi: target backing_dev_info
928  * @base_work: wb_writeback_work to issue
929  * @skip_if_busy: skip wb's which already have writeback in progress
930  *
931  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
932  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
933  * distributed to the busy wbs according to each wb's proportion in the
934  * total active write bandwidth of @bdi.
935  */
936 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
937                                   struct wb_writeback_work *base_work,
938                                   bool skip_if_busy)
939 {
940         struct bdi_writeback *last_wb = NULL;
941         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
942                                               struct bdi_writeback, bdi_node);
943
944         might_sleep();
945 restart:
946         rcu_read_lock();
947         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
948                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
949                 struct wb_writeback_work fallback_work;
950                 struct wb_writeback_work *work;
951                 long nr_pages;
952
953                 if (last_wb) {
954                         wb_put(last_wb);
955                         last_wb = NULL;
956                 }
957
958                 /* SYNC_ALL writes out I_DIRTY_TIME too */
959                 if (!wb_has_dirty_io(wb) &&
960                     (base_work->sync_mode == WB_SYNC_NONE ||
961                      list_empty(&wb->b_dirty_time)))
962                         continue;
963                 if (skip_if_busy && writeback_in_progress(wb))
964                         continue;
965
966                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
967
968                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
969                 if (work) {
970                         *work = *base_work;
971                         work->nr_pages = nr_pages;
972                         work->auto_free = 1;
973                         wb_queue_work(wb, work);
974                         continue;
975                 }
976
977                 /*
978                  * If wb_tryget fails, the wb has been shutdown, skip it.
979                  *
980                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
981                  * continuing iteration from @wb after dropping and
982                  * regrabbing rcu read lock.
983                  */
984                 if (!wb_tryget(wb))
985                         continue;
986
987                 /* alloc failed, execute synchronously using on-stack fallback */
988                 work = &fallback_work;
989                 *work = *base_work;
990                 work->nr_pages = nr_pages;
991                 work->auto_free = 0;
992                 work->done = &fallback_work_done;
993
994                 wb_queue_work(wb, work);
995                 last_wb = wb;
996
997                 rcu_read_unlock();
998                 wb_wait_for_completion(&fallback_work_done);
999                 goto restart;
1000         }
1001         rcu_read_unlock();
1002
1003         if (last_wb)
1004                 wb_put(last_wb);
1005 }
1006
1007 /**
1008  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1009  * @bdi_id: target bdi id
1010  * @memcg_id: target memcg css id
1011  * @reason: reason why some writeback work initiated
1012  * @done: target wb_completion
1013  *
1014  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1015  * with the specified parameters.
1016  */
1017 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1018                            enum wb_reason reason, struct wb_completion *done)
1019 {
1020         struct backing_dev_info *bdi;
1021         struct cgroup_subsys_state *memcg_css;
1022         struct bdi_writeback *wb;
1023         struct wb_writeback_work *work;
1024         unsigned long dirty;
1025         int ret;
1026
1027         /* lookup bdi and memcg */
1028         bdi = bdi_get_by_id(bdi_id);
1029         if (!bdi)
1030                 return -ENOENT;
1031
1032         rcu_read_lock();
1033         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1034         if (memcg_css && !css_tryget(memcg_css))
1035                 memcg_css = NULL;
1036         rcu_read_unlock();
1037         if (!memcg_css) {
1038                 ret = -ENOENT;
1039                 goto out_bdi_put;
1040         }
1041
1042         /*
1043          * And find the associated wb.  If the wb isn't there already
1044          * there's nothing to flush, don't create one.
1045          */
1046         wb = wb_get_lookup(bdi, memcg_css);
1047         if (!wb) {
1048                 ret = -ENOENT;
1049                 goto out_css_put;
1050         }
1051
1052         /*
1053          * The caller is attempting to write out most of
1054          * the currently dirty pages.  Let's take the current dirty page
1055          * count and inflate it by 25% which should be large enough to
1056          * flush out most dirty pages while avoiding getting livelocked by
1057          * concurrent dirtiers.
1058          *
1059          * BTW the memcg stats are flushed periodically and this is best-effort
1060          * estimation, so some potential error is ok.
1061          */
1062         dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1063         dirty = dirty * 10 / 8;
1064
1065         /* issue the writeback work */
1066         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1067         if (work) {
1068                 work->nr_pages = dirty;
1069                 work->sync_mode = WB_SYNC_NONE;
1070                 work->range_cyclic = 1;
1071                 work->reason = reason;
1072                 work->done = done;
1073                 work->auto_free = 1;
1074                 wb_queue_work(wb, work);
1075                 ret = 0;
1076         } else {
1077                 ret = -ENOMEM;
1078         }
1079
1080         wb_put(wb);
1081 out_css_put:
1082         css_put(memcg_css);
1083 out_bdi_put:
1084         bdi_put(bdi);
1085         return ret;
1086 }
1087
1088 /**
1089  * cgroup_writeback_umount - flush inode wb switches for umount
1090  *
1091  * This function is called when a super_block is about to be destroyed and
1092  * flushes in-flight inode wb switches.  An inode wb switch goes through
1093  * RCU and then workqueue, so the two need to be flushed in order to ensure
1094  * that all previously scheduled switches are finished.  As wb switches are
1095  * rare occurrences and synchronize_rcu() can take a while, perform
1096  * flushing iff wb switches are in flight.
1097  */
1098 void cgroup_writeback_umount(void)
1099 {
1100         /*
1101          * SB_ACTIVE should be reliably cleared before checking
1102          * isw_nr_in_flight, see generic_shutdown_super().
1103          */
1104         smp_mb();
1105
1106         if (atomic_read(&isw_nr_in_flight)) {
1107                 /*
1108                  * Use rcu_barrier() to wait for all pending callbacks to
1109                  * ensure that all in-flight wb switches are in the workqueue.
1110                  */
1111                 rcu_barrier();
1112                 flush_workqueue(isw_wq);
1113         }
1114 }
1115
1116 static int __init cgroup_writeback_init(void)
1117 {
1118         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1119         if (!isw_wq)
1120                 return -ENOMEM;
1121         return 0;
1122 }
1123 fs_initcall(cgroup_writeback_init);
1124
1125 #else   /* CONFIG_CGROUP_WRITEBACK */
1126
1127 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1128 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1129
1130 static void inode_cgwb_move_to_attached(struct inode *inode,
1131                                         struct bdi_writeback *wb)
1132 {
1133         assert_spin_locked(&wb->list_lock);
1134         assert_spin_locked(&inode->i_lock);
1135
1136         inode->i_state &= ~I_SYNC_QUEUED;
1137         list_del_init(&inode->i_io_list);
1138         wb_io_lists_depopulated(wb);
1139 }
1140
1141 static struct bdi_writeback *
1142 locked_inode_to_wb_and_lock_list(struct inode *inode)
1143         __releases(&inode->i_lock)
1144         __acquires(&wb->list_lock)
1145 {
1146         struct bdi_writeback *wb = inode_to_wb(inode);
1147
1148         spin_unlock(&inode->i_lock);
1149         spin_lock(&wb->list_lock);
1150         return wb;
1151 }
1152
1153 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1154         __acquires(&wb->list_lock)
1155 {
1156         struct bdi_writeback *wb = inode_to_wb(inode);
1157
1158         spin_lock(&wb->list_lock);
1159         return wb;
1160 }
1161
1162 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1163 {
1164         return nr_pages;
1165 }
1166
1167 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1168                                   struct wb_writeback_work *base_work,
1169                                   bool skip_if_busy)
1170 {
1171         might_sleep();
1172
1173         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1174                 base_work->auto_free = 0;
1175                 wb_queue_work(&bdi->wb, base_work);
1176         }
1177 }
1178
1179 #endif  /* CONFIG_CGROUP_WRITEBACK */
1180
1181 /*
1182  * Add in the number of potentially dirty inodes, because each inode
1183  * write can dirty pagecache in the underlying blockdev.
1184  */
1185 static unsigned long get_nr_dirty_pages(void)
1186 {
1187         return global_node_page_state(NR_FILE_DIRTY) +
1188                 get_nr_dirty_inodes();
1189 }
1190
1191 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1192 {
1193         if (!wb_has_dirty_io(wb))
1194                 return;
1195
1196         /*
1197          * All callers of this function want to start writeback of all
1198          * dirty pages. Places like vmscan can call this at a very
1199          * high frequency, causing pointless allocations of tons of
1200          * work items and keeping the flusher threads busy retrieving
1201          * that work. Ensure that we only allow one of them pending and
1202          * inflight at the time.
1203          */
1204         if (test_bit(WB_start_all, &wb->state) ||
1205             test_and_set_bit(WB_start_all, &wb->state))
1206                 return;
1207
1208         wb->start_all_reason = reason;
1209         wb_wakeup(wb);
1210 }
1211
1212 /**
1213  * wb_start_background_writeback - start background writeback
1214  * @wb: bdi_writback to write from
1215  *
1216  * Description:
1217  *   This makes sure WB_SYNC_NONE background writeback happens. When
1218  *   this function returns, it is only guaranteed that for given wb
1219  *   some IO is happening if we are over background dirty threshold.
1220  *   Caller need not hold sb s_umount semaphore.
1221  */
1222 void wb_start_background_writeback(struct bdi_writeback *wb)
1223 {
1224         /*
1225          * We just wake up the flusher thread. It will perform background
1226          * writeback as soon as there is no other work to do.
1227          */
1228         trace_writeback_wake_background(wb);
1229         wb_wakeup(wb);
1230 }
1231
1232 /*
1233  * Remove the inode from the writeback list it is on.
1234  */
1235 void inode_io_list_del(struct inode *inode)
1236 {
1237         struct bdi_writeback *wb;
1238
1239         wb = inode_to_wb_and_lock_list(inode);
1240         spin_lock(&inode->i_lock);
1241
1242         inode->i_state &= ~I_SYNC_QUEUED;
1243         list_del_init(&inode->i_io_list);
1244         wb_io_lists_depopulated(wb);
1245
1246         spin_unlock(&inode->i_lock);
1247         spin_unlock(&wb->list_lock);
1248 }
1249 EXPORT_SYMBOL(inode_io_list_del);
1250
1251 /*
1252  * mark an inode as under writeback on the sb
1253  */
1254 void sb_mark_inode_writeback(struct inode *inode)
1255 {
1256         struct super_block *sb = inode->i_sb;
1257         unsigned long flags;
1258
1259         if (list_empty(&inode->i_wb_list)) {
1260                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1261                 if (list_empty(&inode->i_wb_list)) {
1262                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1263                         trace_sb_mark_inode_writeback(inode);
1264                 }
1265                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1266         }
1267 }
1268
1269 /*
1270  * clear an inode as under writeback on the sb
1271  */
1272 void sb_clear_inode_writeback(struct inode *inode)
1273 {
1274         struct super_block *sb = inode->i_sb;
1275         unsigned long flags;
1276
1277         if (!list_empty(&inode->i_wb_list)) {
1278                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1279                 if (!list_empty(&inode->i_wb_list)) {
1280                         list_del_init(&inode->i_wb_list);
1281                         trace_sb_clear_inode_writeback(inode);
1282                 }
1283                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1284         }
1285 }
1286
1287 /*
1288  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1289  * furthest end of its superblock's dirty-inode list.
1290  *
1291  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1292  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1293  * the case then the inode must have been redirtied while it was being written
1294  * out and we don't reset its dirtied_when.
1295  */
1296 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1297 {
1298         assert_spin_locked(&inode->i_lock);
1299
1300         if (!list_empty(&wb->b_dirty)) {
1301                 struct inode *tail;
1302
1303                 tail = wb_inode(wb->b_dirty.next);
1304                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1305                         inode->dirtied_when = jiffies;
1306         }
1307         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1308         inode->i_state &= ~I_SYNC_QUEUED;
1309 }
1310
1311 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1312 {
1313         spin_lock(&inode->i_lock);
1314         redirty_tail_locked(inode, wb);
1315         spin_unlock(&inode->i_lock);
1316 }
1317
1318 /*
1319  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1320  */
1321 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1322 {
1323         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1324 }
1325
1326 static void inode_sync_complete(struct inode *inode)
1327 {
1328         inode->i_state &= ~I_SYNC;
1329         /* If inode is clean an unused, put it into LRU now... */
1330         inode_add_lru(inode);
1331         /* Waiters must see I_SYNC cleared before being woken up */
1332         smp_mb();
1333         wake_up_bit(&inode->i_state, __I_SYNC);
1334 }
1335
1336 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1337 {
1338         bool ret = time_after(inode->dirtied_when, t);
1339 #ifndef CONFIG_64BIT
1340         /*
1341          * For inodes being constantly redirtied, dirtied_when can get stuck.
1342          * It _appears_ to be in the future, but is actually in distant past.
1343          * This test is necessary to prevent such wrapped-around relative times
1344          * from permanently stopping the whole bdi writeback.
1345          */
1346         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1347 #endif
1348         return ret;
1349 }
1350
1351 #define EXPIRE_DIRTY_ATIME 0x0001
1352
1353 /*
1354  * Move expired (dirtied before dirtied_before) dirty inodes from
1355  * @delaying_queue to @dispatch_queue.
1356  */
1357 static int move_expired_inodes(struct list_head *delaying_queue,
1358                                struct list_head *dispatch_queue,
1359                                unsigned long dirtied_before)
1360 {
1361         LIST_HEAD(tmp);
1362         struct list_head *pos, *node;
1363         struct super_block *sb = NULL;
1364         struct inode *inode;
1365         int do_sb_sort = 0;
1366         int moved = 0;
1367
1368         while (!list_empty(delaying_queue)) {
1369                 inode = wb_inode(delaying_queue->prev);
1370                 if (inode_dirtied_after(inode, dirtied_before))
1371                         break;
1372                 spin_lock(&inode->i_lock);
1373                 list_move(&inode->i_io_list, &tmp);
1374                 moved++;
1375                 inode->i_state |= I_SYNC_QUEUED;
1376                 spin_unlock(&inode->i_lock);
1377                 if (sb_is_blkdev_sb(inode->i_sb))
1378                         continue;
1379                 if (sb && sb != inode->i_sb)
1380                         do_sb_sort = 1;
1381                 sb = inode->i_sb;
1382         }
1383
1384         /* just one sb in list, splice to dispatch_queue and we're done */
1385         if (!do_sb_sort) {
1386                 list_splice(&tmp, dispatch_queue);
1387                 goto out;
1388         }
1389
1390         /*
1391          * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1392          * we don't take inode->i_lock here because it is just a pointless overhead.
1393          * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1394          * fully under our control.
1395          */
1396         while (!list_empty(&tmp)) {
1397                 sb = wb_inode(tmp.prev)->i_sb;
1398                 list_for_each_prev_safe(pos, node, &tmp) {
1399                         inode = wb_inode(pos);
1400                         if (inode->i_sb == sb)
1401                                 list_move(&inode->i_io_list, dispatch_queue);
1402                 }
1403         }
1404 out:
1405         return moved;
1406 }
1407
1408 /*
1409  * Queue all expired dirty inodes for io, eldest first.
1410  * Before
1411  *         newly dirtied     b_dirty    b_io    b_more_io
1412  *         =============>    gf         edc     BA
1413  * After
1414  *         newly dirtied     b_dirty    b_io    b_more_io
1415  *         =============>    g          fBAedc
1416  *                                           |
1417  *                                           +--> dequeue for IO
1418  */
1419 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1420                      unsigned long dirtied_before)
1421 {
1422         int moved;
1423         unsigned long time_expire_jif = dirtied_before;
1424
1425         assert_spin_locked(&wb->list_lock);
1426         list_splice_init(&wb->b_more_io, &wb->b_io);
1427         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1428         if (!work->for_sync)
1429                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1430         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1431                                      time_expire_jif);
1432         if (moved)
1433                 wb_io_lists_populated(wb);
1434         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1435 }
1436
1437 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1438 {
1439         int ret;
1440
1441         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1442                 trace_writeback_write_inode_start(inode, wbc);
1443                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1444                 trace_writeback_write_inode(inode, wbc);
1445                 return ret;
1446         }
1447         return 0;
1448 }
1449
1450 /*
1451  * Wait for writeback on an inode to complete. Called with i_lock held.
1452  * Caller must make sure inode cannot go away when we drop i_lock.
1453  */
1454 static void __inode_wait_for_writeback(struct inode *inode)
1455         __releases(inode->i_lock)
1456         __acquires(inode->i_lock)
1457 {
1458         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1459         wait_queue_head_t *wqh;
1460
1461         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1462         while (inode->i_state & I_SYNC) {
1463                 spin_unlock(&inode->i_lock);
1464                 __wait_on_bit(wqh, &wq, bit_wait,
1465                               TASK_UNINTERRUPTIBLE);
1466                 spin_lock(&inode->i_lock);
1467         }
1468 }
1469
1470 /*
1471  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1472  */
1473 void inode_wait_for_writeback(struct inode *inode)
1474 {
1475         spin_lock(&inode->i_lock);
1476         __inode_wait_for_writeback(inode);
1477         spin_unlock(&inode->i_lock);
1478 }
1479
1480 /*
1481  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1482  * held and drops it. It is aimed for callers not holding any inode reference
1483  * so once i_lock is dropped, inode can go away.
1484  */
1485 static void inode_sleep_on_writeback(struct inode *inode)
1486         __releases(inode->i_lock)
1487 {
1488         DEFINE_WAIT(wait);
1489         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1490         int sleep;
1491
1492         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1493         sleep = inode->i_state & I_SYNC;
1494         spin_unlock(&inode->i_lock);
1495         if (sleep)
1496                 schedule();
1497         finish_wait(wqh, &wait);
1498 }
1499
1500 /*
1501  * Find proper writeback list for the inode depending on its current state and
1502  * possibly also change of its state while we were doing writeback.  Here we
1503  * handle things such as livelock prevention or fairness of writeback among
1504  * inodes. This function can be called only by flusher thread - noone else
1505  * processes all inodes in writeback lists and requeueing inodes behind flusher
1506  * thread's back can have unexpected consequences.
1507  */
1508 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1509                           struct writeback_control *wbc)
1510 {
1511         if (inode->i_state & I_FREEING)
1512                 return;
1513
1514         /*
1515          * Sync livelock prevention. Each inode is tagged and synced in one
1516          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1517          * the dirty time to prevent enqueue and sync it again.
1518          */
1519         if ((inode->i_state & I_DIRTY) &&
1520             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1521                 inode->dirtied_when = jiffies;
1522
1523         if (wbc->pages_skipped) {
1524                 /*
1525                  * writeback is not making progress due to locked
1526                  * buffers. Skip this inode for now.
1527                  */
1528                 redirty_tail_locked(inode, wb);
1529                 return;
1530         }
1531
1532         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1533                 /*
1534                  * We didn't write back all the pages.  nfs_writepages()
1535                  * sometimes bales out without doing anything.
1536                  */
1537                 if (wbc->nr_to_write <= 0) {
1538                         /* Slice used up. Queue for next turn. */
1539                         requeue_io(inode, wb);
1540                 } else {
1541                         /*
1542                          * Writeback blocked by something other than
1543                          * congestion. Delay the inode for some time to
1544                          * avoid spinning on the CPU (100% iowait)
1545                          * retrying writeback of the dirty page/inode
1546                          * that cannot be performed immediately.
1547                          */
1548                         redirty_tail_locked(inode, wb);
1549                 }
1550         } else if (inode->i_state & I_DIRTY) {
1551                 /*
1552                  * Filesystems can dirty the inode during writeback operations,
1553                  * such as delayed allocation during submission or metadata
1554                  * updates after data IO completion.
1555                  */
1556                 redirty_tail_locked(inode, wb);
1557         } else if (inode->i_state & I_DIRTY_TIME) {
1558                 inode->dirtied_when = jiffies;
1559                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1560                 inode->i_state &= ~I_SYNC_QUEUED;
1561         } else {
1562                 /* The inode is clean. Remove from writeback lists. */
1563                 inode_cgwb_move_to_attached(inode, wb);
1564         }
1565 }
1566
1567 /*
1568  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1569  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1570  *
1571  * This doesn't remove the inode from the writeback list it is on, except
1572  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1573  * expiration.  The caller is otherwise responsible for writeback list handling.
1574  *
1575  * The caller is also responsible for setting the I_SYNC flag beforehand and
1576  * calling inode_sync_complete() to clear it afterwards.
1577  */
1578 static int
1579 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1580 {
1581         struct address_space *mapping = inode->i_mapping;
1582         long nr_to_write = wbc->nr_to_write;
1583         unsigned dirty;
1584         int ret;
1585
1586         WARN_ON(!(inode->i_state & I_SYNC));
1587
1588         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1589
1590         ret = do_writepages(mapping, wbc);
1591
1592         /*
1593          * Make sure to wait on the data before writing out the metadata.
1594          * This is important for filesystems that modify metadata on data
1595          * I/O completion. We don't do it for sync(2) writeback because it has a
1596          * separate, external IO completion path and ->sync_fs for guaranteeing
1597          * inode metadata is written back correctly.
1598          */
1599         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1600                 int err = filemap_fdatawait(mapping);
1601                 if (ret == 0)
1602                         ret = err;
1603         }
1604
1605         /*
1606          * If the inode has dirty timestamps and we need to write them, call
1607          * mark_inode_dirty_sync() to notify the filesystem about it and to
1608          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1609          */
1610         if ((inode->i_state & I_DIRTY_TIME) &&
1611             (wbc->sync_mode == WB_SYNC_ALL ||
1612              time_after(jiffies, inode->dirtied_time_when +
1613                         dirtytime_expire_interval * HZ))) {
1614                 trace_writeback_lazytime(inode);
1615                 mark_inode_dirty_sync(inode);
1616         }
1617
1618         /*
1619          * Get and clear the dirty flags from i_state.  This needs to be done
1620          * after calling writepages because some filesystems may redirty the
1621          * inode during writepages due to delalloc.  It also needs to be done
1622          * after handling timestamp expiration, as that may dirty the inode too.
1623          */
1624         spin_lock(&inode->i_lock);
1625         dirty = inode->i_state & I_DIRTY;
1626         inode->i_state &= ~dirty;
1627
1628         /*
1629          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1630          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1631          * either they see the I_DIRTY bits cleared or we see the dirtied
1632          * inode.
1633          *
1634          * I_DIRTY_PAGES is always cleared together above even if @mapping
1635          * still has dirty pages.  The flag is reinstated after smp_mb() if
1636          * necessary.  This guarantees that either __mark_inode_dirty()
1637          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1638          */
1639         smp_mb();
1640
1641         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1642                 inode->i_state |= I_DIRTY_PAGES;
1643         else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1644                 if (!(inode->i_state & I_DIRTY_PAGES)) {
1645                         inode->i_state &= ~I_PINNING_FSCACHE_WB;
1646                         wbc->unpinned_fscache_wb = true;
1647                         dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1648                 }
1649         }
1650
1651         spin_unlock(&inode->i_lock);
1652
1653         /* Don't write the inode if only I_DIRTY_PAGES was set */
1654         if (dirty & ~I_DIRTY_PAGES) {
1655                 int err = write_inode(inode, wbc);
1656                 if (ret == 0)
1657                         ret = err;
1658         }
1659         wbc->unpinned_fscache_wb = false;
1660         trace_writeback_single_inode(inode, wbc, nr_to_write);
1661         return ret;
1662 }
1663
1664 /*
1665  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1666  * the regular batched writeback done by the flusher threads in
1667  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1668  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1669  *
1670  * To prevent the inode from going away, either the caller must have a reference
1671  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1672  */
1673 static int writeback_single_inode(struct inode *inode,
1674                                   struct writeback_control *wbc)
1675 {
1676         struct bdi_writeback *wb;
1677         int ret = 0;
1678
1679         spin_lock(&inode->i_lock);
1680         if (!atomic_read(&inode->i_count))
1681                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1682         else
1683                 WARN_ON(inode->i_state & I_WILL_FREE);
1684
1685         if (inode->i_state & I_SYNC) {
1686                 /*
1687                  * Writeback is already running on the inode.  For WB_SYNC_NONE,
1688                  * that's enough and we can just return.  For WB_SYNC_ALL, we
1689                  * must wait for the existing writeback to complete, then do
1690                  * writeback again if there's anything left.
1691                  */
1692                 if (wbc->sync_mode != WB_SYNC_ALL)
1693                         goto out;
1694                 __inode_wait_for_writeback(inode);
1695         }
1696         WARN_ON(inode->i_state & I_SYNC);
1697         /*
1698          * If the inode is already fully clean, then there's nothing to do.
1699          *
1700          * For data-integrity syncs we also need to check whether any pages are
1701          * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1702          * there are any such pages, we'll need to wait for them.
1703          */
1704         if (!(inode->i_state & I_DIRTY_ALL) &&
1705             (wbc->sync_mode != WB_SYNC_ALL ||
1706              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1707                 goto out;
1708         inode->i_state |= I_SYNC;
1709         wbc_attach_and_unlock_inode(wbc, inode);
1710
1711         ret = __writeback_single_inode(inode, wbc);
1712
1713         wbc_detach_inode(wbc);
1714
1715         wb = inode_to_wb_and_lock_list(inode);
1716         spin_lock(&inode->i_lock);
1717         /*
1718          * If the inode is freeing, its i_io_list shoudn't be updated
1719          * as it can be finally deleted at this moment.
1720          */
1721         if (!(inode->i_state & I_FREEING)) {
1722                 /*
1723                  * If the inode is now fully clean, then it can be safely
1724                  * removed from its writeback list (if any). Otherwise the
1725                  * flusher threads are responsible for the writeback lists.
1726                  */
1727                 if (!(inode->i_state & I_DIRTY_ALL))
1728                         inode_cgwb_move_to_attached(inode, wb);
1729                 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1730                         if ((inode->i_state & I_DIRTY))
1731                                 redirty_tail_locked(inode, wb);
1732                         else if (inode->i_state & I_DIRTY_TIME) {
1733                                 inode->dirtied_when = jiffies;
1734                                 inode_io_list_move_locked(inode,
1735                                                           wb,
1736                                                           &wb->b_dirty_time);
1737                         }
1738                 }
1739         }
1740
1741         spin_unlock(&wb->list_lock);
1742         inode_sync_complete(inode);
1743 out:
1744         spin_unlock(&inode->i_lock);
1745         return ret;
1746 }
1747
1748 static long writeback_chunk_size(struct bdi_writeback *wb,
1749                                  struct wb_writeback_work *work)
1750 {
1751         long pages;
1752
1753         /*
1754          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1755          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1756          * here avoids calling into writeback_inodes_wb() more than once.
1757          *
1758          * The intended call sequence for WB_SYNC_ALL writeback is:
1759          *
1760          *      wb_writeback()
1761          *          writeback_sb_inodes()       <== called only once
1762          *              write_cache_pages()     <== called once for each inode
1763          *                   (quickly) tag currently dirty pages
1764          *                   (maybe slowly) sync all tagged pages
1765          */
1766         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1767                 pages = LONG_MAX;
1768         else {
1769                 pages = min(wb->avg_write_bandwidth / 2,
1770                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1771                 pages = min(pages, work->nr_pages);
1772                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1773                                    MIN_WRITEBACK_PAGES);
1774         }
1775
1776         return pages;
1777 }
1778
1779 /*
1780  * Write a portion of b_io inodes which belong to @sb.
1781  *
1782  * Return the number of pages and/or inodes written.
1783  *
1784  * NOTE! This is called with wb->list_lock held, and will
1785  * unlock and relock that for each inode it ends up doing
1786  * IO for.
1787  */
1788 static long writeback_sb_inodes(struct super_block *sb,
1789                                 struct bdi_writeback *wb,
1790                                 struct wb_writeback_work *work)
1791 {
1792         struct writeback_control wbc = {
1793                 .sync_mode              = work->sync_mode,
1794                 .tagged_writepages      = work->tagged_writepages,
1795                 .for_kupdate            = work->for_kupdate,
1796                 .for_background         = work->for_background,
1797                 .for_sync               = work->for_sync,
1798                 .range_cyclic           = work->range_cyclic,
1799                 .range_start            = 0,
1800                 .range_end              = LLONG_MAX,
1801         };
1802         unsigned long start_time = jiffies;
1803         long write_chunk;
1804         long total_wrote = 0;  /* count both pages and inodes */
1805
1806         while (!list_empty(&wb->b_io)) {
1807                 struct inode *inode = wb_inode(wb->b_io.prev);
1808                 struct bdi_writeback *tmp_wb;
1809                 long wrote;
1810
1811                 if (inode->i_sb != sb) {
1812                         if (work->sb) {
1813                                 /*
1814                                  * We only want to write back data for this
1815                                  * superblock, move all inodes not belonging
1816                                  * to it back onto the dirty list.
1817                                  */
1818                                 redirty_tail(inode, wb);
1819                                 continue;
1820                         }
1821
1822                         /*
1823                          * The inode belongs to a different superblock.
1824                          * Bounce back to the caller to unpin this and
1825                          * pin the next superblock.
1826                          */
1827                         break;
1828                 }
1829
1830                 /*
1831                  * Don't bother with new inodes or inodes being freed, first
1832                  * kind does not need periodic writeout yet, and for the latter
1833                  * kind writeout is handled by the freer.
1834                  */
1835                 spin_lock(&inode->i_lock);
1836                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1837                         redirty_tail_locked(inode, wb);
1838                         spin_unlock(&inode->i_lock);
1839                         continue;
1840                 }
1841                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1842                         /*
1843                          * If this inode is locked for writeback and we are not
1844                          * doing writeback-for-data-integrity, move it to
1845                          * b_more_io so that writeback can proceed with the
1846                          * other inodes on s_io.
1847                          *
1848                          * We'll have another go at writing back this inode
1849                          * when we completed a full scan of b_io.
1850                          */
1851                         requeue_io(inode, wb);
1852                         spin_unlock(&inode->i_lock);
1853                         trace_writeback_sb_inodes_requeue(inode);
1854                         continue;
1855                 }
1856                 spin_unlock(&wb->list_lock);
1857
1858                 /*
1859                  * We already requeued the inode if it had I_SYNC set and we
1860                  * are doing WB_SYNC_NONE writeback. So this catches only the
1861                  * WB_SYNC_ALL case.
1862                  */
1863                 if (inode->i_state & I_SYNC) {
1864                         /* Wait for I_SYNC. This function drops i_lock... */
1865                         inode_sleep_on_writeback(inode);
1866                         /* Inode may be gone, start again */
1867                         spin_lock(&wb->list_lock);
1868                         continue;
1869                 }
1870                 inode->i_state |= I_SYNC;
1871                 wbc_attach_and_unlock_inode(&wbc, inode);
1872
1873                 write_chunk = writeback_chunk_size(wb, work);
1874                 wbc.nr_to_write = write_chunk;
1875                 wbc.pages_skipped = 0;
1876
1877                 /*
1878                  * We use I_SYNC to pin the inode in memory. While it is set
1879                  * evict_inode() will wait so the inode cannot be freed.
1880                  */
1881                 __writeback_single_inode(inode, &wbc);
1882
1883                 wbc_detach_inode(&wbc);
1884                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1885                 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1886                 wrote = wrote < 0 ? 0 : wrote;
1887                 total_wrote += wrote;
1888
1889                 if (need_resched()) {
1890                         /*
1891                          * We're trying to balance between building up a nice
1892                          * long list of IOs to improve our merge rate, and
1893                          * getting those IOs out quickly for anyone throttling
1894                          * in balance_dirty_pages().  cond_resched() doesn't
1895                          * unplug, so get our IOs out the door before we
1896                          * give up the CPU.
1897                          */
1898                         blk_flush_plug(current->plug, false);
1899                         cond_resched();
1900                 }
1901
1902                 /*
1903                  * Requeue @inode if still dirty.  Be careful as @inode may
1904                  * have been switched to another wb in the meantime.
1905                  */
1906                 tmp_wb = inode_to_wb_and_lock_list(inode);
1907                 spin_lock(&inode->i_lock);
1908                 if (!(inode->i_state & I_DIRTY_ALL))
1909                         total_wrote++;
1910                 requeue_inode(inode, tmp_wb, &wbc);
1911                 inode_sync_complete(inode);
1912                 spin_unlock(&inode->i_lock);
1913
1914                 if (unlikely(tmp_wb != wb)) {
1915                         spin_unlock(&tmp_wb->list_lock);
1916                         spin_lock(&wb->list_lock);
1917                 }
1918
1919                 /*
1920                  * bail out to wb_writeback() often enough to check
1921                  * background threshold and other termination conditions.
1922                  */
1923                 if (total_wrote) {
1924                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1925                                 break;
1926                         if (work->nr_pages <= 0)
1927                                 break;
1928                 }
1929         }
1930         return total_wrote;
1931 }
1932
1933 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1934                                   struct wb_writeback_work *work)
1935 {
1936         unsigned long start_time = jiffies;
1937         long wrote = 0;
1938
1939         while (!list_empty(&wb->b_io)) {
1940                 struct inode *inode = wb_inode(wb->b_io.prev);
1941                 struct super_block *sb = inode->i_sb;
1942
1943                 if (!trylock_super(sb)) {
1944                         /*
1945                          * trylock_super() may fail consistently due to
1946                          * s_umount being grabbed by someone else. Don't use
1947                          * requeue_io() to avoid busy retrying the inode/sb.
1948                          */
1949                         redirty_tail(inode, wb);
1950                         continue;
1951                 }
1952                 wrote += writeback_sb_inodes(sb, wb, work);
1953                 up_read(&sb->s_umount);
1954
1955                 /* refer to the same tests at the end of writeback_sb_inodes */
1956                 if (wrote) {
1957                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1958                                 break;
1959                         if (work->nr_pages <= 0)
1960                                 break;
1961                 }
1962         }
1963         /* Leave any unwritten inodes on b_io */
1964         return wrote;
1965 }
1966
1967 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1968                                 enum wb_reason reason)
1969 {
1970         struct wb_writeback_work work = {
1971                 .nr_pages       = nr_pages,
1972                 .sync_mode      = WB_SYNC_NONE,
1973                 .range_cyclic   = 1,
1974                 .reason         = reason,
1975         };
1976         struct blk_plug plug;
1977
1978         blk_start_plug(&plug);
1979         spin_lock(&wb->list_lock);
1980         if (list_empty(&wb->b_io))
1981                 queue_io(wb, &work, jiffies);
1982         __writeback_inodes_wb(wb, &work);
1983         spin_unlock(&wb->list_lock);
1984         blk_finish_plug(&plug);
1985
1986         return nr_pages - work.nr_pages;
1987 }
1988
1989 /*
1990  * Explicit flushing or periodic writeback of "old" data.
1991  *
1992  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1993  * dirtying-time in the inode's address_space.  So this periodic writeback code
1994  * just walks the superblock inode list, writing back any inodes which are
1995  * older than a specific point in time.
1996  *
1997  * Try to run once per dirty_writeback_interval.  But if a writeback event
1998  * takes longer than a dirty_writeback_interval interval, then leave a
1999  * one-second gap.
2000  *
2001  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2002  * all dirty pages if they are all attached to "old" mappings.
2003  */
2004 static long wb_writeback(struct bdi_writeback *wb,
2005                          struct wb_writeback_work *work)
2006 {
2007         long nr_pages = work->nr_pages;
2008         unsigned long dirtied_before = jiffies;
2009         struct inode *inode;
2010         long progress;
2011         struct blk_plug plug;
2012
2013         blk_start_plug(&plug);
2014         spin_lock(&wb->list_lock);
2015         for (;;) {
2016                 /*
2017                  * Stop writeback when nr_pages has been consumed
2018                  */
2019                 if (work->nr_pages <= 0)
2020                         break;
2021
2022                 /*
2023                  * Background writeout and kupdate-style writeback may
2024                  * run forever. Stop them if there is other work to do
2025                  * so that e.g. sync can proceed. They'll be restarted
2026                  * after the other works are all done.
2027                  */
2028                 if ((work->for_background || work->for_kupdate) &&
2029                     !list_empty(&wb->work_list))
2030                         break;
2031
2032                 /*
2033                  * For background writeout, stop when we are below the
2034                  * background dirty threshold
2035                  */
2036                 if (work->for_background && !wb_over_bg_thresh(wb))
2037                         break;
2038
2039                 /*
2040                  * Kupdate and background works are special and we want to
2041                  * include all inodes that need writing. Livelock avoidance is
2042                  * handled by these works yielding to any other work so we are
2043                  * safe.
2044                  */
2045                 if (work->for_kupdate) {
2046                         dirtied_before = jiffies -
2047                                 msecs_to_jiffies(dirty_expire_interval * 10);
2048                 } else if (work->for_background)
2049                         dirtied_before = jiffies;
2050
2051                 trace_writeback_start(wb, work);
2052                 if (list_empty(&wb->b_io))
2053                         queue_io(wb, work, dirtied_before);
2054                 if (work->sb)
2055                         progress = writeback_sb_inodes(work->sb, wb, work);
2056                 else
2057                         progress = __writeback_inodes_wb(wb, work);
2058                 trace_writeback_written(wb, work);
2059
2060                 /*
2061                  * Did we write something? Try for more
2062                  *
2063                  * Dirty inodes are moved to b_io for writeback in batches.
2064                  * The completion of the current batch does not necessarily
2065                  * mean the overall work is done. So we keep looping as long
2066                  * as made some progress on cleaning pages or inodes.
2067                  */
2068                 if (progress)
2069                         continue;
2070                 /*
2071                  * No more inodes for IO, bail
2072                  */
2073                 if (list_empty(&wb->b_more_io))
2074                         break;
2075                 /*
2076                  * Nothing written. Wait for some inode to
2077                  * become available for writeback. Otherwise
2078                  * we'll just busyloop.
2079                  */
2080                 trace_writeback_wait(wb, work);
2081                 inode = wb_inode(wb->b_more_io.prev);
2082                 spin_lock(&inode->i_lock);
2083                 spin_unlock(&wb->list_lock);
2084                 /* This function drops i_lock... */
2085                 inode_sleep_on_writeback(inode);
2086                 spin_lock(&wb->list_lock);
2087         }
2088         spin_unlock(&wb->list_lock);
2089         blk_finish_plug(&plug);
2090
2091         return nr_pages - work->nr_pages;
2092 }
2093
2094 /*
2095  * Return the next wb_writeback_work struct that hasn't been processed yet.
2096  */
2097 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2098 {
2099         struct wb_writeback_work *work = NULL;
2100
2101         spin_lock_irq(&wb->work_lock);
2102         if (!list_empty(&wb->work_list)) {
2103                 work = list_entry(wb->work_list.next,
2104                                   struct wb_writeback_work, list);
2105                 list_del_init(&work->list);
2106         }
2107         spin_unlock_irq(&wb->work_lock);
2108         return work;
2109 }
2110
2111 static long wb_check_background_flush(struct bdi_writeback *wb)
2112 {
2113         if (wb_over_bg_thresh(wb)) {
2114
2115                 struct wb_writeback_work work = {
2116                         .nr_pages       = LONG_MAX,
2117                         .sync_mode      = WB_SYNC_NONE,
2118                         .for_background = 1,
2119                         .range_cyclic   = 1,
2120                         .reason         = WB_REASON_BACKGROUND,
2121                 };
2122
2123                 return wb_writeback(wb, &work);
2124         }
2125
2126         return 0;
2127 }
2128
2129 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2130 {
2131         unsigned long expired;
2132         long nr_pages;
2133
2134         /*
2135          * When set to zero, disable periodic writeback
2136          */
2137         if (!dirty_writeback_interval)
2138                 return 0;
2139
2140         expired = wb->last_old_flush +
2141                         msecs_to_jiffies(dirty_writeback_interval * 10);
2142         if (time_before(jiffies, expired))
2143                 return 0;
2144
2145         wb->last_old_flush = jiffies;
2146         nr_pages = get_nr_dirty_pages();
2147
2148         if (nr_pages) {
2149                 struct wb_writeback_work work = {
2150                         .nr_pages       = nr_pages,
2151                         .sync_mode      = WB_SYNC_NONE,
2152                         .for_kupdate    = 1,
2153                         .range_cyclic   = 1,
2154                         .reason         = WB_REASON_PERIODIC,
2155                 };
2156
2157                 return wb_writeback(wb, &work);
2158         }
2159
2160         return 0;
2161 }
2162
2163 static long wb_check_start_all(struct bdi_writeback *wb)
2164 {
2165         long nr_pages;
2166
2167         if (!test_bit(WB_start_all, &wb->state))
2168                 return 0;
2169
2170         nr_pages = get_nr_dirty_pages();
2171         if (nr_pages) {
2172                 struct wb_writeback_work work = {
2173                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2174                         .sync_mode      = WB_SYNC_NONE,
2175                         .range_cyclic   = 1,
2176                         .reason         = wb->start_all_reason,
2177                 };
2178
2179                 nr_pages = wb_writeback(wb, &work);
2180         }
2181
2182         clear_bit(WB_start_all, &wb->state);
2183         return nr_pages;
2184 }
2185
2186
2187 /*
2188  * Retrieve work items and do the writeback they describe
2189  */
2190 static long wb_do_writeback(struct bdi_writeback *wb)
2191 {
2192         struct wb_writeback_work *work;
2193         long wrote = 0;
2194
2195         set_bit(WB_writeback_running, &wb->state);
2196         while ((work = get_next_work_item(wb)) != NULL) {
2197                 trace_writeback_exec(wb, work);
2198                 wrote += wb_writeback(wb, work);
2199                 finish_writeback_work(wb, work);
2200         }
2201
2202         /*
2203          * Check for a flush-everything request
2204          */
2205         wrote += wb_check_start_all(wb);
2206
2207         /*
2208          * Check for periodic writeback, kupdated() style
2209          */
2210         wrote += wb_check_old_data_flush(wb);
2211         wrote += wb_check_background_flush(wb);
2212         clear_bit(WB_writeback_running, &wb->state);
2213
2214         return wrote;
2215 }
2216
2217 /*
2218  * Handle writeback of dirty data for the device backed by this bdi. Also
2219  * reschedules periodically and does kupdated style flushing.
2220  */
2221 void wb_workfn(struct work_struct *work)
2222 {
2223         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2224                                                 struct bdi_writeback, dwork);
2225         long pages_written;
2226
2227         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2228
2229         if (likely(!current_is_workqueue_rescuer() ||
2230                    !test_bit(WB_registered, &wb->state))) {
2231                 /*
2232                  * The normal path.  Keep writing back @wb until its
2233                  * work_list is empty.  Note that this path is also taken
2234                  * if @wb is shutting down even when we're running off the
2235                  * rescuer as work_list needs to be drained.
2236                  */
2237                 do {
2238                         pages_written = wb_do_writeback(wb);
2239                         trace_writeback_pages_written(pages_written);
2240                 } while (!list_empty(&wb->work_list));
2241         } else {
2242                 /*
2243                  * bdi_wq can't get enough workers and we're running off
2244                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2245                  * enough for efficient IO.
2246                  */
2247                 pages_written = writeback_inodes_wb(wb, 1024,
2248                                                     WB_REASON_FORKER_THREAD);
2249                 trace_writeback_pages_written(pages_written);
2250         }
2251
2252         if (!list_empty(&wb->work_list))
2253                 wb_wakeup(wb);
2254         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2255                 wb_wakeup_delayed(wb);
2256 }
2257
2258 /*
2259  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2260  * write back the whole world.
2261  */
2262 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2263                                          enum wb_reason reason)
2264 {
2265         struct bdi_writeback *wb;
2266
2267         if (!bdi_has_dirty_io(bdi))
2268                 return;
2269
2270         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2271                 wb_start_writeback(wb, reason);
2272 }
2273
2274 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2275                                 enum wb_reason reason)
2276 {
2277         rcu_read_lock();
2278         __wakeup_flusher_threads_bdi(bdi, reason);
2279         rcu_read_unlock();
2280 }
2281
2282 /*
2283  * Wakeup the flusher threads to start writeback of all currently dirty pages
2284  */
2285 void wakeup_flusher_threads(enum wb_reason reason)
2286 {
2287         struct backing_dev_info *bdi;
2288
2289         /*
2290          * If we are expecting writeback progress we must submit plugged IO.
2291          */
2292         blk_flush_plug(current->plug, true);
2293
2294         rcu_read_lock();
2295         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2296                 __wakeup_flusher_threads_bdi(bdi, reason);
2297         rcu_read_unlock();
2298 }
2299
2300 /*
2301  * Wake up bdi's periodically to make sure dirtytime inodes gets
2302  * written back periodically.  We deliberately do *not* check the
2303  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2304  * kernel to be constantly waking up once there are any dirtytime
2305  * inodes on the system.  So instead we define a separate delayed work
2306  * function which gets called much more rarely.  (By default, only
2307  * once every 12 hours.)
2308  *
2309  * If there is any other write activity going on in the file system,
2310  * this function won't be necessary.  But if the only thing that has
2311  * happened on the file system is a dirtytime inode caused by an atime
2312  * update, we need this infrastructure below to make sure that inode
2313  * eventually gets pushed out to disk.
2314  */
2315 static void wakeup_dirtytime_writeback(struct work_struct *w);
2316 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2317
2318 static void wakeup_dirtytime_writeback(struct work_struct *w)
2319 {
2320         struct backing_dev_info *bdi;
2321
2322         rcu_read_lock();
2323         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2324                 struct bdi_writeback *wb;
2325
2326                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2327                         if (!list_empty(&wb->b_dirty_time))
2328                                 wb_wakeup(wb);
2329         }
2330         rcu_read_unlock();
2331         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2332 }
2333
2334 static int __init start_dirtytime_writeback(void)
2335 {
2336         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2337         return 0;
2338 }
2339 __initcall(start_dirtytime_writeback);
2340
2341 int dirtytime_interval_handler(struct ctl_table *table, int write,
2342                                void *buffer, size_t *lenp, loff_t *ppos)
2343 {
2344         int ret;
2345
2346         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2347         if (ret == 0 && write)
2348                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2349         return ret;
2350 }
2351
2352 /**
2353  * __mark_inode_dirty - internal function to mark an inode dirty
2354  *
2355  * @inode: inode to mark
2356  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2357  *         multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2358  *         with I_DIRTY_PAGES.
2359  *
2360  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2361  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2362  *
2363  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2364  * instead of calling this directly.
2365  *
2366  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2367  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2368  * even if they are later hashed, as they will have been marked dirty already.
2369  *
2370  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2371  *
2372  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2373  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2374  * the kernel-internal blockdev inode represents the dirtying time of the
2375  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2376  * page->mapping->host, so the page-dirtying time is recorded in the internal
2377  * blockdev inode.
2378  */
2379 void __mark_inode_dirty(struct inode *inode, int flags)
2380 {
2381         struct super_block *sb = inode->i_sb;
2382         int dirtytime = 0;
2383         struct bdi_writeback *wb = NULL;
2384
2385         trace_writeback_mark_inode_dirty(inode, flags);
2386
2387         if (flags & I_DIRTY_INODE) {
2388                 /*
2389                  * Inode timestamp update will piggback on this dirtying.
2390                  * We tell ->dirty_inode callback that timestamps need to
2391                  * be updated by setting I_DIRTY_TIME in flags.
2392                  */
2393                 if (inode->i_state & I_DIRTY_TIME) {
2394                         spin_lock(&inode->i_lock);
2395                         if (inode->i_state & I_DIRTY_TIME) {
2396                                 inode->i_state &= ~I_DIRTY_TIME;
2397                                 flags |= I_DIRTY_TIME;
2398                         }
2399                         spin_unlock(&inode->i_lock);
2400                 }
2401
2402                 /*
2403                  * Notify the filesystem about the inode being dirtied, so that
2404                  * (if needed) it can update on-disk fields and journal the
2405                  * inode.  This is only needed when the inode itself is being
2406                  * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2407                  * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2408                  */
2409                 trace_writeback_dirty_inode_start(inode, flags);
2410                 if (sb->s_op->dirty_inode)
2411                         sb->s_op->dirty_inode(inode,
2412                                 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2413                 trace_writeback_dirty_inode(inode, flags);
2414
2415                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2416                 flags &= ~I_DIRTY_TIME;
2417         } else {
2418                 /*
2419                  * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2420                  * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2421                  * in one call to __mark_inode_dirty().)
2422                  */
2423                 dirtytime = flags & I_DIRTY_TIME;
2424                 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2425         }
2426
2427         /*
2428          * Paired with smp_mb() in __writeback_single_inode() for the
2429          * following lockless i_state test.  See there for details.
2430          */
2431         smp_mb();
2432
2433         if ((inode->i_state & flags) == flags)
2434                 return;
2435
2436         spin_lock(&inode->i_lock);
2437         if ((inode->i_state & flags) != flags) {
2438                 const int was_dirty = inode->i_state & I_DIRTY;
2439
2440                 inode_attach_wb(inode, NULL);
2441
2442                 inode->i_state |= flags;
2443
2444                 /*
2445                  * Grab inode's wb early because it requires dropping i_lock and we
2446                  * need to make sure following checks happen atomically with dirty
2447                  * list handling so that we don't move inodes under flush worker's
2448                  * hands.
2449                  */
2450                 if (!was_dirty) {
2451                         wb = locked_inode_to_wb_and_lock_list(inode);
2452                         spin_lock(&inode->i_lock);
2453                 }
2454
2455                 /*
2456                  * If the inode is queued for writeback by flush worker, just
2457                  * update its dirty state. Once the flush worker is done with
2458                  * the inode it will place it on the appropriate superblock
2459                  * list, based upon its state.
2460                  */
2461                 if (inode->i_state & I_SYNC_QUEUED)
2462                         goto out_unlock;
2463
2464                 /*
2465                  * Only add valid (hashed) inodes to the superblock's
2466                  * dirty list.  Add blockdev inodes as well.
2467                  */
2468                 if (!S_ISBLK(inode->i_mode)) {
2469                         if (inode_unhashed(inode))
2470                                 goto out_unlock;
2471                 }
2472                 if (inode->i_state & I_FREEING)
2473                         goto out_unlock;
2474
2475                 /*
2476                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2477                  * reposition it (that would break b_dirty time-ordering).
2478                  */
2479                 if (!was_dirty) {
2480                         struct list_head *dirty_list;
2481                         bool wakeup_bdi = false;
2482
2483                         inode->dirtied_when = jiffies;
2484                         if (dirtytime)
2485                                 inode->dirtied_time_when = jiffies;
2486
2487                         if (inode->i_state & I_DIRTY)
2488                                 dirty_list = &wb->b_dirty;
2489                         else
2490                                 dirty_list = &wb->b_dirty_time;
2491
2492                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2493                                                                dirty_list);
2494
2495                         spin_unlock(&wb->list_lock);
2496                         spin_unlock(&inode->i_lock);
2497                         trace_writeback_dirty_inode_enqueue(inode);
2498
2499                         /*
2500                          * If this is the first dirty inode for this bdi,
2501                          * we have to wake-up the corresponding bdi thread
2502                          * to make sure background write-back happens
2503                          * later.
2504                          */
2505                         if (wakeup_bdi &&
2506                             (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2507                                 wb_wakeup_delayed(wb);
2508                         return;
2509                 }
2510         }
2511 out_unlock:
2512         if (wb)
2513                 spin_unlock(&wb->list_lock);
2514         spin_unlock(&inode->i_lock);
2515 }
2516 EXPORT_SYMBOL(__mark_inode_dirty);
2517
2518 /*
2519  * The @s_sync_lock is used to serialise concurrent sync operations
2520  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2521  * Concurrent callers will block on the s_sync_lock rather than doing contending
2522  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2523  * has been issued up to the time this function is enter is guaranteed to be
2524  * completed by the time we have gained the lock and waited for all IO that is
2525  * in progress regardless of the order callers are granted the lock.
2526  */
2527 static void wait_sb_inodes(struct super_block *sb)
2528 {
2529         LIST_HEAD(sync_list);
2530
2531         /*
2532          * We need to be protected against the filesystem going from
2533          * r/o to r/w or vice versa.
2534          */
2535         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2536
2537         mutex_lock(&sb->s_sync_lock);
2538
2539         /*
2540          * Splice the writeback list onto a temporary list to avoid waiting on
2541          * inodes that have started writeback after this point.
2542          *
2543          * Use rcu_read_lock() to keep the inodes around until we have a
2544          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2545          * the local list because inodes can be dropped from either by writeback
2546          * completion.
2547          */
2548         rcu_read_lock();
2549         spin_lock_irq(&sb->s_inode_wblist_lock);
2550         list_splice_init(&sb->s_inodes_wb, &sync_list);
2551
2552         /*
2553          * Data integrity sync. Must wait for all pages under writeback, because
2554          * there may have been pages dirtied before our sync call, but which had
2555          * writeout started before we write it out.  In which case, the inode
2556          * may not be on the dirty list, but we still have to wait for that
2557          * writeout.
2558          */
2559         while (!list_empty(&sync_list)) {
2560                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2561                                                        i_wb_list);
2562                 struct address_space *mapping = inode->i_mapping;
2563
2564                 /*
2565                  * Move each inode back to the wb list before we drop the lock
2566                  * to preserve consistency between i_wb_list and the mapping
2567                  * writeback tag. Writeback completion is responsible to remove
2568                  * the inode from either list once the writeback tag is cleared.
2569                  */
2570                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2571
2572                 /*
2573                  * The mapping can appear untagged while still on-list since we
2574                  * do not have the mapping lock. Skip it here, wb completion
2575                  * will remove it.
2576                  */
2577                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2578                         continue;
2579
2580                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2581
2582                 spin_lock(&inode->i_lock);
2583                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2584                         spin_unlock(&inode->i_lock);
2585
2586                         spin_lock_irq(&sb->s_inode_wblist_lock);
2587                         continue;
2588                 }
2589                 __iget(inode);
2590                 spin_unlock(&inode->i_lock);
2591                 rcu_read_unlock();
2592
2593                 /*
2594                  * We keep the error status of individual mapping so that
2595                  * applications can catch the writeback error using fsync(2).
2596                  * See filemap_fdatawait_keep_errors() for details.
2597                  */
2598                 filemap_fdatawait_keep_errors(mapping);
2599
2600                 cond_resched();
2601
2602                 iput(inode);
2603
2604                 rcu_read_lock();
2605                 spin_lock_irq(&sb->s_inode_wblist_lock);
2606         }
2607         spin_unlock_irq(&sb->s_inode_wblist_lock);
2608         rcu_read_unlock();
2609         mutex_unlock(&sb->s_sync_lock);
2610 }
2611
2612 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2613                                      enum wb_reason reason, bool skip_if_busy)
2614 {
2615         struct backing_dev_info *bdi = sb->s_bdi;
2616         DEFINE_WB_COMPLETION(done, bdi);
2617         struct wb_writeback_work work = {
2618                 .sb                     = sb,
2619                 .sync_mode              = WB_SYNC_NONE,
2620                 .tagged_writepages      = 1,
2621                 .done                   = &done,
2622                 .nr_pages               = nr,
2623                 .reason                 = reason,
2624         };
2625
2626         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2627                 return;
2628         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2629
2630         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2631         wb_wait_for_completion(&done);
2632 }
2633
2634 /**
2635  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2636  * @sb: the superblock
2637  * @nr: the number of pages to write
2638  * @reason: reason why some writeback work initiated
2639  *
2640  * Start writeback on some inodes on this super_block. No guarantees are made
2641  * on how many (if any) will be written, and this function does not wait
2642  * for IO completion of submitted IO.
2643  */
2644 void writeback_inodes_sb_nr(struct super_block *sb,
2645                             unsigned long nr,
2646                             enum wb_reason reason)
2647 {
2648         __writeback_inodes_sb_nr(sb, nr, reason, false);
2649 }
2650 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2651
2652 /**
2653  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2654  * @sb: the superblock
2655  * @reason: reason why some writeback work was initiated
2656  *
2657  * Start writeback on some inodes on this super_block. No guarantees are made
2658  * on how many (if any) will be written, and this function does not wait
2659  * for IO completion of submitted IO.
2660  */
2661 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2662 {
2663         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2664 }
2665 EXPORT_SYMBOL(writeback_inodes_sb);
2666
2667 /**
2668  * try_to_writeback_inodes_sb - try to start writeback if none underway
2669  * @sb: the superblock
2670  * @reason: reason why some writeback work was initiated
2671  *
2672  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2673  */
2674 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2675 {
2676         if (!down_read_trylock(&sb->s_umount))
2677                 return;
2678
2679         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2680         up_read(&sb->s_umount);
2681 }
2682 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2683
2684 /**
2685  * sync_inodes_sb       -       sync sb inode pages
2686  * @sb: the superblock
2687  *
2688  * This function writes and waits on any dirty inode belonging to this
2689  * super_block.
2690  */
2691 void sync_inodes_sb(struct super_block *sb)
2692 {
2693         struct backing_dev_info *bdi = sb->s_bdi;
2694         DEFINE_WB_COMPLETION(done, bdi);
2695         struct wb_writeback_work work = {
2696                 .sb             = sb,
2697                 .sync_mode      = WB_SYNC_ALL,
2698                 .nr_pages       = LONG_MAX,
2699                 .range_cyclic   = 0,
2700                 .done           = &done,
2701                 .reason         = WB_REASON_SYNC,
2702                 .for_sync       = 1,
2703         };
2704
2705         /*
2706          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2707          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2708          * bdi_has_dirty() need to be written out too.
2709          */
2710         if (bdi == &noop_backing_dev_info)
2711                 return;
2712         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2713
2714         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2715         bdi_down_write_wb_switch_rwsem(bdi);
2716         bdi_split_work_to_wbs(bdi, &work, false);
2717         wb_wait_for_completion(&done);
2718         bdi_up_write_wb_switch_rwsem(bdi);
2719
2720         wait_sb_inodes(sb);
2721 }
2722 EXPORT_SYMBOL(sync_inodes_sb);
2723
2724 /**
2725  * write_inode_now      -       write an inode to disk
2726  * @inode: inode to write to disk
2727  * @sync: whether the write should be synchronous or not
2728  *
2729  * This function commits an inode to disk immediately if it is dirty. This is
2730  * primarily needed by knfsd.
2731  *
2732  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2733  */
2734 int write_inode_now(struct inode *inode, int sync)
2735 {
2736         struct writeback_control wbc = {
2737                 .nr_to_write = LONG_MAX,
2738                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2739                 .range_start = 0,
2740                 .range_end = LLONG_MAX,
2741         };
2742
2743         if (!mapping_can_writeback(inode->i_mapping))
2744                 wbc.nr_to_write = 0;
2745
2746         might_sleep();
2747         return writeback_single_inode(inode, &wbc);
2748 }
2749 EXPORT_SYMBOL(write_inode_now);
2750
2751 /**
2752  * sync_inode_metadata - write an inode to disk
2753  * @inode: the inode to sync
2754  * @wait: wait for I/O to complete.
2755  *
2756  * Write an inode to disk and adjust its dirty state after completion.
2757  *
2758  * Note: only writes the actual inode, no associated data or other metadata.
2759  */
2760 int sync_inode_metadata(struct inode *inode, int wait)
2761 {
2762         struct writeback_control wbc = {
2763                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2764                 .nr_to_write = 0, /* metadata-only */
2765         };
2766
2767         return writeback_single_inode(inode, &wbc);
2768 }
2769 EXPORT_SYMBOL(sync_inode_metadata);