NFSv4.1: fixup use EXCHGID4_FLAG_USE_PNFS_DS for DS server
[platform/kernel/linux-rpi.git] / fs / fs-writeback.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002    Andrew Morton
13  *              Split out of fs/inode.c
14  *              Additions for address_space-based writeback
15  */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43         long nr_pages;
44         struct super_block *sb;
45         enum writeback_sync_modes sync_mode;
46         unsigned int tagged_writepages:1;
47         unsigned int for_kupdate:1;
48         unsigned int range_cyclic:1;
49         unsigned int for_background:1;
50         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
51         unsigned int auto_free:1;       /* free on completion */
52         enum wb_reason reason;          /* why was writeback initiated? */
53
54         struct list_head list;          /* pending work list */
55         struct wb_completion *done;     /* set if the caller waits */
56 };
57
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72         return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87         if (wb_has_dirty_io(wb)) {
88                 return false;
89         } else {
90                 set_bit(WB_has_dirty_io, &wb->state);
91                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92                 atomic_long_add(wb->avg_write_bandwidth,
93                                 &wb->bdi->tot_write_bandwidth);
94                 return true;
95         }
96 }
97
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102                 clear_bit(WB_has_dirty_io, &wb->state);
103                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104                                         &wb->bdi->tot_write_bandwidth) < 0);
105         }
106 }
107
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119                                       struct bdi_writeback *wb,
120                                       struct list_head *head)
121 {
122         assert_spin_locked(&wb->list_lock);
123         assert_spin_locked(&inode->i_lock);
124         WARN_ON_ONCE(inode->i_state & I_FREEING);
125
126         list_move(&inode->i_io_list, head);
127
128         /* dirty_time doesn't count as dirty_io until expiration */
129         if (head != &wb->b_dirty_time)
130                 return wb_io_lists_populated(wb);
131
132         wb_io_lists_depopulated(wb);
133         return false;
134 }
135
136 static void wb_wakeup(struct bdi_writeback *wb)
137 {
138         spin_lock_irq(&wb->work_lock);
139         if (test_bit(WB_registered, &wb->state))
140                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
141         spin_unlock_irq(&wb->work_lock);
142 }
143
144 static void finish_writeback_work(struct bdi_writeback *wb,
145                                   struct wb_writeback_work *work)
146 {
147         struct wb_completion *done = work->done;
148
149         if (work->auto_free)
150                 kfree(work);
151         if (done) {
152                 wait_queue_head_t *waitq = done->waitq;
153
154                 /* @done can't be accessed after the following dec */
155                 if (atomic_dec_and_test(&done->cnt))
156                         wake_up_all(waitq);
157         }
158 }
159
160 static void wb_queue_work(struct bdi_writeback *wb,
161                           struct wb_writeback_work *work)
162 {
163         trace_writeback_queue(wb, work);
164
165         if (work->done)
166                 atomic_inc(&work->done->cnt);
167
168         spin_lock_irq(&wb->work_lock);
169
170         if (test_bit(WB_registered, &wb->state)) {
171                 list_add_tail(&work->list, &wb->work_list);
172                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173         } else
174                 finish_writeback_work(wb, work);
175
176         spin_unlock_irq(&wb->work_lock);
177 }
178
179 /**
180  * wb_wait_for_completion - wait for completion of bdi_writeback_works
181  * @done: target wb_completion
182  *
183  * Wait for one or more work items issued to @bdi with their ->done field
184  * set to @done, which should have been initialized with
185  * DEFINE_WB_COMPLETION().  This function returns after all such work items
186  * are completed.  Work items which are waited upon aren't freed
187  * automatically on completion.
188  */
189 void wb_wait_for_completion(struct wb_completion *done)
190 {
191         atomic_dec(&done->cnt);         /* put down the initial count */
192         wait_event(*done->waitq, !atomic_read(&done->cnt));
193 }
194
195 #ifdef CONFIG_CGROUP_WRITEBACK
196
197 /*
198  * Parameters for foreign inode detection, see wbc_detach_inode() to see
199  * how they're used.
200  *
201  * These paramters are inherently heuristical as the detection target
202  * itself is fuzzy.  All we want to do is detaching an inode from the
203  * current owner if it's being written to by some other cgroups too much.
204  *
205  * The current cgroup writeback is built on the assumption that multiple
206  * cgroups writing to the same inode concurrently is very rare and a mode
207  * of operation which isn't well supported.  As such, the goal is not
208  * taking too long when a different cgroup takes over an inode while
209  * avoiding too aggressive flip-flops from occasional foreign writes.
210  *
211  * We record, very roughly, 2s worth of IO time history and if more than
212  * half of that is foreign, trigger the switch.  The recording is quantized
213  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
214  * writes smaller than 1/8 of avg size are ignored.
215  */
216 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
217 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
218 #define WB_FRN_TIME_CUT_DIV     8       /* ignore rounds < avg / 8 */
219 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
220
221 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
222 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
223                                         /* each slot's duration is 2s / 16 */
224 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
225                                         /* if foreign slots >= 8, switch */
226 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
227                                         /* one round can affect upto 5 slots */
228 #define WB_FRN_MAX_IN_FLIGHT    1024    /* don't queue too many concurrently */
229
230 /*
231  * Maximum inodes per isw.  A specific value has been chosen to make
232  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
233  */
234 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
235                                 / sizeof(struct inode *))
236
237 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
238 static struct workqueue_struct *isw_wq;
239
240 void __inode_attach_wb(struct inode *inode, struct folio *folio)
241 {
242         struct backing_dev_info *bdi = inode_to_bdi(inode);
243         struct bdi_writeback *wb = NULL;
244
245         if (inode_cgwb_enabled(inode)) {
246                 struct cgroup_subsys_state *memcg_css;
247
248                 if (folio) {
249                         memcg_css = mem_cgroup_css_from_folio(folio);
250                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
251                 } else {
252                         /* must pin memcg_css, see wb_get_create() */
253                         memcg_css = task_get_css(current, memory_cgrp_id);
254                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255                         css_put(memcg_css);
256                 }
257         }
258
259         if (!wb)
260                 wb = &bdi->wb;
261
262         /*
263          * There may be multiple instances of this function racing to
264          * update the same inode.  Use cmpxchg() to tell the winner.
265          */
266         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
267                 wb_put(wb);
268 }
269 EXPORT_SYMBOL_GPL(__inode_attach_wb);
270
271 /**
272  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
273  * @inode: inode of interest with i_lock held
274  * @wb: target bdi_writeback
275  *
276  * Remove the inode from wb's io lists and if necessarily put onto b_attached
277  * list.  Only inodes attached to cgwb's are kept on this list.
278  */
279 static void inode_cgwb_move_to_attached(struct inode *inode,
280                                         struct bdi_writeback *wb)
281 {
282         assert_spin_locked(&wb->list_lock);
283         assert_spin_locked(&inode->i_lock);
284         WARN_ON_ONCE(inode->i_state & I_FREEING);
285
286         inode->i_state &= ~I_SYNC_QUEUED;
287         if (wb != &wb->bdi->wb)
288                 list_move(&inode->i_io_list, &wb->b_attached);
289         else
290                 list_del_init(&inode->i_io_list);
291         wb_io_lists_depopulated(wb);
292 }
293
294 /**
295  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
296  * @inode: inode of interest with i_lock held
297  *
298  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
299  * held on entry and is released on return.  The returned wb is guaranteed
300  * to stay @inode's associated wb until its list_lock is released.
301  */
302 static struct bdi_writeback *
303 locked_inode_to_wb_and_lock_list(struct inode *inode)
304         __releases(&inode->i_lock)
305         __acquires(&wb->list_lock)
306 {
307         while (true) {
308                 struct bdi_writeback *wb = inode_to_wb(inode);
309
310                 /*
311                  * inode_to_wb() association is protected by both
312                  * @inode->i_lock and @wb->list_lock but list_lock nests
313                  * outside i_lock.  Drop i_lock and verify that the
314                  * association hasn't changed after acquiring list_lock.
315                  */
316                 wb_get(wb);
317                 spin_unlock(&inode->i_lock);
318                 spin_lock(&wb->list_lock);
319
320                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
321                 if (likely(wb == inode->i_wb)) {
322                         wb_put(wb);     /* @inode already has ref */
323                         return wb;
324                 }
325
326                 spin_unlock(&wb->list_lock);
327                 wb_put(wb);
328                 cpu_relax();
329                 spin_lock(&inode->i_lock);
330         }
331 }
332
333 /**
334  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
335  * @inode: inode of interest
336  *
337  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
338  * on entry.
339  */
340 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
341         __acquires(&wb->list_lock)
342 {
343         spin_lock(&inode->i_lock);
344         return locked_inode_to_wb_and_lock_list(inode);
345 }
346
347 struct inode_switch_wbs_context {
348         struct rcu_work         work;
349
350         /*
351          * Multiple inodes can be switched at once.  The switching procedure
352          * consists of two parts, separated by a RCU grace period.  To make
353          * sure that the second part is executed for each inode gone through
354          * the first part, all inode pointers are placed into a NULL-terminated
355          * array embedded into struct inode_switch_wbs_context.  Otherwise
356          * an inode could be left in a non-consistent state.
357          */
358         struct bdi_writeback    *new_wb;
359         struct inode            *inodes[];
360 };
361
362 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
363 {
364         down_write(&bdi->wb_switch_rwsem);
365 }
366
367 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
368 {
369         up_write(&bdi->wb_switch_rwsem);
370 }
371
372 static bool inode_do_switch_wbs(struct inode *inode,
373                                 struct bdi_writeback *old_wb,
374                                 struct bdi_writeback *new_wb)
375 {
376         struct address_space *mapping = inode->i_mapping;
377         XA_STATE(xas, &mapping->i_pages, 0);
378         struct folio *folio;
379         bool switched = false;
380
381         spin_lock(&inode->i_lock);
382         xa_lock_irq(&mapping->i_pages);
383
384         /*
385          * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
386          * path owns the inode and we shouldn't modify ->i_io_list.
387          */
388         if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
389                 goto skip_switch;
390
391         trace_inode_switch_wbs(inode, old_wb, new_wb);
392
393         /*
394          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
395          * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
396          * folios actually under writeback.
397          */
398         xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
399                 if (folio_test_dirty(folio)) {
400                         long nr = folio_nr_pages(folio);
401                         wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
402                         wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
403                 }
404         }
405
406         xas_set(&xas, 0);
407         xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
408                 long nr = folio_nr_pages(folio);
409                 WARN_ON_ONCE(!folio_test_writeback(folio));
410                 wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
411                 wb_stat_mod(new_wb, WB_WRITEBACK, nr);
412         }
413
414         if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
415                 atomic_dec(&old_wb->writeback_inodes);
416                 atomic_inc(&new_wb->writeback_inodes);
417         }
418
419         wb_get(new_wb);
420
421         /*
422          * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
423          * the specific list @inode was on is ignored and the @inode is put on
424          * ->b_dirty which is always correct including from ->b_dirty_time.
425          * The transfer preserves @inode->dirtied_when ordering.  If the @inode
426          * was clean, it means it was on the b_attached list, so move it onto
427          * the b_attached list of @new_wb.
428          */
429         if (!list_empty(&inode->i_io_list)) {
430                 inode->i_wb = new_wb;
431
432                 if (inode->i_state & I_DIRTY_ALL) {
433                         struct inode *pos;
434
435                         list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
436                                 if (time_after_eq(inode->dirtied_when,
437                                                   pos->dirtied_when))
438                                         break;
439                         inode_io_list_move_locked(inode, new_wb,
440                                                   pos->i_io_list.prev);
441                 } else {
442                         inode_cgwb_move_to_attached(inode, new_wb);
443                 }
444         } else {
445                 inode->i_wb = new_wb;
446         }
447
448         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
449         inode->i_wb_frn_winner = 0;
450         inode->i_wb_frn_avg_time = 0;
451         inode->i_wb_frn_history = 0;
452         switched = true;
453 skip_switch:
454         /*
455          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
456          * ensures that the new wb is visible if they see !I_WB_SWITCH.
457          */
458         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
459
460         xa_unlock_irq(&mapping->i_pages);
461         spin_unlock(&inode->i_lock);
462
463         return switched;
464 }
465
466 static void inode_switch_wbs_work_fn(struct work_struct *work)
467 {
468         struct inode_switch_wbs_context *isw =
469                 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
470         struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
471         struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
472         struct bdi_writeback *new_wb = isw->new_wb;
473         unsigned long nr_switched = 0;
474         struct inode **inodep;
475
476         /*
477          * If @inode switches cgwb membership while sync_inodes_sb() is
478          * being issued, sync_inodes_sb() might miss it.  Synchronize.
479          */
480         down_read(&bdi->wb_switch_rwsem);
481
482         /*
483          * By the time control reaches here, RCU grace period has passed
484          * since I_WB_SWITCH assertion and all wb stat update transactions
485          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
486          * synchronizing against the i_pages lock.
487          *
488          * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
489          * gives us exclusion against all wb related operations on @inode
490          * including IO list manipulations and stat updates.
491          */
492         if (old_wb < new_wb) {
493                 spin_lock(&old_wb->list_lock);
494                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
495         } else {
496                 spin_lock(&new_wb->list_lock);
497                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
498         }
499
500         for (inodep = isw->inodes; *inodep; inodep++) {
501                 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
502                 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
503                         nr_switched++;
504         }
505
506         spin_unlock(&new_wb->list_lock);
507         spin_unlock(&old_wb->list_lock);
508
509         up_read(&bdi->wb_switch_rwsem);
510
511         if (nr_switched) {
512                 wb_wakeup(new_wb);
513                 wb_put_many(old_wb, nr_switched);
514         }
515
516         for (inodep = isw->inodes; *inodep; inodep++)
517                 iput(*inodep);
518         wb_put(new_wb);
519         kfree(isw);
520         atomic_dec(&isw_nr_in_flight);
521 }
522
523 static bool inode_prepare_wbs_switch(struct inode *inode,
524                                      struct bdi_writeback *new_wb)
525 {
526         /*
527          * Paired with smp_mb() in cgroup_writeback_umount().
528          * isw_nr_in_flight must be increased before checking SB_ACTIVE and
529          * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
530          * in cgroup_writeback_umount() and the isw_wq will be not flushed.
531          */
532         smp_mb();
533
534         if (IS_DAX(inode))
535                 return false;
536
537         /* while holding I_WB_SWITCH, no one else can update the association */
538         spin_lock(&inode->i_lock);
539         if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
540             inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
541             inode_to_wb(inode) == new_wb) {
542                 spin_unlock(&inode->i_lock);
543                 return false;
544         }
545         inode->i_state |= I_WB_SWITCH;
546         __iget(inode);
547         spin_unlock(&inode->i_lock);
548
549         return true;
550 }
551
552 /**
553  * inode_switch_wbs - change the wb association of an inode
554  * @inode: target inode
555  * @new_wb_id: ID of the new wb
556  *
557  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
558  * switching is performed asynchronously and may fail silently.
559  */
560 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
561 {
562         struct backing_dev_info *bdi = inode_to_bdi(inode);
563         struct cgroup_subsys_state *memcg_css;
564         struct inode_switch_wbs_context *isw;
565
566         /* noop if seems to be already in progress */
567         if (inode->i_state & I_WB_SWITCH)
568                 return;
569
570         /* avoid queueing a new switch if too many are already in flight */
571         if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
572                 return;
573
574         isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
575         if (!isw)
576                 return;
577
578         atomic_inc(&isw_nr_in_flight);
579
580         /* find and pin the new wb */
581         rcu_read_lock();
582         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
583         if (memcg_css && !css_tryget(memcg_css))
584                 memcg_css = NULL;
585         rcu_read_unlock();
586         if (!memcg_css)
587                 goto out_free;
588
589         isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
590         css_put(memcg_css);
591         if (!isw->new_wb)
592                 goto out_free;
593
594         if (!inode_prepare_wbs_switch(inode, isw->new_wb))
595                 goto out_free;
596
597         isw->inodes[0] = inode;
598
599         /*
600          * In addition to synchronizing among switchers, I_WB_SWITCH tells
601          * the RCU protected stat update paths to grab the i_page
602          * lock so that stat transfer can synchronize against them.
603          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
604          */
605         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
606         queue_rcu_work(isw_wq, &isw->work);
607         return;
608
609 out_free:
610         atomic_dec(&isw_nr_in_flight);
611         if (isw->new_wb)
612                 wb_put(isw->new_wb);
613         kfree(isw);
614 }
615
616 /**
617  * cleanup_offline_cgwb - detach associated inodes
618  * @wb: target wb
619  *
620  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
621  * to eventually release the dying @wb.  Returns %true if not all inodes were
622  * switched and the function has to be restarted.
623  */
624 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
625 {
626         struct cgroup_subsys_state *memcg_css;
627         struct inode_switch_wbs_context *isw;
628         struct inode *inode;
629         int nr;
630         bool restart = false;
631
632         isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
633                       GFP_KERNEL);
634         if (!isw)
635                 return restart;
636
637         atomic_inc(&isw_nr_in_flight);
638
639         for (memcg_css = wb->memcg_css->parent; memcg_css;
640              memcg_css = memcg_css->parent) {
641                 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
642                 if (isw->new_wb)
643                         break;
644         }
645         if (unlikely(!isw->new_wb))
646                 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
647
648         nr = 0;
649         spin_lock(&wb->list_lock);
650         list_for_each_entry(inode, &wb->b_attached, i_io_list) {
651                 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
652                         continue;
653
654                 isw->inodes[nr++] = inode;
655
656                 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
657                         restart = true;
658                         break;
659                 }
660         }
661         spin_unlock(&wb->list_lock);
662
663         /* no attached inodes? bail out */
664         if (nr == 0) {
665                 atomic_dec(&isw_nr_in_flight);
666                 wb_put(isw->new_wb);
667                 kfree(isw);
668                 return restart;
669         }
670
671         /*
672          * In addition to synchronizing among switchers, I_WB_SWITCH tells
673          * the RCU protected stat update paths to grab the i_page
674          * lock so that stat transfer can synchronize against them.
675          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
676          */
677         INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
678         queue_rcu_work(isw_wq, &isw->work);
679
680         return restart;
681 }
682
683 /**
684  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
685  * @wbc: writeback_control of interest
686  * @inode: target inode
687  *
688  * @inode is locked and about to be written back under the control of @wbc.
689  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
690  * writeback completion, wbc_detach_inode() should be called.  This is used
691  * to track the cgroup writeback context.
692  */
693 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
694                                  struct inode *inode)
695 {
696         if (!inode_cgwb_enabled(inode)) {
697                 spin_unlock(&inode->i_lock);
698                 return;
699         }
700
701         wbc->wb = inode_to_wb(inode);
702         wbc->inode = inode;
703
704         wbc->wb_id = wbc->wb->memcg_css->id;
705         wbc->wb_lcand_id = inode->i_wb_frn_winner;
706         wbc->wb_tcand_id = 0;
707         wbc->wb_bytes = 0;
708         wbc->wb_lcand_bytes = 0;
709         wbc->wb_tcand_bytes = 0;
710
711         wb_get(wbc->wb);
712         spin_unlock(&inode->i_lock);
713
714         /*
715          * A dying wb indicates that either the blkcg associated with the
716          * memcg changed or the associated memcg is dying.  In the first
717          * case, a replacement wb should already be available and we should
718          * refresh the wb immediately.  In the second case, trying to
719          * refresh will keep failing.
720          */
721         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
722                 inode_switch_wbs(inode, wbc->wb_id);
723 }
724 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
725
726 /**
727  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
728  * @wbc: writeback_control of the just finished writeback
729  *
730  * To be called after a writeback attempt of an inode finishes and undoes
731  * wbc_attach_and_unlock_inode().  Can be called under any context.
732  *
733  * As concurrent write sharing of an inode is expected to be very rare and
734  * memcg only tracks page ownership on first-use basis severely confining
735  * the usefulness of such sharing, cgroup writeback tracks ownership
736  * per-inode.  While the support for concurrent write sharing of an inode
737  * is deemed unnecessary, an inode being written to by different cgroups at
738  * different points in time is a lot more common, and, more importantly,
739  * charging only by first-use can too readily lead to grossly incorrect
740  * behaviors (single foreign page can lead to gigabytes of writeback to be
741  * incorrectly attributed).
742  *
743  * To resolve this issue, cgroup writeback detects the majority dirtier of
744  * an inode and transfers the ownership to it.  To avoid unnecessary
745  * oscillation, the detection mechanism keeps track of history and gives
746  * out the switch verdict only if the foreign usage pattern is stable over
747  * a certain amount of time and/or writeback attempts.
748  *
749  * On each writeback attempt, @wbc tries to detect the majority writer
750  * using Boyer-Moore majority vote algorithm.  In addition to the byte
751  * count from the majority voting, it also counts the bytes written for the
752  * current wb and the last round's winner wb (max of last round's current
753  * wb, the winner from two rounds ago, and the last round's majority
754  * candidate).  Keeping track of the historical winner helps the algorithm
755  * to semi-reliably detect the most active writer even when it's not the
756  * absolute majority.
757  *
758  * Once the winner of the round is determined, whether the winner is
759  * foreign or not and how much IO time the round consumed is recorded in
760  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
761  * over a certain threshold, the switch verdict is given.
762  */
763 void wbc_detach_inode(struct writeback_control *wbc)
764 {
765         struct bdi_writeback *wb = wbc->wb;
766         struct inode *inode = wbc->inode;
767         unsigned long avg_time, max_bytes, max_time;
768         u16 history;
769         int max_id;
770
771         if (!wb)
772                 return;
773
774         history = inode->i_wb_frn_history;
775         avg_time = inode->i_wb_frn_avg_time;
776
777         /* pick the winner of this round */
778         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
779             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
780                 max_id = wbc->wb_id;
781                 max_bytes = wbc->wb_bytes;
782         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
783                 max_id = wbc->wb_lcand_id;
784                 max_bytes = wbc->wb_lcand_bytes;
785         } else {
786                 max_id = wbc->wb_tcand_id;
787                 max_bytes = wbc->wb_tcand_bytes;
788         }
789
790         /*
791          * Calculate the amount of IO time the winner consumed and fold it
792          * into the running average kept per inode.  If the consumed IO
793          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
794          * deciding whether to switch or not.  This is to prevent one-off
795          * small dirtiers from skewing the verdict.
796          */
797         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
798                                 wb->avg_write_bandwidth);
799         if (avg_time)
800                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
801                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
802         else
803                 avg_time = max_time;    /* immediate catch up on first run */
804
805         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
806                 int slots;
807
808                 /*
809                  * The switch verdict is reached if foreign wb's consume
810                  * more than a certain proportion of IO time in a
811                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
812                  * history mask where each bit represents one sixteenth of
813                  * the period.  Determine the number of slots to shift into
814                  * history from @max_time.
815                  */
816                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
817                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
818                 history <<= slots;
819                 if (wbc->wb_id != max_id)
820                         history |= (1U << slots) - 1;
821
822                 if (history)
823                         trace_inode_foreign_history(inode, wbc, history);
824
825                 /*
826                  * Switch if the current wb isn't the consistent winner.
827                  * If there are multiple closely competing dirtiers, the
828                  * inode may switch across them repeatedly over time, which
829                  * is okay.  The main goal is avoiding keeping an inode on
830                  * the wrong wb for an extended period of time.
831                  */
832                 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
833                         inode_switch_wbs(inode, max_id);
834         }
835
836         /*
837          * Multiple instances of this function may race to update the
838          * following fields but we don't mind occassional inaccuracies.
839          */
840         inode->i_wb_frn_winner = max_id;
841         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
842         inode->i_wb_frn_history = history;
843
844         wb_put(wbc->wb);
845         wbc->wb = NULL;
846 }
847 EXPORT_SYMBOL_GPL(wbc_detach_inode);
848
849 /**
850  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
851  * @wbc: writeback_control of the writeback in progress
852  * @page: page being written out
853  * @bytes: number of bytes being written out
854  *
855  * @bytes from @page are about to written out during the writeback
856  * controlled by @wbc.  Keep the book for foreign inode detection.  See
857  * wbc_detach_inode().
858  */
859 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
860                               size_t bytes)
861 {
862         struct folio *folio;
863         struct cgroup_subsys_state *css;
864         int id;
865
866         /*
867          * pageout() path doesn't attach @wbc to the inode being written
868          * out.  This is intentional as we don't want the function to block
869          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
870          * regular writeback instead of writing things out itself.
871          */
872         if (!wbc->wb || wbc->no_cgroup_owner)
873                 return;
874
875         folio = page_folio(page);
876         css = mem_cgroup_css_from_folio(folio);
877         /* dead cgroups shouldn't contribute to inode ownership arbitration */
878         if (!(css->flags & CSS_ONLINE))
879                 return;
880
881         id = css->id;
882
883         if (id == wbc->wb_id) {
884                 wbc->wb_bytes += bytes;
885                 return;
886         }
887
888         if (id == wbc->wb_lcand_id)
889                 wbc->wb_lcand_bytes += bytes;
890
891         /* Boyer-Moore majority vote algorithm */
892         if (!wbc->wb_tcand_bytes)
893                 wbc->wb_tcand_id = id;
894         if (id == wbc->wb_tcand_id)
895                 wbc->wb_tcand_bytes += bytes;
896         else
897                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
898 }
899 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
900
901 /**
902  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
903  * @wb: target bdi_writeback to split @nr_pages to
904  * @nr_pages: number of pages to write for the whole bdi
905  *
906  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
907  * relation to the total write bandwidth of all wb's w/ dirty inodes on
908  * @wb->bdi.
909  */
910 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
911 {
912         unsigned long this_bw = wb->avg_write_bandwidth;
913         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
914
915         if (nr_pages == LONG_MAX)
916                 return LONG_MAX;
917
918         /*
919          * This may be called on clean wb's and proportional distribution
920          * may not make sense, just use the original @nr_pages in those
921          * cases.  In general, we wanna err on the side of writing more.
922          */
923         if (!tot_bw || this_bw >= tot_bw)
924                 return nr_pages;
925         else
926                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
927 }
928
929 /**
930  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
931  * @bdi: target backing_dev_info
932  * @base_work: wb_writeback_work to issue
933  * @skip_if_busy: skip wb's which already have writeback in progress
934  *
935  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
936  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
937  * distributed to the busy wbs according to each wb's proportion in the
938  * total active write bandwidth of @bdi.
939  */
940 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
941                                   struct wb_writeback_work *base_work,
942                                   bool skip_if_busy)
943 {
944         struct bdi_writeback *last_wb = NULL;
945         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
946                                               struct bdi_writeback, bdi_node);
947
948         might_sleep();
949 restart:
950         rcu_read_lock();
951         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
952                 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
953                 struct wb_writeback_work fallback_work;
954                 struct wb_writeback_work *work;
955                 long nr_pages;
956
957                 if (last_wb) {
958                         wb_put(last_wb);
959                         last_wb = NULL;
960                 }
961
962                 /* SYNC_ALL writes out I_DIRTY_TIME too */
963                 if (!wb_has_dirty_io(wb) &&
964                     (base_work->sync_mode == WB_SYNC_NONE ||
965                      list_empty(&wb->b_dirty_time)))
966                         continue;
967                 if (skip_if_busy && writeback_in_progress(wb))
968                         continue;
969
970                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
971
972                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
973                 if (work) {
974                         *work = *base_work;
975                         work->nr_pages = nr_pages;
976                         work->auto_free = 1;
977                         wb_queue_work(wb, work);
978                         continue;
979                 }
980
981                 /*
982                  * If wb_tryget fails, the wb has been shutdown, skip it.
983                  *
984                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
985                  * continuing iteration from @wb after dropping and
986                  * regrabbing rcu read lock.
987                  */
988                 if (!wb_tryget(wb))
989                         continue;
990
991                 /* alloc failed, execute synchronously using on-stack fallback */
992                 work = &fallback_work;
993                 *work = *base_work;
994                 work->nr_pages = nr_pages;
995                 work->auto_free = 0;
996                 work->done = &fallback_work_done;
997
998                 wb_queue_work(wb, work);
999                 last_wb = wb;
1000
1001                 rcu_read_unlock();
1002                 wb_wait_for_completion(&fallback_work_done);
1003                 goto restart;
1004         }
1005         rcu_read_unlock();
1006
1007         if (last_wb)
1008                 wb_put(last_wb);
1009 }
1010
1011 /**
1012  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1013  * @bdi_id: target bdi id
1014  * @memcg_id: target memcg css id
1015  * @reason: reason why some writeback work initiated
1016  * @done: target wb_completion
1017  *
1018  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1019  * with the specified parameters.
1020  */
1021 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1022                            enum wb_reason reason, struct wb_completion *done)
1023 {
1024         struct backing_dev_info *bdi;
1025         struct cgroup_subsys_state *memcg_css;
1026         struct bdi_writeback *wb;
1027         struct wb_writeback_work *work;
1028         unsigned long dirty;
1029         int ret;
1030
1031         /* lookup bdi and memcg */
1032         bdi = bdi_get_by_id(bdi_id);
1033         if (!bdi)
1034                 return -ENOENT;
1035
1036         rcu_read_lock();
1037         memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1038         if (memcg_css && !css_tryget(memcg_css))
1039                 memcg_css = NULL;
1040         rcu_read_unlock();
1041         if (!memcg_css) {
1042                 ret = -ENOENT;
1043                 goto out_bdi_put;
1044         }
1045
1046         /*
1047          * And find the associated wb.  If the wb isn't there already
1048          * there's nothing to flush, don't create one.
1049          */
1050         wb = wb_get_lookup(bdi, memcg_css);
1051         if (!wb) {
1052                 ret = -ENOENT;
1053                 goto out_css_put;
1054         }
1055
1056         /*
1057          * The caller is attempting to write out most of
1058          * the currently dirty pages.  Let's take the current dirty page
1059          * count and inflate it by 25% which should be large enough to
1060          * flush out most dirty pages while avoiding getting livelocked by
1061          * concurrent dirtiers.
1062          *
1063          * BTW the memcg stats are flushed periodically and this is best-effort
1064          * estimation, so some potential error is ok.
1065          */
1066         dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1067         dirty = dirty * 10 / 8;
1068
1069         /* issue the writeback work */
1070         work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1071         if (work) {
1072                 work->nr_pages = dirty;
1073                 work->sync_mode = WB_SYNC_NONE;
1074                 work->range_cyclic = 1;
1075                 work->reason = reason;
1076                 work->done = done;
1077                 work->auto_free = 1;
1078                 wb_queue_work(wb, work);
1079                 ret = 0;
1080         } else {
1081                 ret = -ENOMEM;
1082         }
1083
1084         wb_put(wb);
1085 out_css_put:
1086         css_put(memcg_css);
1087 out_bdi_put:
1088         bdi_put(bdi);
1089         return ret;
1090 }
1091
1092 /**
1093  * cgroup_writeback_umount - flush inode wb switches for umount
1094  *
1095  * This function is called when a super_block is about to be destroyed and
1096  * flushes in-flight inode wb switches.  An inode wb switch goes through
1097  * RCU and then workqueue, so the two need to be flushed in order to ensure
1098  * that all previously scheduled switches are finished.  As wb switches are
1099  * rare occurrences and synchronize_rcu() can take a while, perform
1100  * flushing iff wb switches are in flight.
1101  */
1102 void cgroup_writeback_umount(void)
1103 {
1104         /*
1105          * SB_ACTIVE should be reliably cleared before checking
1106          * isw_nr_in_flight, see generic_shutdown_super().
1107          */
1108         smp_mb();
1109
1110         if (atomic_read(&isw_nr_in_flight)) {
1111                 /*
1112                  * Use rcu_barrier() to wait for all pending callbacks to
1113                  * ensure that all in-flight wb switches are in the workqueue.
1114                  */
1115                 rcu_barrier();
1116                 flush_workqueue(isw_wq);
1117         }
1118 }
1119
1120 static int __init cgroup_writeback_init(void)
1121 {
1122         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1123         if (!isw_wq)
1124                 return -ENOMEM;
1125         return 0;
1126 }
1127 fs_initcall(cgroup_writeback_init);
1128
1129 #else   /* CONFIG_CGROUP_WRITEBACK */
1130
1131 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1132 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1133
1134 static void inode_cgwb_move_to_attached(struct inode *inode,
1135                                         struct bdi_writeback *wb)
1136 {
1137         assert_spin_locked(&wb->list_lock);
1138         assert_spin_locked(&inode->i_lock);
1139         WARN_ON_ONCE(inode->i_state & I_FREEING);
1140
1141         inode->i_state &= ~I_SYNC_QUEUED;
1142         list_del_init(&inode->i_io_list);
1143         wb_io_lists_depopulated(wb);
1144 }
1145
1146 static struct bdi_writeback *
1147 locked_inode_to_wb_and_lock_list(struct inode *inode)
1148         __releases(&inode->i_lock)
1149         __acquires(&wb->list_lock)
1150 {
1151         struct bdi_writeback *wb = inode_to_wb(inode);
1152
1153         spin_unlock(&inode->i_lock);
1154         spin_lock(&wb->list_lock);
1155         return wb;
1156 }
1157
1158 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1159         __acquires(&wb->list_lock)
1160 {
1161         struct bdi_writeback *wb = inode_to_wb(inode);
1162
1163         spin_lock(&wb->list_lock);
1164         return wb;
1165 }
1166
1167 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1168 {
1169         return nr_pages;
1170 }
1171
1172 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1173                                   struct wb_writeback_work *base_work,
1174                                   bool skip_if_busy)
1175 {
1176         might_sleep();
1177
1178         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1179                 base_work->auto_free = 0;
1180                 wb_queue_work(&bdi->wb, base_work);
1181         }
1182 }
1183
1184 #endif  /* CONFIG_CGROUP_WRITEBACK */
1185
1186 /*
1187  * Add in the number of potentially dirty inodes, because each inode
1188  * write can dirty pagecache in the underlying blockdev.
1189  */
1190 static unsigned long get_nr_dirty_pages(void)
1191 {
1192         return global_node_page_state(NR_FILE_DIRTY) +
1193                 get_nr_dirty_inodes();
1194 }
1195
1196 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1197 {
1198         if (!wb_has_dirty_io(wb))
1199                 return;
1200
1201         /*
1202          * All callers of this function want to start writeback of all
1203          * dirty pages. Places like vmscan can call this at a very
1204          * high frequency, causing pointless allocations of tons of
1205          * work items and keeping the flusher threads busy retrieving
1206          * that work. Ensure that we only allow one of them pending and
1207          * inflight at the time.
1208          */
1209         if (test_bit(WB_start_all, &wb->state) ||
1210             test_and_set_bit(WB_start_all, &wb->state))
1211                 return;
1212
1213         wb->start_all_reason = reason;
1214         wb_wakeup(wb);
1215 }
1216
1217 /**
1218  * wb_start_background_writeback - start background writeback
1219  * @wb: bdi_writback to write from
1220  *
1221  * Description:
1222  *   This makes sure WB_SYNC_NONE background writeback happens. When
1223  *   this function returns, it is only guaranteed that for given wb
1224  *   some IO is happening if we are over background dirty threshold.
1225  *   Caller need not hold sb s_umount semaphore.
1226  */
1227 void wb_start_background_writeback(struct bdi_writeback *wb)
1228 {
1229         /*
1230          * We just wake up the flusher thread. It will perform background
1231          * writeback as soon as there is no other work to do.
1232          */
1233         trace_writeback_wake_background(wb);
1234         wb_wakeup(wb);
1235 }
1236
1237 /*
1238  * Remove the inode from the writeback list it is on.
1239  */
1240 void inode_io_list_del(struct inode *inode)
1241 {
1242         struct bdi_writeback *wb;
1243
1244         wb = inode_to_wb_and_lock_list(inode);
1245         spin_lock(&inode->i_lock);
1246
1247         inode->i_state &= ~I_SYNC_QUEUED;
1248         list_del_init(&inode->i_io_list);
1249         wb_io_lists_depopulated(wb);
1250
1251         spin_unlock(&inode->i_lock);
1252         spin_unlock(&wb->list_lock);
1253 }
1254 EXPORT_SYMBOL(inode_io_list_del);
1255
1256 /*
1257  * mark an inode as under writeback on the sb
1258  */
1259 void sb_mark_inode_writeback(struct inode *inode)
1260 {
1261         struct super_block *sb = inode->i_sb;
1262         unsigned long flags;
1263
1264         if (list_empty(&inode->i_wb_list)) {
1265                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1266                 if (list_empty(&inode->i_wb_list)) {
1267                         list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1268                         trace_sb_mark_inode_writeback(inode);
1269                 }
1270                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1271         }
1272 }
1273
1274 /*
1275  * clear an inode as under writeback on the sb
1276  */
1277 void sb_clear_inode_writeback(struct inode *inode)
1278 {
1279         struct super_block *sb = inode->i_sb;
1280         unsigned long flags;
1281
1282         if (!list_empty(&inode->i_wb_list)) {
1283                 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1284                 if (!list_empty(&inode->i_wb_list)) {
1285                         list_del_init(&inode->i_wb_list);
1286                         trace_sb_clear_inode_writeback(inode);
1287                 }
1288                 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1289         }
1290 }
1291
1292 /*
1293  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1294  * furthest end of its superblock's dirty-inode list.
1295  *
1296  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1297  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1298  * the case then the inode must have been redirtied while it was being written
1299  * out and we don't reset its dirtied_when.
1300  */
1301 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1302 {
1303         assert_spin_locked(&inode->i_lock);
1304
1305         inode->i_state &= ~I_SYNC_QUEUED;
1306         /*
1307          * When the inode is being freed just don't bother with dirty list
1308          * tracking. Flush worker will ignore this inode anyway and it will
1309          * trigger assertions in inode_io_list_move_locked().
1310          */
1311         if (inode->i_state & I_FREEING) {
1312                 list_del_init(&inode->i_io_list);
1313                 wb_io_lists_depopulated(wb);
1314                 return;
1315         }
1316         if (!list_empty(&wb->b_dirty)) {
1317                 struct inode *tail;
1318
1319                 tail = wb_inode(wb->b_dirty.next);
1320                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1321                         inode->dirtied_when = jiffies;
1322         }
1323         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1324 }
1325
1326 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1327 {
1328         spin_lock(&inode->i_lock);
1329         redirty_tail_locked(inode, wb);
1330         spin_unlock(&inode->i_lock);
1331 }
1332
1333 /*
1334  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1335  */
1336 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1337 {
1338         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1339 }
1340
1341 static void inode_sync_complete(struct inode *inode)
1342 {
1343         inode->i_state &= ~I_SYNC;
1344         /* If inode is clean an unused, put it into LRU now... */
1345         inode_add_lru(inode);
1346         /* Waiters must see I_SYNC cleared before being woken up */
1347         smp_mb();
1348         wake_up_bit(&inode->i_state, __I_SYNC);
1349 }
1350
1351 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1352 {
1353         bool ret = time_after(inode->dirtied_when, t);
1354 #ifndef CONFIG_64BIT
1355         /*
1356          * For inodes being constantly redirtied, dirtied_when can get stuck.
1357          * It _appears_ to be in the future, but is actually in distant past.
1358          * This test is necessary to prevent such wrapped-around relative times
1359          * from permanently stopping the whole bdi writeback.
1360          */
1361         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1362 #endif
1363         return ret;
1364 }
1365
1366 /*
1367  * Move expired (dirtied before dirtied_before) dirty inodes from
1368  * @delaying_queue to @dispatch_queue.
1369  */
1370 static int move_expired_inodes(struct list_head *delaying_queue,
1371                                struct list_head *dispatch_queue,
1372                                unsigned long dirtied_before)
1373 {
1374         LIST_HEAD(tmp);
1375         struct list_head *pos, *node;
1376         struct super_block *sb = NULL;
1377         struct inode *inode;
1378         int do_sb_sort = 0;
1379         int moved = 0;
1380
1381         while (!list_empty(delaying_queue)) {
1382                 inode = wb_inode(delaying_queue->prev);
1383                 if (inode_dirtied_after(inode, dirtied_before))
1384                         break;
1385                 spin_lock(&inode->i_lock);
1386                 list_move(&inode->i_io_list, &tmp);
1387                 moved++;
1388                 inode->i_state |= I_SYNC_QUEUED;
1389                 spin_unlock(&inode->i_lock);
1390                 if (sb_is_blkdev_sb(inode->i_sb))
1391                         continue;
1392                 if (sb && sb != inode->i_sb)
1393                         do_sb_sort = 1;
1394                 sb = inode->i_sb;
1395         }
1396
1397         /* just one sb in list, splice to dispatch_queue and we're done */
1398         if (!do_sb_sort) {
1399                 list_splice(&tmp, dispatch_queue);
1400                 goto out;
1401         }
1402
1403         /*
1404          * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1405          * we don't take inode->i_lock here because it is just a pointless overhead.
1406          * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1407          * fully under our control.
1408          */
1409         while (!list_empty(&tmp)) {
1410                 sb = wb_inode(tmp.prev)->i_sb;
1411                 list_for_each_prev_safe(pos, node, &tmp) {
1412                         inode = wb_inode(pos);
1413                         if (inode->i_sb == sb)
1414                                 list_move(&inode->i_io_list, dispatch_queue);
1415                 }
1416         }
1417 out:
1418         return moved;
1419 }
1420
1421 /*
1422  * Queue all expired dirty inodes for io, eldest first.
1423  * Before
1424  *         newly dirtied     b_dirty    b_io    b_more_io
1425  *         =============>    gf         edc     BA
1426  * After
1427  *         newly dirtied     b_dirty    b_io    b_more_io
1428  *         =============>    g          fBAedc
1429  *                                           |
1430  *                                           +--> dequeue for IO
1431  */
1432 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1433                      unsigned long dirtied_before)
1434 {
1435         int moved;
1436         unsigned long time_expire_jif = dirtied_before;
1437
1438         assert_spin_locked(&wb->list_lock);
1439         list_splice_init(&wb->b_more_io, &wb->b_io);
1440         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1441         if (!work->for_sync)
1442                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1443         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1444                                      time_expire_jif);
1445         if (moved)
1446                 wb_io_lists_populated(wb);
1447         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1448 }
1449
1450 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1451 {
1452         int ret;
1453
1454         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1455                 trace_writeback_write_inode_start(inode, wbc);
1456                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1457                 trace_writeback_write_inode(inode, wbc);
1458                 return ret;
1459         }
1460         return 0;
1461 }
1462
1463 /*
1464  * Wait for writeback on an inode to complete. Called with i_lock held.
1465  * Caller must make sure inode cannot go away when we drop i_lock.
1466  */
1467 static void __inode_wait_for_writeback(struct inode *inode)
1468         __releases(inode->i_lock)
1469         __acquires(inode->i_lock)
1470 {
1471         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1472         wait_queue_head_t *wqh;
1473
1474         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1475         while (inode->i_state & I_SYNC) {
1476                 spin_unlock(&inode->i_lock);
1477                 __wait_on_bit(wqh, &wq, bit_wait,
1478                               TASK_UNINTERRUPTIBLE);
1479                 spin_lock(&inode->i_lock);
1480         }
1481 }
1482
1483 /*
1484  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1485  */
1486 void inode_wait_for_writeback(struct inode *inode)
1487 {
1488         spin_lock(&inode->i_lock);
1489         __inode_wait_for_writeback(inode);
1490         spin_unlock(&inode->i_lock);
1491 }
1492
1493 /*
1494  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1495  * held and drops it. It is aimed for callers not holding any inode reference
1496  * so once i_lock is dropped, inode can go away.
1497  */
1498 static void inode_sleep_on_writeback(struct inode *inode)
1499         __releases(inode->i_lock)
1500 {
1501         DEFINE_WAIT(wait);
1502         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1503         int sleep;
1504
1505         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1506         sleep = inode->i_state & I_SYNC;
1507         spin_unlock(&inode->i_lock);
1508         if (sleep)
1509                 schedule();
1510         finish_wait(wqh, &wait);
1511 }
1512
1513 /*
1514  * Find proper writeback list for the inode depending on its current state and
1515  * possibly also change of its state while we were doing writeback.  Here we
1516  * handle things such as livelock prevention or fairness of writeback among
1517  * inodes. This function can be called only by flusher thread - noone else
1518  * processes all inodes in writeback lists and requeueing inodes behind flusher
1519  * thread's back can have unexpected consequences.
1520  */
1521 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1522                           struct writeback_control *wbc)
1523 {
1524         if (inode->i_state & I_FREEING)
1525                 return;
1526
1527         /*
1528          * Sync livelock prevention. Each inode is tagged and synced in one
1529          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1530          * the dirty time to prevent enqueue and sync it again.
1531          */
1532         if ((inode->i_state & I_DIRTY) &&
1533             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1534                 inode->dirtied_when = jiffies;
1535
1536         if (wbc->pages_skipped) {
1537                 /*
1538                  * Writeback is not making progress due to locked buffers.
1539                  * Skip this inode for now. Although having skipped pages
1540                  * is odd for clean inodes, it can happen for some
1541                  * filesystems so handle that gracefully.
1542                  */
1543                 if (inode->i_state & I_DIRTY_ALL)
1544                         redirty_tail_locked(inode, wb);
1545                 else
1546                         inode_cgwb_move_to_attached(inode, wb);
1547                 return;
1548         }
1549
1550         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1551                 /*
1552                  * We didn't write back all the pages.  nfs_writepages()
1553                  * sometimes bales out without doing anything.
1554                  */
1555                 if (wbc->nr_to_write <= 0) {
1556                         /* Slice used up. Queue for next turn. */
1557                         requeue_io(inode, wb);
1558                 } else {
1559                         /*
1560                          * Writeback blocked by something other than
1561                          * congestion. Delay the inode for some time to
1562                          * avoid spinning on the CPU (100% iowait)
1563                          * retrying writeback of the dirty page/inode
1564                          * that cannot be performed immediately.
1565                          */
1566                         redirty_tail_locked(inode, wb);
1567                 }
1568         } else if (inode->i_state & I_DIRTY) {
1569                 /*
1570                  * Filesystems can dirty the inode during writeback operations,
1571                  * such as delayed allocation during submission or metadata
1572                  * updates after data IO completion.
1573                  */
1574                 redirty_tail_locked(inode, wb);
1575         } else if (inode->i_state & I_DIRTY_TIME) {
1576                 inode->dirtied_when = jiffies;
1577                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1578                 inode->i_state &= ~I_SYNC_QUEUED;
1579         } else {
1580                 /* The inode is clean. Remove from writeback lists. */
1581                 inode_cgwb_move_to_attached(inode, wb);
1582         }
1583 }
1584
1585 /*
1586  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1587  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1588  *
1589  * This doesn't remove the inode from the writeback list it is on, except
1590  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1591  * expiration.  The caller is otherwise responsible for writeback list handling.
1592  *
1593  * The caller is also responsible for setting the I_SYNC flag beforehand and
1594  * calling inode_sync_complete() to clear it afterwards.
1595  */
1596 static int
1597 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1598 {
1599         struct address_space *mapping = inode->i_mapping;
1600         long nr_to_write = wbc->nr_to_write;
1601         unsigned dirty;
1602         int ret;
1603
1604         WARN_ON(!(inode->i_state & I_SYNC));
1605
1606         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1607
1608         ret = do_writepages(mapping, wbc);
1609
1610         /*
1611          * Make sure to wait on the data before writing out the metadata.
1612          * This is important for filesystems that modify metadata on data
1613          * I/O completion. We don't do it for sync(2) writeback because it has a
1614          * separate, external IO completion path and ->sync_fs for guaranteeing
1615          * inode metadata is written back correctly.
1616          */
1617         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1618                 int err = filemap_fdatawait(mapping);
1619                 if (ret == 0)
1620                         ret = err;
1621         }
1622
1623         /*
1624          * If the inode has dirty timestamps and we need to write them, call
1625          * mark_inode_dirty_sync() to notify the filesystem about it and to
1626          * change I_DIRTY_TIME into I_DIRTY_SYNC.
1627          */
1628         if ((inode->i_state & I_DIRTY_TIME) &&
1629             (wbc->sync_mode == WB_SYNC_ALL ||
1630              time_after(jiffies, inode->dirtied_time_when +
1631                         dirtytime_expire_interval * HZ))) {
1632                 trace_writeback_lazytime(inode);
1633                 mark_inode_dirty_sync(inode);
1634         }
1635
1636         /*
1637          * Get and clear the dirty flags from i_state.  This needs to be done
1638          * after calling writepages because some filesystems may redirty the
1639          * inode during writepages due to delalloc.  It also needs to be done
1640          * after handling timestamp expiration, as that may dirty the inode too.
1641          */
1642         spin_lock(&inode->i_lock);
1643         dirty = inode->i_state & I_DIRTY;
1644         inode->i_state &= ~dirty;
1645
1646         /*
1647          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1648          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1649          * either they see the I_DIRTY bits cleared or we see the dirtied
1650          * inode.
1651          *
1652          * I_DIRTY_PAGES is always cleared together above even if @mapping
1653          * still has dirty pages.  The flag is reinstated after smp_mb() if
1654          * necessary.  This guarantees that either __mark_inode_dirty()
1655          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1656          */
1657         smp_mb();
1658
1659         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1660                 inode->i_state |= I_DIRTY_PAGES;
1661         else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1662                 if (!(inode->i_state & I_DIRTY_PAGES)) {
1663                         inode->i_state &= ~I_PINNING_FSCACHE_WB;
1664                         wbc->unpinned_fscache_wb = true;
1665                         dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1666                 }
1667         }
1668
1669         spin_unlock(&inode->i_lock);
1670
1671         /* Don't write the inode if only I_DIRTY_PAGES was set */
1672         if (dirty & ~I_DIRTY_PAGES) {
1673                 int err = write_inode(inode, wbc);
1674                 if (ret == 0)
1675                         ret = err;
1676         }
1677         wbc->unpinned_fscache_wb = false;
1678         trace_writeback_single_inode(inode, wbc, nr_to_write);
1679         return ret;
1680 }
1681
1682 /*
1683  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1684  * the regular batched writeback done by the flusher threads in
1685  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1686  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1687  *
1688  * To prevent the inode from going away, either the caller must have a reference
1689  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1690  */
1691 static int writeback_single_inode(struct inode *inode,
1692                                   struct writeback_control *wbc)
1693 {
1694         struct bdi_writeback *wb;
1695         int ret = 0;
1696
1697         spin_lock(&inode->i_lock);
1698         if (!atomic_read(&inode->i_count))
1699                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1700         else
1701                 WARN_ON(inode->i_state & I_WILL_FREE);
1702
1703         if (inode->i_state & I_SYNC) {
1704                 /*
1705                  * Writeback is already running on the inode.  For WB_SYNC_NONE,
1706                  * that's enough and we can just return.  For WB_SYNC_ALL, we
1707                  * must wait for the existing writeback to complete, then do
1708                  * writeback again if there's anything left.
1709                  */
1710                 if (wbc->sync_mode != WB_SYNC_ALL)
1711                         goto out;
1712                 __inode_wait_for_writeback(inode);
1713         }
1714         WARN_ON(inode->i_state & I_SYNC);
1715         /*
1716          * If the inode is already fully clean, then there's nothing to do.
1717          *
1718          * For data-integrity syncs we also need to check whether any pages are
1719          * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1720          * there are any such pages, we'll need to wait for them.
1721          */
1722         if (!(inode->i_state & I_DIRTY_ALL) &&
1723             (wbc->sync_mode != WB_SYNC_ALL ||
1724              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1725                 goto out;
1726         inode->i_state |= I_SYNC;
1727         wbc_attach_and_unlock_inode(wbc, inode);
1728
1729         ret = __writeback_single_inode(inode, wbc);
1730
1731         wbc_detach_inode(wbc);
1732
1733         wb = inode_to_wb_and_lock_list(inode);
1734         spin_lock(&inode->i_lock);
1735         /*
1736          * If the inode is freeing, its i_io_list shoudn't be updated
1737          * as it can be finally deleted at this moment.
1738          */
1739         if (!(inode->i_state & I_FREEING)) {
1740                 /*
1741                  * If the inode is now fully clean, then it can be safely
1742                  * removed from its writeback list (if any). Otherwise the
1743                  * flusher threads are responsible for the writeback lists.
1744                  */
1745                 if (!(inode->i_state & I_DIRTY_ALL))
1746                         inode_cgwb_move_to_attached(inode, wb);
1747                 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1748                         if ((inode->i_state & I_DIRTY))
1749                                 redirty_tail_locked(inode, wb);
1750                         else if (inode->i_state & I_DIRTY_TIME) {
1751                                 inode->dirtied_when = jiffies;
1752                                 inode_io_list_move_locked(inode,
1753                                                           wb,
1754                                                           &wb->b_dirty_time);
1755                         }
1756                 }
1757         }
1758
1759         spin_unlock(&wb->list_lock);
1760         inode_sync_complete(inode);
1761 out:
1762         spin_unlock(&inode->i_lock);
1763         return ret;
1764 }
1765
1766 static long writeback_chunk_size(struct bdi_writeback *wb,
1767                                  struct wb_writeback_work *work)
1768 {
1769         long pages;
1770
1771         /*
1772          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1773          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1774          * here avoids calling into writeback_inodes_wb() more than once.
1775          *
1776          * The intended call sequence for WB_SYNC_ALL writeback is:
1777          *
1778          *      wb_writeback()
1779          *          writeback_sb_inodes()       <== called only once
1780          *              write_cache_pages()     <== called once for each inode
1781          *                   (quickly) tag currently dirty pages
1782          *                   (maybe slowly) sync all tagged pages
1783          */
1784         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1785                 pages = LONG_MAX;
1786         else {
1787                 pages = min(wb->avg_write_bandwidth / 2,
1788                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1789                 pages = min(pages, work->nr_pages);
1790                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1791                                    MIN_WRITEBACK_PAGES);
1792         }
1793
1794         return pages;
1795 }
1796
1797 /*
1798  * Write a portion of b_io inodes which belong to @sb.
1799  *
1800  * Return the number of pages and/or inodes written.
1801  *
1802  * NOTE! This is called with wb->list_lock held, and will
1803  * unlock and relock that for each inode it ends up doing
1804  * IO for.
1805  */
1806 static long writeback_sb_inodes(struct super_block *sb,
1807                                 struct bdi_writeback *wb,
1808                                 struct wb_writeback_work *work)
1809 {
1810         struct writeback_control wbc = {
1811                 .sync_mode              = work->sync_mode,
1812                 .tagged_writepages      = work->tagged_writepages,
1813                 .for_kupdate            = work->for_kupdate,
1814                 .for_background         = work->for_background,
1815                 .for_sync               = work->for_sync,
1816                 .range_cyclic           = work->range_cyclic,
1817                 .range_start            = 0,
1818                 .range_end              = LLONG_MAX,
1819         };
1820         unsigned long start_time = jiffies;
1821         long write_chunk;
1822         long total_wrote = 0;  /* count both pages and inodes */
1823
1824         while (!list_empty(&wb->b_io)) {
1825                 struct inode *inode = wb_inode(wb->b_io.prev);
1826                 struct bdi_writeback *tmp_wb;
1827                 long wrote;
1828
1829                 if (inode->i_sb != sb) {
1830                         if (work->sb) {
1831                                 /*
1832                                  * We only want to write back data for this
1833                                  * superblock, move all inodes not belonging
1834                                  * to it back onto the dirty list.
1835                                  */
1836                                 redirty_tail(inode, wb);
1837                                 continue;
1838                         }
1839
1840                         /*
1841                          * The inode belongs to a different superblock.
1842                          * Bounce back to the caller to unpin this and
1843                          * pin the next superblock.
1844                          */
1845                         break;
1846                 }
1847
1848                 /*
1849                  * Don't bother with new inodes or inodes being freed, first
1850                  * kind does not need periodic writeout yet, and for the latter
1851                  * kind writeout is handled by the freer.
1852                  */
1853                 spin_lock(&inode->i_lock);
1854                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1855                         redirty_tail_locked(inode, wb);
1856                         spin_unlock(&inode->i_lock);
1857                         continue;
1858                 }
1859                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1860                         /*
1861                          * If this inode is locked for writeback and we are not
1862                          * doing writeback-for-data-integrity, move it to
1863                          * b_more_io so that writeback can proceed with the
1864                          * other inodes on s_io.
1865                          *
1866                          * We'll have another go at writing back this inode
1867                          * when we completed a full scan of b_io.
1868                          */
1869                         requeue_io(inode, wb);
1870                         spin_unlock(&inode->i_lock);
1871                         trace_writeback_sb_inodes_requeue(inode);
1872                         continue;
1873                 }
1874                 spin_unlock(&wb->list_lock);
1875
1876                 /*
1877                  * We already requeued the inode if it had I_SYNC set and we
1878                  * are doing WB_SYNC_NONE writeback. So this catches only the
1879                  * WB_SYNC_ALL case.
1880                  */
1881                 if (inode->i_state & I_SYNC) {
1882                         /* Wait for I_SYNC. This function drops i_lock... */
1883                         inode_sleep_on_writeback(inode);
1884                         /* Inode may be gone, start again */
1885                         spin_lock(&wb->list_lock);
1886                         continue;
1887                 }
1888                 inode->i_state |= I_SYNC;
1889                 wbc_attach_and_unlock_inode(&wbc, inode);
1890
1891                 write_chunk = writeback_chunk_size(wb, work);
1892                 wbc.nr_to_write = write_chunk;
1893                 wbc.pages_skipped = 0;
1894
1895                 /*
1896                  * We use I_SYNC to pin the inode in memory. While it is set
1897                  * evict_inode() will wait so the inode cannot be freed.
1898                  */
1899                 __writeback_single_inode(inode, &wbc);
1900
1901                 wbc_detach_inode(&wbc);
1902                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1903                 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1904                 wrote = wrote < 0 ? 0 : wrote;
1905                 total_wrote += wrote;
1906
1907                 if (need_resched()) {
1908                         /*
1909                          * We're trying to balance between building up a nice
1910                          * long list of IOs to improve our merge rate, and
1911                          * getting those IOs out quickly for anyone throttling
1912                          * in balance_dirty_pages().  cond_resched() doesn't
1913                          * unplug, so get our IOs out the door before we
1914                          * give up the CPU.
1915                          */
1916                         blk_flush_plug(current->plug, false);
1917                         cond_resched();
1918                 }
1919
1920                 /*
1921                  * Requeue @inode if still dirty.  Be careful as @inode may
1922                  * have been switched to another wb in the meantime.
1923                  */
1924                 tmp_wb = inode_to_wb_and_lock_list(inode);
1925                 spin_lock(&inode->i_lock);
1926                 if (!(inode->i_state & I_DIRTY_ALL))
1927                         total_wrote++;
1928                 requeue_inode(inode, tmp_wb, &wbc);
1929                 inode_sync_complete(inode);
1930                 spin_unlock(&inode->i_lock);
1931
1932                 if (unlikely(tmp_wb != wb)) {
1933                         spin_unlock(&tmp_wb->list_lock);
1934                         spin_lock(&wb->list_lock);
1935                 }
1936
1937                 /*
1938                  * bail out to wb_writeback() often enough to check
1939                  * background threshold and other termination conditions.
1940                  */
1941                 if (total_wrote) {
1942                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1943                                 break;
1944                         if (work->nr_pages <= 0)
1945                                 break;
1946                 }
1947         }
1948         return total_wrote;
1949 }
1950
1951 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1952                                   struct wb_writeback_work *work)
1953 {
1954         unsigned long start_time = jiffies;
1955         long wrote = 0;
1956
1957         while (!list_empty(&wb->b_io)) {
1958                 struct inode *inode = wb_inode(wb->b_io.prev);
1959                 struct super_block *sb = inode->i_sb;
1960
1961                 if (!super_trylock_shared(sb)) {
1962                         /*
1963                          * super_trylock_shared() may fail consistently due to
1964                          * s_umount being grabbed by someone else. Don't use
1965                          * requeue_io() to avoid busy retrying the inode/sb.
1966                          */
1967                         redirty_tail(inode, wb);
1968                         continue;
1969                 }
1970                 wrote += writeback_sb_inodes(sb, wb, work);
1971                 up_read(&sb->s_umount);
1972
1973                 /* refer to the same tests at the end of writeback_sb_inodes */
1974                 if (wrote) {
1975                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1976                                 break;
1977                         if (work->nr_pages <= 0)
1978                                 break;
1979                 }
1980         }
1981         /* Leave any unwritten inodes on b_io */
1982         return wrote;
1983 }
1984
1985 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1986                                 enum wb_reason reason)
1987 {
1988         struct wb_writeback_work work = {
1989                 .nr_pages       = nr_pages,
1990                 .sync_mode      = WB_SYNC_NONE,
1991                 .range_cyclic   = 1,
1992                 .reason         = reason,
1993         };
1994         struct blk_plug plug;
1995
1996         blk_start_plug(&plug);
1997         spin_lock(&wb->list_lock);
1998         if (list_empty(&wb->b_io))
1999                 queue_io(wb, &work, jiffies);
2000         __writeback_inodes_wb(wb, &work);
2001         spin_unlock(&wb->list_lock);
2002         blk_finish_plug(&plug);
2003
2004         return nr_pages - work.nr_pages;
2005 }
2006
2007 /*
2008  * Explicit flushing or periodic writeback of "old" data.
2009  *
2010  * Define "old": the first time one of an inode's pages is dirtied, we mark the
2011  * dirtying-time in the inode's address_space.  So this periodic writeback code
2012  * just walks the superblock inode list, writing back any inodes which are
2013  * older than a specific point in time.
2014  *
2015  * Try to run once per dirty_writeback_interval.  But if a writeback event
2016  * takes longer than a dirty_writeback_interval interval, then leave a
2017  * one-second gap.
2018  *
2019  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2020  * all dirty pages if they are all attached to "old" mappings.
2021  */
2022 static long wb_writeback(struct bdi_writeback *wb,
2023                          struct wb_writeback_work *work)
2024 {
2025         long nr_pages = work->nr_pages;
2026         unsigned long dirtied_before = jiffies;
2027         struct inode *inode;
2028         long progress;
2029         struct blk_plug plug;
2030
2031         blk_start_plug(&plug);
2032         for (;;) {
2033                 /*
2034                  * Stop writeback when nr_pages has been consumed
2035                  */
2036                 if (work->nr_pages <= 0)
2037                         break;
2038
2039                 /*
2040                  * Background writeout and kupdate-style writeback may
2041                  * run forever. Stop them if there is other work to do
2042                  * so that e.g. sync can proceed. They'll be restarted
2043                  * after the other works are all done.
2044                  */
2045                 if ((work->for_background || work->for_kupdate) &&
2046                     !list_empty(&wb->work_list))
2047                         break;
2048
2049                 /*
2050                  * For background writeout, stop when we are below the
2051                  * background dirty threshold
2052                  */
2053                 if (work->for_background && !wb_over_bg_thresh(wb))
2054                         break;
2055
2056
2057                 spin_lock(&wb->list_lock);
2058
2059                 /*
2060                  * Kupdate and background works are special and we want to
2061                  * include all inodes that need writing. Livelock avoidance is
2062                  * handled by these works yielding to any other work so we are
2063                  * safe.
2064                  */
2065                 if (work->for_kupdate) {
2066                         dirtied_before = jiffies -
2067                                 msecs_to_jiffies(dirty_expire_interval * 10);
2068                 } else if (work->for_background)
2069                         dirtied_before = jiffies;
2070
2071                 trace_writeback_start(wb, work);
2072                 if (list_empty(&wb->b_io))
2073                         queue_io(wb, work, dirtied_before);
2074                 if (work->sb)
2075                         progress = writeback_sb_inodes(work->sb, wb, work);
2076                 else
2077                         progress = __writeback_inodes_wb(wb, work);
2078                 trace_writeback_written(wb, work);
2079
2080                 /*
2081                  * Did we write something? Try for more
2082                  *
2083                  * Dirty inodes are moved to b_io for writeback in batches.
2084                  * The completion of the current batch does not necessarily
2085                  * mean the overall work is done. So we keep looping as long
2086                  * as made some progress on cleaning pages or inodes.
2087                  */
2088                 if (progress) {
2089                         spin_unlock(&wb->list_lock);
2090                         continue;
2091                 }
2092
2093                 /*
2094                  * No more inodes for IO, bail
2095                  */
2096                 if (list_empty(&wb->b_more_io)) {
2097                         spin_unlock(&wb->list_lock);
2098                         break;
2099                 }
2100
2101                 /*
2102                  * Nothing written. Wait for some inode to
2103                  * become available for writeback. Otherwise
2104                  * we'll just busyloop.
2105                  */
2106                 trace_writeback_wait(wb, work);
2107                 inode = wb_inode(wb->b_more_io.prev);
2108                 spin_lock(&inode->i_lock);
2109                 spin_unlock(&wb->list_lock);
2110                 /* This function drops i_lock... */
2111                 inode_sleep_on_writeback(inode);
2112         }
2113         blk_finish_plug(&plug);
2114
2115         return nr_pages - work->nr_pages;
2116 }
2117
2118 /*
2119  * Return the next wb_writeback_work struct that hasn't been processed yet.
2120  */
2121 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2122 {
2123         struct wb_writeback_work *work = NULL;
2124
2125         spin_lock_irq(&wb->work_lock);
2126         if (!list_empty(&wb->work_list)) {
2127                 work = list_entry(wb->work_list.next,
2128                                   struct wb_writeback_work, list);
2129                 list_del_init(&work->list);
2130         }
2131         spin_unlock_irq(&wb->work_lock);
2132         return work;
2133 }
2134
2135 static long wb_check_background_flush(struct bdi_writeback *wb)
2136 {
2137         if (wb_over_bg_thresh(wb)) {
2138
2139                 struct wb_writeback_work work = {
2140                         .nr_pages       = LONG_MAX,
2141                         .sync_mode      = WB_SYNC_NONE,
2142                         .for_background = 1,
2143                         .range_cyclic   = 1,
2144                         .reason         = WB_REASON_BACKGROUND,
2145                 };
2146
2147                 return wb_writeback(wb, &work);
2148         }
2149
2150         return 0;
2151 }
2152
2153 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2154 {
2155         unsigned long expired;
2156         long nr_pages;
2157
2158         /*
2159          * When set to zero, disable periodic writeback
2160          */
2161         if (!dirty_writeback_interval)
2162                 return 0;
2163
2164         expired = wb->last_old_flush +
2165                         msecs_to_jiffies(dirty_writeback_interval * 10);
2166         if (time_before(jiffies, expired))
2167                 return 0;
2168
2169         wb->last_old_flush = jiffies;
2170         nr_pages = get_nr_dirty_pages();
2171
2172         if (nr_pages) {
2173                 struct wb_writeback_work work = {
2174                         .nr_pages       = nr_pages,
2175                         .sync_mode      = WB_SYNC_NONE,
2176                         .for_kupdate    = 1,
2177                         .range_cyclic   = 1,
2178                         .reason         = WB_REASON_PERIODIC,
2179                 };
2180
2181                 return wb_writeback(wb, &work);
2182         }
2183
2184         return 0;
2185 }
2186
2187 static long wb_check_start_all(struct bdi_writeback *wb)
2188 {
2189         long nr_pages;
2190
2191         if (!test_bit(WB_start_all, &wb->state))
2192                 return 0;
2193
2194         nr_pages = get_nr_dirty_pages();
2195         if (nr_pages) {
2196                 struct wb_writeback_work work = {
2197                         .nr_pages       = wb_split_bdi_pages(wb, nr_pages),
2198                         .sync_mode      = WB_SYNC_NONE,
2199                         .range_cyclic   = 1,
2200                         .reason         = wb->start_all_reason,
2201                 };
2202
2203                 nr_pages = wb_writeback(wb, &work);
2204         }
2205
2206         clear_bit(WB_start_all, &wb->state);
2207         return nr_pages;
2208 }
2209
2210
2211 /*
2212  * Retrieve work items and do the writeback they describe
2213  */
2214 static long wb_do_writeback(struct bdi_writeback *wb)
2215 {
2216         struct wb_writeback_work *work;
2217         long wrote = 0;
2218
2219         set_bit(WB_writeback_running, &wb->state);
2220         while ((work = get_next_work_item(wb)) != NULL) {
2221                 trace_writeback_exec(wb, work);
2222                 wrote += wb_writeback(wb, work);
2223                 finish_writeback_work(wb, work);
2224         }
2225
2226         /*
2227          * Check for a flush-everything request
2228          */
2229         wrote += wb_check_start_all(wb);
2230
2231         /*
2232          * Check for periodic writeback, kupdated() style
2233          */
2234         wrote += wb_check_old_data_flush(wb);
2235         wrote += wb_check_background_flush(wb);
2236         clear_bit(WB_writeback_running, &wb->state);
2237
2238         return wrote;
2239 }
2240
2241 /*
2242  * Handle writeback of dirty data for the device backed by this bdi. Also
2243  * reschedules periodically and does kupdated style flushing.
2244  */
2245 void wb_workfn(struct work_struct *work)
2246 {
2247         struct bdi_writeback *wb = container_of(to_delayed_work(work),
2248                                                 struct bdi_writeback, dwork);
2249         long pages_written;
2250
2251         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2252
2253         if (likely(!current_is_workqueue_rescuer() ||
2254                    !test_bit(WB_registered, &wb->state))) {
2255                 /*
2256                  * The normal path.  Keep writing back @wb until its
2257                  * work_list is empty.  Note that this path is also taken
2258                  * if @wb is shutting down even when we're running off the
2259                  * rescuer as work_list needs to be drained.
2260                  */
2261                 do {
2262                         pages_written = wb_do_writeback(wb);
2263                         trace_writeback_pages_written(pages_written);
2264                 } while (!list_empty(&wb->work_list));
2265         } else {
2266                 /*
2267                  * bdi_wq can't get enough workers and we're running off
2268                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2269                  * enough for efficient IO.
2270                  */
2271                 pages_written = writeback_inodes_wb(wb, 1024,
2272                                                     WB_REASON_FORKER_THREAD);
2273                 trace_writeback_pages_written(pages_written);
2274         }
2275
2276         if (!list_empty(&wb->work_list))
2277                 wb_wakeup(wb);
2278         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2279                 wb_wakeup_delayed(wb);
2280 }
2281
2282 /*
2283  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2284  * write back the whole world.
2285  */
2286 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2287                                          enum wb_reason reason)
2288 {
2289         struct bdi_writeback *wb;
2290
2291         if (!bdi_has_dirty_io(bdi))
2292                 return;
2293
2294         list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2295                 wb_start_writeback(wb, reason);
2296 }
2297
2298 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2299                                 enum wb_reason reason)
2300 {
2301         rcu_read_lock();
2302         __wakeup_flusher_threads_bdi(bdi, reason);
2303         rcu_read_unlock();
2304 }
2305
2306 /*
2307  * Wakeup the flusher threads to start writeback of all currently dirty pages
2308  */
2309 void wakeup_flusher_threads(enum wb_reason reason)
2310 {
2311         struct backing_dev_info *bdi;
2312
2313         /*
2314          * If we are expecting writeback progress we must submit plugged IO.
2315          */
2316         blk_flush_plug(current->plug, true);
2317
2318         rcu_read_lock();
2319         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2320                 __wakeup_flusher_threads_bdi(bdi, reason);
2321         rcu_read_unlock();
2322 }
2323
2324 /*
2325  * Wake up bdi's periodically to make sure dirtytime inodes gets
2326  * written back periodically.  We deliberately do *not* check the
2327  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2328  * kernel to be constantly waking up once there are any dirtytime
2329  * inodes on the system.  So instead we define a separate delayed work
2330  * function which gets called much more rarely.  (By default, only
2331  * once every 12 hours.)
2332  *
2333  * If there is any other write activity going on in the file system,
2334  * this function won't be necessary.  But if the only thing that has
2335  * happened on the file system is a dirtytime inode caused by an atime
2336  * update, we need this infrastructure below to make sure that inode
2337  * eventually gets pushed out to disk.
2338  */
2339 static void wakeup_dirtytime_writeback(struct work_struct *w);
2340 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2341
2342 static void wakeup_dirtytime_writeback(struct work_struct *w)
2343 {
2344         struct backing_dev_info *bdi;
2345
2346         rcu_read_lock();
2347         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2348                 struct bdi_writeback *wb;
2349
2350                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2351                         if (!list_empty(&wb->b_dirty_time))
2352                                 wb_wakeup(wb);
2353         }
2354         rcu_read_unlock();
2355         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2356 }
2357
2358 static int __init start_dirtytime_writeback(void)
2359 {
2360         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2361         return 0;
2362 }
2363 __initcall(start_dirtytime_writeback);
2364
2365 int dirtytime_interval_handler(struct ctl_table *table, int write,
2366                                void *buffer, size_t *lenp, loff_t *ppos)
2367 {
2368         int ret;
2369
2370         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2371         if (ret == 0 && write)
2372                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2373         return ret;
2374 }
2375
2376 /**
2377  * __mark_inode_dirty - internal function to mark an inode dirty
2378  *
2379  * @inode: inode to mark
2380  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2381  *         multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2382  *         with I_DIRTY_PAGES.
2383  *
2384  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2385  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2386  *
2387  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2388  * instead of calling this directly.
2389  *
2390  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2391  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2392  * even if they are later hashed, as they will have been marked dirty already.
2393  *
2394  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2395  *
2396  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2397  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2398  * the kernel-internal blockdev inode represents the dirtying time of the
2399  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2400  * page->mapping->host, so the page-dirtying time is recorded in the internal
2401  * blockdev inode.
2402  */
2403 void __mark_inode_dirty(struct inode *inode, int flags)
2404 {
2405         struct super_block *sb = inode->i_sb;
2406         int dirtytime = 0;
2407         struct bdi_writeback *wb = NULL;
2408
2409         trace_writeback_mark_inode_dirty(inode, flags);
2410
2411         if (flags & I_DIRTY_INODE) {
2412                 /*
2413                  * Inode timestamp update will piggback on this dirtying.
2414                  * We tell ->dirty_inode callback that timestamps need to
2415                  * be updated by setting I_DIRTY_TIME in flags.
2416                  */
2417                 if (inode->i_state & I_DIRTY_TIME) {
2418                         spin_lock(&inode->i_lock);
2419                         if (inode->i_state & I_DIRTY_TIME) {
2420                                 inode->i_state &= ~I_DIRTY_TIME;
2421                                 flags |= I_DIRTY_TIME;
2422                         }
2423                         spin_unlock(&inode->i_lock);
2424                 }
2425
2426                 /*
2427                  * Notify the filesystem about the inode being dirtied, so that
2428                  * (if needed) it can update on-disk fields and journal the
2429                  * inode.  This is only needed when the inode itself is being
2430                  * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2431                  * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2432                  */
2433                 trace_writeback_dirty_inode_start(inode, flags);
2434                 if (sb->s_op->dirty_inode)
2435                         sb->s_op->dirty_inode(inode,
2436                                 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
2437                 trace_writeback_dirty_inode(inode, flags);
2438
2439                 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2440                 flags &= ~I_DIRTY_TIME;
2441         } else {
2442                 /*
2443                  * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2444                  * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2445                  * in one call to __mark_inode_dirty().)
2446                  */
2447                 dirtytime = flags & I_DIRTY_TIME;
2448                 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2449         }
2450
2451         /*
2452          * Paired with smp_mb() in __writeback_single_inode() for the
2453          * following lockless i_state test.  See there for details.
2454          */
2455         smp_mb();
2456
2457         if ((inode->i_state & flags) == flags)
2458                 return;
2459
2460         spin_lock(&inode->i_lock);
2461         if ((inode->i_state & flags) != flags) {
2462                 const int was_dirty = inode->i_state & I_DIRTY;
2463
2464                 inode_attach_wb(inode, NULL);
2465
2466                 inode->i_state |= flags;
2467
2468                 /*
2469                  * Grab inode's wb early because it requires dropping i_lock and we
2470                  * need to make sure following checks happen atomically with dirty
2471                  * list handling so that we don't move inodes under flush worker's
2472                  * hands.
2473                  */
2474                 if (!was_dirty) {
2475                         wb = locked_inode_to_wb_and_lock_list(inode);
2476                         spin_lock(&inode->i_lock);
2477                 }
2478
2479                 /*
2480                  * If the inode is queued for writeback by flush worker, just
2481                  * update its dirty state. Once the flush worker is done with
2482                  * the inode it will place it on the appropriate superblock
2483                  * list, based upon its state.
2484                  */
2485                 if (inode->i_state & I_SYNC_QUEUED)
2486                         goto out_unlock;
2487
2488                 /*
2489                  * Only add valid (hashed) inodes to the superblock's
2490                  * dirty list.  Add blockdev inodes as well.
2491                  */
2492                 if (!S_ISBLK(inode->i_mode)) {
2493                         if (inode_unhashed(inode))
2494                                 goto out_unlock;
2495                 }
2496                 if (inode->i_state & I_FREEING)
2497                         goto out_unlock;
2498
2499                 /*
2500                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2501                  * reposition it (that would break b_dirty time-ordering).
2502                  */
2503                 if (!was_dirty) {
2504                         struct list_head *dirty_list;
2505                         bool wakeup_bdi = false;
2506
2507                         inode->dirtied_when = jiffies;
2508                         if (dirtytime)
2509                                 inode->dirtied_time_when = jiffies;
2510
2511                         if (inode->i_state & I_DIRTY)
2512                                 dirty_list = &wb->b_dirty;
2513                         else
2514                                 dirty_list = &wb->b_dirty_time;
2515
2516                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2517                                                                dirty_list);
2518
2519                         spin_unlock(&wb->list_lock);
2520                         spin_unlock(&inode->i_lock);
2521                         trace_writeback_dirty_inode_enqueue(inode);
2522
2523                         /*
2524                          * If this is the first dirty inode for this bdi,
2525                          * we have to wake-up the corresponding bdi thread
2526                          * to make sure background write-back happens
2527                          * later.
2528                          */
2529                         if (wakeup_bdi &&
2530                             (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2531                                 wb_wakeup_delayed(wb);
2532                         return;
2533                 }
2534         }
2535 out_unlock:
2536         if (wb)
2537                 spin_unlock(&wb->list_lock);
2538         spin_unlock(&inode->i_lock);
2539 }
2540 EXPORT_SYMBOL(__mark_inode_dirty);
2541
2542 /*
2543  * The @s_sync_lock is used to serialise concurrent sync operations
2544  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2545  * Concurrent callers will block on the s_sync_lock rather than doing contending
2546  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2547  * has been issued up to the time this function is enter is guaranteed to be
2548  * completed by the time we have gained the lock and waited for all IO that is
2549  * in progress regardless of the order callers are granted the lock.
2550  */
2551 static void wait_sb_inodes(struct super_block *sb)
2552 {
2553         LIST_HEAD(sync_list);
2554
2555         /*
2556          * We need to be protected against the filesystem going from
2557          * r/o to r/w or vice versa.
2558          */
2559         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2560
2561         mutex_lock(&sb->s_sync_lock);
2562
2563         /*
2564          * Splice the writeback list onto a temporary list to avoid waiting on
2565          * inodes that have started writeback after this point.
2566          *
2567          * Use rcu_read_lock() to keep the inodes around until we have a
2568          * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2569          * the local list because inodes can be dropped from either by writeback
2570          * completion.
2571          */
2572         rcu_read_lock();
2573         spin_lock_irq(&sb->s_inode_wblist_lock);
2574         list_splice_init(&sb->s_inodes_wb, &sync_list);
2575
2576         /*
2577          * Data integrity sync. Must wait for all pages under writeback, because
2578          * there may have been pages dirtied before our sync call, but which had
2579          * writeout started before we write it out.  In which case, the inode
2580          * may not be on the dirty list, but we still have to wait for that
2581          * writeout.
2582          */
2583         while (!list_empty(&sync_list)) {
2584                 struct inode *inode = list_first_entry(&sync_list, struct inode,
2585                                                        i_wb_list);
2586                 struct address_space *mapping = inode->i_mapping;
2587
2588                 /*
2589                  * Move each inode back to the wb list before we drop the lock
2590                  * to preserve consistency between i_wb_list and the mapping
2591                  * writeback tag. Writeback completion is responsible to remove
2592                  * the inode from either list once the writeback tag is cleared.
2593                  */
2594                 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2595
2596                 /*
2597                  * The mapping can appear untagged while still on-list since we
2598                  * do not have the mapping lock. Skip it here, wb completion
2599                  * will remove it.
2600                  */
2601                 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2602                         continue;
2603
2604                 spin_unlock_irq(&sb->s_inode_wblist_lock);
2605
2606                 spin_lock(&inode->i_lock);
2607                 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2608                         spin_unlock(&inode->i_lock);
2609
2610                         spin_lock_irq(&sb->s_inode_wblist_lock);
2611                         continue;
2612                 }
2613                 __iget(inode);
2614                 spin_unlock(&inode->i_lock);
2615                 rcu_read_unlock();
2616
2617                 /*
2618                  * We keep the error status of individual mapping so that
2619                  * applications can catch the writeback error using fsync(2).
2620                  * See filemap_fdatawait_keep_errors() for details.
2621                  */
2622                 filemap_fdatawait_keep_errors(mapping);
2623
2624                 cond_resched();
2625
2626                 iput(inode);
2627
2628                 rcu_read_lock();
2629                 spin_lock_irq(&sb->s_inode_wblist_lock);
2630         }
2631         spin_unlock_irq(&sb->s_inode_wblist_lock);
2632         rcu_read_unlock();
2633         mutex_unlock(&sb->s_sync_lock);
2634 }
2635
2636 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2637                                      enum wb_reason reason, bool skip_if_busy)
2638 {
2639         struct backing_dev_info *bdi = sb->s_bdi;
2640         DEFINE_WB_COMPLETION(done, bdi);
2641         struct wb_writeback_work work = {
2642                 .sb                     = sb,
2643                 .sync_mode              = WB_SYNC_NONE,
2644                 .tagged_writepages      = 1,
2645                 .done                   = &done,
2646                 .nr_pages               = nr,
2647                 .reason                 = reason,
2648         };
2649
2650         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2651                 return;
2652         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2653
2654         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2655         wb_wait_for_completion(&done);
2656 }
2657
2658 /**
2659  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2660  * @sb: the superblock
2661  * @nr: the number of pages to write
2662  * @reason: reason why some writeback work initiated
2663  *
2664  * Start writeback on some inodes on this super_block. No guarantees are made
2665  * on how many (if any) will be written, and this function does not wait
2666  * for IO completion of submitted IO.
2667  */
2668 void writeback_inodes_sb_nr(struct super_block *sb,
2669                             unsigned long nr,
2670                             enum wb_reason reason)
2671 {
2672         __writeback_inodes_sb_nr(sb, nr, reason, false);
2673 }
2674 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2675
2676 /**
2677  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2678  * @sb: the superblock
2679  * @reason: reason why some writeback work was initiated
2680  *
2681  * Start writeback on some inodes on this super_block. No guarantees are made
2682  * on how many (if any) will be written, and this function does not wait
2683  * for IO completion of submitted IO.
2684  */
2685 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2686 {
2687         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2688 }
2689 EXPORT_SYMBOL(writeback_inodes_sb);
2690
2691 /**
2692  * try_to_writeback_inodes_sb - try to start writeback if none underway
2693  * @sb: the superblock
2694  * @reason: reason why some writeback work was initiated
2695  *
2696  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2697  */
2698 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2699 {
2700         if (!down_read_trylock(&sb->s_umount))
2701                 return;
2702
2703         __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2704         up_read(&sb->s_umount);
2705 }
2706 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2707
2708 /**
2709  * sync_inodes_sb       -       sync sb inode pages
2710  * @sb: the superblock
2711  *
2712  * This function writes and waits on any dirty inode belonging to this
2713  * super_block.
2714  */
2715 void sync_inodes_sb(struct super_block *sb)
2716 {
2717         struct backing_dev_info *bdi = sb->s_bdi;
2718         DEFINE_WB_COMPLETION(done, bdi);
2719         struct wb_writeback_work work = {
2720                 .sb             = sb,
2721                 .sync_mode      = WB_SYNC_ALL,
2722                 .nr_pages       = LONG_MAX,
2723                 .range_cyclic   = 0,
2724                 .done           = &done,
2725                 .reason         = WB_REASON_SYNC,
2726                 .for_sync       = 1,
2727         };
2728
2729         /*
2730          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2731          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2732          * bdi_has_dirty() need to be written out too.
2733          */
2734         if (bdi == &noop_backing_dev_info)
2735                 return;
2736         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2737
2738         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2739         bdi_down_write_wb_switch_rwsem(bdi);
2740         bdi_split_work_to_wbs(bdi, &work, false);
2741         wb_wait_for_completion(&done);
2742         bdi_up_write_wb_switch_rwsem(bdi);
2743
2744         wait_sb_inodes(sb);
2745 }
2746 EXPORT_SYMBOL(sync_inodes_sb);
2747
2748 /**
2749  * write_inode_now      -       write an inode to disk
2750  * @inode: inode to write to disk
2751  * @sync: whether the write should be synchronous or not
2752  *
2753  * This function commits an inode to disk immediately if it is dirty. This is
2754  * primarily needed by knfsd.
2755  *
2756  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2757  */
2758 int write_inode_now(struct inode *inode, int sync)
2759 {
2760         struct writeback_control wbc = {
2761                 .nr_to_write = LONG_MAX,
2762                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2763                 .range_start = 0,
2764                 .range_end = LLONG_MAX,
2765         };
2766
2767         if (!mapping_can_writeback(inode->i_mapping))
2768                 wbc.nr_to_write = 0;
2769
2770         might_sleep();
2771         return writeback_single_inode(inode, &wbc);
2772 }
2773 EXPORT_SYMBOL(write_inode_now);
2774
2775 /**
2776  * sync_inode_metadata - write an inode to disk
2777  * @inode: the inode to sync
2778  * @wait: wait for I/O to complete.
2779  *
2780  * Write an inode to disk and adjust its dirty state after completion.
2781  *
2782  * Note: only writes the actual inode, no associated data or other metadata.
2783  */
2784 int sync_inode_metadata(struct inode *inode, int wait)
2785 {
2786         struct writeback_control wbc = {
2787                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2788                 .nr_to_write = 0, /* metadata-only */
2789         };
2790
2791         return writeback_single_inode(inode, &wbc);
2792 }
2793 EXPORT_SYMBOL(sync_inode_metadata);